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Combinatorial Structures in Nonlinear Programming

Stefan Scholtes∗

April 2002

Abstract

Non-smoothness and non-convexity in optimization problems often arise because
a combinatorial structure is imposed on smooth or convex data. The combinatorial
aspect can be explicit, e.g. through the use of ”max”, ”min”, or ”if” statements in
a model, or implicit as in the case of bilevel optimization where the combinatorial
structure arises from the possible choices of active constraints in the lower level
problem. In analyzing such problems, it is desirable to decouple the combinatorial
from the nonlinear aspect and deal with them separately. This paper suggests a
problem formulation which explicitly decouples the two aspects. We show that
such combinatorial nonlinear programs, despite their inherent non-convexity, allow
for a convex first order local optimality condition which is generic and tight. The
stationarity condition can be phrased in terms of Lagrange multipliers which allows
an extension of the popular sequential quadratic programming (SQP) approach to
solve these problems. We show that the favorable local convergence properties of
SQP are retained in this setting. The computational effectiveness of the method
depends on our ability to solve the subproblems efficiently which, in turn, depends
on the representation of the governing combinatorial structure. We illustrate the
potential of the approach by applying it to optimization problems with max-min
constraints which arise, for example, in robust optimization.

1 Introduction

Nonlinear programming is nowadays regarded as a mature field. A combination of
important algorithmic developments and increased computing power over the past
decades have advanced the field to a stage where the majority of practical prob-
lems can be solved efficiently by commercial software. However, this is not to say
that there are no research challenges left. One considerable challenge is posed by
global, i.e. non-convex, optimization problems. There are two main sources of non-
convexity: An analytic and a combinatorial source. Analytic non-convexity is due
to a combination of negative and positive curvature of underlying model functions,
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such as polynomials or trigonometric functions. In contrast, combinatorial non-
convexity arises when a combinatorial selection rule is imposed on possibly quite
simple, even linear, functions. Typical examples are function evaluations that make
use of ”max”, ”min”, ”abs”, or ”if” statements. Business spreadsheets are a ver-
itable source of such combinatorial nonlinear functions. Consider for example the
calculation of revenue as a function of price and production capacity. Revenue is the
product of price and sales, where sales is the minimum of demand and production
capacity. If capacity κ and price π are decision variables and demand d is a known
function of price, then the revenue formula becomes r(π, κ) = π min{d(π), κ}. Such
formulas are commonplace in spreadsheet models.

A more complicated example where nested max- and min-terms occur is the re-
source allocation problem that arises when several projects are evaluated by decision
trees and compete for limited resources. This is a timely problem area as decision
tree analysis is experiencing a renaissance in the wake of the popularization of real
options valuations of projects. Decision tree evaluations consist essentially of a finite
sequence of nested linear combinations of max-terms, where the linear combinations
correspond to taking expectations at event nodes and the max-terms correspond to
choosing the best of a finite number of possible actions at decision nodes. The value
of a project is likely to depend on design parameters such as marketing budgets or
other limited resources and a company is faced with the problem of allocating such
limited resources to a variety of projects. This resource allocation problem will in-
volve parametric values of decision trees, i.e., sequences of max-terms. The problem
becomes even more complex if, as is often the case in practice, probability estimates
are subjective and several experts assign differing probability estimates to the event
branches in the trees. Backward induction through the decision trees will lead to
value estimates for each of these probability estimates and a conservative decision
maker may well consider the minimum of the expected values as a proxy for the
unknown value of the project at event nodes. With this addition, the constraints
of the resource allocation problem involve sequences of max- as well as min-terms.
These max- and min-terms define the combinatorial structure of the problem.

Many practical applications are a combination of both, the analytical as well
as the combinatorial sources of non-convexity. A non-convex combinatorial struc-
ture may well be imposed onto smooth but already non-convex functions. Never-
theless, it is helpful to think of the two sources separately, not least because the
combinatorial source introduces the additional complication of non-smoothness. In
fact, for optimization problems which involve only the first, the analytic source of
non-convexity, nonlinear programming provides us with a host of methods, such as
sequential quadratic programming (SQP) or interior point methods. Engineers and
operations researchers regularly apply these methods, albeit they cannot guarantee
a global optimum, because the methods provide often substantial improvement and,
at the same time, are applicable to model sizes that are orders of magnitude larger
than those that can be handled by global optimization routines. It is indeed unlikely
that the dominance of local optimization procedures will change in the foreseeable
future. In this light, it is rather surprising that relatively little attention has been

2



given to the local optimization of non-convex problems arising from the second, the
combinatorial source of non-convexity. This is the more surprising as some fairly
general classes of such problems, such as disjunctive programs, have been studied
extensively from a global optimization viewpoint. The present study attempts to
fill this gap by extending the tools available for the local optimization of smooth
non-convex problems to problems involving non-convex combinatorial structures.

To date, problems of the type considered here are often tackled by variants of
Lemaréchal’s bundle method [17], such as the bundle trust region code of Schramm
and Zowe [26]. These methods were originally designed to solve non-smooth convex
problems but they are well-defined for more general non-smooth problems if the sub-
gradient concept is suitably broadened, see e.g. [5]. However, bundle methods have
rather poor convergence properties for non-convex problems. This is not surprising
since they are based on convex models, such as maxima of finitely many affine func-
tions, of originally non-convex functions and can therefore only be guaranteed to
converge to points where these convex models provide no descent directions. These
methods do not exploit the specific combinatorial structure of the problem at hand,
e.g. a particular combination of ”max” and ”min” terms, but rather replace this
structure by a simpler and essentially convex combinatorial structure. An alter-
native approach, more akin to our own and more suitable for the exploitation of
non-convex structures, has been developed for piecewise linear problems under the
label of simplex-type or active-set type methods by Fourer [10, 11, 12] and others.
For recent further developments along these lines we refer the reader to the compre-
hensive paper of Conn and Mongeau [6] which also surveys some of these methods
and provides a fairly extensive bibliography. The existing combinatorial methods,
however, are either restricted to piecewise affine models or to models where the
combinatorial structure is inherently convex, such as the minimization of point-wise
maxima of nonlinear functions. We attempt to add to this literature by presenting
and analyzing a modelling framework which explicitly allows for non-convex struc-
tures as well as smooth nonlinear data.

The focus of this paper is the extension of the traditional active set and SQP
approaches to combinatorial nonlinear programs. We will provide a theoretical
framework for the local optimization of such problems, including appropriate sta-
tionarity conditions that are tighter than the stationarity conditions of [5] which
bundle methods rely on. We then show how the SQP-idea can be extended to
combinatorial nonlinear programs and that these methods have better convergence
properties for these problems than bundle-type methods, both in terms of speed
and in terms of identifying more appropriate stationary points.

We have already mentioned that one motivation for this study is to allow model-
ers to use simple nonsmooth functions such as ”max”, ”min”, ”‖.‖”, etc. as building
blocks in their optimization models. There are, however, also interesting classes of
optimization problems to which our approach applies directly and we will mention
some of them in the next section before we proceed to the technical developments.
One of these classes are optimization problems with max-min constraints which
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arise in robust optimization. We will use this special case frequently to illustrate
our general theoretical developments. Section 3 introduces necessary extensions of
standard NLP terminology, including notions of active constraint functions, reg-
ularity and stationarity for combinatorial nonlinear programs. Section 4 explains
how Lagrange multipliers can be defined and used to check stationarity. In Section
5 we discuss the use of the SQP method in the setting of combinatorial nonlinear
programs. We then focus in section 6 on the subproblems that arise in the case
of max-min constrained problems and show how a decomposition approach can be
used to solve these problems to local optimality. We close the paper with a brief
report on some preliminary numerical experiments.

