
Optimal trading of an asset driven by a hidden Markov

process in the presence of fixed transaction costs

G. W. P. Thompson

Centre for Financial Research,

Judge Institute of Management,

University of Cambridge

Abstract

We consider the problem of the optimal trading of an asset in the presence of fixed
transaction costs where the asset price satisfies an SDE of the form dSt = dBt+h(Xt) dt
where Bt is a Brownian motion, h is a known function and Xt is a Markov Chain. We
look at two versions of the problem, maximising the long term gain per unit time and
maximising a form of discounted gain. It is well known that the optimal trading strategy
for such a problem is the solution of a free-boundary problem; we present an intuitive
derivation by viewing the optimal trading problem as a pair of simultaneous optimal
stopping problems. We also give explicit solutions for a range of examples, and give
bounds on the transaction cost above which it is optimal never to buy the asset at
all. We show that in the case where Markov Chain Xt is independent of the Brownian
motion and has a finite statespace, this critical transaction cost has a simple form.

Keywords: Optimal stopping problem, trading problem, hidden Markov model

1 Introduction

We consider the problem of optimally trading an asset in the presence of transaction costs.
We assume that the asset price process has the form St = Bt +

∫ t
0 h(Xu) du where B is a

standard Brownian motion and X is a Markov process. The only information available at
time t is the past history of the asset; the Markov process X is not directly observable.

At each time t, t ∈ [0,∞) we assume that we are allowed to hold 0 or 1 units of the asset
and that we incur a transaction cost of 1

2c > 0 whenever we buy or sell the asset. Letting
ξt denote our holding at time t and {Ti}, i ≥ 1 the times when ξ is discontinuous, we look
for strategies which maximise E(

∫∞
0 e−ρtξt dSt − 1

2c
∑
e−ρTi) where ρ > 0. For tractability

we will frequently just consider the limiting strategy obtained as ρ→ 0. This is often also
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the strategy which maximises lim inft→∞ 1
tE(
∫ t

0 ξu dSu−
1
2c
∑
I{Ti≤t}). We will refer to the

quantity lim inft→∞ 1
tE(
∫ t

0 ξu dSu −
1
2c
∑
I{Ti≤t}) as the (long run) average gain.

In Morton & Pliska (n.d.) and Pliska & Selby (1994) a similar type of problem is con-
sidered. The authors try to maximise the long term log return per unit time in a framework
with proportional transaction costs where the asset price follows an n-dimensional geomet-
ric Brownian motion with constant drift. Here we look at a rather different class of models
by introducing an unobserved Markov Chain, and allow ourselves the luxury of a somewhat
simpler transaction cost structure and optimality criteria. This approach also introduces
the element of filtering the past history of the asset to estimate the current state of Xt,
a feature also considered in Mandarino (1990), where the Kalman filter is used. More ex-
amples of the filtering of hidden Markov models can be found in Elliot, Aggoun & Moore
(1995) and in its references.

The outline of this paper is as follows: In the following section, Section 2, we derive a
condition for optimality closely related to the Hamilton-Jacobi-Bellman equation, by con-
sidering the optimal trading problem as a pair of simultaneous optimal stopping problems.

In Section 3 we consider the case where the instantaneous expected drift is a Markov
process of a particular type. We derive the limiting optimal strategy as ρ → 0 and prove
that it does maximise the average gain in certain cases. As an example, we derive the
optimal trading strategy when the asset follows an Ornstein-Ulhenbeck price process.

In Section 4 we consider the case where X has a finite statespace. We derive conditions
on c which determine whether it is ever optimal to hold the asset. We examine both the
discounted and average gain cases and as an example consider a simple 2-state model.

Finally, in Section 5 we consider a model where the asset drifts towards a level which
follows a Brownian motion; we show that this model is essentially the same as the OU
model considered in Section 3.

2 Optimality Equations

We assume that the asset price process has the form St = Bt +
∫ t

0 hu du, where Bt is
a Brownian motion adapted to a filtration F and hu = h(Xu) for some Markov process
Xt also adapted to F . We denote by Y the complete filtration generated by S and let
ĥt = E(ht|Yt).

