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Abstract

We consider a Gaussian model for the term structure of interest rates. We assume
that the forward rate surface is stationary under a martingale measure, and examine
the implications of a variety of Markov-type conditions on the form of the covariance
structure. We also show that any such model arising from an injective transformation
of a Brownian Sheet must be one of the models introduced in Kennedy (1997); with the

covariance structure determined by three parameters.
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1 Introduction

In this paper we are concerned with Gaussian random field models for the term structure of
interest rates. This is model of the form P;; = exp(— fst F,,du), t > s, where Ps; denotes
the time-s value of receiving £1 at the future time ¢; and where {F;; : t > s}, the surface
of instantaneous forward rates, is a continuous Gaussian random field under a measure Q.
It is convenient to set F; = Fy ¢ for s > ¢ so that F exists on all of R2. The measure Q is
assumed to be an ‘equivalent martingale measure’ in that: (i) Q ~ P where PP denotes the
‘objective probability’; which describes our beliefs about how observed bond prices evolve,
and (ii) for each ¢, the discounted bond prices, Zs; = exp(— fos Fyudu — fst F;, du), are
Q-martingales with respect to the filtration Fy = o{F,, : u < s}, the information contained
in the forward rate surface up to time s.

The reason for working under a martingale measure is due to the application to arbitrage-
free option pricing. In a complete arbitrage-free market the current value of a option which

pays the random amount X at a future time, is the expected discounted value of X under



the martingale measure (see Harrison & Kreps (1979) and Harrison & Pliska (1981)). In
this paper we are not concerned with the question of option pricing. Instead we investigate
the consequences of various structural assumptions about F' such as Markov-type properties
and stationarity.

It is proved in Kennedy (1997) that the martingale measure assumption implies that F
satisfies an ‘independent increments’ property: for s < s’ <t, Fy; — F,; is independent of

Fs, which we denote
Fg,—Fsy L F. (1.1)

We will use s A s’ to denote min(s, s’) and sV s’ to denote max(s, s’). Defining I'(s, ¢, s',t') =
Cov(Fs, Fy p) to be the covariance structure of F, it is straightforward to show that
the independent increments property implies the existence of a function c(-,-,) such that
(s, t,8,t") = c(s A s',t,t'). In Kennedy (1997) the effect on a Gaussian term struc-
ture model of Markov-type properties is also considered. It is shown that under the
strongest formulation, Cov(Fj;) is determined by just three parameters and has the form
Cov(Fyy, Fyp) = 0%exp (“AEAY —sAs) —plt Ve —sAs]), 0 <X <2u.

Throughout this paper F' will denote a general continuous Gaussian random field on
R? with the independent increments property above. We will also assume that we are only
dealing with the stochastic part of the forward rate surface, so EF; = 0, and that Fj; is

stationary under QQ in the sense that
(Fars -+ Fan) =p (Fs@ars--- »Fs@yan), T ER neN, a; € R

Here S(z)(s,t) = (s + z,t + z) is the translation parallel to the line s = ¢.

Many people have raised such objections to Gaussian term structure models as that
they give rise to a positive probability of negative rates, and one might also frown on the
assumption that interest rates are stationary. However, as we are only working under a
measure equivalent to P, we are not, in fact restricting ourselves to models which are sta-
tionary under P, nor are we suggesting that under IP forward rates are necessarily Gaussian.
There will be a positive probability of negative rates under P, but this can be arbitrarily
small and is not related to the probability of negative rates under Q.

The layout of this paper is as follows: in Section 2 we introduce some convenient notation
and prove some basic results; in particular that the covariance structure of the infinitesimal
increments is well defined and closely related to the stationary distribution of the forward
rate curve. We also prove the intuitive result that if a long rate (lim;_,~, Fl ) exists for all s
with probability one then it is also constant with probability one. (Note that we use ‘with
probability one’ to mean with probability one under QQ, but since Q ~ P, this is equivalent

to holding with probability one under P.)



In Section 3 we describe some of the Markov-type properties discussed in Kennedy
(1997) and introduce a few new properties. We show how they interrelate and investigate
the implications for the covariance structure of F.

