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Abstract

We consider the problem of finding bounds on the value of fixed-strike and floating-
strike Asian options. A good lower bound for both types was derived in Rogers & Shi
(1995). We provide an alternative derivation, which leads to a simpler expression for
the bound, and also to the bound given by Curran (1992) for fixed-strike options; we
derive an analogous bound for floating-strike options. Combining these results with a
new upper bound allows the accurate valuation of fixed-strike and floating-strike Asian
options for typical parameter values.

Keywords: Brownian motion, Asian option, fixed-strike, floating-strike.

1 Introduction

A fixed-strike Asian (call) option with strike K > 0 and maturity T on an asset with price
process {St} is a contract with value ( 1

T

∫ T
0 St dt−K)+ at time T . We assume that T = 1 year

and that the asset price follows a geometric Brownian motion St = S exp(σBt + ct) where c
is a constant, S and σ are positive constants and Bt is a Brownian motion. The arbitrage-
free time-0 value of this option is then equal to exp(−ρ)E[(

∫ 1
0 S exp(σBt + αt) dt −K)+],

where ρ is the risk-free interest rate (assumed constant) and α = ρ − 1
2σ

2 (see Baxter &
Rennie (1996) for an introduction to arbitrage-free valuation). Thus the problem of valuing
the option boils down to calculating E[(S

∫ 1
0 exp(σBt+αt) dt−K)+]. Another type of Asian

option, the floating-strike option, pays out (
∫ 1

0 St dt− S1)+, and leads to the consideration
of E[(

∫ 1
0 exp(σBt + αt) dt− exp(σB1 + α))+].

Several approaches to the problem of valuing Asian options have been tried. Carverhill
& Clewlow (1990) use a convolution method to compute the distribution of

∫ 1
0 St dt, and

work by Yor (1992) and Geman & Yor (1993) has lead to a formula for the price as a triple
integral. Approximate formulae and bounds in the form of single and double integrals
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by Levy (1992), Levy & Turnbull (1992), Curran (1992) and Rogers & Shi (1995) seem
to be faster to evaluate however, and the methods of this paper fall into this category.
Using intuition and simple optimization we derive bounds on the value of fixed-strike and
floating-strike Asian options which can be computed quickly, and which are accurate for
typical parameter values. The method generalizes to other options on sums of lognormal
assets: discretely monitored Asians, currency basket options, and swaptions in Gaussian
HJM models, for example.

The plan of this paper is as follows: in Section 2 we state some useful facts about covari-
ances related to Brownian motion, and in Section 3 present the impressive lower bound of
Rogers & Shi (1995) for fixed-strike and floating-strike options, and the approximation to
the fixed-strike bound given by Curran (1992). This approximation is notable since it is very
close to the bound of Rogers & Shi (1995) and is much easier to compute, involving only
one-dimensional integrals rather than a troublesome two-dimensional integral. We give an
alternative derivation of the bounds of Rogers & Shi (1995), leading to an expression involv-
ing only one-dimensional integrals; we also provide a generalization Curran’s approximation
to floating-strike options.

In Section 4 we derive upper bounds to complement the lower bounds, and in Section 5
we present a numerical comparison of the various bounds discussed here, using the parameter
values from Curran (1992).

2 Useful covariances

Like most of the approximation formulae in the literature, we will exploit the high correlation
between

∫ 1
0 exp(σBt + αt) dt and

∫ 1
0 Bt dt for the values of σ and α met in practice, and

the fact that the second integral is Gaussian. We will need the covariance matrix of the
bivariate Gaussian random variable (Bt,

∫ 1
0 Bs ds):

E

((
Bt,

∫ 1

0
Bs ds

)T (
Bt,

∫ 1

0
Bs ds

))
=

(
t t(1− t/2)

t(1− t/2) 1
3

)
.