2 Problem Statement and Sample Problems

We study combinatorial nonlinear programs of the form

min f(x)
s.t. g(x) ∈ Z,

(1)

where f : IRn → IR, g : IRn → IRm, and Z ⊆ IRm. We regard the functions f, g
as the data specifying an instance of the optimization problem, whilst the structure
set Z represents the combinatorial structure of a problem class. We will assume
throughout that f and g are smooth and that Z is closed. Problem formulations of
the above kind are commonplace in semi-definite programming and related areas,
where Z is assumed to be a convex, possibly non-polyhedral cone. In contrast to
these studies, we will not assume that Z but only that it has some exploitable
combinatorial characteristics. A typical set Z is a polyhedral complex, for example
the boundary of a polyhedron or the set of roots of a piecewise affine function. In
the latter case one may for example wish to exploit a max-min representation of
the piecewise affine function, see e.g. [1]. Notice that problem (1), although of
a combinatorial nature, is quite different from integer programming and does not
necessarily have a discrete feasible set; whence local optimization is non-trivial.

2.1 Sample Problems

The problem formulation (1) is quite flexible and encompasses several classes of
well-known optimization problems. It obviously encompasses as a special case the
standard nonlinear program

min f(x)
s.t. g(x) ≤ 0

h(x) = 0,

the constraints of which can be rewritten as

(g(x), h(x)) ∈ Z = IRp
− × {0}q.

Notice that this set Z is the set of roots of the piecewise linear convex penalty-type
function

p(u, v) = max{u1, . . . , up, |v1|, . . . , |vq|}.
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Because the structure set Z is convex, the nonlinear programming problem can, in
some sense, be thought of as a structurally convex problem. In particular, one ob-
tains a convex local approximation of the problem if the data functions are replaced
by their first order Taylor series. In other words, non-convexity is only introduced
through nonlinearity in the data. As mentioned before, such structurally convex
problems are not the focus of our study.

A first example of a structurally non-convex problem is the so-called mathemat-
ical program with complementarity constraints

min f(x)
s.t. g(x) ≤ 0

h(x) = 0
min{G(x),H(x)} = 0,

see e.g. [18, 23] and the references therein. The constraints are equivalent to

(g(x), h(x), (G1(x), H1(x)), . . . , (Gr(x),Hr(x))) ∈ Z = IRp
− × {0}q × Lr,

where L is the boundary of the positive orthant in IR2. This structure set Z is
non-convex and therefore the problem itself should be thought of as structurally
non-convex. The set Z can again by represented as the set of roots of a piecewise
linear function, e.g.

p(t, u, v, w) = max{t1, . . . , tp, |u1|, . . . , |uq|, |min{v1, w1}|, . . . , |min{vr, wr}|}.
As a final example, we mention robust variants of stochastic programs, which

lead directly to optimization problems with max-min functions. A standard stochas-
tic program with recourse over finitely many scenarios is of the form

min
x∈X

∑

1≤j≤m

pj min
yj∈Yj

f(x, yj).

The interpretation is that a decision x needs to be taken now before a scenario j
is observed with probability pj . After the observation of the scenario a recourse
action yj ∈ Yj can be taken. The decision criterion is to choose x now so that
the expected value of f is maximal. If it is important to ensure that the objective
is small for all scenarios then the robust counterpart of this stochastic program is
more appropriate. This optimization problem is of the form

min
x∈X

max
1≤j≤m

min
yj∈Yj

f(x, yj).

If there are only finitely many candidates for recourse actions in each scenario then
the robust optimization problem turns into a finite max-min optimization problem

min
x∈X

max
1≤j≤m

min
i∈Nj

fi(x),

where Nj ⊆ {1, . . . , n}. Such problems have been recently investigated e.g. in
[13, 19] with engineering design applications in mind.
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The latter optimization problem can be re-written as a constrained problem of
the form

min α
s.t. max

1≤j≤r
min
i∈Nj

fi(x)− α ≤ 0. (2)

The constraints are obviously equivalent to

(f1(x)− α, . . . , fm(x)− α) ∈ Z,

where Z is the lower zero-level set of a piecewise linear function, e.g.,

Z = {z | p(z) ≤ 0}, p(z) = max
1≤j≤r

min
i∈Nj

zi.

The set Z is a nonconvex union of convex polyhedral cones and therefore the problem
itself is structurally non-convex. More generally, max-min optimization problems
are problems of the form

min f(x)
s.t. g(x) ∈ Z,

(3)

with the set Z above. We will use such max-min optimization problems to illustrate
the more theoretical developments in the sequel.

3 Some Terminology

The SQP method for standard nonlinear programs is essentially an application of
Newton’s method to the stationarity conditions. The notions of active constraints
and of regularity play an important role in the development of the stationarity con-
ditions as well as the analysis of the SQP method. We therefore need to extend the
notions of active constraints, regularity, and stationarity to combinatorial nonlinear
programs before we can discuss a modification of SQP for such problems.

3.1 Active Constraint Functions

We regard a constraint function gi as inactive at a feasible point x̄ of problem (1) if
the validity of the inclusion g(x) ∈ Z does not depend on the value gi(x) for x close
to x̄. This intuitive notion is made precise in the following definition.

Definition 3.1 A component zi is called inactive for a set Z at a point z̄ ∈ Z if
there exists a neighborhood V of z̄ such that for any two points z′, z′′ ∈ V which
differ only in the i-th component (i.e. z′j = z′′j for every j 6= i) the inclusion z′ ∈ Z
holds if and only if z′′ ∈ Z. All other components are called active at z̄. A constraint
function gi is called active (inactive) at a feasible point x̄ of problem (1) if zi is active
(inactive) for Z at z̄ = g(x̄).

Notice that activity of a constraint function depends only on the value of the con-
straint function at the point x̄, not on the behavior of the function close to x̄. The
following lemma is an immediate consequence of the above definition and provides
an equivalent definition of activity.
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Lemma 3.1 The component zi is active for Z at z̄ ∈ Z if and only if there exist
sequences zk → z̄ and αk → 0 such that zk ∈ Z and zk + αkei 6∈ Z, where ei is the
i-th unit vector.

Inactivity of a component zi implies that z̄ + αei ∈ Z for every sufficiently small
α but the reverse implication does not hold in general. For instance, if Z is the
union of the axes in IR2 then both components satisfy the latter condition at the
origin but both components are active at the origin. Another example is the set in
IR2 defined by the inequality |z1| ≤ |z2|. Although αe2 ∈ Z for every α, the second
component z2 is active at the origin.

If the components of z are rearranged so that z = (zI , zA) with zI and zA
corresponding to inactive and active components, resp., at z̄ then for every z close
to z̄

z ∈ Z if and only if zA ∈ ZA = {ζA | (ζA, ζI) ∈ Z}. (4)

In other words, locally around z̄ the set Z coincides with the ({z̄I}+ IR|I|)× ZA.

