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Abstract

We introduce wavelets and discuss the advantages in using wavelets to solve PDEs. The
mathematical framework for biorthogonal interpolating wavelet transforms is set out. The
wavelet transform framework to solve PDEs is introduced and the construction of the
wavelet decomposition of differential operators and the restriction of wavelets to intervals
is given. The wavelet transform methodology and the construction of differential operators
is extended to higher dimensions. An explanation is given of the wavelet method of lines —
together with the explicit finite difference, Dufort Frankel explicit and alternating direction
implicit alternatives — as applied to multi-dimensional PDEs, including one-dimensional

examples.
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Chapter 1

Introduction

What are wavelets? Wavelets are functions that are used in representing other data or
functions. This idea of representing functions or data using a combination of other func-
tions that satisfy some mathematical requirements is not a new one. In fact a similar idea
was discovered by Joseph Fourier in the early 1800’s when he discovered that he could
use a superposition of sines and cosines to represent other functions. This was the Fourier
series which led to the Fourier transform. However when we use wavelet transforms, we
look at such problems from a different perspective. Wavelet transforms represent general
functions in terms of simpler building blocks at different scales or resolutions and specified
positions. So this basic property of the wavelet transform enables us to look at both the
large and small scale features of a function together. We can say that the wavelet technique

allows us to see both the forest and the trees!

The usefulness of the wavelet transform technique is evident from the large number of
fields to which it has been applied. The technique has been applied in image compression,
astronomy, acoustics, signal and image processing, speech recognition, human vision, nu-
merical analysis and the solution of partial differential equations. It is the last area that

this paper is about.



Wavelet based techniques to solve PDEs are a relatively new area of research; they have
been discussed in papers by Xu and Shann [68], Beylkin [8], Vasilyev et al. [63, 64],
Prosser and Cant [51, 48, 49], Dahmen et al. [18] and Cohen et al. [16]. A lot of the
early research in the solution of PDEs using wavelet based methods was limited by the
class of PDEs that could be solved. The techniques had difficulties with nonlinear terms
in the PDE and the implementation of boundary conditions was complicated. Many of
these drawbacks have now been overcome due to research done by Sweldens [60], Donoho
[26] and Prosser and Cant [51]. This survey paper extends their methodology to the so-
lution of PDEs in as many as three dimensions and is based on the PhD dissertation of

the second author [29] written under the supervision of the first and related papers [20, 21].

The wavelet method of lines as described in [20, 21, 29] is a technique that can take
advantage via its multiresolution framework of any structure present in the solution of the
PDE. This can be a particularly useful property in the solution of the parabolic PDEs that
arise in derivative security valuation in computational finance as it is frequently found
that the value functions solving these PDEs have some structural features that can be
exploited. For example, many Bermudan fixed income derivatives exhibit more variation
close to their exercise points. The wavelet method of lines can be loosely described as a
technique that combines the accuracy of a spectral method (based on Fourier transforms)
with the efficiency of a finite difference method. Moreover, unlike a spectral method, it

can be applied to a large class of PDEs including those with non-constant coefficients.

The paper is presented in five chapters. In Chapter 2 we introduce wavelets and discuss
the advantages of using wavelets to solve PDEs. We go on to explain the construction of
orthogonal and biorthogonal wavelets. The mathematical framework for biorthogonal in-
terpolating wavelet transforms is set out and the construction of the fast wavelet transform
is explained. The convergence properties of the wavelet transform are discussed and the

associated convergence proofs given. We also illustrate the fast wavelet transform structure
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in detail and establish our result on the analytical complexity of the related algorithm as
linear in the discretization size N. This compares favourably with the O(Nlog N) com-

plexity of the fast Fourier transform.

Chapter 3 explains how the wavelet transform framework can be used to solve PDEs. We
construct the wavelet decomposition of differential operators and deal with the restriction
of wavelets to intervals and the corresponding boundary modified differential operators.
The wavelet transform methodology is then extended to multiple dimensions and the con-
struction of high dimensional differential operators discussed. In the last section of the
chapter we introduce a novel construction for a combined differential operator to tackle
PDEs with non-constant coefficients. This technique makes the wavelet method very flex-

ible and ensures that it can be applied to a large class of financial parabolic PDEs.

In Chapter 4 we explain in detail the wavelet method of lines, the explicit finite differ-
ence scheme and the Dufort Frankel explicit method as applied to one dimensional and
multi-dimensional PDEs. We also give an outline of alternating direction implicit (ADI)
schemes. The relative merits and drawbacks of these methods are also discussed and ex-

amples of the wavelet method of lines for one dimensional problems are given in more detail.

Chapter 5 concludes and discusses directions of current research.

The research reported here has been partially sponsored by Citigroup. We would like
to thank its former Vice-Chairman, Paul Collins, for his interest in and generosity to the
Cambridge Centre for Financial Research. Thanks are also due to Drs. Piotr Karasinski
and Jan Coatelem of Salomon Smith Barney FX Derivatives, London for their support,
suggestions, encouragement and criticism in the development of this work. We are very
grateful to Dr. Rob Prosser of the Manchester Institute of Science and Technology, for
introducing us to the subject and for his continual advice and encouragement, to our for-

mer colleague, Dr. Darren Richards of Wide Learning, for his collaborative efforts and to
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Dr. Sam Howison of the Oxford Centre for Industrial and Applied Mathematics and the

Nomura Centre for Quantitative Finance, for correcting some errors in an earlier draft.



Chapter 2

Basic Wavelet Theory

This chapter and the next introduces wavelets and explains how one can use them to solve
PDEs. We start by defining and explaining orthogonal wavelets on the real line and then
go onto to explain the biorthogonal wavelet framework that is used to solve PDEs. The
wavelet decomposition of differential operators on the real line, their restriction to intervals

and extensions to higher dimensions will be treated in Chapter 3.

2.1 Wavelets and Their Uses

What are wavelets mathematically? Wavelets are functions that satisfy certain properties
and are used as building blocks in the representation of other functions. A wavelet trans-
form is created by adopting a prototype function (called the mother wavelet) and then
dilating, contracting and translating it to get a set of basis' functions. A wide variety of
functions can be used to construct the transform, and this flexibility in the choice of basis

functions is what makes wavelet transforms a powerful tool.

Wavelets have been used in the fields of image compression [13] and image analysis for

LA basis of a finite dimensional vector space V is a finite set of linearly independent vectors such that
any vector v in V' can be written as a linear combination of these basis vectors. Similarly a suitably
infinite set of basis functions can be used to represent any function in a particular sequence or function
space.



quite some time to compute compact representations of functions and data sets based on
exploiting structures in the underlying functions. In the field of image compression the
wavelet transform is used to transform an image to wavelet space with an efficient wavelet
basis and then to store only the transform coefficients that are greater than a certain mag-

nitude. This results in storing images in an highly efficient way.

Wavelet transforms have also been widely used in signal processing as they overcome
some of the drawbacks associated with Fourier analysis of a signal. For example a Fourier
transform (FT) gives complete information in frequency space but no information in the
inverse time or spatial domain (inverse frequency space). Figure 2.1 (also see [45]) shows
two signals that are very similar in Fourier space but completely different in the time do-
main. The first signal is stationary, i.e. all the three frequencies it is made of are present
at all times. The second signal is non-stationary with the highest frequency component
present initially for a certain time interval followed by the next lower frequency and so on.
While for some applications the Fourier transform may provide all the necessary informa-
tion, it may sometimes be necessary to retain information in the original time (or spatial)
domain. The wavelet transform is more efficient and useful in the representation of such
signals as it adapts itself to the signal. This is possible as the wavelet transform can use
a wide variety of basis functions. Short basis functions could be used to analyze signal
discontinuities and wide basis functions could be used for frequency analysis. Figures 2.2
and 2.3 show a time frequency representation of the continuous wavelet transform of the
stationary and non-stationary signals of Figure 2.1. We can see that by using a wavelet
representation of a signal we obtain information on both its frequency and time (or spatial)
domain. Figure 2.2 clearly shows that all three frequencies are present at all times in the
stationary signal, while Figure 2.3 shows that only certain frequencies are present in the

non-stationary signal at different points in time.

Wavelets have been used to a lesser degree in numerical analysis and in the numerical

solution of partial differential equations than in the above applications. In solving PDE’s
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Figure 2.1: Limitation of Fourier transforms: The figure shows a stationary signal and a
non-stationary signal and their corresponding Fourier transforms. Observe that the Fourier
transforms of the two signals are very similar.
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Figure 2.3: Wavelet transform of a non-stationary signal
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using wavelets [68, 8, 63, 1, 64, 51, 18, 16, 12], functions and operators are expanded in a
wavelet basis to allow a combination of the desirable features of finite-difference methods,
spectral (i.e. Fourier) methods and front-tracking or adaptive grid approaches. For the
PDEs that occur in finance, wavelets exploit the fact that large classes of relevant opera-
tors and functions are sparse, or sparse to some high degree of accuracy when transformed
into the wavelet domain. Wavelets are also suitable for problems with multiple spatial
scales which arise frequently in finance. In these problems wavelets give an accurate rep-
resentation of the value function solution in regions of sharp transitions (for example at
exercise dates) and combine the advantages of both spectral and finite-difference methods.
A wavelet based PDE solver combined with an appropriate thresholding technique can be
a very efficient way of solving financial PDEs in several dimensions and is not restricted to

PDEs with non-constant coeflicients.

As a first evaluation of the method in finance we have implemented a wavelet method
of lines scheme using biorthogonal interpolating wavelets to solve the Black Scholes PDE
for option values with discontinuous payoff structures, a 3-dimensional cross currency swap
PDE based on extended Vasicek Gaussian interest rate models and a PDE based on a 3-

dimensional Gaussian interest rate model [29).

2.2 Orthogonal Wavelets on the Real Line

We first give a brief introduction to wavelets for real valued functions of a real argument
[19]. A wavelet decomposition involves two families of functions, the scaling functions and
the wavelets. These two sets of functions are linked together to perform a multiresolution

analysis. A central idea in multiresolution analysis is that the function space? Lo(R) can

25(R) denotes the Hilbert space of square integrable functions on the real line (a complete inner
product space).
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be approximated as a nested hierarchy of finite dimensional subspaces
{0}Cc---CV,;,CV;CV,,;C---C L(R), (2.1)

where 0 denotes the constant zero function and increasing j corresponds to increasing reso-
lution. We can say that the information gained in going from a lower resolution subspace to
a higher one is contained in an innovation or detail space. Thus the information contained

in a subspace V; is encapsulated in a direct sum of two subspaces V;_; and W ;_;.
Vino W, =Vj, (2.2)

where W ;_; is the detail space. This decomposition is sometimes called the causality

property.

More formally a square integrable function f defined in a subspace (not necessarily fi-
nite dimensional) of the Hilbert space Ly(R) of equivalence classes of square integrable
functions is decomposed into a power series using a projection operator that is usually in
the form of a series of inner products®. For example the Fourier ezpansion ([17], pp. 74)

of a function f in Ly([0, 27]) is defined as

1 2
f(z):= Z <%/0 f(u) exp(—iku)du) exp(tkx), (2.3)
kEZ
where Z denotes the integers {..., —2,—1,0,1,2,...}. A finite truncation of the doubly in-
finite series in (2.3) yields a projection P f on the finite number of basis functions involved.
In a wavelet transform for Ly(R) we have two bases, one is the wavelet basis and the other

is the scaling function basis. We first treat a classical special case due to Daubechies [19].

31f f and g are two square integrable functions defined on R, then the inner product of the two functions
is defined as < f,g >:= ffooo f(z).g(xz)dz and the norm on Ly(R) by ||f|| :==< f, f >3 Ly(R) is complete
in the norm topology in the sense that the limits of Cauchy sequences of functions belong to the space.
For L»(R) it may be shown that although its cardinality is that of the continuum it has a countable basis
— a result first due to von Neumann (see [54, 55] for more details).

12



2.2.1 Daubechies wavelets

Consider the following functions. The scaling function is the solution of the functional

dilation equation

$(@) =vV2 > hnd(2z—m), (24)

m=—0o0

where ¢ is normalised so that ffooo ¢(z)dz = 1. The wavelet function is defined in terms

of the scaling function as

P(@)=vV2 Y gmé(2z—m). (2.5)

m=—oQ

We can build an orthonormal basis for the Hilbert space Ly(R) of square integrable func-
tions from the functions ¢ and ¢ by dilating and translating them to obtain two sets basis

functions:
$ik(x) = 2292z — k) (2.6)

and
Vip(w) =2P)De —k) k€L, (2.7)

which we call the scaling function and wavelet bases respectively. In (2.6) and (2.7) j is
the dilation or scaling parameter and k is the translation parameter. All wavelet properties
are specified through the filter coefficients, H := {hx}° _ and G := {gx}3>_., which are

chosen so that dilations and translations of the wavelet i) form an orthonormal basis of

13



/ i () (@)dT = Obem s ki Ly € Z, (2.8)

where d;; is the Kronecker delta function.

Under these conditions, for any function f € Ly(R), there exists a set {d;;} such that

JEL ke

dji, = /°° f(@)¢jp(z)de. (2.10)

The wavelets form the basis for the detail spaces W ; and the large scale structures are

encoded by the scaling functions for V';. The projection onto V; is given by

0

Por0) =Y ([ fse(wan) o5,00), (211)

kez N\ T

where ¢, is the scaling function of resolution j and translation k and is given by (2.6).
We can think of j as a scaling parameter and k£ as a parameter that shifts the function
along the physical space axis. From the causality property (2.2) it follows that the basis
functions for V; can be exactly represented in terms of the basis functions for V';,,. The
integral in (2.11) can be evaluated in the following manner. We replace f in (2.11) with ¢

and project onto V' ;1 to give

Pua(ia(e) = 3 ([ 2P0 = 020262 = m)au) dyoa(a). (212

MEZ -

Now because we know that ¢;; can be represented in terms of @, 1 x(z)

PVj+1(¢j7k($)) = ¢jx(z) (2.13)

14



and by a change of variable (27u — k — u) in (2.12) it can be demonstrated that

/ N 2012¢(20u — k)2UHD/2¢(20+y — m)du = / N 2Y2¢(u)p(2u — (m — 2k))du.  (2.14)

In terms of the inner product < .,. > in Ly(R), (2.12) implies that

$in(x) =D < doo(w), $1m(w) > Gjs1mion() (2.15)

mEeZ

since this equation is valid for any translation £ and any scaling parameter j. Setting both

to zero and noting from (2.6) that ¢go = ¢ gives us the two scale relation

= V2 < 6(w), b1m() > dron(a). (2.16)

meZ

Defining

hm =< ¢(u), o1 .m(u) > (2.17)

we obtain [41] the classical two scale relation

=V2)Y  hno(2z —m). (2.18)

MEZ

Substituting (2.15) into the inner product representation of (2.11) gives

Py, (f(z)) = Y < f(u),dn(u) > djr(x)

kEZ

- Z Z b < f(u), j11,mrok(u) > k() (2.19)

kEZ meZL

involving the two resolution scales 7 and 7 + 1. Defining the set of scaling function coeffi-

15



cients as

Sjk =< f(u), qﬁj’k(u) >,

it follows from (2.19) by equating coefficients that in terms of the two scale basis coefficients
Sk = Z PinSj41,m26- (2.20)
m

It is usual to denote the spaces spanned by the scaling functions {¢,:} and the wavelet

functions {1, } over the location parameter k, with scale parameter j fixed, by respectively
V= spankezdjr W = spankeczjk- (2.21)

Functions with arbitrarily small scales can be represented by the expansion (2.9), however
in practice there is a limit on how small the smallest structure can be, which could depend

on a required grid size in a numerical computation as we shall see below, cf. §3.1.

