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Abstract

In this paper we consider the problem of pricing European options which contain a
knock-out clause involving one or two curved boundaries. Using a change of measure and
Jensen’s inequality we derive upper and lower bounds in the form of double integrals,
and demonstrate their accuracy with relevant numerical examples.
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1 Introduction

A barrier option is a type of path-dependent or ‘exotic’ option, which like most such options
cannot be priced analytically except in a few special cases. A simple example of a barrier
option is a knock-out call option on a stock price; this is a European call option with
an extra clause canceling the contract if the stock price hits a specified boundary. More
complex is the ‘double barrier’ option, with both an upper and a lower knock-out boundary.
Alternatively the contract might be ‘knock-in’, permitting exercise only if the stock price
has hit the boundary before the option’s expiry.

In this paper we will restrict our attention to single and double barrier knock-out options
(the value of the corresponding knock-in can be found by subtracting the value of the knock-
out from the value of the normal European option). Other types of barrier option which
we will not consider include ‘protected’ barrier options, where the barrier clause is only
effective for part of the time, ‘rainbow’ barrier options, where the barrier clause refers to
the price of a second stock, and ‘Parisian’ options, where cancellation only occurs after the
time spent above the boundary exceeds a threshold.

For the case of a constant boundary or an ‘exponential’ boundary (a boundary whose
logarithm is a linear function of time), a simple analytic solution exists (see Goldman, Sosin
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& Gatto (1979) or Musiela & Rutkowski (1997) for example) but except for these cases,
explicit formulae cannot normally be found.

One reason for considering options with more general boundaries is to allow us to extend
the Black-Scholes model to allow for a deterministic but time dependent volatility and
interest-rate. The valuation of the standard European call option is no harder in this
new model than before, but valuing even the simplest barrier option generally becomes
intractable.

Numerical methods based on trees and lattices are very popular approaches to the
problem of pricing barrier options, but these can require extensive computation to obtain
accurate results (see Boyle & Lau (1994) for a discussion) unless a more ingenious approach
is employed (see Rogers & Zane (1997) and Rogers & Stapleton (1997) for very successful
methods).

Less numerical methods, aiming to leave the answer as an infinite series or as a single
or double integral can also be very successful. In Kunitomo & Ikeda (1992) the case of
two exponential boundaries is considered and a formula in the form of a rapidly convergent
infinite series is derived. Another approach via Laplace transforms is pursued in Geman
& Yor (1996), for the case of two constant boundaries. Methods applicable to problems
with more general boundaries include that of Roberts & Shortland (1997) using hazard
rate bounds, and Lo (1997) who uses a clever modification of the method of images to
yield a simple explicit formula for the approximate value, together with a bound on the
error. In principle, the method of Lo (1997) can be used to produce formulae with arbitrary
precision. It also has the advantage of giving a simple pricing formulae rather than leaving
the answer as an integral, though her method requires judicious parameter choices to achieve
very narrow bounds. The method derived in this paper give a much more complex pricing
formula, but is simple to use and also gives narrow bounds.

2 Notation

We assume that the stock price St follows a Black-Scholes model St = S0 exp(σBt + αt),
where Bt is a standard Brownian motion, the volatility σ, the initial stock price S0, and the
interest-rate ρ, are positive constants and w.l.o.g. α = ρ− 1

2σ
2. The arbitrage-free value of

the option is then e−ρTE[(ST −K)+ I(A)] where T is the option’s expiry time, K the strike
price, I(A) denotes the indicator function of the event that the option is not knocked-out
and ( · )+ denotes max( · , 0).

Among the various flavours of one-sided options, we will concentrate on the ‘up-and-
out’ call option. This has a single knock-out boundary Ft, which satisfies F0 > S0; thus
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the contract is cancelled if St ≥ Ft for some 0 ≤ t ≤ T . It is more convenient to have
the boundary expressed in terms of the underlying Brownian motion Bt, so we define ft =
σ−1(log(Ft/S0) − αt). With this definition, the up-and-out option is cancelled if and only
if Bt ever hits ft. The ‘down-and-out’ option, where the knock-out boundary is initially
below the stock price can be handled similarly.

Turning to the two-sided knock-out option, we have two boundaries Gt < Ft, with
G0 < S0 < F0, and must cancel the contract if ever St 6∈ (Gt, Ft). Defining ft as above and
gt by gt = σ−1(log(Gt/S0)− αt), we cancel the contract if Bt 6∈ (gt, ft) for some 0 ≤ t ≤ T .