A natural question to ask is whether one can obtain a characterization of the
active components for the union or intersection of sets from knowledge of active
components of the individual sets. It is not difficult to see that an active compo-
nent zi for either ∪m

j=0Zj or ∩m
j=0Zj at a point z̄ ∈ ∩m

j=0Zj is active for at least one
of the sets Zj at z̄. The reverse statement, however, does not hold in general in
either case. If Z1 is the set of nonnegative reals and Z2 is the set of nonpositive
reals, then the single variable is active for both sets at the origin but inactive for
the union of the two sets. Also, if Z1 is the set of all (z1, z2) with z2 ≤ 0 and Z2 is
the union of Z1 and the nonnegative z2-axis then z1 and z2 are both active for Z2

at the origin but only z2 is active for Z1 ∩ Z2 at the origin.

The following proposition gives an algorithmic characterization of the active
components of the set Z arising in (3).

Proposition 3.1 Let Z = {z ∈ IRm | p(z) ≤ 0} with p(z) = max
1≤j≤r

min
i∈Nj

zi and let

z̄ ∈ Z. If p(z̄) < 0 then all components are inactive at z̄. If p(z̄) = 0 then the active
components can be determined in the following way:

1. Determine J = {j | min
i∈Nj

z̄i = 0}

2. Determine N̄j = {i ∈ Nj | z̄i = 0} for every j ∈ J .

3. Delete from J all indices k for which there exists j ∈ J such that N̄j is a
proper subset of N̄k and call the remaining index set J̄ .

A component zi is active at z̄ if and only i ∈ ∪j∈J̄N̄j .

Proof. The first statement follows directly from the continuity of p(.). To prove
the second statement we assume that p(z̄) = 0. Since z̄ ∈ Z we have mini∈Nj z̄i ≤ 0
for every 1 ≤ j ≤ r. If mini∈Nj z̄i < p(z̄) then this inequality remains valid in a
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neighborhood of z̄ and therefore p is unchanged if the term mini∈Nj z̄i is eliminated.
Hence

p(z) = max
j∈J

min
i∈Nj

zi

for every z in a neighborhood of z̄. Also, if i ∈ Nj and z̄i > mink∈Nj z̄k = 0 then one
can remove i from Nj without changing mink∈Nj zk in a neighborhood of z̄. After
these eliminations we obtain

p(z) = max
j∈J

min
i∈N̄j

zi

for all z in a neighborhood of z̄. Finally, one can eliminate all min-terms corre-
sponding to an index set N̄k such that there exists a proper subset N̄j of N̄k for
some j ∈ J since

min
i∈N̄j

zi ≥ min
i∈N̄k

zi

for every z. Thus
p(z) = max

j∈J̄
min
i∈N̄j

zi

for every z close to z̄. Because of this representation of p in a neighborhood of z̄ it
is obvious that i ∈ ∪j∈J̄N̄j for every active component zi at z̄. To see the converse,
let i0 ∈ J̄ , j0 ∈ N̄j for some j ∈ J̄ , and define

zk
i (α) =





1
k if i ∈ N̄j0\{i0}
α if i = i0
− 1

k otherwise.

Notice that for every − 1
k ≤ α ≤ 1

k

min
i∈N̄j0

zk
i (α) = α

min
i∈N̄j

zk
i (α) = −1

k
, ∀j 6= j0.

Therefore p(zk(α)) = α for every 0 ≤ α ≤ 1
k . Since zk(α) = zk(0) + αei it follows

that zi0 is active at z̄. Q.E.D.

3.2 Regularity and Stationarity

We call the constraint functions regular at x̄ if the gradients of all active constraint
functions at x̄ are linearly independent and call x̄ a stationary point of (1) if d = 0
is a local minimizer of

min
d

∇f(x̄)>d

s.t. g(x̄) +∇g(x̄)d ∈ Z.
(5)

Since activity of a constraint function only depends on the value of the constraint
function at a given point, the function gi(x̄)+∇gi(x̄)d is active at d = 0 in (5) if and
only if gi is active at x̄ in (1). Notice that local and global minimization for (5) are
equivalent if Z is convex but not necessarily otherwise. The reader may ask why we
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do not further simplify the auxiliary problem (5) by replacing Z in the constraints
of (5) by an appropriate first order approximation at the point g(x̄), e.g. by its
Bouligand cone, see [3]. This would indeed simplify the development of necessary
optimality conditions. However, the importance of first order optimality conditions
is not that they indicate optimality - after all in the presence of nonlinearity it is
unlikely that a finite computational method will produce a stationary point - but
that they allow the computation of descent paths if the conditions are not satisfied.
The convergence of methods with descent directions obtained from tangent cone
based optimality conditions, however, often suffers from the discontinuity of the
tangent cone as a function of the base point. For instance if Z is the boundary of
the positive orthant in IR2 then the only sensible tangent cone at a point on the
positive x1-axis is the x1-axis itself. Therefore the tangent cone based subproblem
that computes a descent direction is, arbitrarily close to the origin, blind for the
possibility to move along the x2-axis at the origin. Consequently, the method may
converge to the origin along the x1-axis even though the objective function allows
a first order descent along the positive x2-axis at the origin.

The first question we need to address is whether stationarity as defined above is a
necessary optimality condition under appropriate assumptions. The simple example

min 2x2
1 − x2

s.t. (x1, x2) ∈ Z
(6)

where Z = {(z1, z2) | z2
1 − z2 = 0} shows that even for regular constraint functions

one cannot expect a local minimizer, the origin in this case, to be stationary. We
will have to make an additional assumption for this to be the case.

Definition 3.2 A set Z is said to be locally star-shaped at a feasible point z̄ if there
exists a neighborhood V of z̄ such that z ∈ Z ∩ V implies αz + (1−α)z̄ ∈ Z ∩ V for
every α ∈ [0, 1].

In particular, convex sets are locally star-shaped. However, the set of locally star-
shaped sets is much broader. Indeed, one readily verifies that the intersection and
the union of finitely many closed locally star-shaped sets remains locally star-shaped.
An important special class of locally star-shaped sets are the roots or lower level
sets of piecewise affine functions which are non-convex polyhedra. Notice that the
set Z employed in example (6) is not locally star-shaped anywhere. Indeed, if the
structure set Z is locally star-shaped at a regular local minimizer then this local
minimizer is stationary.

Proposition 3.2 If Z is locally star-shaped at g(x) and x is a regular local mini-
mizer of (1) then x is a stationary point.

Proof. To simplify notation we assume that all components of g are active at x∗

and that x∗ = 0, g(x∗) = 0. This can be achieved by replacing Z by the set ZA
of (4) and replacing g(.) by g(x∗ + .)− g(x∗). By assumption, the Jacobian ∇g(0)
has full row rank and thus there is an (n −m) × (n −m)-matrix A such that the
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n × n-matrix

(
∇g(0)

A

)
is invertible. The inverse function theorem thus implies

that the equation

g(x) = ∇g(0)d
Ax = Ad

has locally around the origin a unique smooth solution function x = ξ(d) with
∇ξ(0) = Id, the n× n identity matrix. Now suppose the origin is not a stationary
point. Then there exists d arbitrarily close to the origin such that ∇g(0)d ∈ Z and
∇f(0)d < 0. Choose d close enough to zero such that ξ(αd) is well defined for every
α ∈ [0, 1] (regularity assumption) and that ∇g(0)αd ∈ Z for every α ∈ [0, 1] (local
star-shapedness). With φ(α) = f(ξ(αd)) one obtains

φ′(0) = ∇f(0)∇ξ(0)d = ∇f(0)d < 0.