Taking as a starting point the attention given in Kennedy (1994) to constructing Gaus-
sian term-structure models via a continuous transformation of a Brownian Sheet, in Sec-
tion 3.1 we show that it is not very fruitful to impose the extra restriction of stationarity
in this case. We will show that the three parameter model is the only Gaussian field with
the properties of both stationarity and independent increments to arise from an injective

transformation of a Brownian sheet.

2 Notation and preliminary results

In this section we will introduce some notation and prove a few elementary results about
stationary Gaussian random fields with independent increments. In particular we will show
that if a long rate (lim;_, Fs;) exists then it is constant, and that the whole distribution
of the field is determined by the distribution of {Fy, : x € R}. We shall also prove that
there is a well defined notion of the ‘covariance structure of the infinitesimal increments’.
In the introduction two fundamental assumptions about the forward rate surface {Fj; :

s >t} were introduced: stationarity,
(Fars--+Fa,) =0 (Fs@yars- - Fs@yan): TER neEN, a; € R,

where S(z)(s,t) = (s+z,t+z) is the translation parallel to the line s = ¢, and independent

increments,
o(Fy,—Fsp:8 >s, teR) L Fg,

where Fy = o(Fg; : s' <'s, t € R). We recall also that since bond prices (and hence
forward rates) initially exist only on the set H = {(s,t) € R? : t > s}, we extend the range
of definition of F from H to R? by setting Fs; = F,; for s > t.

Remark If F is stationary, the distribution of F' is determined by the stationary distribution
of the forward-rate curve {Fy; : t € R}. To see this, recall that the independent increments
property implies that I'(s,t,s',t") = ¢(s A §',t,t') for some function ¢; by stationarity we

have

c(s A8 t,t') = cov(Fsps 1, Fsns' 1)
= cov(Fo—sns's Fou—sns')

=f(t—sAs, t'—sns), (2.1)



where we define f(¢,t") := Cov(Fpyy, Fo ).
Define the maps p1,p2 : R? x R> = R by

p1(s,t, 8, ') =t At —sAS, (2.2)
pa(s,t, s’ t)y =tV —sAS, (2.3)

and the map p : R2 x R?2 — H by p(s,t,s',t') = (p1,p2); thus if ' is the covariance
structure of a stationary random field model, then I o p~! is well defined and equals f. We
say that a symmetric function ® : X x X — R non-negative definite on X x X if for all
{(aj,z;) : i =1...n}, a; € R, z; € X, we have ZZ] a;ja;®(z;,z;) > 0. It is well known
that any symmetric non-negative definite function on X x X is the covariance structure of
some Gaussian process on X. Thus to fit a stationary Gaussian model to some interest rate
data, we might consider the problem of finding a symmetric non-negative definite function
I':R? x R? — R and a symmetric non-negative definite function f : R x R — R such that
I' = fop. There is normally a much easier way of selecting a model based on the covariance
function of the infinitesimal incerments (see Remark 2 below), but the functions I' and f
will be convenient for investigating Markov properties. A simple result that we will need
later is that since F' is continuous, I', and hence also ¢ and f, are continuous functions.

The usual approach to fitting an interest rate model to data makes use of the covariance
structure of the infinitesimal increments, lims)o %@OV(F st+ou— Fsu, Fsts0 — Fsw), s0 we will
begin by showing that this quantity exists for (Lebesgue) almost all s. Let (Df)(z,y) be
the directional derivative defined by (Df)(z,y) = limsy §(f(z + 6,y + 6) — f(z,v)),

Proposition 2.1 For each t,t' € R,

Ts(tatl) « gC(S,t,t,) (2.4)
S

exists for (Lebesgue) almost all s € R. Moreover, if we suppose s,u,v € R are such that
either (0/0s)c(s,u,v) or (Df)(u — s,v — s) exists, then both exist and

o1
Ts(u,v) = —=(Df)(u — 8,0 —s) = %ILI)I SCOV(FerJ,u — Fsu, Fs 50 — Fs,v)-

Proof For the first part, let s < s’ and ,# € R. From the independent increments property

we have
VaJr(Fs’,t + Fs’,t’) = VaI(Fs,t + Fs,t’ + (Fs’,t - Fs,t) + (Fs’,t’ - Fs,t’))

= Var(Fs,t + Fs,t’) + Var(Fs’,t - Fs,t + Fs’,t’ - Fs,t’)
> Var(Fs;+ Fip)



so we see that Var(F;+ F y) is non-decreasing in s. Similarly we can show that Var(F,; —
F 1) is also non-decreasing in s. Since Cov (Fl, Fsp) = i[Var(Fs,t—i—Fs,t/) —Var (Fy 1 —Fs ],
c(s,t,t") is of finite variation in s, and hence (0/0s)c(s,t,t") exists for (Lebesgue) almost
all s (Dudley 1989, Section 7.2.7).

