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Abstract

Algebraic modelling languages have greatly simplified the formulation and man-
agement of deterministic mathematical programming problems, but as yet none of
these languages provide any explicit support for the specification of dynamic stochas-
tic programming problems (DSPs). Nevertheless, it is possible to describe a DSP with
only the constructs available in deterministic languages using a so-called nodal for-
mulation, and in this article we show how this can be done for a simple example
problem. There are however, several situations when the nodal formulation becomes
a limitation. Realistic stochastic programming problems may have very large deter-
ministic equivalents, and if we can avoid it we do not wis h to instantiate these in
full at any point during the modelling process. Also DSPs tend to have a highly
repetitive structure, and it is worth going to some effort to exploit this for efficient
problem generation. Finally the ‘algorithm’s form’ of a stochastic programming
problem is different to that of its deterministic equivalent, and the modelling sys-
tem should take this into account. Addressing these points, we describe stochgen,
the stochastic modelling component of the STocHASTICS™ system, which works in
conjunction with either AMPL or XPRESS-MP and allows the efficient generation
of large-scale stochastic programming problems. We give some details of such prob-
lems and describe solgen, an implementation of nested Benders decomposition which
works either independently of or in conjunction with stochgen and has been used to
solve a variety of real world problems. We then discuss how visualization tools can
be used to aid the DSP modelling process, and set out the progress we have made
towards an integrated stochastic programming environment in the development of
STocHASTICS™.

Keywords: Dynamic stochastic programming, modelling languages, decomposition.



1 Dynamic stochastic programming

The canonical two-stage dynamic stochastic programme (DSP) with linear constraints can

be written

Hgn fi(z1) + Ewﬂg%(lg) fo(@2(w), w)

s.t. A11$1 = b1 (1)
Ag(w)zy + Ago(w)ze(w) = by(w) a.s.
z1 >0, To(w) >0 a.s.

where z1 € R™ | 29(w) € R"2, by € R™ | by € R™, Ayy, Asi(w) and Ay (w) are appro-
priately dimensioned real matrices, the functions fi(-) and fo(-,w) are convex and a.s.
indicates that the (in)equality holds almost surely, i.e. with probability one. We use w
to denote a random vector variable associated with a probability space 2. The idea is to
construct a linear programme where coefficients are known deterministically at present,
but are uncertain (but drawn from some known distribution) at some time in the future.
The term dynamic referring to (1) is used to indicate that in the applications we consider
future uncertainty is represented by a continuous time vector stochastic process whose data
paths w will be approximated by a finite number of paths from a discrete time stochastic
simulation, possibly with a ¢time step much finer than the natural time period (e.g. a week
or month) of the application. There may be several such time periods between decision
stages of the model and thus (2 represents simulated states of the underlying data process
sampled at the second stage date. (For more on this distinction between timescales in
dynamic stochastic programming, see Dempster et al. (2000).)

Typically then, and for the purposes of this paper, we assume that the support of 2 is
finite, i.e. that w can take only a finite number of values. In this case, we can consider solv-
ing the deterministic equivalent problem of (1) which, calculating the discrete expectation
explicitly, can be written

min fi(z1) + 2 p(w)fore(w),w)

21,05 (1) WER &4
s.t. A2 = b
Ag(w)z1 + Ago(w)za(w) = hhw) wen (2)
x1 >0
To(w) >0 w e,



where p(w) denotes the probability associated with the event w under some probability
measure P. The formulation in (2) is known as the standard (or compact) form deter-
ministic equivalent. Here we have one vector variable x; which is “shared” between all
realizations. Alternatively we can formulate the deterministic equivalent using a variable
x1(w) for each w € Q and then add nonanticipativity constraints z; (w) = z1(w'),w # W'
This latter form is known as a split-variable formulation. It may be useful to make the
nonanticipativity constraints explicit as their associated dual values carry sensitivity infor-
mation about the structure of the event tree (Chen et al., 1998; Dempster, 1998; Dempster
and Thompson, 1999). Also scenario decomposition-based solution methods start by re-
laxing these constraints (so that initially they solve |Q2| deterministic subproblems), and
iterate towards a solution where the constraints are binding (Rockafellar, 1976; Dempster,
1988; Rockafellar and Wets, 1991; Ruszczynski, 1992).

The constraint matrix of (2) has a dual block-angular form corresponding to the prob-
lem’s dynamic structure. As an alternative to solving the deterministic equivalent, we can
exploit this structure using Benders decomposition (Van Slyke and Wets, 1969), a cutting

plane method which splits the problem into a “master”
n;iln fl(ZEl) + Q(.Tl) s.t. Allxl = bl (3)

and a (separable) “slave” problem (often referred to as the recourse function)

Qz1) = o Eﬂp( w) f2(2(w), w) n

s.t. Ag(w)re(w) = bo(w) — A9 (w)x; w € Q.

It is easy enough to show that Q is a convex function of x;. Benders decomposition
proceeds by building up a piecewise linear lower approximation of Q by trying a sequence
of different proposals 2\ for which dual solutions 7(*)(w) are obtained. These are used
to form optimality cuts, so that instead of solving the master problem directly we solve a

sequence of problems of the form

n;iln fi(z1) + 0
s.t. Allxl = b (5)
w%;p( w)IT® (W) Ay (W)z1 + 0 = wzegzp( w)T® (W)by(w) k=1,...,K.