We define the innovations process Nt = St −
∫ t

0 ĥu du. Assuming E(
∫ t

0 h
2
u du < ∞) for

each t, Nt is a Y-Brownian motion (see Section VI.8 of Rogers & Williams (1987)). We
shall also assume E(

∫∞
0 e−ρt|ĥt| dt)2 < ∞. Note that if h is bounded these conditions are

certainly met.
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A trading strategy ξ is a Y-previsible process with values in {0, 1} and with ξ0 given,
such that E(

∑
e−ρTi)2 < ∞ where {Ti}, i ≥ 1, are the discontinuities of ξ. Our aim is to

maximise the expected discounted gain, which we define by

E

[∫ ∞
0

e−ρtξt dSt − 1
2c
∑

e−ρTi Y0

]
. (2.1)

We assume that the conditional distribution of Xt given Yt is is described by a diffusion
pt ∈ E ⊆ Rn with generator G, and that pt satisfies the SDE dpt = σ(pt) dNt + µ(pt) dt.
For example, if Xt has a finite statespace we could let pt(i) = P(Xt = i|Yt), and if the
process (St, Xt) is jointly Gaussian we could set pt = (E(Xt|Yt),Var(Xt|Yt)). Write Ep for
expectation under the law of (pt) with p0 = p.

For an arbitrary function f on the statespace of X, we define f̂(p) to be the value Ef(X)
under the distribution for X corresponding to p.

Note that since E(
∫ T

0 e−ρtξt dNt)2 ≤
∫ T

0 e−2ρt dt < (2ρ)−1 the collection of random
variables {

∫ T
0 e−ρtξt dNt : T ≥ 0} is bounded in L2 and the process

∫ t
0 e
−ρuξu dNu is a UI

martingale. Using the Optional Stopping Theorem and the fact that dSt = dNt + ĥt dt, the
expected discounted gain, (2.1) equals

E

[∫ ∞
0

e−ρtξtĥt dt− 1
2c
∑

e−ρTi Y0

]
.

For simplicity we will restrict attention to Markov strategies which specify ξt in terms of
ξt− and pt. Thus a strategy amounts to the specification of two subsets B and S of E, the
asset, if it is not already held, being bought at the moment pt enters B and then sold when
pt enters S. We look for Markov strategies which are optimal for all initial ξ0 and p0.

Proposition 2.1 Suppose that for fixed subsets B, S ⊆ E the strategy ξ which buys when
pt ∈ B and sells when pt ∈ S is optimal. Then there is a function w on E such that

(G − ρ)w = −ĥ on Bc ∩ Sc (2.2)

w = +1
2c on B (2.3)

w = −1
2c on S (2.4)

σ · ∇w = 0 on ∂B, ∂S (2.5)

Proof
Define the function g : E → R as follows: for p ∈ S, set g(p) = 0, otherwise set

g(p) = E
p[
∫ HS

0 e−ρtĥt dt − 1
2c(1 + e−ρHS )], where HS is the first hitting time of S by pt.

First consider the problem: find a stopping time τ to maximise Epe−ρτg(pτ∧HS ). Let B∗

be the optimal stopping set; we will show that B = B∗.
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Define the sequence of stopping times σn, τn, n ≥ 0 by

τ0 = 0

σn = inf{t > τn : pt ∈ B ∪B∗}

τn+1 = inf{t > σn : pt ∈ S}

Note that ξ buys at most once in [σj−1, τj), j ≥ 1 and sells at τj . Define T ′j = T if ∆ξT = 1,
T ∈ [σj−1, τj) and T ′j =∞ otherwise. Note that

E

[∫ ∞
0

e−ρtξtĥt dt− 1
2c
∑

e−ρTi
]

= E

∫ σ0

0
e−ρtξtĥt dt− 1

2c
∑
Ti≤σ0

e−ρTi


+E

 ∞∑
j=1

I{T ′j<∞}

(∫ τj

T ′j

e−ρtĥt dt− 1
2c(e

−ρT ′j + e−ρτj )

)
Since E(

∫ σj
0 e−ρt|ĥt| dt)2 and E(

∑
Ti≤σj e

−ρTi)2 are both increasing in j and bounded
above, we use Dominated Convergence to interchange the order of summation and expec-
tation in the final term of the equation above. Conditioning on Yσj−1 and using the strong
Markov property gives

∞∑
j=1

E[e−ρσj−1
E
pσj−1 I{HB<HS}e

−ρHBg(pHB )],

where the inner expectation is just Epσj e−ρHBg(pHB∧HS ). Thus by the optimality of ξ, and
that fact that B∗ is the optimal stopping set, ξ buys at time σj−1 if and only if pσj−1 ∈ B∗.
Thus B = B∗.