Secondly, let 0 > 0 and consider the covariance structure of the increment between times

s and s + §: by independent increments we have

@)V(Fs—l—d,u - Fs,m Fs+6,v - Fs,v) = @)V(Fs-i-é,ua Fs+6,v) - @)V(Fs,ua Fs,v)

= ¢(s+0,u,v) —c(s,u,v)
and by stationarity

@)V(Fs-i-é,ua Fs+6,v) — Cov (Fs,ua Fs,v) = COV(FO,u—s—(Sa FO,v—s—(S) — Cov (FO,’U,fsa FO,vfs)-

(2.5)
Dividing throughout by ¢ and letting § | 0 completes the proof.
O
From (2.5) we see that
flu—s—0,u—s—209)— f(u—s,u—s)=Var(Fyisy — Fsu) (2.6)

A straightforward consequence of this is that ‘long rates are constant’.

Corollary 2.2 Suppose Fy o, = limy_,o Fs; exists for all s with probability one, then F

is constant in s with probability one.

Proof Define Fy; = sup,cfss11](Fot — Fyy)? and Fy = SUP s 541] (Fr00 — Fi )% If
(tn)pey is any sequence of times tending to infinity, the event {Fy . > €} is certainly
contained in {Fy, > € i.0.} by the continuity of F. Now consider the sequence t, = n.
Note that Fy,p, : u € [s, s+ 1] is a martingale since it has independent increments and mean
zero. By Doob’s submartingale inequality applied to the martingale F, , : u € [s,s+ 1] and
(2.6),

Q[F;,n > 6] < EflVar(FsH,n - Fs,n)
= e (f(n—s—1L,n—s5—1)— f(n—smn—s)).

As f(=s,—s) > f(m —s,m —s) > 0 for m > 0, we have ) Q[Fy, > ¢ < oo. Thus by
the first Borel-Cantelli Lemma, Q[Fy, > € i.0.] = 0. Hence Q[F;,, > ¢ = 0, and with
probability one, F o is constant on [s,s + 1]. As R is a countable union of unit intervals,

it follows that with probability one, F o, is constant on R. O



Remarks

1. An immediate consequence of (2.6) is that Var(Fp,) is non-increasing in ¢.

2. If the derivative D f exists, we can write ¢(0, z,y) = ¢(—s, z,y) + fEs Tu(2,y) du. Then
if, for all z and y, the limit lims_,~, f(z + s,y + s) also exists, we can let s 1 co and
deduce f(z,y) = im0 f(z + s,y +5) + [, 70(2 + u,y + ) du. This is of the form

o
flao) = (o) + [ rlotuy+u)du, (2.7
0
where 7 : R? — R is non-negative definite satisfying
/ T(u,u)du < oo forall z € R, (2.8)

and k : R2 — R is the covariance structure of a stationary Gaussian process on
R. Conversely, given any such 7 and &, the definition of f via equation (2.7) gives
the covariance structure of a stationary field with independent increments and the

Cauchy-Schwarz inequality combined with (2.8) ensure that f is finite.

Thus F' is the sum of a field which is constant in s and a field that tends to zero as
t — oco. Note that it is considerably easier to generate a model by specifying 7 and

k, than by specifying the pair of symmetric non-negative definite functions I' and f.

3 Markov Properties

Recall the definition Fy = o(Fy,; : u < s,t € R), of the o-algebra generated by the forward-

rates up to time ¢, and define

Gs :==0(Fs; :t €R)
Hs:=0(Fyr:u>s,teR).

