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1 Introduction

The paper examines the performance of fixed-mix dynamic investment strategies
in an asset market where prices fluctuate as stationary stochastic processes. A
fixed-mix strategy prescribes transferring, at each step, a fixed share az; > 0
of the jth position of the portfolio to the kth position (k,7 = 1,...,K). We
analyze the asymptotic behavior of the portfolio of a trader who employs such
an investment rule systematically during a sufficiently long time period. In the
deterministic case, we always have convergence to a stable state. But in case of
any, even slightest, random price fluctuations, the value of the portfolio will grow
exponentially with probability one. This result might seem counterintuitive,
since fixed-mix strategies are self-financing and a stationary price process has
zero trend. The purpose of the paper is to derive and discuss the result in the
framework of a fairly general stochastic model of an asset market.

Consider a financial market with K assets whose prices change in time and
depend on random factors. Randomness is described as follows. There is a
stochastic process ...,s_1, Sg, S1,..- with values in a space S. The value of s;
characterizes the “state of the economy” at time ¢ € {0,+1,+2,...}. The vector
of asset prices

pe(s') = 0y (s"), s 0 (s"),  [PE(s") > 0]
at time ¢t =0, 1, ... depends on the history
St = (, St—1, St)

of the process (s;). (The space S and all functions of s* € ...x S x S are supposed
to be measurable.)

An investment strategy (trading strategy) is a sequence of non-negative vector
functions

hu(s') = (hi(s"), - b ("), £ =10,1,2, ..,

where hy = hy(st) is the portfolio of assets at time t. The component hf(s?)
of the vector h(s?) represents the number of units of asset k in the portfolio
ht. The choice of the portfolio may depend on time and on information about
the process (s;): therefore h; depends on t and s®. We assume that all the
coordinates of h;(s?) are non-negative: short sales are ruled out.

A trading strategy h; is said to be self-financing if

pehy = pihy_1.

(Here pthy = Yn, pEh¥ and pihy_1 = Y p, pFh¥ | are scalar products.) A
trader using a self-financing strategy h; rebalances, at every time period, the
portfolio within the budget constraint determined by the cost p;h;_1 of the pre-
vious portfolio h;_; in the current prices p;. To begin with, we will assume that
there are no transaction costs. The case of transaction costs will be considered
later in the paper.



Let axj, k,j € {1, ..., K}, be a (non-random) matrix such that

K
ap; >0, Zakj =1. (1)
k=1

A strategy hg, t > 0, is called a fixed-miz strategy associated with the matriz
a = (ag;), or, for short, an a-strategy, if

K
pihi =Y apihi_, (2)
i=1

for all k,t. The number a4; indicates what share of position j should be trans-
ferred to position k. Such strategies express in a simple form the idea of diver-
sification of a portfolio. Every asset is converted at each step into a “fixed mix”
of all the assets. Clearly any a-strategy is self-financing (to show this add up
equations (2) over k and use (1)).

In an important special case, ax; does not depend on j:

Ofj = Q.- (3)

Then af > 0 and ay + ... + ax = 1. In this case, (2) reduces to

K
PERE = oy, Zp{h{_l = agpthi—1, ke {l,...,K}. (4)

j=1

An investor using a strategy of this kind divides the available wealth p h; 1
according to the proportions aj,...,ax and spends the amount aypih; 1 for
purchasing aypihy 1 /pF units of asset k.

Fixed-mix strategies—especially of the form (4)—are quite common in finan-
cial theory and practice; see, e.g., Perold and Sharpe (1988), Mulvey and Ziemba
(1998), Browne (1998) and Dempster (2001, 2002).