If we have the case Q(z{") = +o00 (i.e. for some proposals z\" the recourse function is



infeasible), we can generate feasibility cuts by using directions of recession obtained from
the (unbounded) dual solutions. For many practical problems Benders decomposition
has been shown to be faster than solving the deterministic equivalent problem as usually
only a few tens of cuts are required to accurately approximate Q, and efficiencies can be
gained because Q is in reality a collection of |§2| similar small subproblems which can be
solved very quickly when considered together. Also we can solve the subproblems of Q in
parallel, and obtain very good speed-ups. Additionally the storage requirements of Benders
decomposition codes are normally much smaller than general-purpose methods applied to
the deterministic equivalent problem (2).

The ideas of the two stage formulation extend readily to the multistage case, where
instead of progressing from no information to total information, information becomes avail-
able gradually as time progresses. To formally express this for a T-stage problem, we use a
filtration F := {F, : t =1,...,T}, where each F; is a field with a generating partition A4,
such that for all events A € A; there is A’ € A;_; such that A C A’, that is, partitions A;
become progressively finer.

Rather than deal with filtrations explicitly, we generally think in terms of event trees,
which have a node for each set in A;, ¢t = 1,...,T and an arc between each node
representing A" € A;,_; and A € A;. So, for example for the partition on the set

Q:= {wla Wa, W3, Wy, CU5}:

A = {2}
Ay = {{wi,wo}, {ws}, {ws, ws}} (6)
-/43 = {{wl}: {w2}: {w3}’ {w4}7 {(“)5}}’

we have the event tree shown in Figure 1. The usual tree terminology (ancestor, child,
sibling, etc.) is used, and a single path from the root to one of the leaves is known as
a scenario. Note that by assigning a probability to each leaf (or equivalently to each
scenario), we unambiguously define the probability of all nodes in the event tree.

It is not strictly necessary that the partitions become finer at each period, and for some
problems it may be appropriate to consider recombining event trees, particularly when the
process to be modelled is discrete and has a small support. Archibald et al. (1999) describe
a DSP where this is the case, however note that the decision process is always necessarily
non-recombining, so the economy here is cosmetic rather than computational.

At each stage, we have a random variable w;, so that over time we have a stochastic

process w := (w1, ...,wy) on the abstract probability space (2, F, P). We use the nota-



A= {SZ}

A3(w?) = {w}

Ap(w?) = {wr,wa}

Ap(w?) = {ws, ws}

Figure 1: Event tree and partitions

Wa

w3

W4

Ws



tion w' := (wy,...,w;) to represent this process up to and including stage t. Similarly, we
have a stochastic decision process z(w) := (21, Z2(w3), ..., z7(wr)) for which we use the
notation z'(w?') := (z1,...,z4(w;)) to represent the process up to and including stage t.

We can now express the linearly constrained multistage dynamic stochastic programme as

min c;x1 + Eg,e2 { min fo(72(ws), wa) + Eysjwe < rr(l‘bn) fa(zs(ws),ws) + ...
1 T3 3

zo(W2)
+ EwT|wT—1 [ ;I(l&)n fT(acT(wT),wT)} .. > }

or(Wr)

s.t. Apx = b
Agi(WHr1  +  Ag(w?)ze(w?) = by(w?)
Az(w)xy  + Ap(w®)ze(w?) + Asz(w?)zs(w?) = b3(w?)
Ari(whz + Apg(wh)ze(w?) + ...+ Arp(wh)zr(w?) = by(w?)

z1 >0
Ty (wh) >0 t=2,...,T,

(7)

where again all constraints hold almost surely. Here Eyy¢/ye-1(-) denotes conditional ex-
pectation with respect to the current state of the data process w conditioned on its past
history. Again, this problem has both standard and split variable deterministic equiva-
lent formulations (where variables in each stage 1,...,7 — 1 may be split) which we omit
here for brevity. Both scenario decomposition and Benders decomposition based solu-
tion methods can be extended to efficiently handle the multistage case. The multistage
Benders decomposition algorithm is known as nested Benders decomposition (Birge, 1985;
Gassmann, 1990). The idea of the multistage formulation is that in this model each time
an observation is made it is followed immediately by a decision, leading to the following

sequence of observations and decisions:

decide observe decide observe decide

I ~ Wy ~ T9 MLl v wr ~ xXT.

In practice, because the set of events {2 is normally a discrete approximation to some real
world continuous data process distribution, we model and solve a DSP such as (7) and
implement only the optimal first stage decision z; since we cannot expect the real outcome

of w? to be close to any of the sampled realizations in the event tree. On the other hand,



this optimal first stage decision is robust against all future scenarios in 2 and in most
applications analysis of the a priori optimal forward decisions provides a wealth of useful
“what if?” information.

The problem for the modeller is to define at each node in the event tree the coefficient
process & (wh) = (Ap (Wh), ..., Ay(w?’), fi(-,w?), by(w’)) in a representation suitable for so-
lution either of the deterministic equivalent problem by a conventional deterministic solver,
or in some representation suitable for solution by a DSP-specific solver (for example, the
SMPS file format (Birge et al., 1987)). This is often referred to in the modelling language
literature as the algorithm’s form. As in the case of traditional deterministic mathematical
programming, it is more convenient for the modeller to consider the problem in modeller’s
form, using set-theoretic and algebraic notation to represent the real-world situation to be
modelled. In this paper, after introducing an example problem, we examine how AMPL, a
deterministic algebraic modelling language, can be used to specify stochastic programming
problems and produce either deterministic equivalent or DSP-specific algorithm’s forms
directly. However, realistic stochastic programmes are often very large, both in terms of
the size of the event tree and the constraint dimensions m; and n,, and typically they have
a highly repetitive structure. In this case it becomes necessary to augment deterministic
modelling languages with tools that can handle these structures, and in Sections 3-5 we
describe the stochgen toolchain, which provides such facilities for the modelling languages
AMPL and XPRESS-MP. In Section 6 we describe the STOCHASTICS™ solgen nested Ben-
ders solver and in Section 7 demonstrate its performance on a variety of real world large
scale DSP problems. In the final section we describe our current work on STOCHASTICS™,
in which we are developing a stochastic programming specific modelling language, as well
as support tools to enable the visualization of problem and solution data for very large

event trees.