To implement wavelet analysis on a computer we need to have a bounded range and
domain to generate approximations to functions f € Ly(R). Thus we must limit the filters
H and G to finite sets. Approximation accuracy is specified by requiring that the wavelet

function 1 satisfies

/_OO Y(z)z™dr =0 (2.22)

form=0,..., M —1, which implies exact approximation for polynomials of degree M — 1.
For Daubechies wavelets [19] the number of coefficients, or length L of the filters H and G,
is related to the number M of vanishing moments in (2.22) by 2M = L and their elements
are related by gy = (=1)%hy_j for k = 0,... ,L—1. In the signal processing literature such
finite filters H and G are known as quadrature mirror filters. The coefficients H needed

to define compactly supported wavelets with high degrees of regularity can be derived, see

16



for example [19].

Therefore for computations the approximation subspace expansion is in the form of a

finite direct sum of finite dimensional vector spaces,viz.

V=W W oWy ®---®dW,;_1 0 Vy,

where the spaces Vj and W ; are termed scaling function and approzimation subspaces
respectively. The corresponding orthogonal wavelet projection of a function f € Ly(R) on

a compact domain is given by

k.

-1

Py, f(z): Z dj ks () + ZSo,k¢0,k, (2.23)
k k

<.
Il
)

where J is the number of multiresolution components (or scales) and k ranges from 0 to
the number of coefficients in each specified component j € {0,...,J —1}. The coefficients
dok,---,ds 14 Sok are termed the wavelet transform coefficients and the functions ¢,
and ;; are the approzimating scaling and wavelet functions. Some examples of basic
wavelets are the Haar wavelet which is just a square wave (the indicator function of the
unit interval), the Daubechies wavelet [19] and Coiflet wavelet [9]. Figure 2.4 displays some
basic wavelet forms. A thorough study of orthogonal wavelet systems can be found in the

book by Daubechies [19].

2.3 Biorthogonal Wavelets

Biorthogonal wavelets are symmetric and do not introduce phase shifts into the coefficients.
They are a generalization of orthogonal wavelets and were first introduced by Cohen,
Daubechies and Feauveau[15]. Biorthogonal wavelet analysis uses four basic function types:
# and v, termed respectively the primal scaling function and wavelet, and ¢ and v, termed

respectively the dual scaling function and wavelet. The biorthogonal wavelet projection of

17



Daubechies 6 Coiflet_3

Haar_4 Symmlet_6

Figure 2.4: Different wavelet families depicted by their mother wavelets. The number next
to the wavelet name represents the degree of accurate polynomial approximation for that
wavelet

a square integrable function on a compact domain is given by
J-1
Py, f(z) == Z Z djxjp(z) + Z 50,,6P0,k (T), (2.24)
J=0 k k

where k is summed over an appropriate subset of {1,... 27} determined by the resolution
components indexed by j € {0,...,J — 1}. Expression (2.24) appears to be the same as
the orthogonal projection, but the key difference from the orthogonal setting arises in the

calculation of the coefficients d;; and s;; from the expressions:

djg =< f(z),9(z) >
sik =< f(x),6(x) > . (2.25)

Thus in the biorthogonal transform the coefficients are calculated in terms of inner prod-

ucts with the dual wavelet and scaling functions.

18



In general biorthogonal wavelets are not mutually orthogonal, but rather satisfy biorthog-

onality relationships of the form

f ¢j,k($jf,kr (x)d:r = 5j,j’5k,k’
J ity (x)da = 6,510 o, (2.26)

where j, 5, k, k' range over appropriate subsets of {1,...,27} as above.

Biorthogonal wavelet systems are derived from a paired hierarchy of approximation sub-

spaces

{0}C -+ CV,,1CV,;C V1 C---C Ly(R)
{0}c --- CV;.,CV;C V1 C---CLyR) = Ly(R).

(Note that increasing j = 0,1,2,... denotes refinement of the grid as before.) The basis
functions for V; and Vj are respectively the primal scaling functions ¢;; and the dual
scaling functions quSj,k. Two detail or innovation wavelet spaces W ; and Wj may be defined

such that

Vj_|_1 = Vj D Wj
Vj-H = Vj @ Wj, (2.27)
where Vj 1L W, VvV, L Wj4 and j € {0,1,...,J — 1}. The innovation space basis func-

tions are the primal and dual wavelets v, ; and @Ej,k respectively.

Next we consider in detail the finite dimensional approximation of square integrable func-

tions on a Euclidean domain using biorthogonal wavelets.

41 denotes orthogonality in the sense of vanishing inner products between arbitrary vectors in the two
spaces.
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2.3.1 Multiresolution wavelet transform framework

The research reported in this thesis is based on the second generation wavelet trans-
form framework. Such biorthogonal wavelet transforms have been studied extensively by

Schroder and Sweldens [58] and Sweldens [60, 61], whose approach we now introduce.

Consider a general Hilbert space Ly := Lo(X,3, ), where X C R" is the domain of
the functions to be represented, ¥ is a o-algebra and p is a non-atomic measure on .
We assume (X, d) is the metric space obtained by equipping X with any suitable metric
(e.g. the Euclidean metric). In this section the notation used will conform with that of the
Sweldens papers. (The specific page numbers appearing in the references to these papers

relate to the versions of the papers available from the website given in the bibliography.)

Definition 2.3.1. A multiresolution analysis M of Ly is a sequence of closed subspaces
M :={V,;C Ly:j € J CZ} such that:

1. V;CVj,

2. Ujes Vi is dense in Lo,

3. foreach j € J, V has a Riesz basis® given by the scaling functions {¢; : k € K(j)},
where K (j) C Z is a general index set and we assume that K(j) C K(j + 1).

We look at two cases:

1. J = N, this means there is one coarsest level V3 which is the case appropriate to

p(X) < oo,

2. J =Z, in this case we have a fully bi-infinite setting appropriate to u(X) = oo,
and this results in an additional condition that (1, V; = {0}. O

A dual multiresolution analysis M = {VJ : j € J} consists similarly of spaces Vj with

Riesz bases given by the dual scaling functions (ﬁj,k.

A family of vectors {e,} in a Hilbert space H constitute a Riesz basis iff there exist a > 0, 8 < 00 so
that aflu||? <Y, | <u,en > | < B|u]|* for allu € H.

20



The primal and dual scaling functions are biorthogonal in the sense that
< ¢j,ka &j,k’ >= 5k,k’ j€eJ k, K e K(]), (2.28)

where 0y, denotes the Kronecker delta.

For f € Ly, define the coefficients s;; :=< f, qgj’k > and consider the projections

ij: Z Sj,k¢j,lc- (229)

keK(j)

If the projection operators are uniformly bounded in Lo, then we have ([61], pp.4-5)
lim |1/ — P,/ ]| = 0. (2.30)
j—oo

(We shall demonstrate convergence of the Donoho interpolating wavelet transform projec-

tions in §2.4.3)

First generation scaling functions can reproduce polynomials up to a certain degree. This
may be generalized by considering a set of C'*° functions {P, : p=10,1,2,...} on X € R"
with P, := 1, for which the restriction of any finite number of these functions to any e-ball
are linearly independent. We say that the order of the multiresolution analysis is IV, if for
all j € J, each P,, 0 <p < N, can be represented pointwise as a linear combination of

the scaling functions {¢,x : k € K(j)}, i.e.

P,(z) = Z & bin(). (2.31)

keK(4)

We denote by N the order of the dual multiresolution analysis in which a similar set of

functions ﬁp representable in terms of the dual scaling functions qzj,k are utilized. When X

21



is a domain in R" (i.e. a bounded set with non-empty interior in the metric (Euclidean)
topology) the functions P, will usually be polynomials. When X is a finite dimensional
manifold, the functions P, can be parametric images of polynomials.

The dual scaling functions are assumed to be integrable and can be normalized as

[ diuin =1 (2.32)
X

so that for N > 0 it follows ([61], pp.4-5) that

> bin(z) =1. (2.33)

ke K(4)
2.3.2 The cascade algorithm

We now address the question of how to actually construct scaling functions and dual scal-
ing functions. One of the differences of biorthogonal wavelets from the first generation
orthogonal wavelets is that they usually have no closed form analytical expressions and

must be defined through an iterative procedure known as the cascade algorithm.

We begin by defining the concept of a filter. The definition of multiresolution analy-
sis implies that for every scaling function ¢;, € V,, j € J k € K(j), the coeflicients
{hjry:1 € K(j+ 1)} arise from the relations

Gk = Z hjridit1, k€ K(j) (2.34)

leK(j+1)

termed the refinement relations since each scaling function is written as a linear combina-

tion of scaling functions on the next finer level (cf. [61], pp.5-6).

Definition 2.3.2. A set of real numbers h := {h;;; : j € J,k € K(j),l € K(j +1)} is
called a finite filter if, and only if :-
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1. For each j and k only a finite number of coefficients h;;; are non zero so that the

index set

L(j, k) ={l€ K(j+1): hjr; # 0}
is finite.

2. For each j and [ only a finite number of coefficients h;;,; are non zero so that the

index set

K(], l) = {k‘ € K(]) : hj,k,l 7é 0}
is finite.

3. The cardinalities of the sets L(j, k) and K(j,!) are uniformly bounded for all
jeJke K(j)andl € K(j+1). O

Similarly, the dual scaling functions will satisfy refinement relations with coefficients {ﬁj,k,l}

and we define the concept of a dual finite filter h analogously.

For first generation wavelets a set of partitions {S;x} can be thought of as a replace-
ment for sets of disjoint covering intervals on the real line and each scaling function ¢, is

associated with exactly one set S; ;. More generally we have:

Definition 2.3.3. A set of measurable subsets {S;, € ¥ :j € J, k € K(j)} is called a set

of partitions if, and only if:
1. Vj € J the disjoint union cl UkeK(j) Sik=X
2. KGHHcCcK@{G+1)
3. Sjt1. C Sjk

4. For fixed k € K(jo), [iv: Sik is a set which contains a single point zy. O

7> jo
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We now use a given filter and a set of partitions to construct scaling functions that satisfy
the refinement relations (2.34). To first synthesize ¢;, x,, begin by defining a Kronecker
sequence {sj,r = Ok, : k¥ € K(jo)} and then generate sequences {s;; : k£ € K(j)} for

J > jo by recursively applying

Sjt10 = Lrek (G k155k- (2.35)
Next construct the functions
Jjo,ko = Z SjakISj,k Jo<jed (2.36)
keK(j)

which for j > jg satisfy (¢f. [61], pp.7)

Jj'o,ko = Z hjo,ko,l ]"]0—|—1,l' (2.37)

leK(jo+1)

Define the limit function ¢;, x, := lim;_, f]?;)’ko. These limit functions satisfy

Djo ko (Tk) = lim 5. (2.38)
j—o00

This procedure is called the cascade algorithm. If the cascade algorithm converges for all
Jo and ko, a set of scaling functions is obtained which, by letting j go to oo in (2.37), are

seen to satisfy the refinement equation (2.34).

When the scaling functions generate a multiresolution analysis in the sense of Definition

2.3.1, it follows from the definitions that the cascade algorithm always converges to

> SjokDiok (2.39)
k

from the initial sequence {s;; : £ € K(j)}. Similarly, the dual scaling functions are con-

24



structed starting from a finite filter &, the same set of partitions and an initial Kronecker

sequence.

Normalization of the initial sequences also gives < (/;j,k,cbj,k >=1 for j € J k € K(j).

The refinement relations and biorthogonality constraints imply that
Zh',k,lil',k’,l = (5]9,19/ j - J,k, k' - K(]), le K(] + 1). (240)
l

If the filter coefficients satisfy (2.40) and the cascade algorithm converges for both the
primal and dual scaling functions, then it follows easily that the resulting limiting scaling
functions are biorthogonal since (2.40) ensures that the functions f;;),ko and fjoko in the

convergent, sequences are biorthogonal at each j € J.

We are now in a position to formally define a set of biorthogonal wavelet functions.

Definition 2.3.4. A set of functions {1, : j € J;m € M(j)} C Lo(X, %, ) where
M(j) == K(j + 1D\K(j), is a set of biorthogonal wavelet functions if, and only if :-

1. The space W; = cl span{vjm : m € M(j)} is a complement of V; in V; and
W, LV,

2. It J =Z, the set {||[¢jm|| " ¢jm 7 € J,m € M(j)} is a Riesz basis for L.
If J =N, the set {||¢jm|| " ¢jm 7€ Jme M3G)}U{||dox|| " doxr : k€ K(0)}1is

a Riesz basis for L.

We always assume that the index m belongs to the set M(j). The dual basis for Lo is
given by dual wavelets {1;,, : j € J,m € M(j)} which are biorthogonal to the wavelet

functions, i.e.

< wj,ma @;j’,m’ >= 6m,m’5j,j’ ja jl € J: me M(j)a m, € M(],) (241)
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The dual wavelets span spaces Wj which complement ‘7j in Vj+1 and Wj 1LV, O

For f € Lo, define the coefficients d; ,, :=< f, TZJ]',m >, j € J,m & M(j). Then

=3 djmtim (2.42)

jeJ meM(j)

Their definition implies that (cf. [61], pp.8) the wavelets satisfy refinement relations of the

form

¢j, Z 9jm, l¢]+1 l- (243)

leK(j+1)
We assume that g :== {gjm;:j € J,m € M(j),l € K(j+ 1)} is also a finite filter in the
sense of definition 2.3.2 in terms of the finite sets

M(5,0) :=={m € M(j)|gjm; #0} and L(j,m):={le K(j+1):me M(51)}. (2.44)

Similarly the dual wavelets satisfy refinement relations of the form (2.43) with a finite filter

g. Also, because ¢ 11, € V; ® W, we have (cf. [61], pp.8)

¢j+1,l Z h],kl¢j,k+ Z g],ml¢y, (245)

kEK(J) meM(j

The biorthogonality relations (2.28) and (2.41) give us the following relationships between
the filters h, h, g, §:

Z gj,mlg], o= 5m,m’ Z h],klg], l—0

lEK(j+1) lEK(j+1)
Z h; ik, lh],k’ = 5k,k' Z gj, mlh ikl =
lEK(j+1) lEK(j+1)
for j € J,m e K(j),m' € M(j). (2.46)
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Definition 2.3.5. A set of filters {h, B,g,f]} is a set of biorthogonal filters if, and only if,
(2.46) is satisfied. O

So given a set of biorthogonal filters and a set of partitions and assuming that the cascade
algorithm converges the resulting scaling functions, wavelets, dual scaling functions and

dual wavelets are biorthogonal, i.e.

< ¢j,k',<7>j,k > = Opp
< ity Vin > = O
< Pjmy Gip > = 0
< ik Vjm > = 0

jed, k,me K(j), k',m' e M(j) (2.47)

We now use the functions P, defined by (2.31) to generalize the notion of vanishing poly-

nomial moments. If the scaling functions ¢, with k£ € K(j) reproduce P,, and

/ Pabimdn=0 pe{0,....N—1}, jeJ, me M(3), (2.48)
X

then we say that the dual wavelets have N vanishing moments, similarly the wavelets have

N vanishing moments.