Strategies of the general form (2) can be considered, in particular, in the
context of the modelling of currency markets. This aspect of our analysis is
inspired, in particular, by recent work of Kabanov (1999) and Kabanov and
Stricker (2001). Consider a frictionless market where K currencies are traded.
The exchange rates 77 = 77 (st) > 0 fluctuate randomly in time, depending on
the stochastic factors (s;). Here, Trfj denotes the amount of currency k which
can be purchased by selling one unit of currency j at time ¢. Assume the trader
divides the amount A]_; > 0 of currency j available at the beginning of a time
period (t—1,t] according to the proportions ax; > 0 (3, ax; = 1) and exchanges
ag;hi_, into currency k. Then the amount of currency k obtained at time ¢ will
be equal to

K
hi = oxmi hl_y. (5)
j=1



By virtue of no-arbitrage considerations, exchange rates in a frictionless market
satisfy

nt) = e (6)
for all k£, and j. This implies
il =1/m", 7l = 1. (7)

Let us regard currency 1 as a “numeraire” and define pf = wl*. Tt follows from
(6) and (7) that ;7 = pJ /pk, and so (5) can be written in the form (2).
In this paper we focus on stationary markets. We say that the market under

consideration is stationary if the stochastic process (s;), t = 0,£1,£2,..., is
stationary, and the price vectors p; do not explicitly depend on t:
pe = p(s"). (8)

The last assumption means that the random asset prices might depend on the
current random situation and foregoing random events, but the structure of this
dependence does not change in time. In the above model of currency exchange,
the counterpart of condition (8) is

il = ki (sh), (9)
which implies (8), when p; is defined by pf = nlk.

A comment on the notion of stationarity of a stochastic process is in order.
Recall that this notion formalizes the idea of time invariance of all probabilistic
characteristics of the process. Stationarity requires that, for each k¥ = 1,2, ...,
the expected value of any integrable function @(s, ..., si1x) is independent of
t. This is equivalent to the assumption that E¢(s?) is independent of ¢ for any
integrable function ¢(s') on ...x S x S. An example of a process of this kind is
a sequence of independent identically distributed random variables. Stationary
processes should not be confused with (temporally) homogeneous ones, such
as Markov chains with time-invariant (“stationary”—in another terminology)
transition probabilities.

A starting point for this study was the following question. Consider the
foreign exchange model outlined above. Suppose a trader has selected some
fixed-mix strategy defined by a non-zero initial portfolio k¢ and a strictly positive
matrix (au;) satisfying (1). Assume that the trader systematically applies the
rule of currency exchange specified by the matrix (ax;). How will the portfolio
h; behave in the long run? Will it stabilize in one sense or another, will it grow
or will it generally decrease?

The intuition here might be based on the following typical argumentation.
First of all, the property of self-financing, combined with the assumption of
stationarity, might seem to rule out possibilities of unbounded growth. Further,
if we consider the deterministic case, i.e., assume that S is a singleton, then a
stationary process will reduce to a constant and the vector function p(st) will



become a constant vector p = (p!,...,p*) > 0. By setting zF = p*h¥, we can
write equation (2) in the form

K
k _ J
xf = E Qi Ty_q-
=1

Therefore z; = A'zg, where A = (ap;) > 0 and Y, ax; = 1. As is well-known,
the sequence x;—and hence h;—will converge to some strictly positive vector;
see, e.g., Kemeny and Snell (1960). These considerations might lead to the
(wrong) conjecture of the convergence of h; to a stationary distribution in the
stochastic case.

The correct answer seems to be rather unexpected: the portfolio process h;
will grow almost surely in every coordinate at an exponential rate! This con-
clusion turns out to be valid for any strictly positive matrix ay; defining the
fixed-mix strategy. Furthermore, the conclusion obtains for any ergodic sta-
tionary sequence (s;) with price process p(s?) satisfying a mild assumption of
non-degeneracy. The very general nature of this fact, as well as its counterintu-
itive (at first glance) character, motivated us to write this article.

In the paper, we give a rigorous proof of the above statement regarding the
exponential growth. We begin with the analysis of a frictionless market. Then
we consider a version of the model involving transaction costs. We show that
our results can be extended to the case of a market with friction, provided the
transaction costs are small enough. In the course of the study some properties
of the model are established that are of independent interest—in particular, the
existence of so-called balanced strategies. Finally, we demonstrate how our re-
sults can be modified—quite easily—to include into consideration asset markets
where relative proportions of prices, rather than the prices themselves, change
in time as stationary stochastic processes.