2 An example problem

To provide a concrete example, we consider the modelling of a hypothetical portfolio man-
agement, problem where the objective is to maximize the expected terminal value of a
portfolio consisting of quantitites of a stock and a bond. At each time period t =1,...,7T
the decision vector should tell us the optimal portfolio composition on each scenario. We
have constraints to specifiy the initial portfolio value, and to disallow short selling (i.e.

holding negative quantities of an asset). The first modelling task is to specify stochas-



tic processes for the two asset classes; a standard financial model is to assume that the
(two-dimensional) price process S is a correlated geometric Brownian motion, i.e. each

component ¢ of S follows the stochastic difference equation

where Z is a correlated Brownian motion. The drift (i) and volatility (o) can be estimated
from historical data. Of course the DSP framework assumes discrete time, so we model
the movements of § with the stochastic difference equation

Sii1y — S
% = WAt + oV Atg,, (9)

where ¢ is a correlated standard normal random vector. Given a covariance matrix X, a
standard trick to generate values for ¢ is to generate uncorrelated normal deviates € and
find a matrix M such that MM' = 3. Then ¢ = Me, as from the definition of covariance
Y. =FE(¢pd') = ME(e€)M' = MM'.

Given the bivariate price process S as data process, the stochastic programme which

we wish to solve is

max T EsT {Z Sz’Tl'iT(ST)}

mit(st).:tzla“'a ) icl
i€l
s.t. Z Sit.fi(t_l)(stil) = Z S,-txit(St) a.s. t= 2, ey T (10)
el el
> Saza < 100
el
z;:(8") >0 a.s. t=1,...,T

where I := {“stock”, “bond”} is the set of assets, and z;;(S") is the net asset value (NAV)
held of asset i at time ¢ given data history S*. The constraints here ensure that the total
wealth is preserved between stages, that the initial cash requirement is less than or equal
to $100 and that the position is never shorted.

We should note here that this particular model is too simple to be realistic. No account
is taken of the investor’s attitude to risk—the portfolio which maximizes expected terminal
wealth is also likely to have a high terminal variance. Also a realistic problem would have
(as well as a much larger asset set) constraints on the change in portfolio composition
between different periods and would take account of taxation and transaction costs. With-

out these considerations, it is possible to see that this problem is solvable analytically, in



particular, the myopic strategy that at each node of the event tree invests the entire wealth

in the asset with the highest expected return in the next time step, i.e. that sets

(St) ze:I Sjtxj(t—l) (St_l) if 1= arg njleaIX Est+1|st (T‘j(t+1)(st+1))
Tit =9q J

0 otherwise,

where 71y (S == (S”(%)t_sﬂ), is an optimal strategy. Also realistic models use more
J

sophisticated price processes than geometric Brownian motion. Nevertheless the model is

adequate for illustrative purposes and we will say how each of the mentioned extensions

for realism can be handled in the course of this paper.

3 Representing event trees

For concreteness, we shall model the example problem with 3 stages using the partition
specified in (6) and the probability measure P(w;) = 0.2. Note that in reality a much
larger event tree would be required to adequately discretize a data process such as the one
given above.

We find that there are two convenient event tree representations. The first, most
commonly used representation uses a tree string. This is a string of integers which specify
for each stage the number of branches for each node in that stage. We normally write
tree strings as a product of powers, so for example, the tree string 4.3.2.1% generates a
7-stage event tree which has four branches in the first stage, three in each subtree of the
second, etc. Obviously this allows only the specification of balanced trees (in the sense
that each subtree in the same period has the same number of branches) but in the absence
of more detail about the correct information structure this is normally adequate. For the
specification of arbitrary event trees, we may use a nodal partition (NP) matrix (Consigli
and Dempster, 1998b). This is a matrix with a row for each scenario and a column for
each stage. We assign each node of the event tree a unique number, and the NP matrix
entries ny; are node numbers, so that each row of the matrix shows which nodes in the
event tree a scenario passes through. We say that an NP matrix is in standard form if
nij < ny; whenever ¢ < 4" and n;; < nyj whenever j < j'. Table 1 gives an appropriate
nodal partition matrix for our example problem. Note that the nodal partition matrix is a
redundant way of storing the tree, and it would be more efficient (for example) just to store
the predecessor node of each node in the event tree. The NP-matrix representation however



t=1 t=2 t=3
k=1 1 2 )
k=2 1 2 6
k=3 1 3 7
k=4 1 4 8
k=5 1 4 9

Table 1: Nodal partition matrix representation of event tree in Figure 1

has been maintained, primarily for historical reasons, and the overhead of storing it is not
significant when compared to the storage requirement of the full stochastic programme.
An alternative, similar representation for event trees is possible by considering the scenario
partition, this is often referred to as the Lane matrix (after Lane and Hutchinson (1980)).
An assumption in both of these representations is that only trees with a uniform depth
are considered. Whilst this does not imply a loss of generality (as we can appropriately
constrain decisions to be zero), it would not be the most efficient representation for event

trees where this is not the case.