Hence f(ξ(αd)) < f(ξ(0)) = f(0) for all sufficiently small α > 0 which contradicts
the local optimality of x = 0. Q.E.D.

4 Lagrange Multipliers

The Lagrange multipliers provide the connection between Newton’s method and
SQP. In this section we extend the notion of Lagrange multiplier to combinatorial
nonlinear programs and provide an equivalent stationarity condition in terms of
these multipliers.

Definition 4.1 The Lagrangian function associated with the data (f, g) of problem
(1) is of the form

L(x, λ) = f(x) + g(x)>λ.

A feasible point x is called a critical point if there exist multipliers λ such that

∇xL(x, λ) := ∇f(x) +∇g(x)>λ = 0
λi = 0, if gi is inactive at x.

(7)

Notice that the multipliers associated with a regular critical point are unique.

Proposition 4.1 Every stationary point of (1) is critical.

Proof. If d = 0 is a local solution of (5) then it is also a solution of the linear
program

min
d

∇f(x̄)>d

s.t. gi(x̄) +∇gi(x̄)d = z̄i, ∀i : gi is active at x̄,

where z̄ = g(x̄). Hence linear programming duality provides the existence of the
multipliers (7). Q.E.D.

Without stringent assumptions on the set Z criticality is not sufficient for sta-
tionarity at a regular feasible point of (1). Indeed, in the case of a standard nonlinear
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program one needs to impose sign constraints on the multipliers of inequalities in
order to completely characterize stationarity. So what is the analogue of the sign
constraints for general structure sets Z? The following proposition answers this
question. The key observation is that stationarity of a regular critical point is in-
dependent of the behavior of the data functions in the vicinity of this point but
depends only on the value of g at the critical point and on the Lagrange multiplier
λ.

Proposition 4.2 If x̄ is a regular critical point with multiplier λ then it is a sta-
tionary point if and only if v = 0 is a local solution to

max
v

λ>v

s.t. g(x̄) + v ∈ Z.
(8)

Proof. Recall that x̄ is stationary if and only if d = 0 is a local solution of (5). In
view of (7), d = 0 is a local solution of (5) if and only if it is a local solution of

min
d

−λ>∇g(x̄)d

s.t. g(x̄) +∇g(x̄)d ∈ Z.
(9)

Since changes of inactive constraint functions have locally no impact on the validity
of the constraint we may restrict our attention to the active constraints. In view of
the regularity assumption there exists a solution d(v) to the equations

∇gi(x̄)d = vi, i : gi is active at x̄

for every v. If, on the one hand, a sequence vk of feasible points for (8) converges
to zero and λ>vk > 0 then there exists a sequence d(vk) of feasible points for (5)
converging to zero such that ∇f(x̄)>d(vk) < 0 and therefore x̄ is not stationary.
On the other hand, if x̄ is not stationary then there exists a sequence dk converging
to zero such that ∇f(x̄)>dk < 0 and therefore vk = ∇g(x̄)dk converges to zero as
well and λ>vk > 0, i.e. the origin is not a local solution of (8). Q.E.D.

We emphasize again that stationarity at regular points is fully characterized by
the multipliers λ, the value z̄ = g(x̄), and the properties of Z in a neighborhood of
z̄. There is no need for information about the function f or the constraint functions
g in the vicinity of x̄.

Notice that small inactive components vi will neither affect the validity of the
constraint g(x̄) + v ∈ Z nor, since the corresponding multipliers vanish, the value
of the objective function. If we reduce the optimization problem (8) to the ac-
tive components by replacing Z by its projection ZA onto the subspace of active
components, we obtain the optimization problem

max
v

λ>AvA
s.t. gA(x̄) + vA ∈ ZA

(10)

which has a local minimizer at vA = 0 if and only if the origin is a local minimizer of
the original problem (8). The latter optimization problem (10) allows us to define
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strict complementarity as the requirement that there exists a neighborhood V of λA
such that the origin vA = 0 remains a local minimizer of (10) if λA is replaced by
any λ̃A ∈ V . In the classical case of nonlinear programming this is equivalent to
the requirement that the multipliers corresponding to active inequalities are strictly
positive. This definition will turn out to be useful for a convergence analysis of SQP
later on.

It is illustrative to compare the concepts of critical and stationary point in the
following example which, although a standard nonlinear program, is re-formulated
in a non-standard way that fits our framework. Consider the problem

min 1
2 [(x1 − 1)2 + (x2 − 1)2]

s.t. x ∈ Z = {z | z1 + z2 ≤ 0}.

The interesting difference of this formulation from the standard formulation g(x) =
x1 + x2 ≤ 0 is that our chosen structure set Z is not pointed. In our setting, the
active components are z1 and z2 if z1 + z2 = 0 and none otherwise. Critical points
can only occur where both components are active and the criticality condition

x1 − 1 + λ1 = 0
x2 − 1 + λ2 = 0

is in fact satisfied for all such points, i.e., all point x with x1 + x2 = 0 are critical
with multipliers λi = 1 − xi, i = 1, 2. The stationarity condition requires that the
origin solves

max λ>v
s.t. x + v ∈ Z

Since x1 +x2 = 0, x+ v ∈ Z if and only if v1 + v2 ≤ 0 and the origin is a maximizer
if and only if λ is a non-negative multiple of the vector e = (1, 1). Since λ = e− x
and x1 + x2 = 0 this holds only for x = (0, 0). The minimizer of the original prob-
lem is therefore the only stationary point. Notice that, in contrast to the standard
NLP formulation, the stationary point does not satisfy strict complementarity in
the re-formulation with the structure set Z. This is due to the non-pointedness of
the chosen structure set Z.

The following concept is useful for the further specification of Proposition 4.2
for the case of locally star-shaped structure sets Z.

Definition 4.2 Let Z be locally star-shaped and let z ∈ Z. Then the localization of
Z at z is the cone

CZ(z) = cl{v | ∃αv > 0 : z + αv ∈ Z ∀α ∈ [0, αv]}.

Notice that the linear subspace spanned by the inactive components is an element of
CZ(z). Readers familiar with nonsmooth analysis will realize that CZ(z) coincides
with Bouligand’s contingent cone of the locally star-shaped set Z at z, see [3], which
contains all vectors v such that z + αkvk ∈ Z for some vk → v and αk → 0 from

12



above.

Recall that the polar cone of a cone C is defined by Co = {y | y>x ≤ 0, ∀x ∈ C},
see [22]. With this notion, the following corollary follows directly from the foregoing
proposition.

Corollary 4.1 If Z is closed and locally star-shaped at g(x̄) ∈ Z then a regular
critical point x̄ with associated multiplier λ is stationary if and only if λ ∈ Co

Z(z).

The simple example

max x2

s.t. (x1, x2) ∈ Z = {(z1, z2) | z2 = z2
1}

with the origin as reference point shows that the ”only if” part of this corollary does
not hold if CZ(z) is replaced by the Bouligand cone of a non-star-shaped set.