Thus the conditional distribution of Bt given
∫ 1

0 Bs ds = z is normal with mean 3t(1− t/2)z
and variance t− 3t2(1− t/2)2, and the conditional distribution of

∫ 1
0 Bs ds given Bt = x is

normal with mean (1− t/2)x and variance 1
3 − t(1− t/2)2. We will also need the covariance

matrix of (Bt,
∫ 1

0 Bs ds−B1):

E

((
Bt,

∫ 1

0
Bs ds−B1

)T (
Bt,

∫ 1

0
Bs ds−B1

))
=

(
t −t2/2

−t2/2 1
3

)
,
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so, given
∫ 1

0 Bs ds−B1 = x, the conditional distribution of Bt is normal with mean −3t2x/2
and variance t− 3t4/4.

3 Lower bounds

In this section we present two derivations of the bound of Rogers & Shi (1995): their
own, and an alternative, which yields a simpler expression for the bound. It also leads
to the bound of Curran (1992) for fixed-strike options. We show how a similar bound for
floating-strike options may be derived.

The derivation of Rogers & Shi (1995) exploits the inequality:

E

[
A+
]

= E

[
E

(
A+ C

)]
≥ E

[
(E (A C))+]

which holds for any random variables A and C.
For fixed-strike Asian option they choose A =

∫ 1
0 St dt−K and C =

∫ 1
0 Bt dt. Since the

inner expectation is
∫ 1

0 E

(
S exp (σBt + αt)

∫ 1
0 Bs ds

)
dt−K and, conditional

∫ 1
0 Bt dt = z,

Bt is normal with mean 3t(1− t/2)z and variance t− 3t2(1− t/2)2, we have the bound

Vfixed ≥ e−ρ
∫ ∞
−∞

√
3φ
(√

3z
)[∫ 1

0
Se3σt(1−t/2)z+αt+

1
2σ

2(t−3t2(1−t/2)2) dt−K
]+

dz. (3.1)

To bound a floating-strike option they use A =
∫ 1

0 St dt− S1, C =
∫ 1

0 Bt dt−B1, and get

Vfloating ≥ e−ρ
∫ ∞
−∞

√
3φ
(√

3z
)[∫ 1

0
S exp

(
−3σt2z/2 + αt+ 1

2σ
2
(
t− 3t4/4

))
dt−

S exp
(
−3σz/2 + α+ σ2/8

))]+

dz.

Both of these formulae are slightly tricky to evaluate since the outer integration has a
non-smooth integrand.

An alternative approach is to approximate the event that the option eventually ends
in-the-money with something more tractable. Let A = {ω :

∫ 1
0 St dt > K}, and note that

E

[(∫ 1

0
S exp (σBt + αt) dt−K

)+
]

=
∫ 1

0
E [(S exp (σBt + αt)−K) I(A)] dt. (3.2)

If we replace A by some other event A′, we no longer have equality in (3.2); the right hand
side is now a lower bound. We will use A′ = {

∫ 1
0 Bt dt > γ}. This Gaussian form allows

the expectation to be written as a Black-Scholes type formula once γ has been determined,
and just leaves us with a one-dimensional integral of a smooth integrand, which should be
very fast.
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To determine the optimal value of γ, let Nt = σBt + αt + logS and note that for any
random variable X with density fX(x)

∂

∂γ

∫ 1

0
E (exp(Nt)−K;X > γ) dt =

∫ 1

0
E (exp (Nt)−K X = γ) (−fX (γ)) dt.

Thus the optimal value of γ, γ∗ satisfies∫ 1

0
E(exp(Nt) | X = γ∗) dt = K. (3.3)

With our choice of X =
∫ 1

0 Bt dt, we conclude that∫ 1

0
S exp

(
3γ∗σt (1− t/2) + αt+ 1

2σ
2
(
t− 3t2 (1− t/2)2

))
dt = K, (3.4)

which determines γ∗ uniquely. We now have the bound

Vfixed ≥ e−ρ
∫ 1

0
E

[(
SeσBt+αt −K

)
I

(∫ 1

0
Bs ds > γ∗

)]
dt,

and it remains to calculate the expectation. Fix t ∈ (0, 1) and let N1 = σBt + αt + logS
and N2 =

∫ 1
0 Bs ds− γ

∗. Write µi = E(Ni), σ2
i = Var(Ni) and c = Cov(N1, N2), then using

E

[(
eN1 −K

)
I (N2 > 0)

]
= eµ1+ 1

2
σ2

1Φ
(
µ2 + c

σ2

)
−KΦ

(
µ2

σ2

)
,

where Φ is the normal distribution function, and substituting µ1 = αt + logS, µ2 = −γ∗,
σ2

1 = σ2t, σ2
2 = 1

3 , c = σt(1− t/2), we have

Vfixed ≥ e−ρ
[∫ 1

0
Seαt+

1
2
σ2tΦ

(
−γ∗ + σt (1− t/2)

1/
√

3

)
dt−KΦ

(
−γ∗

1/
√

3

)]
.