4 The nodal formulation

Having defined the event tree, we are in a position to instantiate simulator data over it.
For the example problem, the price process we wish to simulate is sufficiently simple to
be defined using the facilities available within AMPL. First we define the set of event
tree nodes, a parameter to contain their probabilities and a parameter to contain their

predecessors:

set nodes ordered;
param pred{nodes};
param prob{nodes};

We define the set of nodes as an “ordered” set (partially ordered by time) so that we can

easily refer to the root and leaf nodes. To define the event tree of the example problem,

we instantiate the above set and parameters with the following data block:
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data;

param: nodes: pred prob :=
1 . 1.0
2 1 0.4
3 1 0.2
4 1 0.4
5 2 0.5
6 2 0.5
7 3 1.0
8 4 0.5
9 4 0.5;

Here, the probabilities specified are the conditional probabilities of each node occurring
given that its predecessor has occurred. In the case of a realistically large event tree,
this data would normally be generated automatically, either from a nodal partition matrix
or a tree string and read in from a file. The stochgen tool chain provides facilities for
generating and manipulating tree structures and generating AMPL-compatible data files.

We also define the auxiliary objects stage, stages, T and uprob as

param stage{n in nodes} := if n = 1 then 1 else stagel[pred[n]] + 1;
param T := stage[last(nodes)];

set stages =1 .. T;

param uprob{n in nodes} := if n = 1 then 1.0 else uprobl[pred[n]]*prob[n];

The parameter stage maps nodes to time stages, T is defined as the last decision stage and
stages is the set of time stages. The parameter uprob is the unconditional probability of
each node occurring.

To generate numeric data for asset prices, we define and assign data to the parame-
ters p, o and At from (9), and specify the correlation ¢ between the two asset prices. We

also require initial values for both assets. This is achieved by the following AMPL code:

set assets;

param mu {assets};
param sigma{assets};
param c;

param dt;

param pricel {assets}; # price of assets at t=1

11



data;

param dt := 1.0;

param: assets: mu sigma pricel :=
stock 0.15 0.2 50.0
bond 0.10 0.1 50.0;
param c := -0.3;

As in the case of the event tree, if we had a large number of assets we would store the
data specification in a separate file. To generate correlated random deviates ¢ we first use
the built-in AMPL function NormalO1 to assign standard (uncorrelated) normal random

deviates to a parameter e, which is defined over each node in the event tree for each asset:

param e {n in nodes, i in assets} := NormalO1();

This represents the statement

e;~N(0,1) t=1,...,T i€l (11)

E:(ii) (12)

(13)

Now, given the covariance matrix

it is easy to verify that

is a suitable factorization. The AMPL code to perform the matrix multiplication ¢ = Me

is then

param phi {n in nodes, i in assets} :=
if i = "stock" then
sqrt (1.0 - c*xc) * e[n, "stock"]
+ c * e[n, "bond"]
else
e[n, "bonds"];

At this point we have assigned correlated random deviates to each node of the event tree.

12



To specify the price process all that remains is to implement the difference equation (9)
over the event tree as follows:
param price {n in nodes, i in assets} :=
if n = first(nodes) then
pricell[il
else
pricelpred[n], i]) * (1 + mul[il*dt + sigmal[i]l*sqrt(dt)*philn,i]);

Note that this definition is recursive (as are the definitions for stage and uprob), and hence
relies on the fact that for any node n, pred[n] < n.

In principle it is possible to express arbitrarily complicated stochastic data processes us-
ing an algebraic modelling language such as AMPL in this way, however in practice it may
not be all that convenient. For example, if we have a large number of assets, we can obtain
a value of M by using Cholesky factorization of the covariance matrix 3, however, AMPL
does not provide a routine for this, and whilst it could be implemented using AMPL’s
imperative programming facilities, it would not be particularly readable or efficient. Fur-
thermore, as we indicated earlier, difference equations for a realistic price process model
(or for that matter any realistic stochastic process model) are normally substantially more
complicated than (9) (see Wilkie (1987, 1995) for an example) and in this case, obtaining
coefficients from historical data involves sophisticated econometric modelling, for which
dedicated software (such as RATS or S-PLUS) provides a more appropriate environment.
In the worst case (which is not particularly unusual) the data process simulator may only
be available as a “black box” and we have no possibility of integrating it in an AMPL
model. To provide an interface between an arbitrary simulator and a modelling language,
the stochgen tool chain provides a program called procgen. Here we assume that the

data process simulator can be encapsulated by the function

(sta St41y-- -, ST) = f(ka St—15 St—25 - - - 7$t—l)- (14)

That is, future states of a data process s are a function of [ previous states and a seed k for
a random number generator. By allowing [ # 1 we allow the possibility of non-Markovian
data processes. It is possible to have [ > T, but [ is fixed for all scenarios (the path simulator
may choose to ignore initial conditions in some scenarios if they are unnecessary). We have
f produce sy, St41,...,57 instead of just s;y; in order to avoid incurring any setup costs

on the simulator more often than is necessary. procgen takes as input the function f (it

13



is either called as an external program or is dynamically linked) and an event tree, and
runs it once for each path in the event tree, in such a way that no state s;(w') is requested
more than once, and the seed k£ is updated in such a way that each generated path will
be unique. The result is a set of nonredundant partial data paths in which the simulated
data process realizations at nodes of the event tree with a common predecessor node have
been generated conditional on the unique data path history to that node. Then numerical
data for the entire event tree is output in a data format suitable for a variety of modelling
languages or visualization tools. As noted above, we must also allow for the possibility
that multiple simulator time steps are taken per time period, and that different stages in
the same problem may have different numbers of periods. It is quite typical for example
that the simulator produces monthly data, but decisions are required on a quarterly or
annual basis and later stages contain several quarters or years.