We now define v(p) = E
pe−ρτg(pτ∧HS ), so that v satisfies (G−ρ)v = 0 in Sc∩Bc, v(p) = 0

on S, v(p) = g(p) onB and σ·∇v = σ·∇g on ∂B. (The final condition is the ‘smooth pasting’
condition on the decision boundary, see Shiryayev (1978) page 161 or Öksendal (1994) page
202.) Similarly we define g̃(p) = 0 for p ∈ B and g̃(p) = −Ep[

∫ HB
0 e−ρtĥt dt+ 1

2c(1+e−ρHB )]
for p 6∈ B. We let S∗ be the stopping set for the problem ‘find a stopping time τ̃ to maximise
E
pe−ρτ̃ g̃(pτ̃∧HB )’, and we define the sequence of stopping times σ̃n, τ̃n, n ≥ 0 by

τ̃0 = 0

σ̃n = inf{t > τ̃n : pt ∈ S ∪ S∗}

τ̃n+1 = inf{t > σ̃n : pt ∈ B}

We see that ξ sells at most once in [σ̃j−1, τ̃j), j ≥ 1, and buys at τ̃j . Defining T̃ ′j = T if
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∆ξT̃ ′ = −1, T ∈ [σ̃j−1, τ̃j) and T̃ ′j =∞ otherwise, we have

E

[∫ ∞
0

e−ρtξtĥt dt− 1
2c
∑

e−ρTi
]

= E

∫ σ̃0

0
e−ρtξtĥt dt− 1

2c
∑
Ti≤σ̃0

e−ρTi


+E

 ∞∑
j=1

I{T̃ ′j<∞}

(∫ T̃ ′j

σ̃j−1

e−ρtĥt dt− 1
2c(e

−ρT̃ ′j + e−ρτ̃j )

)
+E

 ∞∑
j=1

I{T̃ ′j=∞}

∫ τ̃j

σ̃j−1

e−ρtĥt dt


where the final two terms equal

E

 ∞∑
j=1

∫ τ̃j

σ̃j−1

e−ρtĥt dt

+ E

 ∞∑
j=1

I{T̃ ′j<∞}

(
−
∫ τ̃j

T̃j

e−ρtĥt dt− 1
2c(e

−ρT̃ ′j + e−ρτ̃j )

)
Again we can interchange the order of summation and expectation in the final term. Con-
ditioning on Yσ̃j and using the strong Markov property, the this becomes

∞∑
j=1

E[e−ρσ̃j−1
E
pσ̃j−1 I{HS<HB}e

−ρHS g̃(pHS )],

where the inner expectation is now E
pσ̃j−1e−ρHS g̃(pHS∧HB ). Thus S = S∗.

Similarly to before, define ṽ(p) = E
pe−ρτ̃ g̃(pτ̃∧HB ), then ṽ satisfies (G − ρ)ṽ = 0 in

Sc ∩ Bc, ṽ(p) = 0 on B, ṽ(p) = g̃(p) on B and σ · ∇ṽ = σ · ∇g̃ on ∂B. We now have two
functions

v(p) = E
p

[∫ HS

HS∧HB
e−ρtĥt dt− 1

2cI{HB<HS}(e
−ρHS + e−ρHB )

]
ṽ(p) = −Ep

[∫ HB

HS∧HB
e−ρtĥt dt+ 1

2cI{HS<HB}(e
−ρHS + e−ρHB )

]
.

Since 0 = σ·∇(v−g) on ∂B, noting that
∫ HS
HS∧HB e

−ρtĥt dt =
∫ HS

0 e−ρtĥt dt−
∫ HS∧HB

0 e−ρtĥt dt,
we see that

0 = σ · ∇Ep
[
−
∫ HS∧HB

0
e−ρtĥt dt− 1

2c(I{HB<HS}(e
−ρHS + e−ρHB )− e−ρHS )

]
= σ · ∇Ep

[
−
∫ HS∧HB

0
e−ρtĥt dt− 1

2c(I{HB<HS}e
−ρHS − I{HS<HB}e

−ρHS )
]

Similarly, since 0 = σ · ∇(ṽ − g̃) on ∂S

0 = σ · ∇Ep
[∫ HS∧HB

0
e−ρtĥt dt− 1

2c(I{HS<HB}(e
−ρHB + e−ρHS )− e−ρHB )

]
= σ · ∇Ep

[∫ HS∧HB

0
e−ρtĥt dt− 1

2c(I{HS<HB}e
−ρHB − I{HB<HS}e

−ρHS )
]
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Defining the function w on E by

w(p) = E
p

[∫ HS∧HB

0
e−ρtĥt dt− 1

2c(I{HS<HB}e
−ρHB − I{HB<HS}e

−ρHS )
]

we have (G − ρ)w = −ĥ in Sc ∩ Bc, w = +1
2c in B, w = −1

2c in S and σ · ∇w = 0 on ∂B,
∂S.