Finally we explain how to construct a fast transform algorithm based on the theory set
out above. Consider the projection of a function f € Ly on V; as in (2.24). The basic
idea is that given a set of coefficients {s, : k¥ € K(n)} we can calculate {d;,, : m €
M(j)} for j = ng,...,n—2,n—1 and {s,,x : k£ € K(ng)}. From the refinement rela-
tions for the dual scaling functions and wavelets, the wavelet transform is obtained by the

recursive application of (¢f. [61], pp.9)

ik Z h,kl5a+1l djm Z 9jmSj+1,05 (2.49)

IeL(j,k) leL(j:k)

27



where L(j, k) is defined (2.44). Similarly the inverse transform follows from the recursive

application of

Sj+11 = hikSik+ Y Gimidim: (2.50)

keEK(j,l) meM(j,l)

Note that the filter coefficients are different for each resolution level.

To analyze the (analytical) computational complexity of this wavelet transform, first note
that for general filters the complexity need not be linear in terms of wavelet coefficients as
the number of terms in the summation (2.49) while finite can grow from level to level. The
definition of a finite filter (Definition 2.3.2) thus requires that the size of the index sets be

uniformly bounded.

Corollary 2.3.1. If the filters h, g, h and § are finite then the fast biorthogonal wavelet

transform is a linear time algorithm in terms of the number of wavelet coefficients.

Proof: See pp. 9 of [61] for a discussion and proof. O

We will analyze the complexity of the fast biorthogonal interpolating wavelet transform
used in this thesis in §2.4.5. In a computer implementation of the wavelet transform
the data structures for the filters can become quite complex and must therefore be very

carefully designed.

2.4 Interpolating Wavelets

In this section we explain in detail the transform used in the numerical work of this thesis.
First a detailed derivation of the first generation orthogonal version of these transforms is
given for functions on the real line. Next the construction of the biorthogonal interpolat-
ing wavelet transform and the practical case of this transform for functions defined on a

compact interval follows.
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The transform is known as the interpolating wavelet transform and has roughly the same
structure as first generation orthogonal wavelet transforms, except that the wavelet coef-
ficients are obtained by sampling (by the means of a cascade algorithm) rather than by

integration.

2.4.1 Interpolating wavelet transforms and Deslauriers-Dubuc

functions

We begin with the definition of an interpolating scaling function.

Definition 2.4.1. We define an (R, D) interpolating scaling function as a function ¢ sat-

isfying the following conditions:-

1. Interpolation: ¢ interpolates the Kronecker delta sequence on the integers by integer

translation, viz.

1 k=0
o(k) = (2.51)
0 k#0.

2. Two-scale relation: ¢ can be represented as a linear combination of dilations and

translations of itself,viz.

b(z) = 3 6(k/2)9(2 — k). (2.52)

kEZ

3. Polynomial span: The collection of formal sums ), ., Br$(t — k) contains all poly-

nomials of degree D, for some integer D > 0.

4. Regularity: ¢ is Holder continuous of order R, for some real R > 0, i.e. 3 C > 0 such
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that [¢(z) — ¢(y)| < Clz —y|* =z,y€R

5. Localization: ¢ and all its derivatives through order | R| decay rapidly in the sense
that 37 > 0 and A; > 0 such that

6™ (z)] < A(l+z)7!, zeR 0<m<|R]| (2.53)

There are two well known families of such functions, one of them consists of the spline
wavelets and the second family are those derived from the Deslauriers-Dubuc fundamental

functions [25] (which we will use).

These are constructed as follows. For D a positive integer these functions Fp are de-
fined by extrapolating the Kronecker sequence at the integers to a function on the binary

rationals by repeated application of the following simple rule:-

e If Fp has already been defined at all binary rationals with denominator 27,; >
0, extend it by polynomial interpolation of degree D to all binary rationals with

denominator 2/, i.e. to all points half way between the previously defined points.

e To define the function at (k + 1/2)/27 when it is already defined at all k/27,
fit a polynomial 7; to the data (k'/27, Fp(k'/27)) for
K {(k—(D=1)/2)/%,. .. (k+(D+1)/2)/2}.

This polynomial is unique and we set
Fp((k+1/2)/2) = mr((k +1/2)/2)).

This scheme defines a function that is uniformly continuous at the rationals and hence has

a unique continuous extension to the reals. Deslauriers and Dubuc [25] (pp. 53-56), show
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that all the properties for the interpolating wavelet hold for these functions.

Next we show that given the interpolating wavelet transform framework appropriate wavelet
functions can be constructed from the transform coefficients which are regular to a certain

specified polynomial degree D. Define the functions

¥(z) = ¢(2(x—1/2)) (mother wavelet)
pin(z) = 29/%¢(20x — k) (scaling functions)

Vie(z) = 2/%p(2x —k) (wavelet functions) j,k € Z
s

We continue to adopt the notation used by Prosser and Cant [50].

Theorem 2.4.1. [26] Given an (R, D)-interpolating scaling function ¢ we may construct
an interpolating wavelet transform, mapping continuous functions f into sequences

((8jo,k)5 (djo k)5 (djo41,k), - - -) with each coefficient d;j depending only on samples of f at
scale increments 277/~ and coarser. Then any function f which is the sum of a polynomial
of degree less than D and a function® in Cy(R) C Lo(R) can be reconstructed from its

coeflicients as
f= Z 8 jo.kPjo.k T Z Z dj ki ks (2.54)
keZ j>jo keZ
with the infinite sum converging in sup norm when summed in the label order.

We will prove this theorem by establishing a series of lemmas. Define the scaling function

space V'; as the vector space of all formal sums f:=3", ., 5;x®;jk-

Lemma 2.4.2. [26] (Basic Sampling Lemma) Let the scaling function space V'; be gen-
erated by an (R, D)-interpolating scaling function. Then the following statements hold:-

6The Banach space Co(R) consists of all continuous functions vanishing at infinity equipped with the
supremum norm.
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1. For any f € V; the coefficients s;; in the sum f =, _, s;r¢;x can be recovered

by sampling f, i.e.

sip = f(279k)/29/2. (2.55)

2. We also have V; C V.
3. If IT denotes all polynomials of degree < D, then II, C V;.

Proof: Follows directly from Definition 2.4.1. O

For any continuous function f on Cy(R) we therefore formally define P; f as the interpolant
279/23" £(277k)¢; x(t). This is a linear operator that acts as the identity on V; and so is
a non-orthogonal projection onto V';. It is also well defined for all continuous functions of

at most polynomial growth.

2.4.2 Convergence of the interpolating wavelet transform

For all continuous functions vanishing at co, P;f converges to f as j increases.

Lemma 2.4.3. If f € Cy(R) then 7
| f=Pif lo—=0 asj—oc. (2.56)
Proof: Let w(d; f) denote the modulus of continuity of f defined as

w(d; f) = sup sup |f(z + h) — f(z)]. (2.57)

h|<s @

For f € Cy(R), w(d; f) — 0 as 6 — 0. We shall first prove the inequality

W@ Pf) < C w2 f) (2.58)

|| . |loo denotes the essential supremum norm.
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with the constant C' independent of f and j. It is sufficient to prove (2.58) at scale j =0
since it will then follow for other j by dilation. Let z,h € [0,1] and use summation by

parts to obtain

Pof(x+h) = Pof(z) =D (Sok+1 — s0.)2"(z — k), (2.59)
where
M (z) := i (p(z+h+1) — d(z +1)), (2.60)

and the summation by parts is justified by the rapid decay of ¢. Hence

[Pof (@ +h) = Pof(@)] <l (so1 = 50) oo Y 19"(@ = k)], (2.61)

kEZ

where ||.|| is here the sup norm in (bi-infinite) sequence space loo.

Now because of the rapid decay of ¢ there is a finite constant Cs with

Y @M@ —k)<Ce x,hel01] (2.62)

Hence

w(l,Pof) < Coll (S0k+1 = S04k lloo
= Co || (f(k+1) = f(B))k lloo
< Cpw(l,f). (2.63)

This is the relation w(277; P;f) < Cw(277; f) at scale j = 0. Now from P;f(k/27) =
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f(k/29), it follows that for z € [0,1]

[fk+2)/27) = Pif((k+2)/2)] < [f((k+2)/2 — f(k/2)|

+ [Pif((k +2)/27) = P f(k/2)]
< w27, )+ w27, Pif)
< Cw(27,f). (2.64)
Hence as j — oo
I f=Pif o< Cw(27,f) =0 (2.65)
and (2.56) is established. O

Now let W; be the vector space of all formal sums f = ), ., d;z;x and note that
by the definition of 1); it follows that

Yik = \/§-¢j+l,2k+1- (2.66)

Hence W; C V;,1. Now suppose given the sequences s;; and d;; we construct a function

/= Z 5jkPik + Z dj kj k- (2.67)
kEZ keZ
As f € Vi1 we also have
= sit1hbjsLh (2.68)
k€L
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There is a relationship between these representations since ), _, s;x¢;x and

Y kez Si+1kPj+1,k agree on the coarser grid. Indeed, by equating coefficients
Sjk = \/i.Sj_H,Qk k eZ. (269)

Because Y, Sik®jik + D opez dixlie and Y,y Sit1kPj+1,k also agree on the finer grid

similarly
225, 1 opi1 = djp + 279/ Z sjpdiw((k+1/2)/27). (2.70)
kl

We can also move in the opposite direction, decomposing any sum of the form (2.68) in
the form (2.67),which expresses f in terms of the larger scale structures ), , s;x®;x and

detailed corrections ), , d;xj k.

Lemma 2.4.4. Every f € V;;; has a representation (2.67) with coefficients
dig = 2792 (f((k +1/2)/2") = P;f((k +1/2)/2)) (2.71)

Proof: See Lemma 2.5 in [26]. O
Formula (2.71) shows clearly that the wavelet coefficients d;, measure the error of approx-

imation of f by P;f.

Iterating this two-scale decomposition, we can express any f € V; as the sum of a

coarse-scale description in V', jo < j1, and a series of detailed corrections,viz.

f= Zsjo,k¢jo,k+ Z Zdj,m/fj,k- (2.72)

kEZ Jo<i<j1 k€EZ

In the case of a more general f not in V,, setting f = P;, f + (f — P;, f) and letting
J1 — oo yields the expansion (2.54).
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This expansion actually holds in the sense of uniform convergence.

Theorem 2.4.5. Consider an interpolating wavelet transform with respect to an (R, D)
interpolating scaling function with R > 0,D > 0 and let f € Cy(R). Then the inhomoge-

neous interpolating expansion (2.54) holds in the sense of uniform convergence, i.e.

1F = Siokbiok— D, >, digthin [l 0, (2.73)

|k|<K Jo<j<jo+J |k|<K
as J, K — oo.

Proof: (c¢f. Theorem 2.6 of [26], pp. 10) The partial sum operator P, implicit in (2.73)
is uniformly bounded, i.e. for f € Cy(R)

| Pricf loe< C Il f oo - (2.74)

The collection of continuous functions of compact support is dense in Cy(R) and so for

each € > 0 there is a compactly supported function f’ such that

| f=fllx<e (2.75)
Writing
Prxf—f=LPrxf = Prxf)+ Prxf =)+ = f) (2.76)
and using the triangle inequality and boundedness of P;x we obtain
| Prxf = f llo< Cet || Prrcf' = [ [loo +e. (2.77)
As f' is compactly supported there exists K’ such that for all K > K’

PJ,Kf, - PJfI. (278)
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Using Lemma 2.4.3 we know that P;f’ — f’in L, hence

lim sup || Prxf — f ||< Ce. (2.79)
J,K—0o0
Since € > 0 was arbitrary, the desired convergence result follows. O

More generally if f is the sum of a function in Cy(R) and a polynomial of degree < D,
the partial sums converge uniformly on compacts [26]. We thus have a wavelet decompos-
ition that reconstructs continuous functions and exhibits the coefficients d;; explicitly as

measures of the error of function approximation by an element of V';.

2.4.3 Biorthogonal interpolating wavelet transforms

The Donoho interpolating wavelet transforms were extended to the second generation
biorthogonal framework in [58] and [47, 51]. We now explain in detail the development of
biorthogonal interpolating wavelet transforms and the fast transform algorithm used in the
thesis.

As discussed in §2.3, the central idea of biorthogonal multiresolution analysis is in the use

of two nested hierarchies of function spaces:

{0}C --- CV;,1CV;CV,;1C---CLyR)

{O}C CVj_lc‘N/ij/j_HC"'CL;(R)ELQ(R)

and biorthogonality is enforced by defining two innovation wavelet spaces W ; and Wj

such that

Vj_|_1 = Vj@Wj
Vj_|_1 = Vj@Wj, (280)

with V; LW, V; L W;.
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In this setting the formal projection of a function onto the spaces V; and W is writ-

ten as

Py, f(z) = Y < f(u),dir(u) > ¢jr(x)

kEZ

= > sisdis(z)

kEZ

Pw,f(z) = Y < fw),dis(u) > Yjx(z)

keZ
= D dixtjx(x) (2.81)
keZ
As noted above in §2.4.1 the scaling function ¢ used in the interpolating wavelet transform

satisfies

1 k=0
o(k) = (2.82)
0 k#0.

This primal scaling function also satisfies a two scale relation

=" 4(&/2)p(2x — €). (2.83)

€L

In this framework, the basis functions take the form

dik(z) = 62z —k)
bin() = 2z —2k—1)
Gi(z) = 6(z — ), (2.84)

where § is the Dirac delta function and z;; := k/2’ is a grid point in the spatial domain

in R (As recommended by [26] and [49] an L* normalization has been used.)

So the projection of a function f onto a finite dimensional scaling functions space V;
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is given by

Py f(z) = Y < fu),djr(u) > ¢jxz)

kEZ

= Y f(k/2)¢jn(x)

kEZ

= Zsj,kd)j,k:(x)- (285)

keZ

A potential difficulty with using this wavelet representation is that no functional form for
the dual wavelet is known. Also the wavelet basis using interpolating scaling functions do
not necessarily provide a Riesz basis for Ly due to their Dirac 6 nature. This could result
to aliasing problems, but the numerical studies conducted by [47, 51] and [11] provide
empirical evidence that these points are not of importance in the construction of numerical
algorithms to solve PDEs. We will now show why the lack of a functional form for the dual
wavelet is not a problem and also how to derive the corresponding dual wavelet coefficients
used in the projection algorithm.

Consider the usual calculation of Py, as

=D < f)dixlu) > Pip(a). (2.86)

kEZ

Now the form of ¢ is unknown, so recalling the definition of our projection, we have

Py, f(z) = Py,,, f(z) © Py, f(z) (2.87)

so that

S djii) = sirim®iiim(@) = Y Sindia(@). (2.88)

leZ meEZ nez
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Using equation (2.82) and (2.84) it is straightforward to show that an arbitrary wavelet

coefficient d; , can be calculated from

djm = Sjtr12me1 — Z Sjmd(m —n+1/2) = sj110m41 — Z LonnSjoms (2.89)

nEzZ nez

where I is the matrix
Cpn := ¢(m —n+1/2). (2.90)

I, is a square matrix of size 2/ X 27, also because of the compact support of the interpolating
primal scaling function this matrix has a band diagonal structure [51]. To calculate the
elements of the matrix I", the values of ¢(z) at the half integer node have to be calculated.