As mentioned previously, the ‘up-and-in’ variant option where the contract is worthless
unless the boundary is hit, poses no additional problem since the sum of an up-and-in call
and an up-and-out call is equivalent to a normal European call. We will denote by X the
time-T value of the standard European call (S0 exp(σBT + αT )−K)+.

The only technical assumption we will need is that ft, and gt be twice-differentiable, in
particular, they are continuous.

3 One-sided barrier options

In this section we consider the up-and-out call option, whose time-T value is (S0 exp(σBT +
αT ) −K)+ I(Bs < fs, 0 ≤ s ≤ T ), and will derive upper and lower bounds on the time-0
value in the form of double integrals.

Recall the definition X = (S0 exp(σBT +αT )−K)+ as the time-T value of the standard
European call option, and that the time-0 value of the up-and-out option is e−ρTE[X I(Bs <
fs, 0 ≤ s ≤ T )]; we will attempt to bound E[X I(Bs < fs, 0 ≤ s ≤ T )]. Let B̃t = Bt−ft+f0

and define the probability measure P̃ by dP̃/dP = exp
(∫ T

0 f ′t dBt − 1
2

∫ T
0 (f ′t)

2 dt
)

. By the
Cameron-Martin-Girsanov Theorem we have

E [X I(Bs < fs, 0 ≤ s ≤ T )] = Ẽ

[
e−
∫ T
0 f ′t dB̃t−

1
2

∫ T
0 (f ′t)

2 dtX I(B̃s < f0, 0 ≤ s ≤ T )
]

where B̃ is a P̃-Brownian motion. Integrating f ′t dB̃t by parts we have

E [X I(Bs < fs, 0 ≤ s ≤ T )] = e−
1
2

∫ T
0 (f ′t)

2 dt
Ẽ

[
e
∫ T
0 f ′′t B̃t dt−f ′T B̃TX I(B̃s < f0, 0 ≤ s ≤ T )

]
.

(3.1)

Now recall Jensen’s inequality for exp(y): for any random variable Y , E exp(Y ) ≥
exp(EY ), and

∫ 1
0 exp

(
a(t)

)
dt ≥ exp

(∫ 1
0 a(t) dt

)
with equality if and only if Y (respectively

a) is almost surely constant. Notice that if β is a non-negative random variable with Eβ > 0
we have E(exp(Y )β) ≥ (Eβ) exp

(
E(Y β)/(Eβ)

)
and if T > 0 then T−1

∫ T
0 exp

(
Ta(t)

)
dt ≥
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exp
(∫ T

0 a(t) dt
)

. Using these forms of Jensen’s inequality we can bound the expectation
on the right-hand-side of (3.1) as follows(

Ẽβ
)
e(
∫ T
0 Ẽ(γtβ) dt)/(Ẽβ) ≤ Ẽ

(
e
∫ T
0 γt dtβ

)
≤ 1
T

∫ T

0
Ẽ

(
eTγtβ

)
dt, (3.2)

where γt = f ′′t B̃t and β = exp
(
− f ′T B̃T

)
X I(B̃s < f0, 0 ≤ s ≤ T ). Note that both of these

bounds are exact if and only if f ′′t = 0 for almost all t ∈ [0, T ], i.e. when f is linear.
Defining

G(a, S0, σ,K, u, t) = E

[
eaWt

(
S0e

σWt −K
)

+
I(Ws < u, 0 ≤ s ≤ t)

]
(3.3)

for a P-Brownian motionW , we see that Ẽβ = G
(
−f ′T , S0 exp

(
αT + σ(fT − f0)

)
, σ,K, f0, T

)
.

The function G can be written in terms of the normal distribution function Φ, as

G(a, S0, σ,K, u, t) =

I(l < u) I(u > 0)S0e
1
2

(a+σ)2t

{[
Φ
(
u− (a+ σ)t√

t

)
− Φ

(
l − (a+ σ)t√

t

)]
+

e2(a+σ)u

[
Φ
(
u+ (a+ σ)t√

t

)
− Φ

(
2u− l + (a+ σ)t√

t

)]}
−Ke

1
2
a2t

{[
Φ
(
u− at√

t

)
− Φ

(
l − at√

t

)]
+ e2au

[
Φ
(
u+ at√

t

)
− Φ

(
2u− l + at√

t

)]}
where l = σ−1 log(K/S0). We now consider the expressions Ẽ(γtβ) and Ẽ(exp(Tγt)β).
Conditioning on B̃t = x we have