Given this abstraction, the modeller need only define f in a suitable way, we have
found that people generally find this much simpler and less error-prone than implementing
a “tree-aware” simulator on a case-by-case basis. There is an assumption here that the
simulator is such that we do not need to know s;(wj) in order to generate s;(w;), one can
imagine models where this is not the case (for example in the generation of arbitrage free
prices). In this situation, iteration over the tree is necessarily model-specific, but for the
models we have encountered so far, the procgen abstraction has been sufficient.

We are now in a position to declare decision variables x over the set of event tree nodes

and for all assets as

var x{nodes, assets} >= 0;

This incorporates the no-shorting constraint; it is common modelling-language practice to
put simple bounds such as this in the variable definition. We can define the objective func-
tion over the leaf nodes of the event tree, using the unconditional probability parameter

uprob:

maximize expected_terminalwealth:
sum{i in assets, n in nodes : stage[n] = T} uprob[n]*priceln,i]l*x[n,i];

and we define constraints constraints similarly:

14



subject to self_financing{n in nodes : stageln] <> 1}:
sum{i in assets} price[n,i]*x[n,i]
= sum{i in assets} pricel[n,il*x[pred[n],i];

subject to budget:
sum{i in assets} price[first(nodes),il*x[first(nodes),i] <= 100;

This completes the nodal formulation of the example problem. In effect, we have used the
modelling language to define the standard form deterministic equivalent linear program-
ming problem corresponding to the stochastic programme we wished to model. In order to
solve this, AMPL will construct this problem in full and send it to an LP solver that the
user has provided. This has negative implications for efficiency. For most DSPs of interest,
the deterministic equivalent form contains a great deal of redundancy, since the number
of coefficients that are stochastic is small compared to the total number of coefficients at
each node, and data for each node in the event tree tends to have a similar structure to
that for other nodes, especially other nodes in the same stage. By constructing the de-
terministic equivalent, we also disregard structure information that may be exploited by a
DSP solution algorithm such as nested Benders decomposition or the primal-dual interior

point method.

5 stochgen formulation

In order to avoid creating the deterministic equivalent problem, and so that the modeller
can avoid dealing with the recursive definitions necessary for a nodal formulation, stochgen
requires that a problem is defined which is representative of one scenario of the dynamic
stochastic programme, that is, the problem that would be obtained if random variables
were made deterministic. Instead of indexing variables and constraints over the set of event
tree nodes as above, the modeller indexes over time stages. For the example problem, this
leads to the following AMPL code:

15



var x{stages, assets} >= 0;

maximize expected_terminalwealth:
sum{i in assets} price[T,i]*x[T,i];

subject to self_financing{t in 2 .. T}:
sum{i in assets} pricel[t,il*x[t,i]
= sum{i in assets} pricel[t,il*x[t-1,i];

subject to budget:
sum{i in assets} price[1,i]*x[1,i] <= 100;

We refer to this problem as the core problem (it is the same as the core problem of the
SMPS standard). The inputs to stochgen are the core problem, a description of the event
tree, and a procgen-compatible data path simulator as described above. An advantage of
this approach is that a user may start with an existing deterministic model and convert
it to a stochastic programme by simply adding information which describes the stochastic
data process and model coefficients or functions.

Running AMPL on the above problem would produce a single scenario. We use the
imperative programming features of AMPL to repeat this process for each scenario in the
event tree, taking care that the data process parameters (in the example problem just
the price parameter) point to the appropriate nodes in the event tree. How precisely
this is done depends on the format of the stochastic data, procgen-generated data can be
processed with standard headers which we supply to define objects process and path, so

that the definition of the price parameter becomes

param price{t in stages, i in assets} := process[ord(i,assets),path[t]];

Normally AMPL sends its output directly to a solver, but in this case, no solution
occurs until the last scenario has been processed. Instead, stochgen takes the output of
AMPL and generates an SMPS representation of the DSP. In order to do this however, the
model must be annotated with the dynamic structure of the problem. To do this we use
the suffix notation of AMPL to assign stage information to each variable and constraint

in the model. For the example problem, appropriate code would be
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let {t in stages, i in assets} x[t,i].order := t;
let {t in 2..T} self_financing[t].order := t;
let budget.order := 1;

In terms of the linear programme corresponding to the core problem the effect of this is
to impose a block lower-triangular form on the constraint matrix by permuting rows and
columns so that they are ordered by stage. Figure 2 illustrates the effect of this annotation
on the core problems output by AMPL. The left picture shows the constraint matrix for a
4-stage instance of the example problem with an arbitrary ordering of rows and columns (as
is generated if the suffix information is not supplied). The right picture shows the problem
with stage ordering imposed, so that it is in a block lower-triangular form. This specifi-
cation of the problem’s dynamic structure is essential in any DSP formulation technique,
not only for generating an SMPS representation but also so that we can apply scenario

decomposition or nested Benders solution methods.