These can be calculated by recalling the two scale relation (2.83) given by

d(z/b) =D d(E/b)d(z —€), (2.91)

€€z
where the integer b > 1. We can relate ¢ to integer translates of itself at arbitrarily higher
resolutions by altering the value of b. So a function ¢ which is defined only on a set of
integers can be interpolated onto more refined sets using (2.91) to interpolate the initial
function onto a set of b-adic rationals. (A b-adic rational is a number z = a~°, with a and
b integers). This procedure can be extended to form the continuous function ¢ as discussed

in §2.4.1. The N = 4 biorthogonal interpolating scaling function is depicted in Figure 2.5.

Now to construct an interpolating scaling function, we denote by ¢' the first approx-
imation to the desired scaling function ¢ and define it to take the value 1 at x = 0 and 0
at all other points. We obtain the values of ¢? at half integer nodes by setting the value of
b in (2.91) to 2. If we use a Lagrange polynomial (pp. 108-110 of [46], pp. 198-190 of [47])
of order N to interpolate between the integer nodes, and its value at half integer nodes is

defined as ¢?(z/2), then we get a subdivision scheme of order N. By following such an
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Figure 2.5: N = 4 biorthogonal interpolating scaling function

approach, Schroder and Sweldens [58] developed a closed form solution for the values of ¢

at half integer nodes:

N-1/.
(_1)k+N/2 Ilis (i — %)

k+HEEF -k-1) o N=10(2.92)

ok +1/2)

So in conclusion the two steps involved in a single pass of an interpolating wavelet transform

algorithm are as follows :-

e Calculation of scaling function coefficients

From the nature of the dual scaling function we have

sig = < f(u),8(2z —k) >

= < f(u),8(2"'x — 2k) >= s;119- (2.93)

So we calculate the scaling function coefficients by taking the sampled data set 5,41

and sub-sampling every even data element. This procedure can be written in operator
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form [61] as
S = E5j+1 (294)
where F is an operator which subsamples the even entries from the vector of coeffi-
cients s;y1.
e Calculation of wavelet coefficients:
These are calculated using (2.89). In operator form this is:

dj = 08j+1 - F]'Sj (295)

where O subsamples the odd elements from the vector of coefficients s;,1 and I'; is

the matrix wavelet operator defined in equations (2.89), (2.90) and (2.92).

2.4.4 Structure of the fast biorthogonal interpolating wavelet
transform algorithm

In any practical implementation of a wavelet transform we will have to have a finite number
of data points. If we have a finest resolution level J (with 27 data points) and a coars-
est resolution level J — P, then the multiresolution transform algorithm can be written

schematically as:
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T
{s7,0,871,852 " eeSyoi_1}

T
{dj-1,0,ds-1,1 dy_197-1_1 |87-10,85-1,1 Sy_197-1_1}
{d eee  d | d .oed S S }T
J—1,0, ? J71,2J7171 J—2,05 J72,2J72,1 J—2,0 J72,2J*271
{d S | d eeed =
J—1,0y J—P—-1,0 J—P-12J-P-1_1 | $J-P-1,0 §j—p—127-P-1_1

(2.96)

In the above equation the first row represents the vector of initial data points and the last

row is the representation of multiresolution wavelet transform in the form of a vector in

Wi _ioW, o0W,; 350---®dW,;_p_1®V,_p.

The inverse transform reverses the direction of the arrows in (2.96) producing the 27

sampled values of the function at the resolution J using the formula (2.50).

2.4.5 Fast wavelet transform algorithm complexity

One of the main advantages of using wavelet transforms is that the complexity of the fast

transform algorithm is linear in the number of data points.

Theorem 2.4.6. The complexity of the fast biorthogonal wavelet transform algorithm for
a sample of n data points is O(n).
Proof: The number of of floating point operations required for the fast biorthogonal inter-

polating wavelet transform algorithm for P resolution levels is
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J
2N ) 27 =2/7FN{2"F -1}

j=J—P
This comes from the fact that we require 2N filter coefficients to define the primal scaling
function ¢ which spans the space of polynomials of degree less than N —1. The calculation
of the wavelet coefficients d;; for a given resolution j can be accomplished in 2(N —1)+1
floating point operations. The sub-sampling process for the scaling function coefficients
s;k requires a further 2/ operations and a total of 2/T! N operations are required per res-
olution level j. Thus for fixed J and P the complexity of the fast interpolating transform
algorithm is O(N) [51].

So if we have n function evaluation points that must be transformed, and the finest resolu-
tion in our transform is J = log, n, then for fixed N and P the complexity of the transform

is O(n), i.e. linear in the discretization. O

44



Chapter 3

Wavelets and PDEs

In this chapter we explain how wavelets can be used to solve PDEs. The restriction of
wavelets to functions on an interval and the construction of wavelets in higher dimensions

is also discussed.

3.1 Wavelets and PDE’s

Wavelet based approaches to the solution of PDE’s have been presented by Xu and Shann
[68], Beylkin [8], Vasilyev et al. [64, 63], Prosser and Cant [51], Dahmen et al. [18] and
Cohen et al. [16].

To begin we give an overview of the two main approaches to the numerical solution of

PDEs using wavelets. Consider the most general form for a system of parabolic PDEs of

any order
ou
T _F
5 (x,t,u, Vu)
O(z,t,u, Vu) =0, (3.1)
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which together describe the time evolution of a vector valued function v and boundary con-
ditions which are algebraic or differential constraints. The wavelet Galerkin method [8, 68]
utilizes the fact that the wavelet coefficients are in general functions of time. An appropri-
ate wavelet decomposition for each component of the solution is substituted into (3.1) and
a Galerkin projection is used to derive a nonlinear system of ordinary differential-algebraic
equations which describe the time evolution of the wavelet coefficients. In a wavelet col-
location method [64, 63] the system(3.1) is evaluated at collocation points of the spatial
domain of v and a system of nonlinear ordinary differential-algebraic equations describing

the evolution of the solution at these collocation points is obtained.

If we want the numerical algorithm to be able to resolve all structures appearing in the
solution and also to be efficient in terms of minimizing the number of unknowns, the basis
elements corresponding to active wavelets — and thus the computational grid points — for
the wavelet-collocation algorithm should adapt dynamically in time to reflect local changes
in the solution based on an analysis of currently significant wavelet coefficients. The contri-
bution of a particular wavelet to the approximation is significant if, and only if, the nearby
structures of the solution have a size comparable with that wavelets scale. Thus by using
a thresholding technique [63] a large number of the fine scale wavelets may be dropped
in regions where the solution is smooth. In a wavelet-collocation method every wavelet is
uniquely associated with a collocation point and hence a point can be omitted from the
grid if the associated wavelet is omitted from the approximation. This property of the
multiresolution scale wavelet approximation allows local grid refinement up to a prescribed
small scale without a drastic increase in the number of collocation points maintained at
each time step. A fast adaptive wavelet collocation algorithm for two dimensional PDEs
is presented in [63] and a spatial discretization scheme using biorthogonal interpolating
wavelets is implemented in [50, 49, 48] to solve the reactive Navier-Stokes equations in
three dimensions. An advantage of the latter approach is that for the solution computed
in wavelet space it should be possible to exploit sparsity in order to reduce storage costs

and speed up solution times. Now we turn to a detailed discussion of the construction of
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wavelet transformed differential operators in terms of a biorthogonal wavelet basis.

3.2 Decomposition of Differential Operators

The biorthogonal interpolating wavelet transform was described in detail in §2.3 where
the basis functions for the biorthogonal interpolating transform were defined and a fast

interpolating transform algorithm was constructed.

For present purposes the finest spatial discretization grid is denoted by z ;5 k—0,...,27—1,
and wavelets are constructed on these collocation points. In order to approximate a PDE
solution surface using a wavelet method we must be able to evaluate derivatives of functions
in wavelet space. Here we explain how to construct the wavelet transforms of differential
operators. We have shown in §2.4.3 how a given function f can be expressed on the finest
resolution space V'; as

271

Py, f(z) = Z < f(u), drg(u) > ¢rp(z)

= Z SJ,k¢J,k($), (32)

where s;; := f(k/27). To find the derivative of f we differentiate both sides of this ex-

pression to obtain

by, @) = 30 < F(0) dslu) > 654 (0). (33)

Since the basis functions ¢ have been differentiated they may not now belong to the

sub-space in which their undifferentiated expression lay. In fact it can be shown [35] that
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in general
d J
dx(/ZSJ’k(.’L') ¢VJ ]{120,...,2 — 1. (34)

So in order to find the wavelet coefficients for the derivative function we need to re-project

equation (3.3) to obtain

011 (x) =Py, P, [(a) (3.5)

2/ 1271

= Z Z < f, &J,k > (36)

a=0 k=0

d s
X < %%,k, B > dra(z)

271271

= Z Z ro kS 1kB1a(T)- (3.7)

a=0 k=0

The elements of the matrix 7 = (r ;) denoting the interactions between the dual scaling
functions and their primal derivatives and will be defined in terms of the scaling func-

tion ¢ [47, 50] as

d - do
J — el N — 2.]_ = 2J _ )
Tak < dx QSJ,ka ¢J, > dz |ac_a k Ta—k (3 8)

from the Dirac delta nature (2.84) of the dual scaling function.

One of the main motivations for using wavelets is to be able to take advantage of dif-
ferent scales present in the solution of a PDE, so before discussing the calculation of the
values of the matrix r; let us look at the standard decomposition of a general n'® order
differential operator into a hierarchy of resolution spaces. These go from a finest resolution
J to a coarsest resolution of J — P (giving P + 1 resolution levels). Define

o 1) 1= Py, o Py, () (3.9
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Then repeated application of the approximation subspace decomposition (2.80) gives us

o f(a) = (PVJP+ i Py )dn<Pm+ JZ Py ) (3.10)

j=J—P j=J—-P

For example, the decomposition of the first derivative operator % is given by

J-1 J-1
d
851) = (PVJ—P + Z PWz) % (PVJ_P + ij> , (311)
J P

j=J—P j=J —

and can be calculated via the method proposed in [3], by denoting 831) = W(lo,)wt
where W and W ! are matrices embodying the forward and inverse transforms respectively,

and

d
19, =Py —Py .. 12
aJ Vde Vi (3 )

We can analyze '0; which represent values at the collocation points instead of 851)

wavelet space without loss of generality because the forward and inverse transforms are
exact up to machine precision. The matrix '0; has a band diagonal structure [47, 49] and
can be treated as a finite difference scheme for analysis. The biorthogonal expansion for
% requires information on the interaction between the differentiated and original scaling

functions along with information about both the primal and dual basis functions. Using

the sampling nature of the dual scaling function, 'd; can be written as ([49], §4 pp. 9-10)

271

18 - 2J Z Jkd |$=a7k: (313)

a,k=0

Examination of (3.13) and (3.8) reveals that we need to determine the values of T‘S_)k =

% ls=a_& - A simple approach [49] to determine these values for a derivative of order n

is by using a method analogous to that derived by Beylkin [7] for orthogonal wavelets.
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Starting from our familiar two scale relationship (2.83), i.e
271
Z B(£/2)(2x — €) (3.14)
using (3.14) and the interpolating nature of ¢, it is straightforward to show that
271

‘w = 2" Z ¢ 5/2 |z 2%k—¢ - (3.15)

The desired values of the coefficients r,(cn) are therefore defined by

271
=2" )" $(£/2) r ¢ (3.16)

£=0

and this equation provides a relation that can be used as an iterative scheme to determine

the co-efficients for a general n'* order derivative [7].

Following [7] and [47] a fast wavelet transform of a differential operator can be constructed
by assembling the matrix given in Figure 3.1. The submatrices «, 5 and v for a first order

derivative are defined by

~ d
oz;ﬁm =< Y, %l/u,m >

~ d
J _
Biem =< Yk, iz Ggm >

~ d
J
=< by —ym >
Viem Gk dwa,

and all the «, 8 and y matrices are determined [7, 47] in terms of the elements of the matrix

r’ that was defined in (3.8). For example, consider the calculation of a’:

~ d
J _ _oJ
Qg =< Vg %d’in >=2"0¢y

a0



a’l BJ W,

Figure 3.1: Wavelet differential operator matrix

~ o d N
o =< w(x - 7’)7 %1/)(35) >=2 Z nggmr%—}—(kfm)a
k m

where the r; are the filter coefficients defined in (3.16). Similarly

Bi=22 " Gkhmlait(t—m)
k m

Y =2 Z Z Pk GmT2i 4+ (k—m)
k m

where the filter coefficients g,,,, G, h, and ;zm are the coefficients that arise in the biorthog-

onal interpolating wavelet transform, i.e.
Im =< w(u)a (%(2?1 - m) > gm =< Tﬁ(u), ¢(2U - m) >

By =< ¢(u), p(2u —m) > hy =< d(u), d(2u —m) > .

From the above equations we can see that the transform of the differential operator is

entirely specified in terms of the coefficients ;. The whole process is self similar, i.e
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r’~1 can be obtained from r/ and hence the procedure is repeated to obtain the entire

differential decomposition [7, 47]. The fast wavelet transform of the differential operator
for three resolution levels (P = 3) will have the structure shown in Figure 3.2. The
wavelet transform constructed in the manner just described will require O(P) operations
to compute the transform of a spatial derivative [7, 8, 47]. Robust estimates relating the
accuracy of the wavelet transforms of differential operators with finite difference schemes
are available in [35, 49]. In general we can think of the differential operators corresponding
to P = 2 and P = 4 wavelets as being similar to second order and fourth order finite
difference schemes respectively [35, 49]. We should note that the calculation of the filter
coefficients r; corresponding to higher order derivatives relies on the differentiability of
the mother wavelet ¢, following [47] and [25] we find that in the use of P = 2 and P = 4
biorthogonal interpolating wavelets we can construct the wavelet transform of second order

differential operators by applying the first order transform operator twice.

~

Figure 3.2: Structure of the fast wavelet differential operator

52



3.3 Construction of Interpolating Wavelets on Inter-
vals

Numerical solutions to PDE’s are computed on a finite domain (for a PDE on R this will
usually be a compact interval). The wavelet framework must be restricted to work on this
finite domain and so we will now explain the construction of biorthogonal interpolating

wavelets on intervals.

The form of the primal functions ¢ and % will change as the functions approach the
edge of the discretisation, whereas as a consequence of its zero support width the nature
of ¢ will not change as the boundary is approached (see §3.3 of [51] and [47]). We now
stipulate a priori that the dimension of the scaling function space V'; is 27 + 1, i.e. for any
particular resolution level j there are 27 + 1 scaling function coefficients s;;. On (without
loss of generality) the interval [0, 1] this condition is met (see the sampling discussion in

§2.4.3) by requiring
sig=f(k/27) 0<k<2. (3.17)

This ensures that both the endpoints of the intervals are included in the discretisation.

The end point corrected form of the projection as described by Donoho [26] is defined as

27
Py, f(z) =) sjxdfu(2)- (3.18)
k=0

Here ¢” denotes that the scaling function could belong to the set of internal scaling func-
tions or to the two sets of scaling functions ¢7, () and ¢f, () influenced respectively by
the left and right end points of their domain. It is also essential that the interpolation
property of the functions is maintained at the end points and that the differentiability of

the functions is not affected by the presence of a boundary.
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Now we set out the determination of the edge scaling functions following Donoho [26]
and Prosser [47]. For each resolution j we define an extension operator €;.x_1 which takes
as input the set of scaling function coefficients s;;, k£ =0,..., 2/, and extends them to the

bilaterally infinite sequence 5;, —oo < k < oo, with
Sik =8k k=0,...,2. (3.19)

€ ;.n—1 fits two polynomials Wﬁk and ﬂfk of arbitrary degree N — 1 to the function values
of ¢, at the left and right hand sides of the interval. Denote by f the extension of f from
[0, 1] to the real line, so that

2

L
ik <0

f@) =1 fx) zel0,1] (3.20)

R
| Tk T > 0.