If Z is closed and locally star-shaped then, in view of the latter corollary, checking
stationarity for a regular feasible point is, in principle, a convex feasibility problem.
Its computational tractability, however, depends on the availability of a suitable
representation of Co

Z(z). If, for example Z = {(u, v) | min{u, v} = 0}, where the
minimum operation is taken componentwise over the two vectors u, v ∈ IRk then
the set CZ(0) is the union of the 2k convex cones

CI = {(u, v) | ui = 0, vi ≥ 0, if i ∈ I
ui ≥ 0, vi = 0, if i 6∈ I},

I ⊆ {1, . . . , k}. The convex hull of CZ(0), however, is the nonnegative orthant in
R2k, i.e., in this case the combinatorial difficulty of checking λ>x ≤ 0 for every
x ∈ CI and every I ⊆ {1, . . . , k} disappears. This remarkable fact lies at the heart
of all the recently developed efficient methods for the local optimization of MPECs.
Indeed, if verifying stationarity was a difficult combinatorial problem it would seem
unlikely that an efficient method can be guaranteed to converge to a stationary
point. By the same token, if the verification of stationarity for a problem of type
(1) is tractable, then there is hope that an efficient local optimization method can be
developed for this type of problem. The essential question is therefore, whether the
convex hull of CZ(z) can be represented in a computationally tractable way. The
answer to this question obviously depends on the initial representation of CZ(z).
If, for example, the set is given as the union of polyhedral cones then the convex
hull of CZ(z) is the sum of all these cones. If the cones are given in ”primal” form
Ci = {x | Aix ≤ 0}, i = 1, . . . , m, then the stationarity problem λ ∈ CZ(z)o is
equivalent to

λ>(x1 + · · ·+ xm) ≤ 0, ∀(x1, . . . , xn) : A1x1 ≤ 0, . . . , Amxm ≤ 0.

This can be checked efficiently by a decomposition method as long as the number
m of polyhedral cones in the union is not too large. Similarly, if the cones are given
in dual form Ci = {x | x = A>i λi, λi ≥ 0}, i = 1, . . . , m then CZ(z) = {x | x =
A>λ, λ ≥ 0}, where A contains all rows of the matrices Ai without duplication. This
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generator matrix A can be quite small even if m is large. In the MPEC example
above, the cones CI are of the form

CI = {(u, v) | (u, v) =
∑

i∈I

λi(ei, 0) +
∑

i 6∈I

µi(0, ei), λi, µi ≥ 0},

where ei is the ith unit vector. The overall matrix A is therefore the unit matrix in
R2k even though the set CZ(z) is the union of m = 2k cones CI .

As a further example, consider the structure set Z of the optimization problem
with max-min constraints (3). After applying the local reduction used in the proof
of Proposition 3.1 the structure set is locally represented as Z = {z | p(z) ≤ 0} with

p(z) = max
j∈J̄

min
i∈N̄j

zi,

where z̄i = 0 for every
i ∈ Ī =

⋃

j∈J̄

N̄j

and N̄k ⊆ N̄j implies N̄k = N̄j . Obviously, v ∈ CZ(z) if and only if p(v) ≤ 0 which
is the case if and only if

v ∈ V =
⋃

r∈ ×j∈J̄N̄j

{w | wrj ≤ 0}.

If for some i ∈ Ī there exists a tuple r ∈ ×j∈J̄N̄j with rj 6= i for every j then
ei as well as −ei are contained in V since there is a set on the right-hand side
which has no constraint on wi. On the other hand if for some i ∈ Ī every tuple
r ∈ ×j∈J̄N̄j has one index rj = i then −ei ∈ V but ei 6∈ V since the constraint
wi ≤ 0 is present in every set on the right-hand side. It follows that the cone
convCZ(z) = convV is the direct product of the linear subspace generated by the
unit vectors ei corresponding to inactive components vi and those components vi for
which there exists a tuple r ∈ ×j∈J̄N̄j with rj 6= i for every j and the cone generated
by the negative unit vectors −ei corresponding to those i which are contained in
every tuple r ∈ ×j∈J̄N̄j . The latter indices are precisely those for which N̄j is a
singleton. The following corollary is a direct consequence of this observation and
the stationarity condition λ ∈ CZ(g(x))o for regular x.

Corollary 4.2 Suppose a regular feasible point x̄ of (3) is critical with associated
multiplier vector λ and assume the notation of Proposition 3.1 for z̄ = g(x̄). Then
x̄ is stationary if and only if λi ≥ 0 for every i such that N̄j = {i} and λi = 0 for
all other indices i.

If λi < 0 for some i such that N̄j = {i} then, following the arguments in the proof
of Proposition 4.2, ∇f(x̄)d < 0 for every solution d of the equations

∇gi(x̄)d = −ei, ∀i : gi is active at x̄.
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To illustrate the strength of this optimality condition in comparison with the often
used condition based on Clarke’s subdifferential [5], we finally specify the optimality
condition for the case of the unconstrained max-min problem

min
x

max
1≤j≤r

min
i∈Nj

fi(x) (11)

which can be recast as (2). In view of Proposition 3.1 it is possible to compute the
set of active functions fi at x̄ in the following way:

1. Set α := max1≤j≤r mini∈Nj fi(x̄)

2. Determine J = {j | min
i∈Nj

fi(x̄) = α}

3. Determine N̄j = {i ∈ Nj | fi(x̄) = α} for every j ∈ J .

4. Delete from J all indices j for which there exists k ∈ J such that N̄k is a
proper subset of N̄j and call the remaining index set J̄ .

A function fi is active at z̄ if and only i ∈ ∪j∈J̄N̄j . The following corollary is a
direct consequence from the foregoing corollary in view of the reformulation (2) of
(11).

Corollary 4.3 If x̄ is a minimizer of (11) and the gradient of all active functions
fi are affinely independent then zero is in the convex hull of the gradients of those
active fi0 for which there exists an index j0 with i0 ∈ Nj0 and fi0(x̄) < fi(x̄) for
every i ∈ Nj0\{i0}.
Notice that a sufficient condition for the gradients of all active functions fi to be
affinely independent is that the gradients of all functions with fi(x̄) = α are affinely
independent. One may wish to call the latter weakly active. Notice also that
the above optimality condition is in general considerably stronger than the often
employed condition based on the Clarke subdifferential. Indeed, if the gradients of
the active selection functions of a max-min function are affinely independent, then
the Clarke subdifferential of the max-min function consists of the convex hull of the
gradients of all active functions1. It is not difficult to see that this argument extends
to the stationarity condition of Clarke [4] for constrained problems if applied to (3).

1This can be seen as follows: It suffices to show that every gradient ∇fi(x̄) is contained in the
subdifferential. Suppose w.l.o.g. that f(x̄) = 0. First reduce the max-min function to a selection of
active functions: Remove all non-vanishing min-functions and in each vanishing min-function all non-
vanishing selection functions fi. This results in a max-min function which coincides locally with the
original function but has only vanishing selection functions. Next delete all min-functions corresponding
to sets Nj with Nj ⊆ Nk for some j 6= k. This will not change the function since these min-functions were
redundant. Now choose an index i0 and a set Nj containing i0. Renumber the other selection functions
so that Nj = {1, . . . , i0} for some j. Consider the inequality system

f1(x) > . . . > fi0(x) > . . . > fm(x).