X[1, stocks']
X[2," stocks']
X[3," stocks']
X[4, stocks']
X[1,"bonds']
X[2,"bonds']
X[3,"bonds']
X[4,"bonds']
X[1, stocks']
X[1,"bonds']
X[2," stocks']
X[2,"bonds']
X[3," stocks']
X[3, bonds']
X[4, stocks']
X[4,"bonds']

self_financing[2] budget

self_financing[3] self_financing[2]
self_financing[4] self_financing[3]
budget self_financing[4]

Figure 2: Constraint matrices of unordered and ordered core problems.

If at this stage we wish to generate the deterministic equivalent form, the stochgen
toolchain provides detgen, which generates the deterministic equivalent in MPS form from
the SMPS representation.

As well as simplifying the AMPL representation of DSP models, the stochgen formu-
lation allows for more efficient generation when the event tree becomes very large, because
the deterministic equivalent form is never stored in memory in its entirety, and stochgen is
aware of the redundancies present in the DSP formulation. In Section 7 we will give details
of problems which would have been impossible to generate using an AMPL nodal formula-

tion in any reasonable amount of memory. Also for example in the context of importance
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sampling (Infanger, 1994; Higle and Sen, 1996; Dempster, 1998) when it is necessary to
regenerate the problem corresponding to only some part of the event tree, the stochgen
framework has been used to do this efficiently, whereas by using a nodal formulation we
would have been forced to regenerate the entire deterministic equivalent formulation. As
far as we are aware, the stochgen component of STOCHASTICS™ is the only stochastic
programming modelling system which has been used in this situation; other authors on
the subject have had to “hard-code” their models.

6 Nested Benders decomposition using solgen

As noted above, the superiority of nested Benders decomposition over deterministic equiv-
alent solution methods has been demonstrated repeatedly for a wide variety of problems.
So far however there has been only one generally available implementation, called MSLiP,
originally described in Gassmann (1990), which was extended in Dempster and Thompson
(1998) to integrate it with commercial LP solvers and provide a parallel capability. Other
two-stage Benders decomposition solvers are available (such as DECIS (Infanger, 1997) and
IBM SP/OSL (King, 1994)) which can be adapted to solve multistage problems by using
aggregation, but in our experience problems with a large number of stages generally ben-
efit from a multistage implementation. Another possibility is to implement decomposition
directly using the modelling language, the article by Gay and Gassmann in this volume
gives details on how this might be achieved.

Part of the STOCHASTICS™ system is solgen, a new implementation of nested Benders
decomposition which has been designed to be tightly integrated with modern modelling
languages and LP solvers. The current version (1.30) of solgen uses CPLEX 7.1 to solve
subproblems, and can read in problems in MPS or SMPS format, or those generated using
AMPL, XPRESS-MP or the stochgen tools. Our emphasis has been to develop a solver
which is both faster than currently available alternative methods and robust enough to be
used in a general-purpose setting. In addition, the following features have been developed

as part of our ongoing research:

e Aggregation. As was shown by Dempster and Thompson (1998), stage aggregation
of the scenario tree can lead to accelerated solution times when using Benders de-
composition. Our further research has shown that if the correct aggregation strategy
is known, it is possible to get orders of magnitude speed-ups over the solution of the

unaggregated problem or over the deterministic equivalent problem. If the modeller
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is frequently solving similar problems, it is worth the effort to find these aggrega-
tions. An area of our current research is to find a heuristic model for choosing a
good aggregation strategy ab initio and then use feedback from the solver as it runs

to tune the strategy.

Regularization. It has been known for some time that decomposition methods
(both Benders decomposition and Dantzig-Wolfe decomposition) can behave poorly
on some problems—the sequence of proposals generated by the standard algorithm
can lead to a piecewise linearization of the recourse function which is as hard to handle
as the recourse function itself. To avoid this situation we have investigated the use of
regularizing terms on the objective function (following the work in Rockafellar (1976);
Ruszczyniski (1986); Ruszezyniski and Swietanowski (1995)). The idea is to maintain
an incumbent solution, choose proposals which are near it, and only change the
incumbent when there is a demonstrable improvement in the linearization. We have
used this method to successfully solve several problems which were previously either
only amenable to deterministic equivalent methods, or insoluble, and to accelerate
the solution of other problems. Currently the regularized method is only applicable

to two-stage problems but a multistage implementation is in progress.

General convex objectives. In financial applications it is important to be able
to model general convex utility functions in order to handle investors’ attitudes to
risk and solgen takes two approaches to tackling such problems. The first method
is to perform a further decomposition of the problem so that the convex objective
is contained in an artificial ‘final’ stage which can then easily be solved (because it
is unconstrained) and therefore approximated linearly. The second method is to use
convex subproblem solvers to handle the convex objective directly. Currently the
latter method uses CPLEX barrier as a subproblem solver, we hope to use a pivoting

QP method soon and then employ SQP techniques to handle the general case.

Non-Markovian nested decomposition. When the matrices A;5(w'),s < t — 1,
in (7) are non-zero the problem is said to have a non-Markovian constraint structure.
Such structures arise in multistage scheduling problems, and in financial problems
which have complicated taxation or liquidity structures. A naive approach is to intro-
duce splitting variables to induce a Markovian structure, however this can result in a
quadratic increase in the size of the problem. Instead, we have extended the nested

Benders algorithm to handle non-Markovian problems directly, and modified solgen
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appropriately. A number of problems have been solved using this new technique.

We have also been working on adaptations of the algorithm to solve certain non-convex
problems which arise in portfolio management. These include the fized-miz portfolio prob-
lem (which has a bilinear constraint on asset holdings) and problems which have guaranteed
return or Value-at-Risk requirements, both of which can be modelled as probabilistic con-

straints.