The article is organized as follows. In Section 2 we formulate and discuss
the main results. In Section 3 we provide their proofs. The Appendix contains
a statement of a general fact regarding random dynamical systems (a stochastic
version of the Perron-Frobenius theorem) used in this work.

2 The main results
Throughout the paper we will assume that the prices p*(s?) > 0 satisfy
E|lnp*(s')| < o0, k € {1,..., K}, (10)

and the process (s;) is stationary and ergodic. The letter E denotes the expec-
tation with respect to the underlying probability measure P. Additionally, we
impose the following requirement of non-degeneracy of the price process p(st):
(A) The vector p(st) = (p'(s?), ..., % (s*)) of normalized prices
i IACO N
p](st) == J€ {L"‘;K}a
>m P (s%)



is not constant a.s. with respect to st.

According to (A), one cannot find a constant vector ¢ for which p(st) = ¢
almost surely (a.s.) with respect to the given probability P (we will often omit
“a.s.” when this does not lead to ambiguity). Since (s;) is stationary, if condition
(A) holds for some t, it holds for all ¢. As long as the process (s;) is ergodic,
hypothesis (A) is equivalent to hypothesis (B) below.

(B) With positive probability, the ratios

P (s")

P D

are not constant with respect to j.

For a proof of the equivalence of (A) and (B) see the next section.

Let & = (ag;) be a matrix satisfying (1). Consider the a-strategy (hy),
he = (hi,...,hE), defined by (2). A central result is as follows.

Theorem 1. For each k € {1,2,..., K}, the limit

.1 k
tlggo n In hy (12)
exists and is strictly positive almost surely. Furthermore, this limit does not
depend on k, and we have

R
lim glnht —tlg(r)lo;lnptht (a.s.). (13)

t—o00

The fact that the limit (12) is positive implies that h¥ tends to infinity at
an exponential rate. According to (13), the wealth p;h; of the investor grows
with the same positive exponential rate. In the special case described in (3)
and (4), Theorem 1 was established in the previous work of Evstigneev and
Schenk-Hoppé (2001). The random dynamical system governed by equations
(4) is closely related to those considered by Hakansson and Ziemba (1995) and
Algoet and Cover (1988).

We outline the main stages of the proof of Theorem 1. The following notion
plays an important role in our analysis. A trading strategy {h:;} is said to be
balanced if

he(st) = (1) ...v(st) h(s') (as.), t=1,2,..., (14)

where y(-) > 0 is a scalar-valued function and A(-) > 0 is a vector function such
that

E|lnv(s!)| < 0o and |h(s')| = 1.

The norm |h| of a vector h = (k') is defined as y_, |h?|. For t = 0, we assume in
(14) that ho(s®) = h(s).



For a balanced path, all the ratios hi(st)/hi(st) = hi(s)/hi(st), i # j,
describing the proportions between the amounts of different assets in the port-
folio, form stationary stochastic processes. (We assume for the moment that
hi(st) > 0.) Furthermore, the random growth rate of the amount of each as-
set i = 1,..., K in the portfolio, hi(s*)/hi_ (st 1) = ~y(st)hi(s!)/hi(st™ 1), is
a stationary process. In the deterministic case—when S consists of a single
point—formula (14) reduces to h; = yh, where v > 0 is a constant and h is a
nonnegative vector normalized by the condition |l~z| = 1. Such strategies exhibit
growth with constant proportions and at a constant rate. Our notion of a bal-
anced strategy is closely related to the notion of a balanced path introduced by
Radner (1971) in the context of stochastic models of economic growth.

An a-strategy is determined by a matrix a and an initial portfolio. By virtue
of the following theorem, the initial portfolio can be chosen in such a way that
the resulting a-strategy is balanced.

Theorem 2. For each a = (ay;) > 0, there exists a unique balanced a-strategy
zy(s) = A(sHA(sT).. A (sH)E(sh) (15)
(E|In X\(s%)| < oo, |Z(st)| = 1, Zp(s°) = #(s°)). We have
E|llnz*(s!)| < o0, k=1,2, ..., K, (16)
for each coordinate T*(st) of the vector #(st).