Notice that the affine independence of the vectors ∇fi(x̄) implies the linear independence of the vectors
∇fi(x̄)−∇fi+1(x̄). The implicit function theorem therefore implies that the above set is nonempty with
boundary point x̄. Moreover, the max-min function coincides only with the selection function fi0(x) on
the above set. This proves that ∇fi0(x̄) is contained in the Clarke subdifferential.
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5 Sequential Quadratic Programming

The Lagrange multiplier-based stationarity condition of the last section allows a
straight-forward extension of the sequential quadratic programming idea to combi-
natorial nonlinear programs. We will discuss this extension in this section and will
argue that the traditional convergence arguments for standard nonlinear programs
extend, mutatis mutandis, to combinatorial programs. For the sake of simplicity and
transparency and in the interest of brevity we have chosen to mimic the traditional
textbook analysis, see [9, 20, 28], using the standard assumptions of regularity, strict
complementarity, and a second order condition. Our aim here is merely to argue
that the SQP method is a sensible procedure for combinatorial nonlinear programs
rather than to provide a comprehensive study of its convergence properties under
the weakest possible assumptions. In particular the strict complementarity assump-
tion requires that the projection of the structure set Z onto the subspace of active
components is ”pointed” at the solution as illustrated in an example in the foregoing
section. Whilst this is true for the sample problems mentioned in this paper, it may
not be the case for other interesting problems which fit the modelling framework.
It is an interesting question whether some of these assumptions can be relaxed, e.g.
by extending the more sophisticated convergence analyzes of SQP methods, e.g. [2],
or of Newton’s method for nonsmooth or generalized equations, e.g. [8, 16, 21], to
the present setting. However, this constitutes a research question in its own and is
beyond the scope of the present study.

Recall that the problem we wish to solve is of the form

min f(x)
s.t. g(x) ∈ Z.

(12)

Given a point x and a multiplier estimate λ we can formulate the SQP subproblem

min ∇f(x)d + 1
2d>∇2

xxL(x, λ)d
s.t. g(x) +∇g(x)d ∈ Z.

(13)

We will now argue that SQP converges locally quadratically to a stationary point
x∗ under the following assumptions:

• Z is locally star-shaped at z∗ = g(x∗),

• x∗ is a regular stationary point of (12) with multiplier λ∗,

• strict complementarity holds at x∗,

• d>∇2
xxL(x∗, λ∗)d > 0 for every non-vanishing direction d with ∇gi(x∗)d = 0

for all active constraint functions gi at x∗.

The latter second order condition is the traditional second order sufficient condition
for the equality constrained program

min f(x)
s.t. gi(x) = z∗i , i ∈ A (14)
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where z∗ = g(x∗) and A is the set of active constraint indices at x∗. To simplify
our exposition we assume that all constraint functions are active at x∗. This is
without loss of generality since inactive constraint functions will remain inactive in
a neighborhood of x∗ and can therefore be discarded for a local analysis. With this
assumption the criticality conditions for (12) become

∇f(x∗) +∇g(x∗)>λ∗ = 0
g(x∗) = z∗. (15)

The criticality conditions for the subproblem are

∇f(x) +∇2L(x, λ)d +∇g(x)>µ = 0
g(x) +∇g(x)d = z

z ∈ Z.
(16)

Since x∗ is critical with multiplier λ∗, we know that d = 0 and µ = λ∗ solves the
latter system, provided (x, λ, z) = (x∗, λ∗, z∗). In view of our second order condition
the implicit function theorem implies that the two equations in (16) define locally
unique smooth implicit functions d(x, λ, z) and µ(x, λ, z). Next we employ the strict
complementarity condition. Since we have assumed that all constraint functions are
active, strict complementarity means that v = 0 is a local solution to

min µ>v
s.t. z∗ + v ∈ Z

(17)

for every µ close to λ∗. Therefore the critical points d(x, λ, z∗) with multipliers
µ(x, λ, z∗) are indeed stationary points of the subproblems for (x, λ) close to (x∗, λ∗).
We finally show that they are the only stationary points of the subproblems close
to the origin. To this end, suppose that d(x, λ, z) is stationary for some z 6= z∗.
We will now make use of the fact that Z is locally star-shaped at z∗ and therefore
the line segment [z∗, z] will be a subset of Z for z close to z∗. Since µ = µ(x, λ, z)
is close to λ∗, strict complementarity implies that v = 0 is a local solution of (17).
Also, stationarity of d(x, λ, z) means that w = 0 is a local solution of

min µ>w
s.t. z + w ∈ Z.

(18)

Therefore, using the fact that [z∗, z] is contained in Z, µ is perpendicular to z∗ − z
and therefore u = 0 is not a local solution of

min [µ + (z∗ − z)]>u
s.t. z∗ + u ∈ Z.

(19)

This contradicts strict complementarity, since µ+(z∗− z) can be chosen arbitrarily
close to λ∗.

We can now repeat the classical argument that under our assumptions SQP is
equivalent to Newton’s method applied to the optimality conditions with active set
identification and converges quadratically if started at a point (x, λ) close to (x∗, λ∗).
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The penalty trust-region globalization scheme of [25] and [27] applies to this setting,
provided an appropriate residual function p is available. This function needs to be
locally Lipschitz and an indicator for the set Z in the sense that p ≥ 0 and p(z) = 0
if and only if z ∈ Z. In addition, it needs to provide an exact penalization of the
constraints. This is, for example, the case if p is piecewise affine and the constraints
are regular, see [25]. For a general approach to Lipschitzian penalty function we
refer the reader to the recent paper [15]. For a comprehensive study of trust-region
globalization we refer to the book [7].

6 A Decomposition Approach to Combinato-

rial Problems

In order to apply the SQP method of the last section, we need to have a method
to solve the subproblems, which are combinatorial quadratic programmes. Efficient
methods for the solution of such problems will most definitely have to make use of
the specific structure of Z. Nevertheless, there is a simple decomposition approach
which may guide the development of such methods. In this section we will briefly
explain the general decomposition approach and show how it can be applied to the
subproblems arising from max-min optimization. We begin again with our general
problem

min f(x)
s.t. g(x) ∈ Z.

(20)

The decomposition approach for problem (20) is based on a collection of finitely
many subsets Zi ⊆ Z. These subsets, which we call pieces, give rise to subproblems
of the form

min f(x)
s.t. g(x) ∈ Zi.

(21)

We assume that the subproblems are simpler than the full problem (20) in the sense
that a (descent) method is available to solve the subproblems (21) from a given
feasible point. In order to extend the solution procedure for the subproblems to
a method for the full problem (20) there has to be a link between optimality or
stationarity of the subproblems and optimality or stationarity of the full problem
(20). We focus on stationarity in the sequel and require

1. If (20) has a stationary point then g(x) ∈ Zi for at least one such stationary
point x and one piece Zi.

2. If x is a stationary point of (21) for all adjacent pieces Zi then it is stationary
for the full problem (20).

Here, a piece Zi is called adjacent to x if g(x) ∈ Zi. Notice that both conditions are
automatically satisfied if the union of the sets Zi coincides with Z.