This can be written in coefficient form

5; = gj:N—l{Sj} (3.21)
and
F@)= " 8udin(a), (3.22)

where ¢, ;. is the primal scaling function defined on the real line. The extrapolated sequence
55 1s a linear functional of the extrapolating polynomial, and hence the extrapolating
sequence must be a linear functional of the N values of s, local to either end points of

[0,1]. By an equating of coefficients argument similar to those used previously, we find
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([26] and §3.3 of [51]) that

N-1
gjak = Z €£7m8j7m k < 07 (323)

m=0

where eﬁ,m is a matrix formed of the extrapolating weights. For example, for the left hand

boundary construction, split the infinite sum defining f into

2

= Sixdik(a Sikbin(r) + > 5ikdinlx (3.24)
k=N

k<0 0

B
Il

Substituting (3.23) into (3.24) yields
N-1 .
=25 (Z eh i Bian(t) + il ) S 85 40ix(2). (3.25)
k=0 m<0 Py

We may now define the left end point wavelets as

$rp(@) == bin(z) + Y eh pbim(x (3.26)

m<0

Adopting a similar strategy for the right end point wavelets yields

N-1 21 —-N §i
z) = Z s kdhk() + Z sjk®7, k() + Z S kPr (). (3.27)
k=0 k=N k=2i —N+1

It follows that f on the interval [0, 1] can be approximated at resolution j as the restriction

of this expansion to [0, 1].

3.3.1 Calculation of the edge matrices

We now demonstrate how to calculate the edge matrices e’ and ef that determine the

scaling functions at resolution j modified by the end points of the unit interval. For the
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left end point the basic relationship is given by (3.23), i.e.

N-1

Sim =Y CimSim k<0 (3.28)

m=0

As the coefficients 5, ,, are a linear functional of the extrapolating polynomial located in
the extension operator €;.5_1, they must therefore be a linear functional of the N scaling
function coefficients s;, k = 0,..., N — 1. This functional dependence indicates that the
solution to (3.28) for e” is dependent on the choice of polynomial passing through s, and

extrapolated to 5, .

We calculate e, ,, by first deciding on aset of N linearly independent polynomials P°,... , P¥~*
on R. Then we sample the values of each of these polynomials at z =0,1,... ,N — 1 and
then extrapolate back through r = —1,—2,... ,—N. The values of the polynomials for
x < 0 are denoted §;,,, while those evaluated at x > 0 are defined to be s;;. All the values
of the internal sampling points and extrapolated nodes are then substituted into (3.28) to

give rise to the matrix system:

=0 =1 . ZN-1

Sj-N  Sj-N 8j—N

=0 =1 . aN-1

8j,~N+1 Sj,—N+1 Sj,—N+1

30 3l R

85,1 Sj,-1 Sj,—1
L L L 0 1 N-1
€-N0 €nN1 T EINN-1 550 S50 S50
L L L 0 1 N-1

| €=N410 €-N411 T EoN4IN—1 S Sin Si1 (3.29)

L L L 0 1 N-1
€10 €11 €I N1 SjN—-1 SjN-1 SjnN-1

These matrices have been ordered so that the elements s¥  are given by
sk =PF2™) 0<k<N-1. (3.30)

VELO
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Because of the functional dependence between extrapolants {5} and edge nodes {s} the
form of the chosen polynomials is unimportant, but Prosser [47] recommends that a set of

N interpolating polynomials Pk = 0,...,N — 1 are defined so that

v
—_
3
I
okt

0 m#kand m=0,1,...,N — 1.

As a result
sk =P*m) =0, m=0,1,...,N -1, (3.32)

and so the s coefficient matrix which appears on the right hand side of (3.29) becomes an

identity matrix to yield

=0 =1 ~N—1 L L L
8j,~N Sj-N """ Sj-N €_No €-n1 "t €N N-1
0 =1 N1 L L L
Sj—N+1 Sj—-N+1 "7 Sj_Nt1 €-N+1,0 €-N+11 77 E-N+1,N-1
= (3.33)
20 zl =N—1 L L L
Sj,-1 Sj—1 T S € 1,0 €11t €y N-1

The advantage of choosing these particular polynomials is evident from the ease with which
e’ can be calculated. The symmetry of the underlying scaling functions is reflected in the

construction of matrix e® whose elements are defined according to
Cij = Gi,N—j-
3.3.2 Primal edge wavelets

Donoho [26] defines the edge wavelets as

=l m N -1

@) = bin@) + D Ph()tiam(@) 0k [So—),  (339)

m=—1
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where

1 m=2k+1,
Ph(y = (3.35)

JkX 9541
0 m#2k+1, m=0,...,N—1.

Lemma 3.3.1. [26] Like the internal primal wavelets (see (2.84)), the edge wavelets also

satisfy the relations

%’Lk = ¢]L—|—1,2k—|—1 (3-36)

fk = JR+1,2k+1 (3.37)

Proof: Substituting ¢;41,2x+1(2) for ¢, ,(z) in equation (3.34) yields

-N
m
]Lk(x) = @jr10041(2) + Z Pfk(ﬁ)@ﬂm(ﬂ?) (3.38)
m=—1
From (3.26) we have
-N
OF 1ok (8) = Gip12k41(2) + Y €hopy1Birm(@). (3.39)
m=—1
Now for (3.36) to hold we must have
m
6#,2]6_1_1 :P]I,Ik(ﬁ) m = _N,...’_l. (3.40)

Equation (3.40) is established by recalling from (3.23) that
N—-1
Fm = empsip (3.41)
k=0

with the superscript ¢ used to denote that Ezm and 52-7,6 are obtained from the same poly-
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nomial. Using the properties of P*(z) we have

N-1
- Z L s _ L
Sj,m - em,k(s'lk = €y
k=0
and hence
L _ 2k+1 _ p2k+l
Cm2k+1 = Sjm = p (m).
Thus

P () = 1 m=2k+1,

0 m#2k+1, 0<m<N-—1.

and this turns out to be the same as the definition for P/ (m/2/*") and so

m
L _pL —
em,2lc+1_Pj,k(2j+1) m=—N,...,—L.

It follows that (3.36) is verified. A similar argument yields (3.37)

3.4 Wavelet Projection Algorithm on an Interval

(3.42)

(3.43)

(3.44)

(3.45)

We next explain the wavelet transform algorithm on (without loss of generality) the interval

[0,1]. Recall from (2.93) that the scaling function coefficients for V; are the even numbered

samples from V';; (due to the nature of the Dirac delta dual scaling function), i.e.

Sjk = Sj4+1,2k-

The calculation of the wavelet coefficients is slightly more complicated. Recall from §3.3.2

that o5} = @5, 5., (Where O is used to represent either boundary or internal primal func-

tions). Let d)ﬁo be the leftmost edge scaling function and ij,O the leftmost edge wavelet.
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From §3.3.2, %‘L,o = JL +1,1, 1-e. the first wavelet lies within an interval whose extreme bound-
ary is delineated by a scaling function. The mirror construction for the basis functions at
the right hand end of the domain implies that the last wavelet on the right lies to the left
of a boundary determined by a scaling function. This is a crucial observation, and con-
sequently for the discretisation of a finite interval the computational domain is bounded
by scaling function coefficients and hence has an innovation space whose dimensionality is

one less than the associated scaling function space, viz.
dim W; =dim V; -1 =27 (3.46)

Hence there is one less wavelet coefficient than there are scaling function coefficients. So

now to obtain a projection onto Wg-o’l] for a specified resolution level j we have

01 _ [0,1] [0,1]

J

PW[Q,I]f(.??) = PV[(illl]f(.T) - PV[.O’I]f(x)
J Jj+1 j
20 —1 9 +1

27
D dialin (@ = Y sikdTs(®) = Y Simd5a (), (3.47)
a=0 k=0 m=0

where [ is used to denote either the right or left edge. Substituting /7, (z) = ¢, 5041 ()
and taking inner products of both sides of the functions given by (3.47) with gz~5j+1,2§+1

yields
2 1 2i+1
[ 7 0O ~
a=0 k=0
27
O ~
- Z Sjm < ¢j,ma Gjt1,2641 > - (3.48)
m=0
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Using the biorthogonal and interpolating nature of the basis functions we again obtain

2

dig = Sjr12e11 Z $jm®" (€ —m +1/2)
m=0
2J
= Sjy1,2641 — Z Fg,msj,m (3.49)
m=0

Note that (3.49) has the same form as the real line transform case (2.89). So the boundaries
are implemented via the I'® matrix which is just a modification of the I' matrix taking ¢

and ¢ into account (using (3.26)).

3.5 Boundary Modified Differential Operators

In Section 3.2 we detailed the derivation of differential operators in the second generation
wavelet framework. Here we explain how to modify the construction to take boundaries

into account. For the finest resolution level J define (without loss of generality) 830’1] f as

d
8V5),1]f(x) = PV?,l]%PV[JO,l]f(x)
2 9J d B
= ZZ < f(w), dan(u) > d_(¢J,k(v))7 $ra() > b1a(@)
a=0 k=0 v
2] 9J
= > riSsisfa (3.50)
=0 k=0
where
iy = <L), 65 >
@ de ™" P Vha
do”
= 2J— T=a—
dy Tk
= 27r 4. (3.51)
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As before [ is used to denote either an internal or boundary modified function. Now we
set up the decomposition of our differential operator as in §3.2. But now because of the

restriction of the operator to [0, 1] we have

d O
85[0’1]10(35) — o/ Z 8§,k¢§,a(x)% lo—a & (3.52)
a,k

which with our boundary modification of §3.3 becomes

(

L
27y ok STk Jomak BFa(z) k=0,...,M—1

8}[0’1]]((-7;) = A 2J Za,k Sj’k% |$:a—k ¢J,a(.’17) k= M, . ,2J - M (353)

R
\2.]204,19 SJ’]C% |w:afk QS?,a(.I) kZQJ—M—i—l,... ,2‘].

(n)

Hence the entire operator can be determined by calculating the coefficients r”, by follow-

ing the same procedure as in §3.2.

3.6 Construction of a Non-Constant Coefficient Dif-
ferential Operator

The partial differential equations that arise in finance frequently have non-constant coeffi-
cient differential operators. A traditional method to solve such PDEs using wavelets has
been to use a pseudo-spectral technique in which one transforms back to physical space
at every time step to perform the multiplication of the partial derivative with the non-
constant coefficient. This method is conceptually simple and straightforward to implement
but results in a large amount of additional computational time being spent in transforming
backwards and forwards at every time step. We have developed a novel technique to solve
non-constant coefficient PDEs in the wavelet framework. The problem is one of calculating
g(x)@é") f(z). We will illustrate the technique for a first order operator, but the generaliza-

tion to an n'* order operator is straightforward. So starting with the constant coefficient
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differential operator o) f(z), we have from §3.2

d 2 ~ d
%PVJ = ; < fu), ap(u) > %%,k- (3.54)
and
9001 =P, (s0)5 ) Po. . (3.55)

Now following steps similar to those in §3.2 we can write g@;%l) f(z) as

2] 9J

gV f(2) =D sty < g(w)bs(w), dra > bral) (3.56)

a=0 k=0

Now recalling the Dirac delta nature of the dual scaling function we find that

< 9(0)s4(u), bralu) >=279(270) 22 oo i (3.57)

Now we make the key observation that this expression is exactly the same as the one
for the derivative alone but multiplied by the evaluation of function g. So we apply the
decomposition of the differential operator to this as usual so that for example the non-

constant coefficient operator (3.13) this becomes
105 = g2' 0., (3.58)

where g7 is a matrix whose diagonal elements (go4) are the function evaluations g(27”/«).
The resulting wavelet differential operator will be a combined wavelet differential operator
which will not only perform the appropriate differentiation but will also compute the
necessary product with the non-constant coefficient. This novel approach to solving non-

constant coefficient PDEs using wavelets results in minimal additional computational effort.
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3.7 Wavelet Transforms and Discretization in Higher
Dimensions

All the wavelet theory presented so far can be extended to multi-dimensions in a relatively
straightforward manner. We consider the three dimensional case as an example but the
extension to d dimensions is straightforward. For ease of exposition let us assume that the
resolution in each of the three dimensions is the same. We denote the resolution subspace
corresponding to the finest three dimensional grid as V% and apply a straightforward tensor

decomposition to obtain
Vi=ViQVieV: (3.59)

Applying a causal decomposition to each of the one dimensional scaling function spaces

yields

Vi = Vg—l S Wﬁ—l) ® (Vg—l ® W%—l) & (V§—1 @ W?—l)
ViieVi,eViJe(Wji,eVi ®Vi,)

(
(
(Vi Vi _Wi_ )@ (Wi_ VY _W75_,)
(
(

D
& (ViaeWi,eVi)eWi.,eW; 0V,
& (Vi oWy eWj e (Wi oW’ eWi,). (3.60)

The causal property of the multiresolution analysis remains valid in more than one dimen-

sion, viz.
Vi=Vi_ eW_, (3.61)
and from our earlier definition
Vi _ =Vi eVY V5 . (3.62)
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Now by substituting (3.62) into (3.60) and comparing the resulting expression with (3.61),

we see that

W?j—l = ( a1 ® V.‘?_l ® Vifl) S ( ?—1 ® V§—1 & ngl)
Wi_ieVi_eWi_ e (Vi eWj_eVi,)
Wi eWi_@Vi e (Vi eWj_ ,eV7,)
(W

T ®WI_ Wi y). (3.63)

The basis functions for V5 | and W3 _| are given by the following triplets:

b7 1k(T) b 1m(W)bs 10(2) €VE,

Yhi_1a(z) € Wi, (3.64)

We can write the the projection onto the finest scaling function space V3 7 as

2J 2t 2J

Pys =3 3 > < f,056(w)bsn(v)bsc(w) > $re()ban(y)brc(2)- (3.65)

§=0 n=0 ¢=0

In the practical implementation of multidimensional transforms we can implement the ten-
sor decomposition scheme by performing separate one dimensional transforms in each of the
spatial dimensions of the discretization [47]. This is analogous to how a multidimensional

fast Fourier transform is implemented [46].
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3.8 Wavelet Differential Operators in Higher Dimen-

sions

In the previous section we the use of a tensor decomposition technique to handle higher
dimensional wavelet transforms has been elucidated. Just as the tensor decomposition
allows the application of one dimensional transforms successively to the 3 dimensions of
the discretization, so too can we apply the wavelet differential operators sequentially in
each dimension [47]. We again look at the three dimensional case and start by taking the
x derivative of a three dimensional solution defined on the most finely resolved scaling
function space Vi, we have
27 2 2t
Pys = Y Y < f,05)bsn(v)dac(w) > bre()brn(y)bac(2), (3.66)
£=0 7=0 (=0

Differentiating and re-projecting

z d
0 f(x.y,2) = Pyy Py f(x)

2J 2J
= 3 Y < £ buewdsa)dic(w) >
k,l,m=0¢&,n,(=0

< d%(¢J,§(a))¢J,n(b)¢J,<(C), G k(@) G11(0)Psm(c) >
G5k (2) P11 (Y) Dsm(2)- (3.67)

We use the tensor decomposition to rewrite the second inner product in equation (3.67) as

< (1005 0)616(0), brx@r(D)dsmle) > =

< sx(a), %(mg(a)) >< §5(0), G20 (0) >< Prm(c), brclc) > . (3.68)
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Using the interpolating property of the biorthogonal basis functions to simplify (3.67) we
obtain

27 27

a}(x)f(l“a y,z) = Z Zrz‘c],g </ &J,&(U)QEJ,Z(U)Q;J,m(w) > | Guk(2)s1(Y)Psm(2),

klm=0 \ £€=0

(3.69)

where we have denoted by r{, :=< bsx(a), 4 (¢¢(a)) > . From the above equations note
that we apply rk‘],ﬁ to the scaling function coefficients in the = direction only. The application
of r/ can be thought of as corresponding to the application of a finite difference operator.
We can extend all the analysis carried out so far for a decomposition of V% to a hierarchy
of wavelet spaces in a multiresolution framework. So we perform the differentiation in any
of the spatial coordinate directions by applying the differential operators to the functions

in that direction alone.