�

Remark To see the connection between (2.2)–(2.5) and the HJB equation, define

V (p, ξ) = supEp
[∫ ∞

0
e−ρtξtĥt dNt −

∑
e−ρTi

]
to be the maximal expected discounted gain over trading strategies such that ξ0 = ξ, where
the conditional distribution of X0 given Y0 is given by p. The HJB equation in this case is

max(ξĥ+ GV (p, ξ)− ρV (p, ξ),−1
2c+ V (p, 1− ξ)− V (p, ξ)) = 0 (2.6)

where, as before, G is the generator of p acting on V (·, ξ). We then have

ξĥ+ GV (p, ξ)− ρV (p, ξ) = 0 on Bc ∩ Sc,

V (p, 1)− V (p, 0) = 1
2c on B,

V (p, 0)− V (p, 1) = 1
2c on S,

Setting w(p) = V (p, 1)− V (p, 0), these conditions become

(G − ρ)w = −ĥ on Bc ∩ Sc,

w(p) = +1
2c on B,

w(p) = −1
2c on S,

which are just (2.2), (2.3) and (2.4) again.

3 Markovian expected drift

We now consider the special case where ĥt is a recurrent diffusion on an interval I with
SDE

dĥt = σ(ĥt) dNt − γĥt dt,

where γ > 0. We will show that the limiting optimal strategy as ρ → 0 is to buy when
ĥt ≥ b ≥ 0 and to sell when ĥt ≤ s ≤ 0 where b and s satisfy:

s′(b) = s′(s), (3.1)

b− s− cγ = [s(b)− s(s)]/s′(s). (3.2)
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Here the function s(x) is the scale function of ĥ, which we define by s′(x) = e2γ
∫ x uσ(u)−2 du,

determined up to a positive affine transformation. As an example we will solve the problem
in the case when the asset price follows an Ornstein-Ulhenbeck process. Finally, we will
show that if ĥt is positive recurrent, then, as suggested in the introduction, this strategy
also maximises lim inft→∞ 1

tE(
∫ u

0 ξt dSu −
1
2c
∑
I{Ti≤t})

Our first two lemmas will show that the limiting optimal strategy for the discounted
version of the problem has the stated form.

Lemma 3.1 Any optimal strategy never buys when ĥt < 0 and never sells when ĥt > 0.

Proof Let ξ be an arbitrary strategy and define the sequence of interleaved stopping times
σn, τn, n ≥ 0 as follows:

σ0 = 0

τn = inf(t > σn : ∆ξt = −1, ĥt > 0 or ∆ξt = +1, ĥt < 0)

σn+1 = inf(t > τn : ĥt = 0).

Now define a new strategy ξ̃ by ξ̃0 = ξ0 and for t > 0,

ξ̃ =


ξ on ∪n≥0(σn, τn)
0 on ∪n≥0[τn, σn+1] ∩ {∆ξτn = +1}
1 on ∪n≥0[τn, σn+1] ∩ {∆ξτn = −1}

The strategy ξ̃ just mimics ξ until ξ either buys when ĥt < 0 or sells when ĥt > 0. It then
takes no action until ĥt hits 0 when it changes back to ξ.

Since ξ̃ is continuous at τn, it is clear that ξ̃ is previsible. In addition we have that
T̃i ≥ Ti and so E(

∑
e−ρT̃i)2 <∞. We also have ξ̃uĥu ≥ ξuĥu for all times u, and so ξ̃ has a

larger expected discounted gain than ξ. �

Lemma 3.2 Let b, b′ ∈ I with b′ > b and suppose it is optimal to buy when ĥt = b ≥ 0.
Then there exists ρ(b′) > 0 such that for ρ ≤ ρ(b′) it is also optimal to buy whenever ĥt = b′.

Proof Suppose ĥ0 = b′ > b and ξ0 = 0, and let T denote the first time ĥ hits b. Let ξ
be a Markov strategy which buys when ĥt = b, but not when ĥt ∈ U , where U is an open
interval containing b′. Let ξ̃ be the strategy identical to ξ except that ξ̃ buys immediately.
Thus T̃i = Ti for i ≥ 2 and T̃1, T1 ≤ T . The difference between the expected discounted
gains under ξ̃ and ξ is given by

E

[∫ ∞
0

e−ρt(ξ̃t − ξt)ĥt dt− 1
2cE(e−ρT̃1 − e−ρT1) Y0

]
.
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We note that ξ̃t ≥ ξt and ĥt > 0 for t ∈ [0, T ], so that ĥt(ξ̃t − ξt) > 0 for t ∈ [0, T ]. Thus,
by Monotone convergence on each term separately as ρ→ 0, and noting that T̃1 and T1 are
a.s. finite since ĥt is recurrent, we have

lim
ρ→0

E

[∫ ∞
0

e−ρt(ξ̃t − ξt)ĥt dt− 1
2c(e

−ρT̃1 − e−ρT1) Y0

]
> 0.