The natural interpretation of the Markov condition is that Fs and Hs be conditionally
independent given G,. Another Markov property, which is a common feature of one-factor
models, is for the short rate, Fy s to be Markov as a one-dimensional process. It is easy to
show that the independent increments property (1.1) automatically implies the former, but
the latter requires something stronger. In this section, we will consider stronger forms of
the Markov property and investigate their consequences for the covariance structure of F.
Kennedy (1997) also considers this problem; under his strongest formulation, the covariance

structure of a stationary model is determined by just three parameters, and has the form

COV(Fsl,tlanz,tg) =g? exp(—)\(tl ANty — 81 A 82) — /1,|t1 Viy— 81 A 82|), (3.1)



Recall that the Brownian Sheet is the zero-mean, continuous Gaussian field on [0, 00)? with

covariance structure
Cov(Xsy 11, Xoayta) = (51 A s2)(t1 Ata).

This field satisfies the severe Markov property that for all s1 < s9 < s3, 11 < to < t3 and
all s1 > s9 > s3, t1 > to > t3, we have Fy, 4 L Fy, 1| Fs, 4, Kennedy (1994) demonstrates
how continuous injective transformations of the Brownian Sheet can be used to construct
interesting random field models; here we will show that any stationary model which arises
from a continuous injective transformation of a Brownian Sheet must be the three parameter
model with covariance structure given by (3.1).

Before we define our Markov properties, we must introduce some more o-algebras; define

Fop=0(Fup:u<sv<t)
.7-";':,5 =0(Fup:u<s,v>1)

and define G, and H;, similarly.

Definition We say that F'" has the SWNE-Markov property if for all s and ¢ we have Fg; L
H;:t |o(Fs ). Similarly, we say that F' has the NWSE-Markov property if for all s and ¢ we
have Ff, LH, | 0(Fyy).

Remarks

1. Using the independent increments property, we can replace ’Hit with g;ft in the def-
inition of SWNE-Markov and H;t with g;t in the definition of NWSE-Markov. An
immediately consequence of the SWNE-Markov property is that forward-rates of fixed

maturity are Ornstein-Ulhenbeck processes; in particular, the spot rate is Markov.

2. We can think of the NWSE-Markov property as imposing a form of independence
between long and short rates; for example, suppose W; and W/ are independent
Brownian motions and let By = Wy for t > 0, B, = W', for t < 0. The field F,
defined by

Fs,t = (Bs - Bt) I(S > t), (3.2)
is NWSE-Markov, is zero on s < ¢t and non-deterministic on s > ¢.

Two related Markov properties are introduced in Kennedy (1997):
Definition If for all s;1 < s9 < s3 and t1,%3 € R,

Fsl,tl 1 Fsa,tz | FS2,tla (33)



we say that F' has the second Markov property (MP2). If Fy, ; is Markov as a one-dimensional
process indexed by ¢, we say that F' is t-Markowv.
Remark From the independent increments property, it is enough to consider the case
s3 = sg in (3.3).

We will split MP2 into the upper second (MP2.1) and lower second (MP2.2) Markov
properties by restricting (3.3) to to > t; and to < ) respectively.

Proposition 3.1
(i) The random field F is SWNE-Markov iff F is t-Markov and satisfies MP2.1.
(11) The random field F is NWSE-Markov iff F is t-Markov and satisfies MP2.2.

Proof We will only prove the first statement; the proof of the second is very similar. The
implication that if F' is SWNE-Markov, then it is t-Markov and satisfies MP2.1 is immediate.

Conversely, let s1 < so, ¢t <o <tz andset A= Fy 4, B=Fg,,,C =Fg,; and D =
F,1,. From MP2.1, we have A L B|C and A L D |C so provided Var(D|C) > 0 we have
Cov(A,B|C,D) = Cov(A,B|C) — Var(D | C) 'Cov(A, D|C)Cov(B,D|C)

=0.
If Var (D | C) =0, then D is a.s. a function of C' and Cov(A,B|C,D) = Cov (A, B|C) = 0.

We also have
Cov(A,B|C,D) = Cov(A,B| D) — Var(C | D)_ICOV(A,C | D) Cov(B,C | D),

and Cov(B,C'| D) = 0 by t-Markovness, implying Cov(A, B |D) = 0. (If Var(C'| D) = 0,
then C is a.s. a function of D; thus Cov(A, B|C,D) = Cov(A, B|D) and Cov(A4,B|D) =0
again.) Thus A L B|D and the result follows. O



Recall the definitions of H = {(x,y) : ¥y > x}, and of the map p : R? x R?> — H, given
by p(s1,t1,82,t2) = (p1,p2) where p; and po are defined by (2.2) and (2.3), and the fact

is well defined and equal

that if F' is stationary with covariance structure I', then I' o p~
to f, the covariance structure of {Fy; : ¢ € R}. We now introduce a property which will be
central to the discussion of transformations of a Brownian sheet.