67



Chapter 4

Implementation of Finite Difference

and Wavelet Schemes

In this chapter we will discuss the implementation of the wavelet method of lines and various
benchmark finite difference schemes. We begin with classical finite difference methods and

then describe the new wavelet based techniques.

4.1 Explicit Finite Difference Method

In a finite difference method the partial derivatives in a PDE are replaced by finite dif-
ference expressions which are approximations to the derivatives. Different finite difference
approximations are constructed by expressing the derivatives as linear combinations of the
function evaluated at a number of adjacent collocation points whose coefficients can be
determined by expanding the function evaluations using the Taylor series. All finite differ-
ence schemes are reduced to a problem in which a linear system of equations is solved at
each time step. The explicit finite difference method is the most direct approach available
to numerically solve a PDE in multiple spatial dimensions. In the explicit method the func-
tion values at future time steps are evaluated completely in terms of the values available

at the present time point. In the case of an explicit finite difference scheme the solution of
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this system is obtained by a matrix vector multiplication, and is thus straightforward.

We first explain the explicit finite difference scheme applied to the one dimensional diffusion

PDE

ou 0%u

E —_— @. (4.1)

Suppose (4.1) is to be solved in a domain given by 0 < z < L and 0 < ¢ < T and the
discretization grid is Ax = L/n and At = T/m. Denoting evaluations of the solution at

grid points u(nAz, mAt) by ul", the explicit finite difference approximation to the PDE is

given by
U:Ln—i—l — u:i,n _ U’Ln—l B 2u’nm + u?—i—l (4 2)
At B (Ax)? '
Rearranging this equation
umtt = Ul 4 (1= 2r)ul + rull g, (4.3)
where
At
= 4.4
"7 Ay (44

and the truncation error is O[dt] in time and O[(Az)?] in space. This explicit finite dif-
ference scheme is depicted in Figure 4.1, from which we see that the scheme uses values
involving only one unknown u™*! for the time level m + 1 which can be calculated from

the values used at the previous time level m using the recursion (4.3).

To derive the explicit finite difference scheme in multiple dimensions we consider for

example the general 3D quasilinear parabolic second order PDE with non-constant coeffi-
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m+1
n*dx @ L

m* dt t

Figure 4.1: Explicit finite difference scheme
cients and all cross-derivative terms
CM(CCl, T2,T3, t)Van + ﬁ(xla X2, T3, t)VfL‘Q + ’Y(mla Z2,X3, t)‘/;w + 5(:61, Z2,T3, t)v;vlwl

+ G(SEl, T2,X3, t)‘/;vzwz + C(xla T, T3, t)VCL‘s.’L‘g + 77(351, T2, T3, t)lewz

+ [/(xla Z2,X3, t)vwlwg + K;(xla L3, X3, t)%zzgg + A(.’El, Z2,X3, t)v + ‘/t =0 (45)

defined on a domain (Ly,, Uy, ) X (Ly,, Us,) X (L, Ugy) X (Lt, Uy).

Grid sizes are given by

1 Lwl Uzz - L$2
Yar = Lay Azy = Azs =

A== 7 K

and At := T /M. Using a notation where function evaluations at the grid points

V(iAzy, jAxy, kAzz, mAt) are denoted by V7, general finite difference approximations
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for the partial derivatives using a € method are given by

V. — 9 V;T—:f—jlk - 2‘/17?_;;1 Vm_t]llc 1 . 0 z+1 gk z s Ic + ‘/;Tl,j,k
o ! Az? ) Ax1
1 1
v _ 0 Vz?ill/c_m/ﬁt V,T;Huc pirie — 2V Vil K
Lo 2 AN Ax?
V. - 0 VT?_I};—II—I o 2‘/7?_;;1 + VT?_IL—I 1 + (1 —0 ) ‘/i?,k—l—l 2‘/;] k + ‘/Zjn',k—l
et s Az’ s Ax3
1 1
v _ 0 V;TnglH k Vm+,g+1 k V;Tng et v 1j—1k
1 4 4A$1Al‘2
+o(1—-6) Vit ek = Vil e — Vit —ie T Vil -1k
4 4A.Z‘1A.T2
V - 0 V;T—lr—bf_jl k+1 Vm‘tgl,lc—kl V;+1 Jg.k—1 + me—gl,
oS ° 4AI1A.’L‘3
+ (1 .y ) V;:—nl,j,k—kl - ViTl,j,k+1 - Vz+1 Jik—1 + V 1,5,k—1
° 4A$1A$3
m—+1 m—+1 m—+1 m—+1
v - 9 V;]——:—_lk—kl V;j 1,k+1 V;]Ilk ‘/;]+1k 1
T2rs 6 4A$2Al‘3
+ (1 —6g) VZ?H,HI — V;Z'l—l,kﬂ — V;?H,k—l + V;Z'L—l,k—l
0 4A$2ACC3
1 1
o T 2A£E1 7 2A£B1
1
V. - 9 V;njlillk ‘/Z?_—Fl,k + (1 -0 ) ‘/Z?-f—l,k - V;?—l,k
2 8 QA.TQ 8 2A.’E2
1 m m
e ? 2A.’E3 o 2A.T3
Vm _ ym+l
‘/; — a]: la]ak . (4.6)

At

Different finite difference schemes are obtained by choosing appropriate values for 6,, as
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0 Explicit
fn = § 1 Crank Nicolson (4.7)
1 Fully Implicit.
\

Thus by setting all the 6,, to zero, the classical explicit finite-difference version of (4.5)

becomes
+1 m m
Viie — Vi _ Viiie = Viliin +am Ve = Vij 1k
At ’]’ 2A£E1 bk 2A$2
’k QA:E3 bk Axl
n V,]+1 K kT Vg Lk L em Vi?,k-l—l QV% + Vi
7]5 Ax2 Z,J,k A./L‘g
n Vi ik = Viliime — Vitij—1e T Vilii-1k
nz"? k 4A$1A$2
+ Z+1Jak+1 m —1,5,k+1 V;-HJJC 1t V 1,5,k—1
’]’ 4A£E1A$3
" ,g+1 k41— ” 1,k+1 ‘/;?+1,k—1 + V;T,?—l,k—l
’]’ 4A$2A$3
+ ATV (4.8)

Now we can see from the above equations that it is straightforward to implement an ex-
plicit PDE scheme as the value function VmJrl at time step m 4+ 1 can be represented in
terms of the different function values at time step m. Furthermore, for M time steps and
N total grid points the total number of operations is O(M N). It can be shown (see for
example Chapter 3 of [43]) that the explicit finite difference scheme also has a truncation
error of O(Az? + Ax3 + Ax2 + At). The numerical solution of the PDE must also have
appropriate boundary conditions. The Cauchy initial condition (the time boundary con-
dition) will typically be the exercise condition of the derivative. This condition is imposed

by replacing the value function V (1Axy, jAxy, kAxs, T) with the exercise decision enforced
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at time 7.

This will be supplemented by the boundary conditions on the spatial variables, these
can be of the Dirichlet kind where the value of the function is given at the boundary, or of
the Neumann kind where the derivative of the function is specified at the boundary. For

example if the Dirichlet boundary condition on the variable z; is of the form
V(L x2, x3,t) =V (Uy,, T2, 23,t) =0 (4.9)
we impose this condition on the finite difference grid by choosing
Vose=0 j=0,...,J, k=0,....,. K, m=0,....M
Vit =0 j=0,....J, k=0,...,K, m=0,...,M.

L.j,

(4.10)

The boundary conditions on the other spatial variables can be applied in a similar manner.
Neumann boundary conditions can also be implemented in a straightforward fashion, for
example if we had a Neumann condition on the variable z;, that says the derivative of the

value function w.r.t. z; is 0 on the boundary U,,, i.e.

0
a—le(Uzl,xz,.fg,t) = 0. (411)
Then on the finite difference grid this implies that

m _ {/m
‘/}ajak ‘/1_17]516
Az

=0 (4.12)
and hence the Neumann boundary condition can be applied by choosing

Vi =V for j=0,...,J k=0,....,K m=0,...,.M (4.13)

L,j,
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Again the boundary conditions on the other spatial variables can be applied in an analo-

gous fashion.

Thus the explicit finite difference scheme is quite an efficient way of solving PDEs in
multiple dimensions. But the disadvantages of the explicit finite difference scheme become
apparent once we analyze the stability of the scheme. Stability analysis of a PDE with
non-constant coefficients is complicated. If we have a constant coefficient PDE then it
can be shown using von Neumann stability analysis [44] that the explicit finite difference

scheme will be stable if the time step is constrained by the relation

1 1 1

>2|—4+—+—=].
— 62?2 dxk 62

1
— 4.14

50 (4.14)
This condition becomes very restrictive and results in our having to take a very large
number of time steps every time we want to increase the spatial discretization to increase
the accuracy of the solution. This problem is exacerbated when we have coefficients which
are widely varying in magnitude and can result in the explicit method being infeasible for

some problems, see Chapter 48 of [65].

4.2 Dufort Frankel Method

We have just explained that one of the drawbacks of the explicit finite difference scheme
is that its spatial and temporal discretizations have to satisfy certain stability conditions.
Due to the differing magnitudes of the coefficients of the spatial variables this stability
condition sometimes becomes restrictive and results in having to take a very large number
of time steps as the spatial discretization is increased. The resulting increase in solution
time makes the method infeasible for high resolution grids. This stability problem can be

obviated by using a Dufort Frankel explicit finite difference scheme. As before we will first
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illustrate this scheme on the one dimensional diffusion equation given by

ou  0%u

— = —. 4.15

ot 0x? (4.15)
The Richardson approximation to this PDE is given by

2At B (Azx)?

with a truncation error O[(At)? + (Az)?]. Unfortunately this method is unstable and
hence cannot be used. In order to get around the stability, problem Dufort and Frankel
[28] replaced the term u™ by (u™™ +u™ 1) /2, to obtain the finite difference approximation

to the diffusion equation given by

m+1 _ ,,m—1 m _ ,m+l __ ,m—1 m
U’n un unfl un U’n + un+1

2At B (Az)?

(4.17)
Rearranging, we have
(L4 2r)ul™ = w20 (ul  —ul™" +ull ). (4.18)

We can see from equation (4.18) that the scheme is still explicit and contains only one un-

m+1

known u;

which can be solved for in terms of the values at the two previous time steps
m and m — 1. The scheme is illustrated graphically in Figure 4.2. The truncation error
of the scheme is given by O[(Az)? + (At)? 4+ (At/Ax)?] and the scheme is unconditionally

stable, see Chapter 3 of [31] for an analysis of the Dufort Frankel method.

We will now proceed to derive the Dufort Frankel approximation in 3-dimensions for the
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m+1
n*dx ® ® ®

m* dt t

Figure 4.2: Dufort Frankel scheme

general 3D quasilinear parabolic second order PDE with non-constant coefficients:

a(xla Z2,I3, t)le + ﬁ(xla T, X3, t)VfL‘Q + ’Y(mla Tg, X3, t)‘/;% + 5(%1, T2, X3, t)v;vlwl
+ G(SEl, T2,X3, t)‘/;vzwz + C(xla T, T3, t)VCL‘s.’L‘g + 77(351, T2, T3, t)lewz

+ [/(xla X2,T3, t)vwlwg + K;(xla X2, T3, t)‘/;cgz;; + A(.’El, X2, T3, t)v + ‘/t = O

We discretize the PDE as we did for the explicit method. Then from equation (4.6),
choosing #,, = 0 and substituting
ymol ymd
V, = bk ik (4.19)
2At
gives us the Richardson explicit approximation to the PDE. However using von Neumann
analysis it can be shown that this approximation is unconditionally unstable, so we use the

extension to this method known as the Dufort Frankel approximation. Using the Richard-

son approximation for V; yields
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1 —1
.‘/Z',:;?"—IL— Vt;l’k — Z+1,J’ m ’-7, + ﬂ K?"’l,k - -‘/iZ.L_17k
2At ’]’ 2A.’E1 ik 2A$2
n Vi — Viie— +om Vitiie —2Viie + Vili ik
bk Az ik As?
n Vi, = 2V e + Vil 1k +em Vi — 2V + Viliea
ik Azl bk AN
n Vit e = Vil — Vit joie T Vili—1e
77z,], 4Az Az,
. Vi ik — ViZuiee — Vit je—1 T Vil k-1
’]’ 4A3’)1Al‘3
+ ,J+1 k+1 V;'Z'L—l,k—kl - ‘/;'?+1,k—1 + V] 1,k—1
’]’ 4A$2A$3
+ ’.7, a]; (4.20)

To go from the inherently unstable Richardson approximation to the Dufort Frankel ap-

proximation we replace the terms V;7, by the average (Vﬁl + Viie )/2 and re-arrange

2 7

terms to give us the equation

m+1 m—1 m m m m
V:j k ‘/;.75 — am ‘/;'l'lajyk B V;_lajak + /Bm ‘/;:]'1'15]9 B iaj_lak
2At bk ok 2A1,

m
Lo Vigkr1 — Vign— 4 em Vitrgn T Vilim
Za]:k 2A./L‘3 Z,],k} A./L‘]_
m m
+ €m ‘/;5.7‘1'1;19 + ‘/iij_lik + m V:];k+1 + Vaj k—1
1,5,k Ax% 1,5,k Axs
m m m m
+ 77m V;+1,j+1,k - V;fl,j—kl,k - V;+1,j71,k + V’fl,jfl,k
Lok 4Ax1 Axo
m m m m
Lom V;—f—l,j,k—f—l - sz'—l,j,k—f—l - V;'+1,j,1c—1 + V’—l,j,k—l
ik 4A.’E1A.’L‘3
m m
4+ kM Vi,j+1,k+1 - V;,j—l,k—l—l Vzg+1 k-1 T V ij—1,k—1
Lok 4A.’L‘2A$3
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m+1 m— 1
% ] k1,7, k 2,5,k AiEl

Vm+1 Vm 1 Vm+1 + ym
J— 6:”;]@ 7.]7k 7.7) _ CZ"T.L]k a]a 7.]k . (4-21)
s A'/LIQ sJs Al‘g