Let us sketch the idea of the proof of Theorem 2. Denote by 4; = A(s?) =
(a*3(st)) the positive random K x K matrix defined by

a*i(st) = a’”’ﬁigzt;‘ (17)

As a consequence of (10), we have

E|lna*(s")| < o0, k,j € {1,...,K}. (18)
In view of (2) and (17), an a-strategy (h:) can be represented as

ha(s') = A(s")A(s")-. A( Yo (5°). (19)

By virtue of the stationarity of (s;), functions A(-) and Z(-) satisfying
E|InA(s!)| < oo and |#(s!)] = 1 generate a balanced a-strategy if and only
if

As)E(st) = A(sHE(sY) (as). (20)

The existence of a solution to this equation follows from a stochastic version of
the Perron—Frobenius theorem presented in the Appendix. Note that we cannot
solve (20) by using the conventional Perron—Frobenius theorem (for each fixed
s!) because the vector #(s!) on the left-hand side of equation (20) does not



coincide with the vector #(s'~!) on the right-hand side. The function Z(s') is

the result of the application of the “time shift” operator s®=! — st to #(st™1).
Theorem 3 below shows that the growth rate of the portfolio of an investor

employing any (not necessarily balanced) a-strategy is completely determined

by the expected value of In A.

Theorem 3. Let (h;) be an a-strategy with initial portfolio hy satisfying
|ho(s°)] > 0 (21)
for all s°. Then, for each k =1,2,..., K, we have

lim — lnhk hm —lnptht = hm 1n|ht| = Eln\(s") (a.s.). (22)

t—oo t

Recall that, by virtue of the stationarity of (s;), the expectation Eln A(s?)
does not depend on t.

Theorem 1 is an immediate consequence of Theorem 3 and the following re-
sult.

Theorem 4. We have
Eln\(s*) > 0.

Finally, we provide a version of Theorem 1 pertaining to a model with trans-
action costs. A convenient framework for this aspect of our study is the foreign
exchange model outlined in the previous section. We modify it by introducing
transaction costs. '

Assume that the exchange rates 77 = 7% (st) satisfying (6) are now replaced
by pi? = (1 — 89wl | where 6 = §%(s) are random variables with values in
[0,d], 0 < d < 1. One unit of currency j can be exchanged to pfj = p*(s?) units
of currency k. The numbers 6fj represent the rates of (proportional) transaction
costs. As before, we set p*(s*) = 7}*(s). In this setting, an a-strategy

ge(st) = (gL (8Y), ..., gE (sY), t=0,1,2, ...,
is defined by

K
p7
gf = a1 =6 )m gl 1—2% 1— 68) kgt ) (23)

t>1,ke{l,..,K}). We set

5(st) := max 6k (s?).
kj

We have 0 <1 —d < 1—§%(st) <1, and so
In(1—d) <In(1—-6%(s!)) <0, In(1—d) <In(1-d(s")) <0.  (24)



The result below is an extension of Theorem 1 to the case of small transac-
tion costs.

Theorem 5. Let o = (ag;) be a matriz satisfying (1). If the absolute value of
the expectation ElIn(1 — §(s?)) is small enough, then all the assertions of Theo-
rem 1 remain valid for the strategy (23) starting from any initial portfolio go(s°)
with |go(s%)| > 0.

To analyze the dynamics of strategies of the form (23) consider the random
matrix

B, = B(s') = (09(s%), 0¥ (s") = s (1 — 849 (1)) L)

We have
9:(s") = B(s")B(s'™1)...B(s")go(s°), t = 1,2, ...,
and
E|Inb* (s")| < o0, k,j € {1,...,K}, (25)

by virtue of (24) and (10). We will prove Theorem 5 by using assertions (i)—(iv)
contained in the following theorem.