Definition A random field F is said to SWNE-factorise if for all (z,y) € R2, there ex-
ists (s1,t1,82,t2) € p~(z,y) with s; < sz, t; < to and open neighbourhoods, Uy, Uy

of (s1,%1), (s2,t2) respectively such that for all « € Uy, 8 € Us, we have

[(e, ) =T1(a)T2(B)

for some functions I'y : Uy — R, I'y : Uy — R. A field is said to NWSE-factorise if it

SWNE-factorises after reflection in the horizontal axis.

Theorem 3.2 Suppose that F is a stationary random field model which is not deterministic

everywhere. If F SWNE-factorises then for some constant p,

faw) =eplglony) —plo -y, -2 0= g0 gy
while if F NWSE-factorises then
f(z,y) = exp(g(z Vy) — ulz —yl), g(yziii‘i(i) <2u A0, (3.5)

where we allow g to take the value —oo in this case.

Proof We will break down the proof into several steps, but first observe that the restrictions
on g and p follow from (i) the fact that f(x,z), and hence g(z) is non-increasing in z, and
(ii) the Cauchy-Schwarz inequality applied to f(z,y).

Step 1 Consider the case I' > 0. We will first show that f has the correct form lo-
cally. Suppose F' SWNE-factorises (the NWSE case will be very similar). Let 2z < y
and (s1,t1,s9,t2) € p~Y(z,y) with 51 < s9, t; < to. Let U; and Uy be open discs with
centres (s1,t1), (s2,%2) respectively, such that for all « € Uy, 8 € U,

ay < B, oy < Py. (3.6)

Now let a € Uy, B € Uy be arbitrary. By SWNE-factorisation and Remark 2 we have

C(a, B) =T (a)T2(P)
= flay — ag, By — ), (3.7)



so I'y(B) cannot depend on ;. Since I' > 0, w.l.o.g. I'; and 'y are both positive. Setting
s(a) = oy — @, and writing I'o(8y) for I'y(3), we have

logF(a,ﬁ) = log f(saﬁy - ax)
=log I'i (v, + 5) +1og 2 (By). (3.8)

Using that fact that for any continuous functions a, b and ¢ satisfying a(x)+b(y) = ¢(z—y) on
a connected open subset of R?, ¢ must be linear, condition (3.8) implies that log f (s, 8, — ay)
is linear in 3, — oy for each s. Now let r be the radius of U; and V' be the open disc with
centre (s1,t1) and radius —=r. Let §* = (so,t2), and for a € V, let a* = (s1,s1 + s(a)).

V2
Restricting attention to & € V', we have o* € U; and s(a) = s(a*) so

log 't (a) + log T'a(B) = log f(ay — aw, By — a) — u(s)[(By — ) = (B — a3)]

for some function y(s). Considering the dependence of both sides on 3, and noting that s

depends on « but not 3, we see that u(s) must independent of s. Thus we have

logI'(e, B) = log f(ay — au, By — ) + (B, — o)
- M(ay —ag) — M(ﬁy - Ozy), (3.9)

for some constant y. Defining

9(s) :=1log f(s, By — o) + p(By — o) — ps

and noting that oy — oy < By —  in (3.7), we see from (3.9) that f has the correct form
on p(V x Us).

Since 1 is uniquely determined by fl,xr,), S0 too is the function gl, (vxrr). As
the set {(x,y) : © < y} is connected, f must take the required form on the whole of
{(z,y) : ¢ < y}, for some constant  and function g. As f is continuous and symmetric, it
has the required form on all of R%2. The proof in the NWSE case is identical, except that
we replace (3.6) with a, < f;, ay > B, and now have o, — ap > [y — .

Step 2 Suppose that I'(a, ) = 0 for some o € R?. It follows that Fj; is deterministic
for t—s > ay—ay. To see this, first note that stationarity implies that Fg(,), is deterministic
for all z € R. Now let  —s > a —ag. By the independent increments property, Fs_qa,)a —
Fs; L Fy;, thus Fy; is deterministic.