Integrating this numerically is significantly easier than integrating (3.1).
To see that this bound gives the same answers as that of Rogers & Shi (1995), let

Y =
∫ 1

0 St dt, Z =
∫ 1

0 Bt dt and note that E[(E(Y − K|Z))+] = E[(E(Y − K|Z))I(E(Y −
K|Z) > 0)], and since from (3.3) and (3.4), E(Y − K|Z) is strictly increasing in Z, we
have: E(Y − K|Z) > 0 if and only if Z > γ∗. Thus γ∗ satisfies E[(E(Y − K|Z))+] =
E[(E(Y −K|Z))I(Z > γ∗)] which is just E[(Y −K)I(Z > γ∗)].

The bound of Curran (1992) arises from solving (3.4) approximately, using the following
method: let f(γ) = E(

∫ 1
0 S exp(σBt + αt) dt|

∫ 1
0 Bs ds = γ), and note that a reasonable

approximation to f is f̃(γ) := S exp(γσ + α/2), obtained by interchanging the orders of
integration and exponentiation. Recall that we seek γ∗ = f−1(K) and observe that if f ≈ f̃
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then f−1(x) ≈ f̃−1(2x − f ◦ f̃−1(x)), the approximation being exact if f − f̃ is constant.
Thus γ∗ ≈ f̃−1(2K − f ◦ f̃−1(K)), giving

γ∗ ≈ σ−1

[
log
(

2K
S
−
∫ 1

0
e3(log(K/S)−α/2)t(1−t/2)+αt+

1
2σ

2(t−3t2(1−t/2)2) dt

)
− α/2

]
,

which is the continuous limit of the bound given by Curran (1992).
For the floating-strike option, let A = {ω :

∫ 1
0 St dt > S1} and use an approximation

to A of the form A′ = {
∫ 1

0 Bt dt − B1 > γ}. With this choice, γ∗, the optimal value of γ,
satisfies

E

[∫ 1

0
(S exp (σBt + αt)− S exp (σB1 + α)) dt

∫ 1

0
Bs ds−B1 = γ∗

]
= 0

giving

exp
(
3γ∗σ/2− α− σ2/8

) ∫ 1

0
exp

(
−3γ∗σt2/2 + αt+ 1

2σ
2
(
t− 3t4/4

))
dt = 1, (3.5)

which has a unique solution.
Our lower bound for the floating-strike case is thus

Vfloating ≥ e−ρ
∫ 1

0
E

[(
S exp (σBt + αt)− S exp (σB1 + α)

)
I

(∫ 1

0
Bs ds−B1 > γ∗

)]
dt,

which reduces to

Vfloating ≥ e−ρ
[∫ 1

0
Seαt+

1
2
σ2tΦ

(
−γ∗ − σt2/2

1/
√

3

)
dt− Seα+ 1

2
σ2

Φ
(
−γ∗ − 1/2

1/
√

3

)]
.

Again this bound gives the same answers as that of Rogers & Shi (1995). To see this, let
Y =

∫ 1
0 St dt, Z =

∫ 1
0 Bt dt, and note first that

∂

∂γ
E (Y − S1 Z −B1 = γ) =

∫ 1

0
(−3σt2/2) exp(A(t, γ)) dt+ (3σ/2) exp(A(1, γ)),

where A(t, γ) = logS − 3γσt2/2 +αt+ 1
2σ

2
(
t− 3t4/4

)
. Since γ∗ solves E(Y −S1|Z −B1 =

γ∗) = 0, we have
∫ 1

0 exp(A(t, γ∗)) dt = exp(A(1, γ∗)), so

∂

∂γ γ=γ∗
E (Y − S1 Z −B1 = γ) =

∫ 1

0
(3σ(1− t2)/2) exp(A(t, γ∗)) dt > 0.

Thus E (Y − S1 Z −B1 = γ) > 0 if and only if γ > γ∗. A similar argument to the fixed-
strike case completes the proof.