Thus for ρ sufficiently small it is better to buy immediately. �

Similarly if it is optimal to sell when ĥt = s ≤ 0, s ∈ I, then for any s′ < s, s ∈ I and
for ρ sufficiently small, it is optimal to sell whenever ĥt = s′.

Thus the limiting optimal strategy has the form: buy if ĥt ≥ b ≥ 0 and sell if ĥt ≤ s ≤ 0.
It only remains to show s and b satisfy (3.1) and (3.2).

Proposition 3.3 The limiting optimal strategy as ρ→ 0 is to buy when ĥt ≥ b ≥ 0 and to
sell when ĥt ≤ s ≤ 0, where b and s satisfy:

s′(b) = s′(s),

b− s− cγ = (s(b)− s(s))/s′(s),

and the function s(x) is the scale function of ĥ, defined on page 7.

Proof From the optimality condition derived in Section 2, Equations (2.2)–(2.5), the
limiting strategy as ρ→ 0 gives rise to a function w which satisfies 1

2σ(x)2w′′ − γxw′ = −x
in (s, b); w(x) = 1

2c on [b,∞); w(x) = −1
2c on (−∞, s], and w(x) is differentiable at x = s

and x = b.
We first define f(x) = w(x) − x/γ so that f satisfies 1

2σ(x)2f ′′ − γxf ′ = 0 on (s, b).
Integrating once and using s′(x) = e2γ

∫ x uσ(u)−2 du gives f ′/s′ = K, a constant, so using
the fact that w′(b) = w′(s) = 0 we have s′(s) = s′(b) = − 1

Kγ . Integrating again and using
w(b)−w(s) = c gives c− (b− s)/γ = −(s(b)− s(s))/(γs′(s)). Rearranging gives the result.

�

Exmaple If the price process is an Ornstein-Ulhenbeck process, so dSt = σ dBt − γSt dt,
then dĥt = −γσ dBt − γĥt dt. The optimal strategy is to buy if St ≤ −b/γ and to sell if
St ≥ b/γ, where b satisfies

2b− γc = 2e−b
2/(γσ2)

∫ b

0
eu

2/(γσ2) du. (3.3)

We now show that this equation has a unique solution in b ≥ 0 and thus determines the
optimal trading strategy. Let φ(b) denote the right hand side of (3.3), so φ(b) ≥ 0 and
φ(b) = 0 only at b = 0. Since φ′(b) = 2(1 − b

γσ2φ) and the left hand side of (3.3) has
derivative 2 (considered as a function of b), there can be at most one solution. To prove
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existence we note that φ(b) → 0 as b → 0; we now show φ(b) → 0 as b → ∞. Writing
u = bv, we have

φ(b) = 2
∫ 1

0
beb

2(v2−1)/(γσ2) dv = 2
∫

[0,1)
beb

2(v2−1)/(γσ2) dv.

For x ≥ 0 the maximum of be−b
2x occurs at b = 1/

√
2x, so

beb
2(v2−1)/(γσ2) ≤ e−

1
2 /
√

2(1− v2)/(γσ2), b ≥ 0, v ∈ [0, 1)

which is integrable on [0, 1). Since beb
2(v2−1)/(γσ2) → 0 as b → ∞ on [0, 1), by Dominated

Convergence, φ(b)→ 0 as b→∞.
Average gain case. We now consider the problem of maximising

lim inf
t→∞

1
tE[
∫ t

0
ξu dSu − 1

2c
∑

I{Ti≤t}|Y0],

which we shall refer to as the (long run) average gain. Our method is essentially the same
as that of the proof of Proposition 1, and we will deduce the same condition (Equations
(2.2)–(2.5)) but for ρ equal to 0. Thus if an optimal strategy exists for this second problem,
and the equation Gw = −ĥ, with the same boundary conditions as before, has a unique
solution, then the limiting optimal strategy as ρ→ 0 also maximises the average gain. Let
E
x denote expectation under the law of ĥt started from x. In this Section we will assume

that ĥt is positive recurrent (so Py(Hx < ∞) = 1 implies Ey(Hx) < ∞ where Hx denote
the first hitting time of x by ĥt), that σ is bounded on I and that 1

tE(|ĥt|)→ 0 as t→∞.
First we state and prove a useful lemma:

Lemma 3.4 Let σ < τ be two Y-stopping times with E(τ − σ) < ∞. Then E(Sτ − Sσ) =
−γ−1

E(ĥτ − ĥσ).

Proof We have

E(Sτ − Sσ + γ−1(ĥτ − ĥσ)) = E

∫ τ

σ
[1 + γ−1σ(ĥu)] dNu.