Step 3 Now consider the case of general I'. Let r € [—00, 0o] be the unique r such that F is
deterministic on the set Z = {(s,t) : t —s > r} and Var(F) > 0 on Z¢ = {(s,t) : t —s < r}.
If r = —oo then F' is deterministic everywhere, a case excluded in the statement of the

theorem, so suppose 7 > —oo. We know that f = 0 on p(Z x R?) and p(R? x Z), so we

10



now consider the form of f on p(Z¢ x Z¢). Let A = {(v,7') € Z¢ x Z° : T'(vy,7') > 0},
which is open, and non-empty since r > —oo. We note that {(a, ) : @ € Z°} is a connected
subset of A, and let B be the connected component of A containing {(o,«) : o € Z¢}.
It will turn out that p(B) = p(Z¢ x Z€). As p is a continuous open mapping, p(B) is
open and connected. Our aim is to apply Step 1 to f|p(B), but we must check that we can
choose Uy and Uj such that Uy x Uy C B. If (z,y) € p(B), say p(s1,t1,s2,t2) = (z,y),
then (s A s9,%t1,81 A s2,t2) € B. As B is open, we can find neighbourhoods Uy, U, such
that Uy x Uy C B as required. Applying Step 1 to f|,(p), we deduce that f takes the
required form on p(B). Finally let (a, 8) € B, which cannot be empty unless B = R? x R?
when I" > 0 and we are done by Step 1. We will show that p(a, 8) & p(Z¢ x Z¢). Pick a
sequence {(ay, oy, By, By)} of points in B such that (a",8") — («, ). If we are dealing
with the SWNE case set

Yn = ay A By —az A By,
and otherwise set

Yn = oy V By —ay A By,
so that

T(a",B") = exp(g(yn) — plBy — o).

As (o, 8) ¢ A, T is continuous and p > —oo is constant throughout B, it follows that as n —
00, g(yn) — —00. Thus we must be dealing with NWSE rather than SWNE factorisation.
Since po(a™, ) =y, and T'(a™, ™) > 0, we have y, < r, so (0,y,,0,y,) € B. Now

Var(FO,ayvﬁy_%/\gx) = lim Var(Foy,)

n—00
= lim exp(g(yn))
= 0.

Thus we must have oy V By — az A By > 7, so p(a,B) ¢ p(Z° x Z€), and so p(0B) C
H —p(Z° x Z€). Since p(B) is open and connected and p(B) C p(Z¢ x Z¢) (which is also
open and connected) we must have p(B) = p(Z¢ x Z¢). Thus we have established that f
has the correct form on all of p(Z¢ x Z¢) = {(z,y) : * < y < r}. Defining g(z) = —o0
for £ > r gives the correct form for f on the whole of R?. 0

Remarks

1. If F' has either factorisation property, I' is non-negative and interest-rates are posi-
tively correlated, a property usually observed in real interest-rates. In the SWNE-

Markov case, I is strictly positive.

11



2. When F has both factorisation properties, f has the equivalent forms
f@,y) = o exp(=Az Ay — plz — yl)
= o exp(=Az Vy — (u— M|z —y|)
where 0 < X < 2p. This is the three parameter model of Kennedy (1997).

A consequence of the form of f given by Theorem 3.2 is that each factorisation property

is equivalent to the corresponding Markov property:

Corollary 3.3 Let F be a stationary random field model.
(i) The field F is SWNE-Markov iff F SWNE-factorises.
(1i) The field F is NWSE-Markov iff F NWSE-factorises.

Proof We will only prove the first statement; the proof of the second is virtually identical.
Let s1 < s9 < 83, t1 < to < t3 be arbitrary. To show F' is SWNE-Markov, we must show
that Fsl,tl L F53,t3 |F527t2, i.e., that

T((s1,t1), (52, 12))T (52, t2), (s3,t3)) =T ((s1,t1), (s3,23)) T ((s2, t2), (52, t2)).
Using the form of f given by Theorem 3.2 we see both sides reduce to
exp(g(ty — s1) + gta — s2) + p(ts — t1)).