Ẽ(γtβ) = Ẽ

[
f ′′t B̃te

−f ′T B̃TX I(B̃s < f0, 0 ≤ s ≤ T )
]

= f ′′t

∫ f0

−∞
xP̃
(
B̃s < f0, 0 ≤ s ≤ t, and B̃t ∈ dx

)
× Ẽ

[
e−f

′
T B̃TX I

(
B̃s < f0, t ≤ s ≤ T

) ∣∣ B̃t = x
]
, (3.4)

and for Ẽ[exp(Tγt)β ], we have

Ẽ

(
eTγtβ

)
= Ẽ

[
eTf

′′
t B̃te−f

′
T B̃TX I(B̃s < f0, 0 ≤ s ≤ T )

]
=
∫ f0

−∞
eTxf

′′
t P̃

(
B̃s < f0, 0 ≤ s ≤ t, and B̃t ∈ dx

)
× Ẽ

[
e−f

′
T B̃TX I

(
B̃s < f0, t ≤ s ≤ T

) ∣∣ B̃t = x
]
. (3.5)

To evaluate the integrands, we use the well-known result that

P̃

(
B̃s < f0, 0 ≤ s ≤ t, and B̃t ∈ dx

)
= I(x < f0)

1√
t

[
φ

(
x√
t

)
− φ

(
2f0 − x√

t

)]
dx, (3.6)

4



and observe that we can write the expectation on the right-hand side of (3.4) and (3.5) as

Ẽ

[
e−f

′
T (x+W̃T−t)

(
S0e

σ(x+W̃T−t+fT−f0)+αT −K
)

+
I(W̃s < f0 − x, 0 ≤ s ≤ T − t)

]
= e−xf

′
TG
(
−f ′T , S0e

αT+σ(x+fT−f0), σ,K, f0 − x, T − t
)

where W̃s = B̃s+t − B̃t, 0 ≤ s ≤ T − t is a P̃-Brownian motion, giving bounds in the form
of a double integral.

4 Two-sided barrier options

Deriving bounds on the value of double-barrier options is slightly more complicated than
the single-barrier case.

Recall that if X is the time-T value of a standard European call option, then the time-0
value of the two-sided knock-out option is given by e−ρTE[X I(gs < Bs < fs, 0 ≤ s ≤ T )];
we will try to bound E[X I(gs < Bs < fs, 0 ≤ s ≤ T )]. We start by transforming B to give
a process with unit volatility, and under which the knock-out boundaries become constant
(similar to the approach of Rogers & Zane (1997)). Define the process Yt = (Bt−gt)/(ft−gt)
so

dYt =
dBt
ft − gt

− dt

ft − gt
[
g′t + Yt

(
f ′t − g′t

)]
,

the time change τt, by τ−1
0 = 0,

(
τ−1
s

)′ = (fs − gs)−2 and finally set Zt = Yτt and T̃ = τ−1
T .

The process Zt is then a diffusion with SDE

dZt = dWt + (ζt + ξtZt) dt, Z0 = −g0/(f0 − g0),

for some P-Brownian motion W , where, writing s = τt we have

ζt = −(fs − gs)g′s,

ξt = −(fs − gs)(f ′s − g′s).

We now follow the same path as in Section 3. Define the probability measure P̃ by
dP̃/dP = exp

(
−
∫ T̃

0 (ζt + ξtZt) dWt − 1
2

∫ T̃
0 (ζt + ξtZt)

2 dt
)

and use the Cameron-Martin-
Girsanov Theorem to give

E[X I(gs < Bs < fs, 0 ≤ s ≤ T )] = Ẽ

[
e
∫ T̃
0 (ζt+ξtZt) dZt− 1

2

∫ T̃
0 (ζt+ξtZt)2 dtX I(0 < Zu < 1, 0 ≤ u ≤ T̃ )

]
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where Zt − Z0 is now a Brownian motion under P̃. From Itô’s Lemma we have d(ζtZt) =
ζ ′tZt dt+ ζt dZt and d(ξtZ2

t ) = ξ′tZ
2
t dt+ 2ξtZt dZt + ξt dt so

E [X I(gs < Bs < fs, 0 ≤ s ≤ T )] = e−ζ0Z0− 1
2
ξ0Z2

0−
1
2

∫ T̃
0 (ζ2

t +ξt) dt × Ẽ
[
e
∫ T̃
0 γt dtβ

]
, (4.1)

where, again writing s = τt we have

γt = −
(
ζ ′t + ζtξt

)
Zt − 1

2

(
ξ′t + ξ2

t

)
Z2
t

= (fs − gs)3
(
g′′sZt + 1

2(f ′′s − g′′s )Z2
t

)
, (4.2)

β = exp
(
ζT̃ZT̃ + 1

2ξT̃Z
2
T̃

)
X I(0 < Zu < 1, 0 ≤ u ≤ T̃ ).