Theorem 6. (i) For any matriz (1), there exists a unique pair (§(-),u())
such that |§(st)| = 1, E|Inpu(s?)| < oo, E|lng*(st)| < o0, k = 1,2,...,K, and
u(sHi(st) = B(sh)g(st~1). (i) The sequence @;(st) := BiB; 1...Bofo, Yo =
7(s9), satisfies y(st) = p(st)..u(sH)(st), t = 1,2,.... (iii) The assertions of
Theorem 8 hold with g; and p in place of hy and A. (iv) We have

Elnp > Eln)+ Eln(1 - §(s)), (26)

and so Elnp > 0 when |Eln(1 — §(s?))| is small enough.

We conclude this section with a remark regarding a further generalization
of the above results. Of course the concept of a stationary market, where asset
prices p; change as stationary stochastic processes, is an idealization. A more
realistic assumption on p; = (p;,...,pf) is that only the relative proportions
pl/pk, rather than pf themselves, are stationary. So, assume now that p; is of
the form

pt = &bt

where p; = p(st) is a process satisfying the assumptions we previously imposed
on p;, and & = &(s') > 0 is any sequence of strictly positive random variables.
The multipliers & might represent the dynamics of a price index capturing a
trend of price changes in the market. The normalized prices p; are free of
this trend. It is easily seen from formulas (2) and (23) that the equations for



the portfolio h; governed by a fixed-mix strategy—with or without transaction
costs—do not depend on &, and so all our conclusions regarding the asymptotic
behavior of h; remain valid. As regards the value p;h; of the portfolio hy, we
can see that

1 1
%lnptht =7 In& + Elnﬁthta

and so the properties of growth of p.h; are determined by those of & and p;h;. In
our context, the process p;h;, exhibits an exponential growth with probability
one. Consequently, if the price index & grows at an exogenous exponential
rate r, then the value p;h; of the portfolio h; will grow almost surely at a rate
! strictly greater than r. Stationary random fluctuations of the relative price
processes p; /pf may be regarded as the “driving force” sustaining this growth
enhancement.

3 Proofs

Equivalence of (A) and (B). If condition (B) is not satisfied, then there exists a
function ((s*) > 0 such that p?(st) = ((s!)p’(s*~!) (a.s.) for all j. This implies
P (st) = p/(st1) (a.s.). In view of the ergodicity of (s;), this can be true only
if there exists a non-random vector ¢ satisfying p’(s!) = ¢ (a.s.), which is ruled
out by (A). Conversely, if (A) does not hold, then 7 (s') = ¢/ > 0 (a.s.), and so
P (st) = cdv(st), where v(s') = 3 p™(s') > 0. Consequently, the ratio (11) is
equal to the function v(s?)/v(s?~1) independent of j, which contradicts (B). O

We will prove Theorems 1-6 in this order: 2 =3 =4=1,6 = 5.

Proof of Theorem 2. To prove the existence and uniqueness of (A(-),Z(-))
we will employ Theorem A.1 presented in the Appendix. Let Q denote the
space ... X § x S x ... of sequences w = (..., 5_1, 80, 51, -..), S¢ € S. Consider
the o-algebra F = ... x § x § x ... on , where S is the o-algebra defining the
measurable structure on S. Let T be the left shift, i.e. the mapping Q@ — Q
transforming (s;) into (s}), where s} = s¢41. The measure P on F induced by
the stochastic process (s;), t = 0, £1,+2, ... is invariant under T by virtue of the
stationarity of (s;). Consequently, T' is an automorphism of (2, F, P). For each
w=(...,5_1, 80, 81, --.), we set st(w) = (..., 8¢_1, 8¢) and consider the matrix

D(w) = A(s'(w)) > 0, D(w) = (d"(w)) = (a"(s' (W))), k.,j € {1, ..., K}.

In view of (18), E|Ind* (w)| < oco. Therefore, by virtue of Theorem A.1 (with
7=1) and Remark A.1, there exists a solution (4(-), 2(:)) to the equation

$(w)2(Tw) = DW)2(w) (as) [9(w) >0, [2@)| =1, 2(w) >0  (27)

such that z(w) is measurable with respect to the o-algebra generated by s°(w)
and ¢(w) is measurable with respect to the o-algebra generated by s'(w). Thus
we can represent z(w) and ¢(w) in the form