Conversely, suppose z < y; set 7 = (y — z)/4 and choose Uy, U, as the open discs, radii r,
with centres (0,x), (y —x,y) respectively. Let y be the point (3r,z+ 7). For a € Uy, 8 € Uy
we have F, L Fg|F, by the SWNE-Markov property. Thus

o, B) = Var(Fy)_l ['(a, Fv) (s, F’Y)a

so F SWNE-factorises. (If Var(F,) = 0, it is easy to show that I'(e,5) = 0 for all « €
Ui, B € Uy (see Step 2 of the proof of Theorem 3.2) so F' trivially SWNE-factorises.) [
Remark When F' has both Markov properties, f has the form

flz,y) = o2 exp(—Az Ay — plz —y)).

Kennedy (1997) proves the equivalent result that a stationary t-Markov random field model
satisfying MP2 has a covariance structure of this form. He also observes that this covariance

structure arises as a continuous transformation of the Brownian Sheet
ot
Fs,t =oe H Xe)\sye(Zp,f)\)t-

In the next section we will show that this is the only continuous injective transformation of

a Brownian Sheet to give rise to a stationary random field model.

12



3.1 Transformations of a Brownian sheet

Recall that the Brownian Sheet is the continuous Gaussian field on [0, 00)? with mean zero

and covariance structure
COV(Xsl,t17X52,t2) = (51 A 52)(t1 A t2)

(see Adler (1981) or Rogers & Williams (1994)). In this section, we will show that the only
stationary random field model which arises from an injective transformation of a Brownian
Sheet, is the three parameter model shown in (3.1). Throughout this section, F' will denote

a stationary random field model of the form
Fs1 = KsitWys ) (3.10)

where K : R? — R and ¢ : R? — [0,00)? are continuous functions, and ¢ is injective. We

let ¢, and ¢, denote the coordinate projections of ¢, so

¢(s,1) = (Ba(s,t), by (s,1))-
Lemma 3.4 If I'(a, ) = 0 for some «, B, then F(y) =0 a.s. for all v € R2.

Proof If I'(a, B) = 0 then either at least one of K, and K3y is zero, or at least one of ¢(«)
and ¢(f) lies on the coordinate axes. Therefore, w.l.o.g., we may assume that Var(F,) =0
implying that the field is zero a.s. on the diagonal upper half plane through « (see Step 2 in
the proof of Theorem 3.2). Now suppose that there exists v € R? with Var(F,) # 0. Let n
be the point on {S(y)(@) : y € R} closest to v, let v = S(2(ny —yy))y and ¢ = S(ny —yy)n.
Since Fr = 0 a.s. (by stationarity) and F,, L (F, — F¢), we have F, L F,,. Thus I'(y,v') =
0, so by the previous argument, at least one of Var(F,) and Var(F,) is 0. Stationarity
implies that both these variances are equal, and we conclude Var(F,) = Var(F,) = 0,
a contradiction. O

To exclude this trivial case, we will assume from now on that I' > 0. We will now
exploit the special Markov structure of the Brownian Sheet to show that F' both SWNE
and NWSE-factorises. Introduce the notation T'(d) for the translation parallel through a
distance d parallel to the z-axis, T'(d)(s,t) = (s + d, t).

Theorem 3.5 The field F both SWNE and NWSE-factorises.

Proof We break up the proof in to several pieces.
Step 1 We first show that FF SWNE-factorises. Let < y, € > 0, and define

cro(u,v) :={(s,t) : s=wuor t =v}

13



to be the ‘cross’ formed by the union of the horizontal and vertical lines through (u,v). Let
v = 3(¢(0,2) + ¢(e,y)). Note that either both ¢(0,z) and ¢(e,y) are contained in cro(y)
or neither is, so we have two cases to consider.

Case 1a If ¢(0,x), ¢(e,y) & cro(vy), we consider the situation when

QS:D(O?:L‘) < ¢$(€7y)7 ¢y(07$) < st(eay)a

(the other cases can be handled in a similar way). Let Uj, and U} be open neighbourhoods

of ¢(0,z), ¢(e,y) respectively which do not intersect cro(7y).

6~1(U})
(e,y) ’ @

U;

L]

N @ !
(0,z) Uy

Now set Uy = ¢~ 1(U]), Uy = ¢~1(U}). By the Markov properties of the Brownian Sheet,

we have
FaJ—F,B|X7 for a € Uy, B € Us.

Thus F SWNE-factorises in a neighbourhood of (z,y).