The above approximation (4.21) does not appear to be an explicit equation but in fact a

careful re-arrangement of the terms shows us that it can be written in the form

Lok O 2A:L'1 b 2Ax,

m m
+ ,}/ 5.]ik+1 a]:k 1 (5m ‘/;+1!.7’k + ‘/;_lajak
Za]: 2A$3 ’Ja A.’L‘%

n (V,J+1 x Vi, k> 4em (‘/Z?,k—l—l + Vi?,k—l)
5.75 i1j7k A:L‘2
3
n Vit e — Vil e, — Vit -1 T Vili— 1k
nz,] k 4ALE1A.’II2
+ gkl — Vit ket — Vit ie—1 T Vil k-1
"7 k 4A.T1A.T3
,]—I—l k+1 V,] 1,k+1 V;Z'L-i—l,k—l + V;'Z'L—Lk—1 \m
+ K; ’.]ak 4A$2Ax3 + 1 .]ak iaj’k
m+1 m+1 m—1
p— 2At & (Wajzk + V:.]a ) _ 2At€ & (Wajyk + V’J, )
s Az? b Azl
V;m+1 +ym
Ik 1,5,k 1
— 2AM(", (A—x% VL (4.22)
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We now re-arrange equation (4.22) and collect terms to obtain

pmi 2At o itk — Vil L gm Videe = Vij-1k
1,5,k (1 + ) .5,k 2A$1 1,5,k 2A.T2

m m m m
T Vilikrs = Viie Lgm Vitiie T Viliin
15];k 2A:L.3 Z;]JC A:L‘%
m m m m
Loem Ve Vil 1k m (Viger1 T Vigr
1,J:k Ax% 1,9,k Am%
m m m m
+ 77m V;+1,j+1,k - Vz’—l,j+1,k — Vit1,5-1k + V;fl,jfl,k
Lok 4A 1Ay
m m m m
+om Vz‘+1,j,1c+1 - V;—l,j,lc+1 - sz'—f—l,j,kfl + Vrifl,j,kfl
L3k 4Ax1Azs
m m m m
A Viiksr = Vil = Vigeik T Vi1 Lom pm
Ki 5k (NN AER N
4A$2A.T3
(1 - ‘:‘) m—1

T 4.23
(1+E) 2,5,k ? ( )

where

2T | 2Dt | 200,

2 2 2
Azy Az3 Azg

(1]

We see from equation (4.23) that the scheme is an explicit one in which value of the
function at a future time step depends on values at the present time step and the past
time step. The boundary conditions for the Dufort Frankel scheme can be implemented in
the same way as for the classical explicit scheme. For the general 3-dimensional diffusion
equation it can be proved that the Dufort Frankel approximation is unconditionally stable
[38]. This stability gives the Dufort Frankel method a clear advantage over the classical
explicit method in that the restrictive conditions on the size of the time and space steps is
removed. However the local truncation error of the Dufort Frankel method is of the form
O(A# + Azx? + Ax2 + Az? + ﬁ—f:% --+) (see Chapter 5 of [44]), and hence the spatial and
temporal discretizations should be chosen with care. Also since the value at a future time
step depends on the value at the two preceding time steps, we need a mechanism to initiate
the scheme. We can do this by approximating the first time step using a scheme such as

the classical explicit finite difference. Subsequent values are computed by bootstrapping
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through time. A disadvantage of the Dufort Frankel method is that some consistency issues
can arise as the spatial mesh is refined (pp. 138-140 of [44]), and a certain amount of care
should be taken in its implementation. We find that this has not been a problem in the

numerical experiments of this thesis

There are a large number of other finite difference schemes, the most popular ones be-
ing the Crank Nicolson method and the alternating direction implicit (ADI) methods.
These and other methods have been discussed in [62]. They work very well in one or two
dimensions, but for three dimensional problems they become uncompetitive as they involve
solving a huge system of equations at every time step, for example see [32]. Other finite
difference methods such as the LP method for the free boundary value problems arising
from American option valuation have been implemented in one and two dimensions, see

(22, 23, 52]. We will now give a brief description of ADI methods.

4.3 ADI Methods

Alternating direction implicit methods [53] were developed as techniques that lie between
explicit and implicit finite difference methods. The aim of these methods in two and three
dimensions is to improve the speed of impractical implicit schemes and to overcome the

stability restriction associated with practical explicit finite difference methods.

Let us now consider an ADI method for the following 2D PDE

u = Dyu + Dyu + Dyyu. (4.24)

where D,, D, and D,, are differential operators. The basic idea of an ADI scheme is to
solve the z-operator part from time ¢ to ¢t + h/2 and then to solve the y-operator part
from time ¢ 4+ h/2 to t + h. Now this advancement along each spatial direction can be

accomplished by using either an implicit or an explicit scheme. So for example we could
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use an implicit scheme in one direction and the explicit scheme in the other direction and
continue the computational procedure by alternating between the schemes at each time
step. The cross derivatives can be approximated by using a predictor corrector scheme
[62]. We will now outline how a predictor corrector ADI scheme can be constructed. The

spatially discretised version of PDE (4.24) can be written as

up = Agu + Ayu + Agyu. (4.25)

where A, A, and A,;, are the matrices used to denote an appropriate discretization.

Equation (4.25) in eigenvector space (see Chapter 3 of [62]) would become

U = AgU + Ayu + Agyu. (4.26)

Here Az, A\, and ),y are diagonal matrices whose diagonal elements are the eigenvalues of

the discretization matrices.

Then a predictor-corrector ADI algorithm would be :

e Solve z-operator to half time step

Solve y-operator from half time step to full time step

Update zy-term by averaging start and end of step

Solve z-operator to half time step

Solve y-operator from half time step to full time step

The ADI scheme is illustrated in Figure 4.3.
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timelevel m+1

timelevel m+1/2

timelevel m

Figure 4.3: ADI scheme

So the predictor part of the ADI scheme can be written as

U n
w2 —u -
—Y = )\wu"H/? + Ayu” + Agyu”
3h
1
u*n—|—1 _ an+§
~n41/2 1
i = \a"t'? + Ay A u”

2

and the corrector part of the ADI scheme is given by

1
— )\zan—{—l/? + )\yun + 5)\my(u*n+1 4 un)
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1
— )\m,&n—l—l/Z + )\yun—l—l + 5)\my(u*n—l—l 4 un)

(4.27)

(4.28)



In equations (4.27) and (4.28) auxiliary variables 4, § and u* have been used to differentiate
between the function approximations at the half and full time step points. The advance

in each spatial direction is carried out via an implicit Euler step in 1D.

The extension of the ADI schemes to three dimensions is not very straightforward as one
has to think in greater detail about which method one uses to advance along each spatial
direction and how the stability and accuracy of these methods relate to the stability and
accuracy of the ADI scheme. There are no obvious answers to these questions and they
have to be answered on a case by case basis depending on the PDE being solved. Never-
theless, because of their inherent advantages over explicit methods, ADI finite difference

schemes can be very competitive for PDE solutions in dimensions up to three.

4.4 Wavelet Method of Lines

The wavelet method of lines solution technique can be thought of as a method which is a
combination of a spectral method such as a Fourier transform-based method and a conven-
tional finite difference scheme. In a traditional finite difference scheme partial derivatives
are replaced with algebraic approximations at grid points and the resulting system of linear
algebraic equations is solved to obtain the numerical approximation of the PDE. In the
wavelet method of lines we transform the PDE into a vector ordinary differential equation
(ODE) by replacing the spatial derivatives with their wavelet transform approximations
but retaining the time derivatives. We then solve this vector ODE using a suitable stiff

ODE solver.

To explain the wavelet method of lines first consider the basic method of lines solution

for the one dimensional diffusion equation

ou _ 0*u

E —_ @. (4.29)
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By choosing an appropriate approximation to the spatial derivative in this equation, it can

be reduced to a system of ordinary differential equations of the form

du

— = Au, 4.30
7 (4.30)
where the operator A involves this approximation which can be either a finite difference

approximation or a wavelet decomposition of the differential operator.

For example the wavelet decomposition applied to (4.29) will be given by

d
297 pu=0u (4.31)

where o7 3 = (PV S_pt Z‘j]:_}_ p ij) and 852) is the decomposition of % defined as

pj:;%pﬁjg (with highest resolution level J and lowest resolution level J — P).

The next step is to solve this system of ordinary differential equations numerically by
discretizing the time derivative in (4.30) through a suitable time discretization scheme.
We use the notation u[ := u;(t,,) to indicate the time dependency in the equation and
note that the objective of the time discretization is to obtain the ODE solution value at
time %, as a function of information available up to and including t,,_;. One such scheme

is the explicit Euler scheme given by (4.30)

u™ =y + At du " (4.32)
B dt ' ‘

Using this scheme to time advance the solution and combining (4.30) and (4.32) we obtain
m __ . m—1 m—1, n—1
um =u" 4+ ALATT W (4.33)

Other schemes to solve a system of ordinary differential equations are the Runge Kutta

methods and methods based on the backward differential formula, a subclass of which
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contain the Adams Bashforth methods. To illustrate these methods, represent the vector

ODE as

— = f(u,t). (4.34)
Then the second order Adams Bashforth method is given by the recursion

3 1
= o A S, (4.35)

where At is the integration step, u™

is the numerical solution at the previous point and
f™ and f™ ! are the derivatives of u at the two preceding points. The scheme is not
self starting as each future value of the solution depends on two preceding values, hence
for the first time step an explicit Euler scheme is used to compute the solution one step
beyond the initial condition. Also note that the second order Adams Bashforth method
only requires one derivative evaluation per step. This is a very important and remarkable
property of all Adams Bashforth methods and is in contrast with the Runge Kutta methods
where a minimum of p derivative evaluations per step are required for a pth order method.

The general form for the backward differential formula schemes for an ordinary vector

differential equation can be written as

dum+1

qg—1
™t = au™ "t + At )
Z 1 + Aty o

=0

(4.36)

This equation can be written in block matrix form to solve a coupled system of ODEs. In
the above equation oy and [, are chosen so that the resulting integration algorithm has
both good accuracy and stability properties, see Chapter 2 of [57] for a discussion of these
methods.

So we now know how to solve a system of ODEs arising in the method of lines solu-

tion using a discretization of the spatial operators that could be either a finite difference
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scheme or a wavelet decomposition. If we perform a finite difference approximation to the
differential operators then we are in the realm of the finite difference methods we discussed
in the earlier two sections. If instead we impose a wavelet decomposition, then we get a

vector of ODE in wavelet coefficient space.

4.5 Two Examples

We illustrate how to perform a wavelet decomposition of a partial differential operator and
solve the corresponding PDE using the wavelet method of lines by means of two simple

examples.

Example 1

Consider a first order nonlinear hyperbolic transport PDE defined over an interval 2 =

(27, ] :
ou ou
- = = u/p 0
T 3 +S x &0
ou
5 —x*(t) T =1
ou R
5 = X (t) T = ;. (4.37)

The numerical scheme is applied to the wavelet transformed counterpart of the above

equations, viz.

0
o9 pu=—0 ut I LS w0, (4.38)

where 7] % = (PV S_op T+ Z;.I;J{P PWJ,) and 851) is the decomposition of <L defined as
pf:}p%pjjj (see §3.2). In using the multiresolution strategy to discretize the problem we

represent the domain P + 1 times, where P is the number of different resolutions in the
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discretization, because of the P wavelet spaces and the coarse resolution scaling function
space Vj_p, P > 1. In the transform domain each representation of the solution defined
at some resolution p should be supplemented by boundary conditions and [51] shows how
to impose boundary conditions in the both the scaling function spaces and the wavelet
spaces following the methods described in §3.3. Using the concepts set out in sections §3.3
a wide variety of boundary conditions can be implemented in the transformed space in a

very straightforward fashion.

Example 2
Now consider the one dimensional diffusion equation which is a second order linear parabolic

PDE defined over an interval Q = [x;, x,] :

ou 0*u
u(z,t) = x"(t) T =1
u(z,t) = x() T = x,. (4.39)

The numerical scheme is applied to the wavelet transformed counterpart of (4.39) which

is given by

d

apﬁ}ou = 652)u x ¢ 09, (4.40)

where 7 p = (PV sop+ Zj;}_ p PW].) and 852) is the decomposition of % defined as

pjj;%pﬁjp (with highest resolution level J and lowest resolution level J — P).

Using the multiresolution strategy to discretize the problem we again represent the domain
P +1 times, where P is the number of different resolutions in the discretization, because of
the P wavelet spaces and the coarse resolution scaling function space V;_p, P > 1. In the
transform domain each representation of the solution defined at some resolution p must be

supplemented by boundary conditions.
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First, we examine the boundary conditions applied to the coarse scaling function space
V' ;_p assuming that the spatial discretization of the right hand side of (4.40) is expressed
across the hierarchy of wavelet spaces and V ;_p. From §2.4.3 we see that the set of scaling
functions s;_p in V ;_p satisfy s;_p C s;_p41. Also s;_po = s50 and s;_pos-r = 5,94,
which are the physical space values of the solution u(z,t) evaluated at the boundaries of

the domain. Hence the incorporation of the boundary condition into V' ;_p simply involves

replacing s;_po by x*(t) and s;_pgs-r by x%(1).

The wavelet space treatment is slightly more complicated. Following our discussion in
§3.3 we note that there are no wavelets on the boundary. However the original wavelet, co-
efficients for each of the W; in (4.40) were derived without the influence of x”(¢) and x®(¢).
As sj_pp and s;_pos-r have been replaced by x*(t) and x*(t) at the boundaries, we must
recalculate the values of the wavelet coefficients that are influenced by this modification.

The wavelet coefficients can be written as

27
djm = Sj+12m+1 — O LmnSjm  J=J—P...,J—1, (4.41)

n=0

but now the first and last elements s; and s;,; are respectively equal to x"(t) and x*(¢).

Hence (4.41) must be modified to

201

. = sjt12mir — DX (t) — Tjaix( Z ConSim  j=J—P...,J—1. (4.42)
By subtracting (4.41) from (4.42) we obtain
& = dim +Tjo(si0 = X" () + Tjai(sjr —x"(t))  j=J—P...,J—1  (4.43)

Expression (4.43) is used to calculate the boundary modified wavelet coefficients.
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In both the examples, once we have applied the boundary conditions the wavelet dif-
ferential operators are in the matrix form illustrated in Figure 4.4 (for P = 3) which forms
the right hand side of the vector ODE (4.30). Hence the time stepping of the algorithm

can be accomplished by using a ODE solver such as the ones we have discussed. It should

A

N\
N\ -

Figure 4.4: Structure of the fast wavelet differential operator

be noted that via the multiresolution nature of the wavelet spatial decomposition the coef-
ficients of this matrix contain information at different resolution scales. The time stepping
algorithm is applied to the vector formed by its matrix product with the current solution
vector. From the intuitive point of view the ability to solve a PDE using this multiscale
representation of the solution surface is one of the main advantages of the wavelet method

of lines.

In our experiments we have implemented ODE methods such as the explicit Euler method,
a fourth order Runge Kutta method and an Adams Bashforth method. The code we used
for financial applications [20, 21, 29] implemented the last technique and was a modified

version of the Fortran code developed at the Lawrence Livermore Laboratories called the
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Livermore solver for ordinary differential equations (LSODE) [56, 57].