Starting from a piece Zi0 and a point x0 with g(x0) ∈ Zi0 , the k-th iteration of
the decomposition method proceeds as follows:
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1. Given xk−1 with g(xk−1) ∈ Zik−1
, use a descent method to solve (21) for

Zi = Zik−1
, starting from xk−1.

2. If the descent method does not produce a stationary point of (21) then stop
and report the failure of the descent method (e.g. divergence to −∞ or non-
convergence).

3. If the method produces a stationary point xk of (21) and this point is stationary
for every adjacent piece then stop; a stationary point of (20) has been found.

4. Otherwise, choose a piece Zik adjacent to xk for which xk is not stationary
and continue.

If the decomposition method stops after finitely many iterations then it either re-
ports failure of the descent method or produces a stationary point xk of (20). If
each subproblem (21) has only finitely many stationary levels then the method stops
after finitely many iterations since it is a descent method and there are only finitely
many pieces Zi. Here, a stationary level of (21) is a value f(x), where x is a sta-
tionary point of (21). Obviously convex subproblems have at most one stationary
level.

The design of a decomposition method is therefore broken down into three parts:

1. Decide on the partition of Z into pieces Zi.

2. Decide on a descent method to solve the subproblems (21).

3. Develop a mechanism to decide whether the solution of a subproblem is sta-
tionary for every adjacent piece and, if not, to produce a piece adjacent to xk

for which xk is not stationary.

It seems most desirable to make use of the multipliers corresponding to the sub-
problem at iteration k to decide whether xk is stationary for every adjacent piece
or, if not, to determine a descent piece.

As an example consider the decomposition method for MPECs

min f(z)
s.t. min{G(z),H(z)} = 0.

One starts with an index set I and solves the standard nonlinear program

min f(z)
s.t. Gi(z) = 0, i ∈ I

Gj(z) ≥ 0, j 6∈ I
Hi(z) ≥ 0, i ∈ I
Hj(z) = 0, i 6∈ I.

If z̄ is a regular stationary point of this NLP and the multipliers corresponding to
bi-active constraints Hi(z) = Gi(z) = 0 are both nonnegative then z̄ is stationary
for the MPEC. Otherwise one adds a bi-active index i to I if the multiplier corre-
sponding to Hi is negative or removes i form I if the multiplier corresponding to Gi
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is negative and iterates.

A similar method can be used to solve (3). The basis for this method is the
following simple observation.

Lemma 6.1 max
1≤j≤r

min
i∈Nj

zi = min
s∈ ×r

j=1Nj

max{zs1 , . . . , zsr}.

Proof. On the one hand, if sj ∈ Nj with zsj = mini∈Nj zi then

max
1≤j≤r

min
i∈Nj

zi = max
1≤j≤r

zsj

≥ min
s∈ ×r

j=1Nj

max{zs1 , . . . , zsr}.

One the other hand min
i∈Nj0

zi ≤ min
s∈ ×r

j=1Nj

max{zs1 , . . . , zsr} for every j0 and there-

fore max
1≤j≤r

min
i∈Nj

zi ≤ min
s∈ ×r

j=1Nj

max{zs1 , . . . , zsr}. Q.E.D.

In view of the lemma the max-min optimization problem (3) can be reformulated
as

min
x

f(x) = min
s∈×r

j=1Nj

min
x

f(x)

s.t. max
1≤j≤r

min
i∈Nj

gi(x) ≤ 0 s.t. gsi(x) ≤ 0, i = 1, . . . , r

Given a combination s ∈ ×r
j=1Nj the decomposition method now proceeds as fol-

lows:

1. Find a stationary point x̄ of

min f(x)
s.t. gi(x) ≤ 0, i ∈ {s1, . . . , sr}. (22)

We assume that constraints only appear once if sj = sk for some j 6= k. If the
gradients of the vanishing constraint functions at x̄ are linearly independent
then we will obtain a unique multiplier vector λ̄ satisfying

∇f(x̄) +∇g(x̄)>λ̄ = 0
λ̄ ≥ 0

λ̄k = 0, if k 6∈ {s1, . . . , sr} or gk(x̄) 6= 0

2. Compute the sets J̄ and N̄j defined in Proposition 3.1 for z̄ = g(x̄). Accord-
ing to Proposition 3.1 the functions gi, i ∈ ∪j∈J̄N̄j are the active constraint
functions at x̄.

3. We assume that the active constraint functions at x̄ are linearly independent.
Then, according to Corollary 4.2, x̄ is stationary if and only if for every λ̄i0 > 0
there exists an index j0 with i0 ∈ Nj0 and gi0(x̄) < gi(x̄) for every i ∈ Nj0\{i0}.
If this is the case for every index i0 with λi0 > 0 then stop.
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4. If this is not the case for some i0 with λi0 > 0 then change s in the following
way: For every j with sj = i0 set sj := i1, where i1 ∈ Nj , i1 6= i0, and
gi1(x̄) ≤ gi0(x̄). Go to step 1.

This method is only conceptual since the solution of the subproblems may not be
obtainable in a finite number of iterations if nonlinear functions are present. This
issue would have to be addressed in an implementation. We will not dwell on these
details since we suggest to use this method to solve the combinatorial quadratic
programs arising as subproblems in the SQP method, rather than using the method
directly to solve max-min optimization problems as a sequence of nonlinear pro-
grams. One advantage of the SQP approach is that no new derivative information
is needed during the solution of the subproblems. This makes the SQP approach
more efficient than a direct composition approach.

Conceptually the method is well-defined if the active constraint functions defined
in step 2 are linearly independent at every visited stationary point x̄. We will
comment on the stringency of this condition below. Let us assume it holds and
let us also assume that the method to solve (22), if it converges, produces a point
with a lower objective value than the starting point, provided the starting is not
stationary. Then we will either observe non-convergence in the subproblem, e.g.
due to an unbounded objective function, or we obtain a stationary point of the
subproblem. This point is either stationary for the overall problem as tested in step
3, or the method will continue with a different subproblem. In the non-convex case
we can possibly revisit the subproblem again, but only finitely often if it has only
finitely many stationary values as argued above. Since there are only finitely many
subproblems this will lead to finite convergence to a stationary point. Recall that
convex subproblems have a single stationary level. Moreover, if the subproblems are
convex then stationarity at a subproblem is equivalent to minimality and therefore
stationarity for the master problem implies minimality on every adjacent piece and
therefore local minimality for the master problem. Summing this up we obtain the
following proposition.

Proposition 6.1 If the functions f and gi are smooth and convex and the gradients
of the active functions at the generated solutions of all subproblems are linearly
independent then the decomposition method stops after finitely many iterations and
either produces a local minimizer or reports that a particular subproblem could not
be solved.

The underlying reason why this method works is that the multipliers contain sensi-
tivity information. Indeed, the subproblem is of the form

min f(x)
s.t. gsj (x) ≤ 0, j = 1, . . . , r.

We assume that constraints corresponding to indices sj = sj′ occur only once.
Suppose x̄ is a stationary point of the subproblem with a multiplier vector λ̄ ∈ IRm

with λ̄i = 0 if i 6∈ {s1, . . . , sr} and

∇f(x̄) +
r∑

j=1

λ̄sj∇gsj (x̄) = 0
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λ̄sj ≥ 0
λ̄sj = 0 ∀j : gsj (x̄) < 0.