We now use inequalities (3.2), replacing T with T̃ , to bound the expectation on the right-
hand side of (4.1). From (4.2) we see that these bounds are exact if and only if both f and
g are linear.

It remains to compute Ẽβ, Ẽ(γtβ) and Ẽ(exp(Tγt)β). To do this we need the result that
if W is a Brownian motion and

P (l, u, t, x) = P (Wt ∈ dx, and l < Ws < u, 0 ≤ s ≤ t)

then P is given by

P (l, u, t, x) =

I(l < 0 < u) I(l < x < u)
1√
t

∞∑
n=−∞

[
φ

(
x+ 2n(u− l)√

t

)
− φ

(
x− 2u+ 2n(u− l)√

t

)]
dx

(4.3)

(see Revuz & Yor (1994), page 106 for example). (It is worth remarking that this infinite
series converges very rapidly.) Since X can be expressed as

X =
[
S0 exp

(
αT + σgT + σ(fT − gT )ZT̃

)
−K

]+
,

we can write Ẽβ = Ḡ
(
ζT̃ ,

1
2ξT̃ , S0 exp(αT + σgT ), σ(fT − gT ),K, T̃ , Z0

)
, where Ḡ is defined

by

Ḡ(a, ā, S0, σ,K, t, w0) = E

(
eaWt+āW 2

t
(
S0e

σWt −K
)

+
I(0 < Ws < 1, 0 ≤ s ≤ t) |W0 = w0

)
(4.4)
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for W − w0 a P-Brownian motion. Using (4.3) we have

Ḡ(a, ā, S0, σ,K, t, w0) = I(m < 1) I(0 < w0 < 1)×

1√
t

∞∑
n=−∞

(
S0[H(m, ā, a+ σ,−2n+ w0, 2t)−H(m, ā, a+ σ, 2(1− w0)− 2n+ w0, 2t)]−

K[H(m, ā, a,−2n+ w0, 2t)−H(m, ā, a, 2(1− w0)− 2n+ w0, 2t)]
)

(4.5)

where m = max(σ−1 log(K/S0), 0) and the function H is defined by

H(a, ā, b, c, d) =
1√
(2π)

∫ 1

a
ebx+āx2−(x−c)2/d

=
√
De2D[(b+āc)c/d+b2/4]

[
Φ
(
√
D

(
2c
d

+ b

)
− a√

D

)
− Φ

(
√
D

(
2c
d

+ b

)
− 1√

D

)]
(4.6)

and D = 1
2d/(1− ād), if D > 0, which was the case for our numerical examples. (If D < 0

a similar expression could be given involving Dawson’s integral:
∫ x

0 exp(u2) du.)
We can calculate Ẽ(γtβ) and Ẽ(exp(Tγt)β) by conditioning on Bt = x, as we did in

Section 3. Thus for Ẽ(γtβ) we have

Ẽ

[
(fs − gs)3

(
g′′sZt + 1

2(f ′′s − g′′s )Z2
t

)
eζT̃ZT̃+ 1

2
ξT̃Z

2
T̃X I(0 < Zu < 1, 0 ≤ u ≤ T̃ )

]
=

(fs − gs)3

∫ f0

g0

(
g′′sx+ 1

2(f ′′s − g′′s )x2
)
P̃ (0 < Zu < 1, 0 ≤ u ≤ t, and Zt ∈ dx)

× Ẽ
(
eζT̃ZT̃+ 1

2
ξT̃Z

2
T̃X I(0 < Zu < 1, t ≤ u ≤ T̃ )

∣∣∣ Zt = x
)
,

which combined with (4.3)–(4.6), give a double integral, and for Ẽ (exp(Tγtβ)) we have

Ẽ

[
e(fs−gs)3(g′′sZt+ 1

2
(f ′′s −g′′s )Z2

t )eζT̃ZT̃+ 1
2
ξT̃Z

2
T̃X I(0 < Zu < 1, 0 ≤ u ≤ T̃ )

]
=∫ f0

g0

e(fs−gs)3(g′′s x+ 1
2

(f ′′s −g′′s )x2)
P̃ (0 < Zu < 1, 0 ≤ u ≤ t, and Zt ∈ dx)

× Ẽ
(
eζT̃ZT̃+ 1

2
ξT̃Z

2
T̃X I(0 < Zu < 1, t ≤ u ≤ T̃ )

∣∣∣ Zt = x
)
.