We can now generalize Curran’s formula to the case of floating-strike options by solving
(3.5) approximately. Let f(γ) = e3γσ/2−α−σ2/8

E(
∫ 1

0 e
σBt+αt|

∫ 1
0 Bt dt − B1 = γ) and let
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f̃(γ) = exp(σγ − α/2) be the approximation to f obtained by interchanging the orders
of integration and exponentiation. Then the solution to (3.5) is given approximately by
γ∗ ≈ f̃−1(2− f ◦ f̃−1(1)), giving

γ∗ ≈ σ−1

[
α/2 + log

(
2− e−α/4−σ2/8

∫ 1

0
exp

(
αt− 3αt2/4 + 1

2σ
2
(
t− 3t4/4

))
dt

)]
.

4 Upper bounds

In this section we derive a new upper bound on the value of fixed-strike and floating-strike
Asian options in the form of a double integral. Rogers & Shi (1995) obtained an upper
bound by considering the error made by their lower bound (see Section 3). As an indication
of their relative accuracy, if σ = 0.3, ρ = 0.09, S = 100, and T = 1 year and k = 100, the
lower bounds of Section 3 are both 8.8275 and the upper bound of this section is 8.8333.
By comparison, the upper bound given by Rogers & Shi (1995) is 9.039.

The inequality underlying the new bound is the following: let X be a random variable,
and let ft(ω) be a random function with

∫ 1
0 ft(ω) dt = 1 for all ω. Then

E

[(∫ 1

0
S exp(σBt + αt) dt−X

)+
]

= E

[(∫ 1

0
(S exp(σBt + αt)−Xft) dt

)+
]

≤ E
[∫ 1

0
(S exp(σBt + αt)−Xft)+ dt

]
(4.1)

=
∫ 1

0
E

[
(S exp (σBt + αt)−Xft)+] dt.

For both the fixed-strike and floating-strike cases we will use ft = µt + σ(Bt −
∫ 1

0 Bs ds),
where µt is a deterministic function satisfying

∫ 1
0 µt dt = 1; and derive an expression for µt

which is approximately optimal in each case. As the bounds have a very similar derivation
we will concentrate on the fixed-strike option and give the appropriate modifications for the
floating-strike case at the end of the section.

Take X = K in (4.1) and first consider the choice ft = µt. To choose µt we will minimize
the right hand side of (4.1) over the set of deterministic functions ft such that

∫ 1
0 ft dt = 1.

Let L(λ, {ft}) = E[
∫ 1

0 (S exp(σBt +αt)−Kft)+ dt−λ(
∫ 1

0 ft dt− 1)] be the Lagrangian, and
consider stationarity with respect to {ft} for the unconstrained problem. This gives the
condition ∫ 1

0
(−KP (S exp (σBt + αt) ≥ Kft)− λ) εt dt = 0,

where {εt} is some small deterministic perturbation. Thus we see that P(S exp(σBt+αt) ≥
Kft) must be independent of t. Equivalently we have log(Kft/S) − αt = γσ

√
t for some
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constant γ. Thus the optimal choice for ft is

ft = (S/K) exp
(
σγ
√
t+ αt

)
,

where the constant γ is chosen so that
∫ 1

0 ft dt = 1. Since
∫ 1

0 ft dt is monotone increasing
in γ, the correct value for γ is easy to estimate numerically.

If instead ft = µt+σ(Bt−
∫ 1

0 Bs ds), the condition for stationarity with respect to small
deterministic perturbations is

P

[
S exp(σBt + αt) ≥ K

(
µt + σ

(
Bt −

∫ 1

0
Bs ds

))]
= λ, for all t, (4.2)

but this cannot easily be re-arranged to give the dependence of µt on λ. Instead we will
use the approximation exp(σBt) ≈ 1 + σBt which should be reasonable for small σ. This
leads to the condition P(S exp(αt)(1 +σBt) ≥ Kft) = λ for all t. Letting Nt = S exp(αt) +
(S exp(αt)σ −Kσ)Bt +Kσ