Suppose there exists an index sj0 = i0 with λ̄i0 > 0 and that for every j with sj = i0
there exists an ij ∈ Nj different from i0 with gij (x̄) ≤ 0. Notice that x̄ is also a
stationary point of

min f(x)
s.t. gsj (x) ≤ 0, j : sj 6= i0

gi0(x) ≤ 0,
gij (x) ≤ 0, j : sj = i0,

with the same multiplier vector λ̄. Here we assume again that each constraint ap-
pears only once. If the active gradients are linearly independent then the multiplier
vector λ̄i0 > 0 indicates that removing the constraint gi0(x) ≤ 0 will improve the
objective value. This can indeed be done by replacing sj = i0 by sj := ij . We do
this and proceed. If λ̄i0 > 0 implies that there exists an index j0 with sj0 = i0 and
gi(x̄) 6= 0 for every i ∈ Nj0\{i0} then x̄ is a stationary point.

Let us finally return to a discussion of the assumption that the gradients of
the active functions at the generated solutions of the subproblems are linearly in-
dependent. Sard’s theorem as applied in [24] suggests that this assumption is not
particularly stringent, i.e. given a particular constraint function g the linear inde-
pendence assumption will be satisfied for a perturbed constraint function g(x) + a
for almost all a in the Lebesgue sense. This result also holds for the functions f
used in the reformulation (2) of the unconstrained max-min problem. We give a
brief proof of this result for completeness.

Proposition 6.2 Given a smooth mapping f : IRn → IRm and a vector a ∈ IRm

define

fa(x) = f(x) + a

Ia
i (x) = {j ∈ {1, . . . ,m} | fa

j (x) = fa
i (x)}

for x ∈ IRn and 1 ≤ i ≤ m. For almost all a ∈ IRm (w.r.t. the Lebesgue measure)
the gradients ∇fa

j (x), j ∈ Ia
i (x) are affinely independent at every point x and for

every i ∈ {1, . . . ,m}.
Proof. Fix an index set I ⊆ {1, . . . , m} and an index i ∈ I and consider the
equations

fj(x)− fi(x) = ai − aj , j ∈ I\{i}.
Let (C) be the condition that the vectors ∇fj(x) −∇fi(x), j ∈ I\{i}, are linearly
independent at every solution x of the equations. By Sard’s theorem, for any fixed
ai the set of vectors a ∈ IRI\{i} such that condition (C) is violated has Lebesgue
measure zero in IRI\{i}. Thus, by Fubini’s theorem, the set of vectors a ∈ IRI such
that condition (C) is violated has Lebesgue measure zero in IRI . Since the finite
union of Lebesgue null sets is again a Lebesgue null set it follows that for almost all
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a ∈ IRn condition (C) holds for every I ⊆ {1, . . . ,m} and every i ∈ I. To complete
the proof it suffices to show that the fact that for fixed I the vectors∇fj(x)−∇fi(x),
i ∈ I\{i} are linearly independent for every i ∈ I implies that the gradients ∇fj(x),
j ∈ I, are affinely independent. Indeed, if ∇fj(x), j ∈ I are affinely dependent then
there exists a non-vanishing vector λ such that

∑
j∈I λj∇fj(x) = 0 and

∑
j∈I λj = 0.

If i ∈ I is such that λi 6= 0 then
∑
j∈I
j 6=i

λj

λi
(∇fj(x)−∇fi(x)) = 0

and thus ∇fj(x)−∇fi(x), j ∈ I\{i} are linearly dependent. Q.E.D.

6.1 Preliminary Numerical Experience

The method of the last section was coded for problems of the form

min 1
2x>Qx + q>x

s.t. max
1≤j≤l

min
i∈Nj

a>i x− bi ≤ 0

with positive definite matrix Q. The code was written in MATLAB and used Roger
Fletcher’s BQPD code to solve the QPs. We checked for replacement of active
constraint functions gi(x) in the order of descending multipliers and replaced a
representant gi of the min-function mini∈Nj gi(x) by the function gk, k ∈ Nj\{i},
with the minimal value at the current iteration point, provided that value was non-
positive.

A typical set of test problems was generated as follows: We generated an m× n
matrix A using the RANDN or RAND functions in MATLAB. The use of the lat-
ter guarantees feasibility since A has positive entries and therefore Ax − b < 0 for
sufficiently large positive x. We chose b to be the m-vector with all components
equal to −1 so that the origin is infeasible for any max-min combination of the se-
lection functions Aix− bi since all selection functions all negative at the origin. We
then solved the problem of finding a feasible solution with smallest Euclidean norm.
To generate the index sets Nj , We randomly permuted the numbers 1, . . . , 5m and
chose Nj to be those indices among the first m components of the permutation
vector which did not exceed m. The MATLAB code of the method, albeit with the
MATLAB QP solver, as well as the random problem generator can be downloaded
from [29].

Finding a feasible point of a max-min system is a non-trivial task in general. If
an initial QP is infeasible, then one may attempt to restore feasibility by solving an
appropriate phase-1 problem such as

min
(x,s)

e>s

s.t. max
1≤j≤l

min
i∈Nj

gi(x)− si ≤ 0

s ≥ 0.
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starting from a feasible point (x, s) = (x̄, g(x̄)), where x̄ could be any vector that
one may wish to use as a starting point. Obviously, the phase-1 problem is only
a heuristic since the method can be trapped in a local minimum of the L1 merit
function. As it turned out, a phase-1 approach was unnecessary in our tests. If the
initial QP subproblem was infeasible, which occurred frequently, the BQPD code
would return positive multipliers for the violated constraints which the method will
swap successively for feasible constraint functions in the corresponding sets Nj . It
typically took only a few iterations until a feasible point was found in this way.

The method performed credible on the random test problems. A typical prob-
lem with, e.g., n = 100 variables, l = 200 min-functions and a total of m = 200
selection functions was solved in 110-140 QP iterations to local optimality. We per-
formed some tests with various randomly chosen initial QPs but in these tests the
choice of initial constraint did typically not affect the number of QP iterations. Not
surprisingly, the objective values achieved with different starting QPs could differ
substantially. In the above mentioned test run the best of five starts outperformed
the worst by up to 30%. We also performed test runs where we checked after each
iteration whether the current point was Clarke stationary and occasionally found
such points upon which the method could often substantially improve. It is not
worth giving any more details of the numerical tests as they are very preliminary
and were only performed as a sanity check and as an illustration of the practical po-
tential of the method. More extensive numerical tests and comparisons with other
methods will be necessary for a sound judgement of the numerical reliability of the
method.

It is obvious that our method, being a local optimization method, can and often
will be trapped in a local minimum. It is still a worthwhile method since descent is
guaranteed once feasibility is detected. It is of course possible to reformulate opti-
mization problems with max-min constraints as mixed integer NLPs, e.g. through
a ”big-M” approach

min f(x)
s.t. gi(x) + Myi ≤ M∑

i∈Nj
yi ≥ 1, j = 1, . . . , l

y ∈ {0, 1},
where M is a large constant. If the data of the original problem are linear then this
results in a mixed integer linear program which is, in principle, solvable to global
optimality. Even for such reformulations, which are only tractable for very moderate
numbers of selection functions, the local method suggested here is useful as it can
be employed to generate an initial upper bound for the objective and to improve a
new upper bound in a branch and bound procedure by invoking the method from
the corresponding feasible solution.
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