7 A problem test set and computation times

In this section, we look at five problems which are drawn both from our own work and

from the stochastic programming literature.

e STORM. A two stage stochastic freight scheduling problem (described in Mulvey
and Ruszezyniski (1995)) which is part of the POST standard problem set (available
from http://users.iems.nwu.edu/~ jrbirge/html/dholmes/post.html). Several
other authors supply computation times for this problem, so we do so here for com-

parison.

e WATSON. An asset-liability management problem formulated by Dempster et al.
for Watson Wyatt Worldwide, based on the CALM model (Dempster, 1993; Consigli
and Dempster, 1998a) which is now made publically available (at http://www-

cfr.jims.cam.ac.uk/research/stprog.html).

e CORO. A two-stage formulation of the HChLOUSO hydrocarbon logistics planning
problem (Escudero et al., 1999). The problem here is from the “Case 3” dataset
which involves planning the movement and spot market transactions of seven oil
products between 41 ports, sales locations, and storage depots under uncertain local

demands and prices.

e DROP. An alternative (more tightly constrained) formulation of the HChLOUSO

problem (Dempster et al., 2000), also involving refining and detailed in this volume.

e PFEX. Here we have taken the example problem described above for two assets,
and extended it so that it models 9 asset classes (stocks and bonds) in three currency

regions. Interest rates for the bond processes use a mean-reverting model. In order
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to make the problem realistic, a piecewise linear objective is used in order to give an

attitude towards risk, and a liquidity constraint of the form

|Sit (Wit (W) — Sit(Wh)mig—1y (W )| < I/ZSjt(wt)fL'jt(wt) iel t=2,...,T

jel

is also imposed which stops changes in position between stages being more than a

fraction v of total wealth.

All problems (apart from STORM) were formulated using the stochgen modelling
system in conjunction with either AMPL or XPRESS-MP. Table 2 gives the numbers of

scenarios, stages and (standard form) deterministic equivalent problem dimensions for each

problem.

Problem Stages Scenarios Rows  Columns Non-zeros  Objective
STORMG2.8 2 8 4394 10193 27424 15535235.73
STORMG2.27 2 27 14388 34114 90903 15508982.32
STORMG2.125 2 125 65936 157496 418321  15512091.18
STORMG2.1024 2 1024 526186 1259121 3341696  15802590.35
WATSON.10.256.C 10 256 43518 82177 218888 1849.40
WATSON.10.512.C 10 512 67070 128001 350728 1797.30
WATSON.10.1024.C 10 1024 134128 255987 701428 1798.42
WATSON.10.1920.C 10 1920 251442 479905 1315028 1778.36
WATSON.10.2688.C 10 2688 352014 671861 1841028 1687.72
CORO.2.10 2 10 155246 545633 1456120 24455.41
CORO.2.50 2 50 770446 2688633 7245640 24437.31
DROP.2.10 2 10 155271 500820 2182070  1179057.97
DROP.2.50 2 50 766471 2464820 10769670  1179083.72
PFEX.6.3840 6 3840 207043 109290 763379 14905.98
PFEX.6.7680 6 7680 412483 217770 1520819 7582.11
PFEX.6.30720 6 30720 1126723 609450 4147379 3019.06

Table 2: Test set problem dimensions

We give these statistics with the usual proviso that a problem’s size gives only a very

rough indication of how difficult it is to solve. In particular, the frequent emphasis on
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producing problems with a very large number of scenarios is not always justified. We have
observed (for example for portfolio management problems) that the solution stabilizes
with quite modest numbers of scenarios providing the constraint structure acts to prevent
myopic strategies such as that discussed in Section 1 from being optimal. Nevertheless these
problems can be harder to solve than much larger problems which enjoy more separability.
Although this point is obvious there has been a tendency in the computational literature
on stochastic programming to solve problems with huge numbers of scenarios with little
evidence that the formulation is not unrealistically underconstrained.

Table 3 gives solution statistics for the test set solved using solgen and (where available)
for the same problems solved using the fastest of the CPLEX primal and dual simplex and
barrier methods (indicated by P, D or B respectively in the final column). All experiments
were run on an AMD Athlon 6560MHz with 512MB RAM. Note that the solution times
for all but the two smallest STORM problems are shorter for solgen than for any of the
CPLEX algorithms, sometimes by an order of magnitude. Also, because solgen is aware
of the redundancy in the DSP formulation, memory requirements are reduced and with
the same machine much larger problems can be solved. For the DROP problems it was
necessary to use a regularized master objective; currently this requires the master problems
to be solved using an interior point method. Because interior point methods cannot easily
be hot-started solution times are very long, but we are presently working on simplex-based

methods which should be much faster.