∫ 1
0 Bs ds, we conclude that P(Nt ≥ Kµt) must be independent

of t. Using the facts about the joint distribution of (Bt,
∫ 1

0 Bs ds) given in Section 2, we
deduce that

µt =
1
K

(S exp (αt) + γ
√
vt) , (4.3)

where

vt = Var(Nt) = c2
t t+ 2(Kσ)ctt(1− t/2) + (Kσ)2/3, (4.4)

ct = S exp(αt)σ −Kσ. (4.5)

Imposing
∫ 1

0 µt dt = 1 gives

γ =
(
K − S(eα − 1)/α

) / ∫ 1

0

√
vt dt. (4.6)

We estimate the integral
∫ 1

0

√
vt dt numerically. We now know the constant γ and hence

the function µt for our upper bound:

Vfixed ≤ e−ρ
∫ 1

0
E

[(
S exp (σBt + αt)−K

(
µt + σ

(
Bt −

∫ 1

0
Bs ds

)))+
]
dt.

Conditioning on Bt = x, this becomes

Vfixed ≤ e−ρ
∫ 1

0

∫ ∞
−∞

1√
t
φ

(
x√
t

)
E

[
(a(t, x) + b(t, x)N)+] dx dt, (4.7)
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where N has a N(0, 1) distribution, and the functions a and b are given by

a(t, x) = S exp (σx+ αt)−K(µt + σx) +Kσ(1− t/2)x, (4.8)

b(t, x) = Kσ
√

1
3 − t (1− t/2)2. (4.9)

The calculation of E[(a+bN)+] is straightforward and gives aΦ(a/b)+bφ(a/b). In the form
of (4.7) the integrand is badly behaved near (0, 0) so we perform the change of variables
v =
√
t, w = x/

√
t, giving

Vfixed ≤ e−ρ
∫ 1

0

∫ ∞
−∞

2vφ(w)
[
a(t, x)Φ

(
a(t, x)
b(t, x)

)
+ b(t, x)φ

(
a(t, x)
b(t, x)

)]
dw dv.

This expression, combined with (4.3), (4.4), (4.5), (4.6), (4.8) and (4.9), constitutes the
upper bound in the fixed-strike case.

For the case of a floating-strike option, we now take X = S1. Setting Z =
∫ 1

0 Bt dt,
the condition for stationarity with respect to small deterministic perturbations analogous
to (4.2) is

E [−S exp(σB1 + α);S exp(σBt + αt) ≥ (µt + σ (Bt − Z))S exp(σB1 + α))] = λ, ∀t.

We approximate this by

P[S exp(σBt + αt) ≥ (µt + σ(Bt − Z))S exp(σB1 + α)] = λ′, ∀t,

and further, using the approximation exp(σ(Bt −B1)) ≈ 1 + σ(Bt −B1), by

P[exp(α(t− 1))(1 + σ(Bt −B1) ≥ µt + σ(Bt − Z))] = λ′′, ∀t.

This implies that for some γ,

µt = exp (α (t− 1)) + γ
√
vt

where vt = Var[exp(α(t−1))(1+σ(Bt−B1))−σ(Bt−Z)]. Since
∫ 1

0 µt dt = 1 we must have
γ = (1− (1− exp(−α))/α)/

∫ 1
0

√
vt dt. Our bound is thus

Vfloating ≤ e−ρ
∫ 1

0
E

[(
SeσBt+αt − (µt + σ (Bt − Z))SeσB1+α

)+]
dt

= e−ρ
∫ 1

0
E

[(
eN1(t) −N2(t)eN3(t)

)+
]
dt,

where N1(t) = σBt+αt+logS, N2(t) = µt+σ(Bt−
∫ 1

0 Bs ds) and N3(t) = σB1 +α+logS.
If we condition on N2(t) = x we can perform the remaining expectation analytically. Let
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µi(t) = E(Ni(t)), σij(t) = Cov(Ni(t), Nj(t)) and denote by tildes the conditional distribu-
tions given N2(t) = x: µ̃i(t, x) = µi + (x − µ2)σi2/σ22 and σ̃ij = σij − σi2σj2/σ22. Finally
let v2 = Var(N1(t)−N3(t)|N2(t) = x) = σ̃11 − 2σ̃13 + σ̃33.