Since 1 + γ−1σ(·) is bounded and E(τ − σ) < ∞, we have that the family of random
variables {

∫ τ∧t
σ∧t (1 + γ−1σ(ĥu)) dNu : t ≥ 0} is L2-bounded and hence UI. Thus E

∫ τ
σ (1 +

γ−1σ(ĥu)) dNu = 0 by a version of the Optimal Stopping Theorem. �

Note that a corollary of this is that the optimal strategy is to buy when ĥt ≥ b ≥ 0 and
to sell when ĥt ≤ s ≤ 0, for some b and s (by very similar arguments to those given earlier).

Proposition 3.5 Suppose that, for fixed s ≤ 0 ≤ b, the strategy ξ which buys when ĥt ≥ b

and sells when ĥt ≤ s is optimal. There is a function w such that Gw(x) = −x on (s, b),
w = +1

2c on [b,∞), w = −1
2c on (−∞, s] and w′ = 0 at b and s, where G denotes the

generator of ĥt.
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Proof Define g(x) = 0 for x ≤ s, and g(x) = E
x
∫ Hs

0 ĥt dt − c for x > s, where Hs is
the first hitting time of s by ĥt. Let B∗ be the optimal stopping set for the problem:
maxExg(ĥτ∧HS ). Let b̄ = b ∧ inf{x ∈ B, x > s}; we will show b = b̄.

Define the sequence of stopping times σn, τn, n ≥ 0 by

τ0 = 0

σn = inf{t > τn : ĥt ≥ b̄}

τn+1 = inf{t > σn : ĥt ≤ s}

and define Gt =
∫ t

0 ξuĥu du−
1
2c
∑
I{Ti≤t}. Let N(t) be the greatest index such that τN(t) ≤ t

and write

Gt = Gt −GN(t)+1 +Gτ1 +
N(t)+1∑
n=2

(Gτn −Gτn−1).

We will show limt→∞
1
tE(Gt − GN(t)+1) = 0, limt→∞

1
tE(Gτ1) = 0, and then finally that

limt→∞
1
tE
∑N(t)

n=2 (Gτn+1 − Gτn) = K−1
E
b̄g(ĥHb∧Hs) for some constant K. This will imply

b = b̄.
For the two first statements, note that ξ can buy and sell at most once in each of the

intervals [0, τ1) and [t, τN(t)+1). Thus we have

E(Gτ1) ≤ γ−1(|ĥt|+ |b|+ |s|),

E(Gt −GτN(t)+1
) ≤ γ−1(|ĥt|+ |b|+ |s|).

Since 1
tE(|ĥt|)→ 0 as t→∞, limt→∞

1
tE(Gt −GN(t)+1) = 0 and limt→∞

1
tE(Gτ1) = 0.

For the third statement, E(τn+1 − τn) > 0 so E[N(t)] < ∞ (see Grimmett & Stirzaker
(1992), 10.5.1(b)). As the random variables Gτn+1 − Gτn , n ≥ 1, are IID, using Wald’s
equation (Grimmett & Stirzaker (1992), page 211) and setting K = E(τn+1 − τn) gives

lim
t→∞

1
tE

x[
N(t)+1∑
n=2

(Gτn+1 −Gτn)] = lim
t→∞

1
tE

x[N(t)]Ex(Gτn+1 −Gτn)

= K−1
E
b̄(Gτn+1 −Gτn)

= K−1
E
b̄[I{Hb<Hs}g(ĥHb)]

= K−1
E
b̄[g(ĥHs∧Hb)].

Thus b = inf{x ∈ B∗, x > s}. The remainder of the proof is very similar to the proof of
Proposition 1: defining g̃(x) = 0 for x ≥ b and g̃(x) = −Ex(

∫ Hb
0 ĥt dt+ c) for x < b, we can

show that s = sup{x ∈ S∗, x < b} where S∗ is the optimal stopping set for the stopping
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problem: maxExg̃(ĥHs∧Hb). These are just the same stopping problems met in Proposition
1 but with ρ replaced with 0. Thus the points s and b satisfy (2.2)–(2.5) with ρ = 0, and
the result follows.

�

4 Finite statespace models

We consider the model

dSt = dBt + h(Xt) dt

where Xt is an irreducible Markov Chain on {1, . . . , n} with Q-matrix Q, and independent
of B. In this section we will consider the problem of finding a transaction cost above which
it is optimal never to buy the asset, in both the discounted and average gain versions of the
optimal trading problem. At the end of the section we will consider a simple 2-state model.