8 Future developments

stochgen 3

In this concluding section we document current and planned development of the STOCHAS-
Tics™ system. The version of stochgen currently under development (shown in Figure 3)
aims to provide the modelling, solution and visualisation features required by industrial
DSP applications with a set of components and standalone tools controlled through a sep-
arate graphical user interface shown in Figure 3. Here we are using Excel for this, allowing
simulator, model and solver parameters to be managed easily. The model (shown being
edited on the left) is an AMPL nodal formulation of a portfolio management problem
(a version of the CALM model described in Consigli and Dempster (1998a,b)), while the
description of the event tree and simulator parameters are maintained separately in an Ex-

cel spreadsheet. Visualization of scenario data and the solution are provided by separate
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solgen CPLEX

Problem time (s) memory (MB) time (s) memory (MB) method
STORMG2.8 241 39 1.30 6 D
STORMG2.27 8.15 46 7.04 16 D
STORMG2.125 45.04 63 89.25 70 D
STORMG2.1024 350.19 238 1363.58 688 B
WATSON.10.256.C 11.16 16 25.01 35 B
WATSON.10.512.C 12.92 21 46.60 95 B
WATSON.10.1024.C  32.80 39 116.61 110 B
WATSON.10.1920.C  55.46 78 207.95 205 B
WATSON.10.2688.C  92.93 100 323.74 287 B
CORO.2.10 269.66 19 1981.35 160 P
CORO.2.50 1003.11 38 22584.52 801 P
DROP.2.10 1688.49 36 2231.00 175 P
DROP.2.50 0623.66 60 52250.13 861 P
PFEX.6.3840 201.47 72 924.25 142 B
PFEX.6.7680 461.92 146 - - -
PFEX.6.30720 2228.40 435 - - -

Table 3: Test set computational results — solgen and CPLEX

Java components. Controlling the whole process from Excel allows automatic solve-resolve
scripts (such as are needed to generate backtest results from historical data) to be written
in VBA. All the stochgen 3 components can be accessed from other languages (Java, C,

C+-+), if this is preferred to VBA, or even used as standalone tools.
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Visualisation

Once a stochastic programme has been solved, there remains the problem of viewing and
analysing the solution. This forms a critical part of the model-solve-analyse cycle, which
must be repeated several times before a satisfactory solution to a DSP problem is found.

Fast and flexible visualization tools are thus essential if DSP is to be widely applied com-

mercially.

DSP solution data consists of the value of the decision variables at nodes on a event tree,
together with constraint dual information. While the variables along each scenario in the
tree can be extracted and viewed using a variety of visualization tools (Excel, MATLAB,

etc., or the component shown in Figure 3), these ‘scenario-viewers’ have the restriction
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that the user can only easily see data along a few scenarios at once. Though this is often
acceptable for visualizing paths of stochastic processes (see Figure 4 for example) the
approach is less well suited to examining solutions of stochastic programs where one may
have hundreds of thousands of scenarios which are subtly related to each other through

the branching of the event tree.

E%’,%LIS equity index M=l E3
L5 equity indesx
2600.0

2000.0

1500.0

1000.0

500.0

0.0 T T T T T

Figure 4: Scenario-based visualization

For example, given a collection of different scenarios with a similar sequence of decisions,
we cannot say if the decisions are the same because the scenarios have not reached the point
in the event tree where they branch from one another, or whether the solution happens to
be rather non-stochastic in this region of the tree. With a scenario-based view, it becomes
impossible to view data for all scenarios at once without seeing a dense ‘cloud’ of scenarios
(as exemplified by Figure 4) in which this branching is obscured. The example in Figure 4
has only 500 scenarios, but it is already hard to distinguish one scenario from another.

With 100,000 scenarios this problem would be insurmountable.
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As part of stochgen 3, a ‘tree viewer’ component has been written which can be used to
visualize and explore data defined on trees. This allocates a single rectangle for each node
in the tree (Figure 5 shows the layout of rectangles for a tree with 2-2-2-2-2 branching) by
placing nodes in the same time-period in a vertical column, with each node to the right
of its predecessor node. The vertical ordering of nodes can also be chosen based on some

function of the nodal problem or solution data.

Eg;‘; Solution viewer M=l B

Figure 5: Tree-visualization, allocating a rectangle for each node, with nodes in the same

time-period stacked vertically

The different rectangles can then be used to display solution information. The benefit
of the tree-based view is that it allows us to see properties such as stability of solution
over the tree, or to find regions of the tree in which the solution behaves unexpectedly. In
Figure 6 we show the solution to the portfolio-management problem of Figure 3 by dividing
each node’s rectangle into vertical bars with width proportional to the proportion of the
portfolio invested in each asset. (Note that nodes in the final stage do not have decision

variables in this model and hence the last column is blank) Figure 7 shows a zoom-in of
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part of the solution.
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Figure 6: Tree-based visualization the solution to a portfolio management problem. Here
the branching in the tree is 50-10-1-1-1.
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Problem generation

The main stumbling block to the solution of very large DSP’s is to effect the generation
of individual sub matrices invoking the stochastic simulator only when required by the
solver. Such an approach is also essential for resampling techniques (Dempster, 1998;
Dempster and Thompson, 1999), where we may deliberately remove part of the event tree
if the resampling algorithm decides that its effect on the solution is minimal and instead

generate a more ‘bushy’ tree in regions where the solution is sensitive to the discretization.

Stochastic programming modelling languages

The STOCHPLAM (Altenstedt, 2001) and SAMPL (Fourer, 1996) extensions to existing de-
terministic modelling languages have been proposed which implement different ways of
expressing the extra information necessary to define a stochastic programming problem.
Their emphasis has been on using a fized event tree, for which the only extra informa-

tion required by the problem generator is the knowledge of at what future time stochastic
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Figure 7: Zoom in on Figure 6.

parameters values become known, variables are chosen and constraints are imposed. In
AMPL this can be done either by using the ‘suffices’ facility to attach extra information
to model entities (as described in Section 5) or by imposing additional structure on the
syntax of the model. We are currently examining both of these approaches to investigate
whether these attempts to extend existing deterministic modelling languages are adequate
or whether a purpose-built stochastic programming modelling language is needed as part

of the SToCcHASTICS™ system under development.
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