In each case, we can write the integrand in terms of Ḡ and P , since

P̃(0 < Zu < 1, 0 ≤ u ≤ t, and Zt ∈ dx) = P
(
−Z(0), 1− Z(0), t, x− Z(0)

)
and

Ẽ

[
eζT̃ZT̃+ 1

2
ξT̃Z

2
T̃X I(0 < Zu < 1, t ≤ u ≤ T̃ )

∣∣Zt = x
]

= Ḡ
(
ζT̃ ,

1
2ξT̃ , S0 exp(αT + σgT ), σ(fT − gT ),K, T̃ − t, x

)
.
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5 Numerical examples

We consider a selection of one-sided and two-sided barrier problems. The integrals were
evaluated using routines from the NAG library. Further details related to the numerical
results and the source code are available from http://www-cfr.jims.cam.ac.uk.

5.1 One-sided barrier options

Roberts & Shortland (1997) consider an up-and-in call option with a constant knock-in
boundary F and expiry time 1, on a stock with constant volatility but a non-constant
interest-rate. Specifically, they assume that rt has been perturbed from some equilibrium
level r∞, to which it returns via an exponential decay: rt = r∞ + (r0 − r∞) exp(−ct), for
some constant c.

The time-0 value of the option is

e−
∫ 1
0 ru duE

[(
SeσB1+

∫ 1
0 ru du−

1
2
σ2 −K

)
+

I(Bt ≤ ft, 0 ≤ t ≤ 1)
]

where

ft = σ−1

(
log(F/S)−

∫ t

0
ru du+ 1

2σ
2t

)
= σ−1

[
log(F/S)−

(
r∞t+ (r0 − r∞)

(
1− e−ct

)
/c− 1

2σ
2t
)]

The problem which Roberts & Shortland (1997) examine has the parameters S0 =
10, σ = 0.1,K = 11, r0 = 0.15, r∞ = 0.1, c = 1, F = 12. As remarked earlier, the price of
an up-and-in option is just the difference between the price of a standard European option
and an up-and-out option with the same boundary.

Our bounds on the corresponding knock-out option evaluate to [0.0781, 0.0791], taking
about 0.17 seconds on an HP workstation. Subtracting these from the price of the standard
European call option (in this case 0.595389) we deduce bounds of [0.516289, 0.517289] on
the value of the up-and-in option, with a width of 0.19%. A comparison of the method
described here with the methods of Roberts & Shortland (1997) and Lo (1997) is shown in
Table 1.

5.2 Two-sided barrier options

We now see how our bounds on two-sided knock-out options compare to the results of the
two-sided barrier problems contained in Rogers & Zane (1997), Geman & Yor (1996), Ku-
nitomo & Ikeda (1992) and Rogers & Stapleton (1997). Three types of knock-out bound-
aries are considered: (i) constant boundaries, L < St < U ; (ii) exponential boundaries,
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Method Lower bound Upper bound Width

Roberts & Shortland 0.516758 0.517968 0.23%
Lo 0.516243 0.517556 0.25%

New 0.516289 0.517289 0.19%

Table 1 Bounds on the value of a one-sided barrier option.

log(L) + δLt < log(St) < log(U) + δU t and (iii) linear boundaries, L+ δLt < St < U + δLt.
Problems (i) and (ii) have analytic formulae in the form of infinite series (see Kunitomo
& Ikeda (1992), or in terms of an inverse Laplace transform (see Geman & Yor (1996)),
and as remarked above, our bounds are also exact in these cases. To solve these problems
by performing the double integral presented here is much more time-consuming than using
the alternative methods. It is the final case we are more interested in, where no analytic
solution exists.

The results are presented in Tables 2–7. The methods of Rogers & Zane (1997) (RZ)
and Rogers & Stapleton (1997) (RS) use a lattice, with size N , and become increasingly
accurate as N → ∞; the figures presented here correspond to the largest value of N they
considered (N = 3200).

For the type (i) problems, the computation time of our bounds was between 0.18 and
0.24 seconds.

In Table 3 Kunitomo & Ikeda (1992) give a figure of 10.86 for problem (ii-8), which is
not consistent with our bounds. Our implementation of their method gives 10.831. For the
type (ii) problems, the numerical integration is more troublesome and we work to fewer
significant figures. Here computation time is between 0.22 and 0.47 seconds.