Letting pt(i) = P(Xt = i|Yt), where Y is as usual the filtration generated by the asset
price process, we have (see Section VI.11 of Rogers & Williams (1987))

dpt(i) = pt(i)(h(i)− ĥt) dNt + (Q>pt)(i) dt. (4.1)

From Section 2 the optimal strategy, which buys when pt ∈ B and sells when pt ∈ S,
gives rise to a function w on {x1, . . . , xn :

∑
i xi = 1, xi ≥ 0}, such that (G−ρ)w = −ĥ. Here

G is the generator of pt and the function ĥ is defined by ĥ(x) =
∑

i xih(i), with boundary
conditions w = +1

2c in B, w = −1
2c in S, and

∑
i xi(h(i)− ĥ)∂w/∂xi = on ∂B and ∂S.

Define ψ(i) = E(
∫∞

0 e−ρth(Xt) dt|X0 = i). Note that (ρ − Q)ψ = h so (G − ρ)ψ̂ =
−ĥ. Suppose we are about to buy at time 0 and subsequently sell at the random time τ .
This will not be an optimal decision if E(

∫ τ
0 e
−ρth(Xt) dt − 1

2c(1 + e−ρτ )) < 0. Note that
E(
∫ τ

0 e
−ρth(Xt) dt − 1

2c(1 + e−ρτ )) = ψ̂0 − 1
2c − Ee

−ρτ (ψ̂τ + 1
2c) using the Strong Markov

property at τ .

Proposition 4.1 Define ψM = maxi ψ(i), ψm = mini ψ(i). Then, i) if ψM > −ψm and pt
is irreducible on {x1, . . . , xn :

∑
xi = 1, xi > 0} (with respect to Lebesgue measure), it is

optimal never to buy the asset if c > 2ψM , and to buy at some point with probability one if
c < 2ψM ; ii) if ψM ≤ −ψm, a sufficient condition to ensure that it is optimal never to buy
the asset is that c > ψM − ψm.

Proof i) If ψM > −ψm and c > 2ψM , then ψ̂τ + 1
2c > 0 and ψ̂0 − 1

2c < 0, so ψ̂0 − 1
2c −

Ee−ρτ (ψ̂τ + 1
2c) < 0. If c < 2ψM , choose k such that 1

2c < k < ψM , buy when ψ̂ ≥ k, which
happens with probability one, and sell at some sufficiently large deterministic time τ .

11



ii) If ψM ≤ −ψm then ψM + ψm ≤ 0. Write 2c = ψM − ψm + 2c′, with c′ > 0. Now

ψ̂0 − 1
2c− Ee

−ρτ (ψ̂τ + 1
2c) ≤ ψM − 1

2c− Ee
−ρτ (ψm + 1

2c)

= 1
2(ψm + ψM − 2c′)− Ee−ρτ 1

2(ψm + ψM + 2c′)

= 1
2(ψm + ψM )(1− Ee−ρτ )− c′(1 + Ee−ρτ )

< 0

�

Remark In Proposition 4.1 we ignore the case where ψM = ψm since then h = (ρ − Q)ψ
is constant and the asset has constant drift.
Average gain case. We now suppose that we are considering buying at time 0 and
subsequently selling at time τ , which we will assume satisfies E(τ) <∞.

Define ψρ(i) = E(
∫∞

0 e−ρth(Xt) dt|X0 = i) (the function ψ of the previous section) and
let π be the stationary distribution of X. Note that as ρ → 0, ψρ(i) − π · h/ρ converges,
since ψρ(i) − π · h/ρ =

∫∞
0 (e−ρt(E(h(Xt)|X0 = i) − π · h) dt) and E(h(Xt)|X0 = i) − π · h

converges to 0 exponentially fast as t→∞. Let ψ̃ρ(i) = ψρ(i)−π ·h/ρ and ψ̃ = limρ→0 ψ̃
ρ,

so that (ρ−Q)ψ̃ρ = h− π · h. Now using E(τ) <∞ we have

E(Sτ − S0) = lim
ρ→0

E

[∫ ∞
0

e−ρth(Xt) dt− 1
2c(1 + e−ρτ )

]
= lim

ρ→0
(ψ̂ρ0 − 1

2c− E[e−ρτ (ψ̂ρτ + 1
2c)])

= ̂̃
ψ0 − E(̂̃ψτ )− c+ (π · h)E(1− e−ρτ )/ρ

= ̂̃
ψ0 − E(̂̃ψτ )− c+ (π · h)E(τ)

Thus if π · h > 0 it is always optimal to buy at some point, and we can ensure a positive
expected profit by simply selling at a sufficiently large deterministic future time. If π ·h < 0,
a sufficient condition to ensure it is optimal never to buy the asset is c > maxi ψ̃(i) −
mini ψ̃(i). If π · h = 0 it is optimal to buy the asset at some point if and only if c <
c∗ = maxi ψ̃(i) − mini ψ̃(i). In the case where π · h = 0 note that this amounts to the
assumption that the asset has no long-term drift; in this case we also have −Qψ̃ = h and
thus G ̂̃ψ = −ĥ. These both still hold if we add a constant to ψ̃, so without loss of generality
assume mini ψ̃(i) = −1

2c. We can now write down an explicit solution to (2.2)–(2.5) in the

case c = c∗ by setting w(p) = ̂̃
ψ.