Our upper bound on the price of a floating-strike Asian option is then

Vfloating ≤ e−ρ
∫ 1

0

∫ ∞
−∞

1
√
σ22

φ

(
x− µ2√
σ22

)[
eµ̃1+ 1

2
σ̃11Φ

(
µ̃1 − µ̃3 − log(x) + σ̃11 − σ̃13

v

)
− xeµ̃3+ 1

2
σ̃33Φ

(
µ̃1 − µ̃3 − log(x) + σ̃13 − σ̃33)

v

)]
dx dt,

where we take log(x) = −∞ for x ≤ 0.

5 Numerical Results

In Table 1 we consider fixed-strike options and show the upper bound of Rogers & Shi
(1995), the upper and lower bounds derived in Sections 3 and 4, the approximation of
Curran (1992) and the Monte-Carlo results of Levy & Turnbull (1992). All calculations
assume ρ = 0.09, an initial stock price of S = 100 and an expiry time of 1 year. For the
lower bound and the new upper bound, the approximate time taken (on an HP 9000/730)
is parenthesized; for the Monte-Carlo studies, the estimated standard error is bracketed
beneath.

In Table 2 we show how the upper and lower bounds of Rogers & Shi (1995) compare to
the upper bound of Section 4 and the generalization to floating-strike options of Curran’s
lower bound, described in Section 3. The approximate time taken is parenthesized.
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Volatility σ Strike K Curran lower R–S lower M–C result Upper bound R–S upper

95 8.8088 8.8088 8.81 8.8089 8.821
(0.00016) (0.0019) [0.00] (0.013)

0.05 100 4.3082 4.3082 4.31 4.3084 4.318
(0.00012) (0.0011) [0.00] (0.019)

105 0.9583 0.9583 0.95 0.9585 0.968
(0.00012) (0.0011) [0.00] (0.019)

95 8.9118 8.9118 8.91 8.9130 8.95
(0.00016) (0.0018) [0.00] (0.019)

0.10 100 4.9150 4.9150 4.91 4.9155 5.10
(0.00023) (0.0017) [0.00] (0.020)

105 2.0699 2.0699 2.06 2.0704 2.34
(0.00023) (0.0018) [0.00] (0.021)

90 14.9827 14.9827 14.96 14.9929 15.194
(0.00023) (0.0019) [0.01] (0.024)

0.30 100 8.8275 8.8275 8.81 8.8333 9.039
(0.00023) (0.0019) [0.01] (0.024)

110 4.6949 4.6949 4.68 4.7027 4.906
(0.00023) (0.0018) [0.01] (0.028)

90 18.1829 18.1829 18.14 18.2208 18.57
(0.00023) (0.0019) [0.03] (0.028)

0.50 100 13.0225 13.0225 12.98 13.0569 13.69
(0.00023) (0.0018) [0.03] (0.063)

110 9.1179 9.1179 9.10 9.1561 9.97
(0.00023) (0.0018) [0.03] (0.064)

Table 1 Comparison of various bounds on fixed-strike Asian option prices for S = 100,
ρ = 0.09, and an expiry time of 1 year. Parenthesized numbers are computation times
in seconds, bracketed numbers are estimates of standard errors (from Curran (1992)).
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Volatility σ Interest Rate ρ Generalized R–S lower Upper bound R–S upper

0.05 1.2454 1.2454 1.2457 1.355
(0.00018) (0.0036) (0.027)

0.1 0.09 0.6992 0.6992 0.6997 0.825
(0.00020) (0.0054) (0.025)

0.15 0.2516 0.2516 0.2525 0.415
(0.00020) (0.0078) (0.024)

0.05 3.4044 3.4044 3.4064 3.831
(0.00017) (0.0024) (0.031)

0.2 0.09 2.6216 2.6216 2.6237 3.062
(0.00020) (0.0032) (0.033)

0.15 1.7098 1.7098 1.7124 2.187
(0.00020) (0.0044) (0.028)

0.05 5.6246 5.6246 5.6318 6.584
(0.00017) (0.0018) (0.028)

0.3 0.09 4.7382 4.7382 4.7456 5.706
(0.00020) (0.0022) (0.033)

0.15 3.6085 3.6085 3.6166 4.604
(0.00020) (0.0032) (0.033)

Table 2 Comparison of bounds on floating-strike Asian option prices for S = 100 with
an expiry time of 1 year. Parenthesized numbers are computation times in seconds.
The parameter values are those used in Rogers & Shi (1995).
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