In Table 7 we consider type (iii) problems, including those considered by Rogers & Zane
(1997). The figures reported in Rogers & Zane (1997) for problems (iii-4) and (iii-5) are
significantly different from our bounds. We implemented the algorithm of Rogers & Zane
(1997) as described in their paper as closely as possible and report the results in the final
column. We also consider some more extreme numerical examples, to demonstrate that
the bounds are not always so accurate. The computation time for type (iii) problems is
approximately 1–2 seconds in each case, with cases (iii-1) and (iii-2) taking longer than the
others.
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Problem σ ρ K L U S T

(i-1) 0.2 0.02 2 1.5 2.5 2 1
(i-2) 0.5 0.05 2 1.5 3 2 1
(i-3) 0.5 0.05 1.75 1 3 2 1
(i-4) 0.2 0.02 100 75 125 100 1

Table 2 Parameter values for type (i) double-barrier problems (constant boundaries).

Problem RZ RS GY KI Lower Upper

(i-1) 0.041079 N/A 0.0411 0.041089 0.041088 0.041089
(i-2) 0.017837 N/A 0.0178 0.017856 0.017856 0.017857
(i-3) 0.076147 N/A 0.07615 0.076172 0.076171 0.076173
(i-4) 2.0539 2.0558 2.055 N/A 2.0544 2.0545

Table 3 Numerical results for type (i) double-barrier problems (constant boundaries).

Problem σ ρ T S K δU δL L U

(ii-1) 0.2 0.05 0.5 1000 1000 0.1 -0.1 500 1500
(ii-2) 0.2 0.05 0.5 1000 1000 0.1 -0.1 600 1400
(ii-3) 0.2 0.05 0.5 1000 1000 0.1 -0.1 700 1300
(ii-4) 0.2 0.05 0.5 1000 1000 0.1 -0.1 800 1200
(ii-5) 0.2 0.05 0.5 1000 1000 -0.1 0.1 500 1500
(ii-6) 0.2 0.05 0.5 1000 1000 -0.1 0.1 600 1400
(ii-7) 0.2 0.05 0.5 1000 1000 -0.1 0.1 700 1300
(ii-8) 0.2 0.05 0.5 1000 1000 -0.1 0.1 800 1200
(ii-9) 0.25 0.1 1 95 100 0.1 -0.1 90 160

Table 4 Parameter values for type (ii) double-barrier problems (exponential bound-
aries)
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Problem RZ RS KI Lower Upper

(ii-1) 67.7834 N/A 67.78 67.71 67.85
(ii-2) 64.6401 N/A 64.63 64.56 64.70
(ii-3) 55.1992 N/A 55.20 55.14 55.26
(ii-4) 34.5713 N/A 34.58 34.54 34.62
(ii-5) 62.7532 N/A 62.75 62.68 62.82
(ii-6) 52.5021 N/A 52.50 52.44 52.55
(ii-7) 33.4429 N/A 33.45 33.41 33.49
(ii-8) 10.8217 N/A 10.86 10.82 10.85
(ii-9) 5.3680 5.3672 5.3679 5.362 5.374

Table 5 Numerical results for type (ii) double-barrier problems (exponential bound-
aries).

Problem σ ρ T S K U L δU δL

(iii-1) 0.25 0.1 1 95 100 160 90 20 −20
(iii-2) 0.25 0.1 1 95 100 160 90 15 −15
(iii-3) 0.25 0.1 1 95 100 160 90 10 −10
(iii-4) 0.25 0.1 1 95 100 160 90 5 −5
(iii-5) 0.25 0.1 1 95 100 160 90 −5 5
(iii-6) 0.25 0.1 1 95 100 160 90 −10 10
(iii-7) 0.25 0.1 1 95 100 160 90 −15 15
(iii-8) 0.25 0.1 1 95 100 160 90 −20 20

Table 6 Parameter values for type (iii) double-barrier problems (linear boundaries).
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Problem RZ Lower Upper Approximate

(iii-1) N/A 6.402 6.603 6.40999
(iii-2) N/A 5.751 5.784 5.75352
(iii-3) N/A 5.036 5.040 5.03683
(iii-4) 4.3438 4.267 4.269 4.26779
(iii-5) 2.5438 2.637 2.638 2.63747
(iii-6) N/A 1.831 1.832 1.83117
(iii-7) N/A 1.090 1.091 1.09001
(iii-8) N/A 0.490 0.493 0.49069

Table 7 Numerical results for type (iii) double-barrier problems (linear boundaries).
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