Exmaple We consider a model for the asset price with the form

dSt = dBt +Xt dt

where X is a Markov chain on {−1,+1}, independent of the Brownian motion B, so St

alternates between being a Brownian motion with drift +1 and a Brownian motion with
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drift −1. We assume that X jumps between ±1 at a rate q > 1
2ρ. This model fits into the

previous framework through the choice h(x) = x. Since ĥt = E(h(Xt)|Yt), from (4.1) we
have

dĥt = (1− ĥ2
t ) dNt − 2qĥt dt.

This is of the form considered in Section 2. Here the scale function s(x) satisfies s′(x) =
exp(4q

∫ x
u/(1 − u2)2 du) = e2q/(1−u2). Thus, using results from Section 2, the optimal

strategy is to buy when ĥt ≥ b and to sell when ĥt ≤ −b, where b satisfies

b− qc = e−2q/(1−b2)

∫ b

0
e2q/(1−u2) du.

This equation has a unique positive solution provided c < 1/q. Note that ψ(1) = ρ/((q +
ρ)2 − ρ2) = (2q − ρ)−1 and ψ(−1) = −ρ/((q + ρ)2 − ρ2) = −(2q − ρ)−1. If c > 1/q then for
ρ sufficiently small, c > ψM −ψm and it is optimal never to buy the asset. If c = 1/q, then
ψM > 1

2c and it is optimal to buy when ψ̂ hits a level b(ρ) where b(ρ)→ 1 as ρ→ 0.

5 Reversion to a moving level

In this section we assume the asset price obeys the SDE

dSt = dBt + h(Xt) dt,

where h(x) = −γx, γ > 0. The Markov process X is defined by

Xt = St − σB′t,

where B′ is a Brownian motion independent of B, σ ≥ 0 is known, and, conditional on Y0,
X0 is Gaussian with mean x̂0 and variance v0. This model is very similar to that considered
in Mandarino (1990).

Since the process (St, Xt) is jointly Gaussian, the conditional distribution of Xt given
Yt is also Gaussian and we need only consider the evolution of the conditional mean, x̂t
and variance vt of Xt. Introduce the notation f̂t = E(f(Xt)|Yt) for an arbitrary function f .
Since X is a diffusion, the evolution of f̂t is given by (see Section VI.8 of Rogers & Williams
(1987))

f̂t = f̂0 +
∫ t

0
(f̂hu − f̂uĥu + α̂u, dNu) +

∫ t

0
Ĝfu du, (5.1)

where G is the generator of X as usual. The process αt is defined by dαt = d[B,M ]t, where
Mt denotes the F-martingale f(Xt)−

∫ t
0 Gfu du.
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Applying (5.1) to the function f(x) = x, and using that fact that dXt = dBt− γXt dt−
σ dB′t, we obtain (supressing some indicies)

dx̂ = (−γx̂2 + γx̂2 + 1) dNt − γx̂ dt

= (1− γvt) dNt − γx̂t dt.

Similarly, applying (5.1) to the function f(x) = x2, giving

dx̂2 = (−γx̂3 + γx̂2x̂+ 2x̂) dNt + (−2γx̂2 + 1 + σ2) dt.

Thus, since dvt = dx̂2 − dx̂2,

dvt = (−γx̂3 + 3γx̂2x̂− 2γx̂2) dNt + (−2γx̂2 + 1 + σ2 + 2γx̂2 − (1− γvt)2) dt.

The second term simplifies to (σ2−γ2v2
t ) dt, and asXt given Yt is Gaussian, x̂3−3x̂x̂2+2x̂3 =

0. Thus the conditional distribution of Xt evolves according to

dx̂t = (1− γvt) dNt − γx̂t dt

dvt = (σ2 − γ2v2
t ) dt.

If we are in the steady state, with vt ≡ σ/γ, we have

dĥt = −γ(1− σ) dNt − γĥt dt.

This OU form for ĥt has already been considered in Section 2, and the optimal strategy
is: buy when ĥt hits b and sell when ĥt hits −b, where b is the unique positive solution to

2b− γc = 2eb
2/(γ|1−σ|2)

∫ b

0
eu

2/(γ|1−σ|2) du.
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