2(w) = (5" (W), Pw) = A(s' (W),

10



where Z(-) and A(-) are measurable functions, and so (27) can be written as
Ashz(sh) = A(sh)#(s%) (as) [Msh) >0, [#(s°)] =1, #(s°) > 0.  (28)

The uniqueness of a solution to (28)—up to the equivalence of functions coin-
ciding a.s.—follows from the uniqueness part of Theorem A.1.
Further, we have

A(s") = |A(sYE(s' 1) = Y a¥ (s)F (') € [Kau(s), Ka™(sh)],  (29)
k3

where a.(s?) and a*(s?) are the smallest and the greatest elements of A(s?).
From (18), we obtain E|In A(s')| < oc. Finally,

> aki(st)z9 (st 1) . ax(st)
A(st) T Ash)

1> 3% (sh) =
which yields (16). O
Proof of Theorem 8. We can represent h; and Z; in the form
hy = At...Ath, Ty = At...AQE'h (30)
(see (17) and (19)), where

K K
hi(sh) =D a (s Rg(s%), Zi(s") = D a¥(sN)E}(s%).

Jj=1 J=1

Since a(s') > 0, |ho(s®)] > 0 and |Zo(s°)| = 1, there exist strictly positive
functions ¢(s!) and C(s!) satisfying

c(s)Z1(s') < hi(s') < C(sY)z1(s1) (31)

(coordinatewise). We have z¥(st) = A(s*)...\(s')#*(s?), and so
1 1< 1
1o kety 1 o Lokt ) (s 9
tlnmt(s) tlzglln/\(s)—l—tlnm (s") = Eln\(s") (as.) (32)

by virtue of the Birkhoff ergodic theorem. In the last formula, t~! In #*(st) = 0
in view of (16). Analogously, we obtain

%ln |Z¢(s')| = Eln A(s*) (a.s.). (33)

This, combined with the relations

K
| In(peze) —Infae|| <Y [Inpt(s")], Bllnp*(s")| < oo,
k=1

11



yields

1

;ln |pezs] = ElnA(s') (as.). (34)
Now, observe that relations (31) and (30) imply

e(sM)ze(s') < hy(s') < C(s")ze(s) (35)

because the non-negative matrix A;...A; preserves the coordinatewise partial
order. Tnequalities (35) with ¢(s!) > 0 and C(s!) > 0 make it possible to replace
n (32), (33) and (34) Z; by hy, which yields (22). O

Proof of Theorem 4. Consider the pair (A\(-),Z(-)) generating the balanced
strategy (15). By virtue of (20),

K
= ;akjgjcgzt; 7

By applying the Perron-Frobenius theorem, we find a vector r = (rq,...,7x) > 0
such that

H, ke{l,.., K} (36)

T = Zakjrj, ke {1,...,K}.
J

We define

Then we have p*(st)#*(st) = rrw”(st), and so

A(sH)rpwk Zakm )w'(st_l). (37)
Put Bi; = T;lakj'f'j. The numbers f; satisfy
K
Brj >0, > Brj =1. (38)
j=1

In view of (37), we can write

Zﬂk] st . wj(s(tt)l), kell,.. K} (39)

It follows from (38) and Jensen’s inequality that, for each &,

wi(s 1] | 5 P(sh) wi(s'™h)
Eln[zﬂ’“ k(st>]2,z_;ﬂ e

12



All the expectations we consider here (in particular, those in (40)) are finite by
virtue of (10) and (16).

Define 6 = Elnw*(s*) and denote by k* that value of k for which 6 is a
minimum. The expression on the right-hand side of (40) (denote it by J) equals

Jr = Z/Bk]Eln Z/Bk] )s (41)
because
P (s") e !
Elnm =0 and Elnw’(s'™') = Elnw’(s') = 0;.
Consequently,
K
Tie =D Brej(0; — Oke) > 0, (42)
=1

since 6; > 6i+. By combining (39), (40) and (42), we find that Eln \(s*) > 0

To show that the last inequality is strict, it suffices to verify that, for any k,
inequality (40) is strict. To this end, in turn, it is sufficient to show, that the
expression

p(s') wi(s'™h)
pI(st) whk(st)
is not constant with respect to j with positive probability. Suppose this is not

true for some k (and hence for each k). Then there exists a function 1 (s') such
that