The fundamental complexity of such methods are O(7n?) for space and time discretizations
of size n and 7 respectively over domains of dimension d (¢f. [57], §3.2). The decompos-
ition of the differential operators is implemented in the manner that has been described
in Chapter 3. If we have a PDE in a higher number of dimensions then the decompos-
ition is accomplished by constructing higher dimensional wavelets as the tensor product
of the one dimensional wavelets. The construction of these higher dimensional wavelets
has been explained in §3.7 of Chapter 3. A novel approach to tackle PDEs with spatially
varying coefficients by creating a combined differential operator has been developed in §3.6
of Chapter 3. Thus the wavelet method of lines is flexible enough to be applied to solve a
wide range of PDEs.
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Chapter 5

Conclusions and Future Directions

Summary

Although originating in the work of Haar over a century ago, most of the research in
the application of wavelets has been done in the past decade. Consequentially in this sur-
vey paper an attempt has been made to collate the various bits of literature available on
wavelets and to present both an overview of wavelets and the necessary wavelet framework

for solving financial derivative and others PDEs.

In Chapter 2 an explanation of the orthogonal and biorthogonal constructions for wavelets
in one dimension, the mathematical framework for the biorthogonal interpolating wavelet
transform, a discussion of the convergence properties of the wavelet transforms and an
illustration of the structure of the fast wavelet transform algorithm was given. In Chapter
3 the wavelet transform framework to solve PDEs was introduced and the construction of
the wavelet decomposition of differential operators detailed. The restriction of wavelets
to intervals and boundary modified differential operators was also treated and the entire
machinery lifted to several dimensions. Chapter 4 contained a description of the explicit
finite difference scheme, the Dufort Frankel method and the wavelet method of lines as

applied to one dimensional and multi dimensional PDEs. An outline of alternating direc-
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tion implicit (ADI) schemes and a discussion of the relative merits and drawbacks of these

various methods was also given and two one dimensional examples discussed.

Directions for future research

The wavelet method of lines technique has been applied to the solution of financial deriva-
tive valuation PDEs in [20, 21, 29], where numerical results comparing the wavelet method
to other standard finite difference methods can be found. To improve the basic efficiency
of the wavelet method of lines we should implement an adaptive wavelet technique. With
such a technique, we only need to keep the coefficients that are larger than a certain thresh-
old at each time step in the PDE solution. In order to allow for variation in the solution
from time step to time step, we must also retain the coefficients adjacent to the currently
significant ones. An analysis of the wavelet coefficients arising in the solutions of financial
derivative valuation PDEs shows that typically only around 10% are significant (with a
threshold of 107%). Thus an implementation of an adaptive technique should result in a
marked improvement in both speed and memory usage due to a sparse wavelet represen-

tation.

The difficulty in implementing such an algorithm is appropriate management of the sparse
data structures required to achieve improved performance. In order to have a stable and
accurate adaptive numerical scheme the wavelet differential operators must to take into
account the changes in spatial resolution (arising from the thresholding) from time step
to time step. The development of algorithms that can accomplish this is an active area
of research [63, 18, 16, 37| and by using such techniques in a single space dimension at
least an order magnitude of speedup has been achieved in some applications [63]. The
extension of such adaptive wavelet algorithms to higher dimensions is non-trivial and will
need to be explored in further detail. One possible avenue which seems very promising is
to use a technique developed by Vasilyev and Bowman [11] which uses lifted interpolating

wavelets to develop a fast adaptive method for the solution of PDEs. It is clear that if
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financial derivatives based on 5,7 or 9 risk factors are priceable by PDE methods, some

such technique will be required.

The extension of the wavelet technique to incorporate truly American exercise features
in derivative pricing is also an open problem. It would be very useful if one could in some
way combine the wavelet method with existing time stepping techniques that are used to

handle the pricing of American derivatives [22, 23, 24, 52].

Another very promising area of research in the pricing of high dimensional derivative
securities has been the development of simulation based methods [2, 40] that can handle
early exercise features. These methods have surmounted the difficulties associated with
using traditional Monte Carlo based simulation techniques to price American or Bermudan
derivatives and could prove to be a superior alternative to the PDE approach to the pricing

of such securities, with several underlying securities.

93



Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

AMARATUNGA, K. AND J. WiLLIAMS (1997). Wavelet-Galerkin Solution of Boundary

Value Problems. Archives of Computational Methods in Engineering 4 (3) 243-285.

ANDERSEN, L. (1999). A Simple Approach to pricing Bermudan Swaptions in the
multi-factor LIBOR Market Model. Computational Finance 3 (2) 5-32.

ARANDIGA, F. AND V. CANDELA (1996). Multiresolution Standard Form of a Matrix.

SIAM Journal of Numerical Analysis 33 (2) 417-434.

ArpiTTI, F. D. (1996). Derivatives. Harvard Business School Press, Cambridge,
MA.

BaBBs, S. H. (1993). The valuation of cross-currency interest sensitive claims with
application to diff swaps. Unpublished Working Paper, Midland Global Markets,

London.

BAXTER, M. AND A. RENNIE (1996). Financial Calculus: An Introduction to Deriva-

tive Pricing. Cambridge University Press.

BEYLKIN, G. (1992). On the representation of operators in bases of compactly sup-

ported wavelets. SIAM Journal of Numerical Analysis 6 1716-1740.

BEYLKIN, G. (1993). Wavelets and fast numerical algorithms. In Proceedings of
Symposia in Applied Mathematics, 47. American Mathematical Society, Providence,

RI. http://www.mathsoft.com/wavelets.html.

94



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

BEYLKIN, G., R. ColIFMAN AND V. ROKHLIN (1991). Fast wavelet transforms and

numerical algorithms. Communications on Pure and Applied Mathematics 44 141—

183.

BrAcK, F. AND M. SCHOLEs (1973). The pricing of options and corporate liabilities.

Journal of Political Economy 81 637-659.

BowMAN, C. AND O. V. VASILYEV (2000). Second Generation Wavelet Collocation
Method for the Solution of Partial Differential Equations. Journal of Computational
Physics 165 660-693.

CANDAs, C. AND K. AMARATUNGA (April 2000). Interpolating Wavelets on Un-

structured Grids for the Fast Computation of 3D Integral Problems. In Proceedings
of SPIE-Wawelet Applications VII, April 2000. 421-432.

CHARRIER, M., D. CrRUz AND M. LARSSON (1999). JPEG2000, the next Millenium
compression standard for still images. In Proceedings of the IEEE ICMCS’99, 1.
131-132.

CLARKE, N. (1998). Numerical solution of financial derivatives. Ph.D. thesis, Linacre

College, Oxford.

CoHEN, A., I. DAUBECHIES AND J. FEAUVEAU (1992). Biorthogonal bases of com-

pactly supported wavelets. Communications on Pure and Applied Mathematics 45

485-560.

CoHEN, A., S. KABER, S. MULLER AND M. POSTEL (2000). Accurate adaptive

multiresolution scheme for scalar conservation laws. Preprint, LAN University, Paris.

COURANT, R. AND D. HILBERT (1953). Methods of Mathematical Physics, 1st edi-

tion, volume 1. Interscience, NY.

95



18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

DAHMEN, W., S. MULLER AND T. SCHLINKMANN (1999). On a robust adaptive
multigrid solver for convection-dominated problems. IGPM Report No 171, RWTH
Aachen.

DAUBECHIES, 1. (1992). Ten Lectures on Wavelets. STAM, Philadelphia.

DEMPSTER, M. A. H. AND A. ESWARAN (2000). Wavelet based PDE valuation of
derivatives. In Proceedings of the Third European Congress of Mathematics, Progress

in Mathematics. Birkhauser, Basel. Forthcoming.

DEMPSTER, M. A. H., A. ESWARAN AND D. G. RICHARDS (2000). Wavelet meth-
ods in PDE valuation of financial derivatives. In Proceedings of the Second Interna-
tional Conference of Intelligent Data Engineering and Automated Learning (IDEAL
2000). K. Leung, L. W. Chang and H. Meng, eds. 215-238.

DEMPSTER, M. A. H. AND J. P. HuTTON (1997). Fast Numerical Valuation of

American, Exotic and Complex Options. Applied Mathematical Finance 4 (1) 1-20.

DEMPSTER, M. A. H., J. P. HuTTON AND D. G. RICHARDS (1998). LP valuation

of exotic American options exploiting structure. Computational Finance 2 (1) 61-84.

DEMPSTER, M. A. H. AND D. G. RICHARDS (2000). Pricing American Option
Fitting The Smile. Mathematical Finance 10 (2) 157-177.

DESLAURIERS, G. AND S. DuBUC (1989). Symmetric iterative interpolation pro-

cesses. Constructive Approximation 5 49—68.

DoNOHO, D. (1992). Interpolating wavelet tansforms. Presented at the NATO Ad-
vanced Study Institute conference, Ciocco, Italy. http://www-stat.stanford.edu/

“donoho/Reports/.

DurrIE, D. (1992). Dynamic Asset Pricing Theory. Princeton University Press,
Princeton, NJ.

96



[28] DurorT, E. AND S. FRANKEL (1953). Stability conditions in the numerical treat-
ment of parabolic differential equations. Mathematical Transactions National Research

Council, Washington 7 135-152.

[29] ESWARAN, A. (2001). Wavelet Based PDE Valuation of Swaps and Swaptions. Ph.D.
thesis, Centre for Financial Research, Judge Institute of Management, University of

Cambridge.

[30] HARRISON, J. M. AND S. PLISKA (1981). Martingales and stochastic integrals in

the theory of continuous trading. Stochastic Processes and Their Applications 11

215-260.

[31] HorFMANN, K. AND S. CHIANG (2000). Computational Fluid Dynamics. Vol 1,
EESbooks.

[32] HurToN, J. P. (July 1995). Fast pricing of derivative securities. Ph.D. thesis,

Department of Mathematics, University of Essex.

[33] INGERSOLL JR., J. E. (1987). Theory of Financial Decision Making. Rowman &
Littlefield, Lanham, MD.

[34] ISERLES, A. (1996). A First Course in the Numerical Analysis of Differential Equa-

tions. Cambridge University Press.

[35] JAMESON, L. (1996). On the Daubechies-based wavelet differentiation matrix. Tech-
nical report, Institute for Computer Applications in Science and Engineering, NASA

Langley, VA. http://www.mathsoft.com/wavelets.html.

[36] KARATZAS, I. AND S. SHREVE (1991). Brownian Motion and Stochastic Calculus,

2nd edition. Graduate Texts in Mathematics. Springer, Berlin.

[37] KEvLAHAN, N. K. AND O. V. VASILYEV (2001). An adaptive wavelet method for

fluid-structure interaction. In Proceedings of Direct and Large-Eddy Simulation-1V

97



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Workshop, Enschede, The Netherlands, 2001. Forthcoming. http://landau.mae.

missouri.edu/"vasilyev/Publications/.

Lapipus, L. AND G. PINDER (1982). Numerical Solution of Partial Differential

Equations in Science and Engineering. Wiley, New York.
LITZENBERGER, R. (1992). Swaps, plain and fanciful. Journal of Finance 47 831-850.

LonGsTAFF, F. A. AND E. S. SCHWARTZ (2001). Valuing American options by
simulation: A simple least-squares approach. The Review of Financial Studies 14 (1)

113-147.

MALLAT, S. (1989). A theory for multiresolution signal decomposition: The wavelet
representation. IEFE Transactions on Pattern Analysis and Machine Intelligence

11 (7) 674-693.

MERrTON, R. C. (1973). The theory of rational option pricing. Bell Journal of

Economics and Management Science 4 141-183.

MORTON, K. AND D. MAYERS (1994). Numerical Solution of Partial Differential

Equations. Cambridge University Press.
Ozisik, M. (1994). Finite Difference Methods in Heat Transfer. CRC Press, FL.

PoLIKAR, R. The wavelet tutorial. http://www.public.iastate.edu/"rpolikar/

wavelet.html.

Press, W. H., S. A. TEUKOLSKY, W. T. VETTERLING AND B. P. FLANNERY

(1992). Numerical Recipes in C, 2nd edition. Cambridge Univerity Press.

PROSSER, R. (1997). Numerical methods for the computation of combustion. Ph.D.

thesis, Department of Engineering, University of Cambridge.

98



48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

PROSSER, R. AND R. CANT (1998). Evaluation of nonlinear terms using interpolating
wavelets. Working paper, CFD Laboratory, Department of Engineering, University of
Cambridge.

PROSSER, R. AND R. CANT (1998). On the representation of derivatives using
interpolating wavelets. Working paper, CFD Laboratory, Department of Engineering,
University of Cambridge.

PROSSER, R. AND R. CANT (1998). On the use of wavelets in computational com-
bustion. Working paper, CFD Laboratory, Department of Engineering, University of
Cambridge.

PROSSER, R. AND R. CANT (1998). A wavelet-based method for the efficient simu-

lation of combustion. Journal of Computational Physics 147 (2) 337-361.

RICHARDS, D. (1999). Pricing exotic American options. Ph.D. thesis, Centre for

Financial Research, Judge Institute of Management, University of Cambridge.

RICHTMEYER, R. AND K. MORTON (1967). Difference Methods for Initial-Value

Problems. Interscience, New York.

Riesz, F. AND B. Sz.-NAGy (1955). Functional Analysis. Frederick Ungar, New
York.

RupiN, W. (1991). Functional Analysis, 2nd edition. McGraw-Hill, New York.
SCHIESSER, W. (1991). The Numerical Method of Lines. Academic Press, London.

SCHIESSER, W. (1993). Computational Mathematics in Engineering and Applied Sci-
ence. CRC Press, FL.

SCHRODER, P. AND W. SWELDENS (1996). Building your own wavelets at home.

ACM SIGGRAPH Course Notes. http://cm.bell-1labs.com/who/wim/.

99



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

SMITH, G. (1985). Numerical Solution of Partial Differential Equations, 3rd edition.

Oxford University Press.

SWELDENS, W. (1996). A lifting scheme: a custom design construction of biorthog-
onal wavelets. Applied and Computational Harmonic Analysis 3 186-200. http:

//cm.bell-labs.com/who/wim/.

SWELDENS, W. (1997). A construction of second generation wavelets. SIAM Journal

of Mathematical Analysis 29 511 — 546. http://cm.bell-1labs.com/who/wim/.

TAvVELLA, D. AND C. RANDALL (2000). Pricing Financial Instruments The Finite

Difference Method. Wiley, New York.

VAsILYEv, O., D. YUEN AND S. PAaovruccr (1996). A fast adaptive wavelet collo-
cation algorithm for multi-dimensional PDEs. Journal of Computational Physics 125

498-512.

VasiLyEv, O., D. YUEN AND S. Paoruccr (1997). Wavelets: An alternative ap-
proach to solving PDEs. Research Report, Supercomputer Institute, University of

Minnesota. http://landau.mae.missouri.edu/~vasilyev/Publications/.

WiLMoTT, P. (1998). Derivatives, The Theory and Practive of Financial Engineering.
Wiley, New York.

WiLmoTtT, P., S. HowisoN AND J. DEWYNNE (1993). Option Pricing: Mathemat-

ical Models and Computation. Oxford Financial Press, Oxford, UK.

WiLMOTT, P., S. HOWISON AND J. DEWYNNE (1995). The Mathematics of Finan-

cial Derivatives. Cambridge University Press.

Xu, J. AND W. SHANN (1992). Galerkin-wavelet methods for two-point boundary

value problems. Numerische Mathematik 63 123-144.

100