Case 1bi Suppose ¢(0,z), ¢(e,y) € cro(y), but ¢(T(t)(0,y)) & cro(¢(0,x)) for some ¢ > 0.
Since p((0,z),T(t)(0,y)) = (x,y) for all ¢ > 0, a similar argument to the one used in Case
la shows that ' SWNE-factorises near (z,y).

Case 1bii Now suppose that ¢({T'(¢)(0,y) : t > 0}) C cro(¢(0,z)). Let A = (0,x),
B =(0y), C = (y—1,y) and D = (3(y — z),y). Since ¢ is injective, ¢(C) # $(4),
and by continuity, ¢(C) and ¢(D) lie in the same ‘branch’ of cro(¢(A)). For all s,¢t >
0, p(S(s)A,T(t)S(s)B) = (z,y). Thus, either FF SWNE-factorises by an argument similar
to Case 1bi, or ¢({T'(t)S(s)B : t > 0}) C cro(¢(S(s)A)) for all s > 0. As S(s)A, S(s)C
and S(s)D are distinct and ¢ is injective, ¢(S(s)A), #(S(s)C) and ¢(S(s)D) are also dis-
tinct. From the continuity of ¢, we deduce that ¢(S(s)C) and ¢(S(s)D) lie in the same
branch of cro(¢(S(s)A)) for every s > 0.

14



Z c' D

Now choose s = y — x, and let C' = S(y — 2)C and D' = S(y — z)D. As S(y —z)A =
C, continuity of ¢ implies that ¢(C), ¢(D), #(C') and ¢(D') are collinear; in addition
W points in the same direction as W Finally let Z = (Cy,Cy +y — ).
We have Fp L Fir | For, 50 (C") € [(D), §(D')], For L Fer | Fy, s0 $(Z) € [$(C), $(C"),
and Fz L Fp|Fg, so ¢(C) € [¢(Z), ¢p(D)], which imply ¢(C) = ¢(Z). Hence ¢ is not
injective, a contradiction.

Step 2 We now show NWSE-factorisation (the first two cases are very similar to Cases la
and 1bi above). Let € > 0 and consider the points ¢(e,z) and ¢(0,y). Let v = 2(¢(e, ) +
$(0,y)).

Case 2a If ¢(e,z),¢(0,y) & cro(y) we can prove that ' NWSE-factorises using a very
similar argument to Case la.

Case 2bi Suppose ¢(0,z), ¢(e,y) € cro(y), but ¢(T()(0,z)) & cro(p(0,y)) for some ¢ > 0.
Since p(T'(t)(0,z),(0,y)) = (z,y) for all ¢ > 0, the argument of Case 1bi shows that F
NWSE-factorises near (x,y).

Case 2bii Now suppose ¢({T'(¢)(0,z) : t > 0}) C cro(¢(0,y)). Let A = (0,y), C = (0,z)
and D = (3(y — z),z) and note that ¢(C) and ¢(D) lie in the same branch of cro(¢(A)).

A c' D

Since p(S(s)A,T(t)S(s)C) = (z,y) for all s, > 0, either FF NWSE-factorises by the argu-
ment of Case 2bi or ¢({T'(t)S(s)C : t > 0}) C cro(¢(S(s)A)) for all s > 0. As ¢ is continuous
and injective, ¢(A), ¢(C) and @(D) are distinct and collinear. Let C' = S(y—z)C and D' =
S(y — z)D. As ¢ is continuous, W is parallel to and points in the same direction
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as ¢(C")¢(D'). Finally, observe that Fp L Fpi|Fer, Fo L Fp|Fo and Fo L Fer | Fa.
Together these imply that ¢(C) = ¢(A). Hence ¢ is not injective, giving a contradiction. [

Corollary 3.6 The field F' has the same law as
U@iﬂtWexs’e(wf)\)t (3'11)
where 0 < X < 2 and W is a Brownian Sheet.

Proof Since F' is NWSE-Markov it NWSE-factorises, by Corollary 3.3, and similarly, since it
is SWNE-Markov, it SWNE-factorises. Thus by Remark (ii), on page 12, it has a covariance

structure of the form
f(z,y) = o? exp(—)\(t1 ANty —s1 A S3) —pltr Vig—s1 A 32|), 0< X< 2,

where f(z,y) = Cov(Fo, Foy). But this is also the covariance structure of the field given
by (3.11), so the result follows. O
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