(43)

P’ (s)
P (s
(From (39) we find

w? (s'71) = a(st), j € {1,...,K} (as.). (44)

K
= W) _ (s
St) - = /Bk] wk(st) - wk(st) (a.s.)

for each k (since ), Br; = 1). Thus w*(s') = ¢(s")/A(s") (as.), k = 1,.., K,
and formula (44) leads to the equality

P (s") _ i t—1 t—1
pj(st_l) - ¢(S ))\(S )/¢(3 ) (a.s.),
which contradicts assumption (B). O
Proof of Theorem 1: immediate from Theorems 3 and 4. O
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Proof of Theorem 6. Proofs of assertions (i)—(iii) of Theorem 6 can be ob-
tained by repeating with minor changes the proofs of Theorems 2 and 3 (with
B, b,y and p in place of A, a,z and A, respectively). To derive (iv) observe that

B> (1—0)A >0, t=12,..,
and so
pi-ep1 Gy = By..B1go > (1 — 6¢)...(1 — 61) Ay... A1 9o,
where p; = p(s?) and §; = g(st). Since |g¢| = 1, we have

Hi---fa
(1=46¢)...(1—=41)

> |AtA1:lj0|

By using the ergodic theorem and the last equality in (22) (applied to the se-
quence A;...A1%o), we find

(st 1 Pt i1 1 _ "
Eln ————— =lim -1 > lim = In|A4;...A =FEln A
B e T M G — ey 2 iy o Ae Aol = ElnA(s),
which yields (26). O
Proof of Theorem 5: follows from Theorem 6. O

A A stochastic Perron-Frobenius theorem

Let (2, F,P) be a probability space, and T : Q@ — Q its automorphism, i.e.,
a one-to-one mapping such that T and T—! are measurable and preserve the
measure P. Let D(w) be a measurable function taking values in the set of
non-negative K x K matrices. Define

H(t,w) = D(T* 'w)D(T*w)...D(w), t = 1,2,..., (45)
and H(0,w) = I (the identity matrix). Then we have
H(t,T°w)H (s,w) = H(t + 5,w), t,5 2 0, (46)

i.e., the matrix function H(t,w) is a cocycle over the dynamical system
(Q,F,P,T) (see, e.g., Arnold 1998).

For a matrix D > 0, denote by k(D) the ratio of the smallest element of the
matrix to its greatest element. Let the following condition hold.

(*) There is a (non-random) integer 7 > 0 for which H(r,w) > 0 and

/ | tn K(F (7, w))| P(dw) < 0.

Theorem A.1. There exists a measurable vector function z(w) > 0 and a mea-
surable scalar function ¢p(w) > 0 such that

$(W)z(Tw) = D(w)z(w), |z(W)|=1 (a.s.). (47)

14



The pair of functions (¢(-), 2(-)) > 0 satisfying (47) is determined uniquely up
to the equivalence with respect to the measure P. If s — oo, then

H(s, T %w)a

TH(s, Tw)a] — z(w) (a.s.), (48)

where convergence is uniform in a > 0, a # 0.

The above result may be regarded as a generalization of the Perron-Frobenius
theorem on eigenvalues and eigenvectors of positive matrices: z(-) and ¢(-) play
the roles of an “eigenvector” and an “eigenvalue” of the cocycle H(t,w). The-
orem A.1 is a special case of Theorem 1 in Evstigneev (1974); see also Arnold,
Demetrius and Gundlach (1994), Theorem 3.1.

Remark A.l1. Let Fy and F; be sub-c-algebras F such that the random
matrices D(T~'w), D(T~?w), ... are Fyp-measurable and the random matrices
D(Tw),D(T 'w),... are Fi-measurable. By virtue of (48) and (45), the func-
tions z(-) and ¢(-) are measurable with respect to the o-algebras Fo and F;
completed by all sets of measure zero. From this it follows that we can se-
lect versions of z(-) and ¢(-), satisfying (47), which are Fo- and F;-measurable,
respectively.
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