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ABSTRACT 

Dynamic financial analysis (DFA) is a technique which uses Monte Carlo simulation to investigate the 
evolution over time of financial models of funds, complex liabilities and entire firms.  Although of increasing 
popularity, the drawback of DFA is the dearth of systematic methods for optimising model parameters for 
strategic financial planning.  This paper introduces strategic DFA which employs the only recently mature 
technology of dynamic stochastic optimisation to fill this gap.  The new approach is described in terms of an 
illustrative case study of a joint university/industry project to create a decision support system for strategic asset 
liability management involving global asset classes and defined contribution pension plans.  Although the 
application of the system described in the paper is to fund design and risk management, the approach and 
techniques described here are much more broadly applicable to strategic financial planning problems;  for 
example, to insurance and reinsurance firms, to risk capital allocation in financial institutions and trading firms 
and to corporate investment and business development involving real options.  As well as describing the 
mathematical and statistical models used in the case study, the paper treats econometric estimation, asset return 
and liability scenario generation, model specification and optimisation, system evaluation and historical 
backtesting.  Throughout the system visualisation plays an important rôle. 
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Dynamic optimization is perceived to be too difficult …  It would be nice to 
have a generic ‘sledge hammer’ approach for attacking this sort of problem. 

A. D. Smith (1996), p. 1085 
 

1. INTRODUCTION 

1.1. Aims 
1.1.1. Recent years have witnessed the introduction of new investment products aimed 

at attracting investors who are worried about the volatility of financial markets.  The main 
feature of these products is a minimum return guarantee together with exposure to the upside 
movements of the markets.   While such a return guarantee could be achieved simply by 
investing in a zero-coupon Treasury bond or similar instrument with expiration equal to the 
maturity date of the product, this would not allow any expectation of higher returns.  Thus 
there is a need to offer pension products that protect the investor from the downside while 
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maintaining a reasonable expectation of better returns than the guaranteed one. 
1.1.2. However, most such current products do not offer a high degree of flexibility;  

usually, they accept only lump sum investments and have a predetermined maturity of only a 
few years.  This is probably a consequence of the difficulty of reliable long-term forecasting 
and subsequent determination of the proper asset allocation(s) over the distant time horizon 
of the investment. 

1.1.3. At the same time it is well known that state, and many company, run defined 
benefit pension plans are becoming inadequate to cover the gap between the contributions of 
people while working and their pensions once retired.  The solution to this problem requires 
some form of instrument which can fill the gap to allow investors a reasonable income after 
retirement.  A long-term minimum guarantee plan with a variable time-horizon, and in 
addition to the initial contribution the possibility of making variable contributions during the 
lifetime of the product, is such an instrument. 

1.1.4. Although societally beneficial and potentially highly profitable for the provider 
the design of such instruments is not a trivial task, as it encompasses the need to do long-term 
forecasting for investment classes, handling a stochastic number of contributors, 
contributions and investment horizons, together with providing a guarantee.  Stochastic 
optimisation methodology in the form of dynamic stochastic programming has recently made 
long strides and is positioned to be the technique of choice to solve these kinds of problems. 

1.1.5. This paper describes the approach and outcomes of a joint project between a 
university financial research centre and a leading firm operating in the European fund 
management industry to develop a state-of-the-art dynamic asset liability management 
(ALM) system for pension fund management.  The development of this system has been part 
of an effort undertaken by the firm for the global improvement of its ALM-related 
technologies and systems.   

1.2. The Pension Fund Problem 
1.2.1. Asset liability management concerns optimal strategic planning for 

management of financial resources and liabilities in stochastic environments, with market, 
economic and actuarial risks all playing an important role.  The task of a pension fund, in 
particular, is to guarantee benefit payments to retiring clients by investing part of their current 
wealth in the financial markets.  The responsibility of the pension fund is to hedge the client’s 
risks, while meeting the solvency standards in force, in such a way that all benefit payments 
are met. 

1.2.2. Below we list some of the most important issues a pension fund manager has to 
face in the determination of the optimal asset allocations over time to the product maturity:- 
a) Stochastic nature of asset returns and liabilities 

Both the future asset return and the liability streams are unknown.  Liabilities, in 
particular, are determined by actuarial events and have to be matched by the assets.  Thus 
each allocation decision will have to take into account the liabilities level which, in turn, 
is directly linked to the contribution policy requested by the fund. 

b) Long investment horizons 
The typical investment horizon is very long (30 years).  This means that the fund 
portfolio will have to be rebalanced many times, making “buy&hold” Markowitz-style 
portfolio optimisation inefficient.  Various dynamic stochastic optimisation techniques 
are needed to take explicitly into account the on-going rebalancing of the asset-mix. 
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c) Risk of under-funding 
There is a very important requirement to monitor and manage the probability of under-
funding for both individual clients and the fund, that is the confidence level with which 
the pension fund will be able to meet its targets without resort to its parent guarantor. 

d) Management constraints 
The management of a pension fund is also dictated by a number of solvency 
requirements which are put in place by the appropriate regulating authorities.  These 
constraints greatly affect the suggested allocation and must always be considered.  
Moreover, since the fund’s portfolio must be actively managed, the markets’ bid-ask 
spreads, taxes and other frictions must also be modelled. 

1.2.3. The theory of dynamic stochastic optimisation provides the most natural 
framework for the effective solution of the pension fund ALM problem that will guarantee its 
users a competitive advantage in the market.   

1.2.4. Most firms use static portfolio optimisation models, such as Markowitz mean-
variance allocation, which are short-sighted and when rolled forward lead to radical portfolio 
rebalancing unless severely constrained by the portfolio manager’s intuition.  Although such 
models have been extended to take account of liabilities in terms of expected solvency 
(surplus) levels (see e.g. Mulvey, 1989) these difficulties with static models remain.  In 
practice fund allocations are (thus) wealth dependent and face time-varying investment 
opportunities, path-dependent returns – due to cash inflows and outflows, transactions costs 
and time or state dependent volatilities – and conditional mean return parameter uncertainties 
– due to estimation or calibration errors.  Hence all conditions necessary for a sequence of 
myopic static model allocations to be dynamically optimal are violated (see e.g. Scherer, 
2002, §1.2). 

1.2.5. By contrast, the dynamic stochastic programming models incorporated in the 
system described below automatically hedge current portfolio allocations against future 
uncertainties in asset returns and liabilities over a longer horizon, leading to more robust 
decisions and previews of possible future problems and benefits. 

1.3. Paper Outline 

1.3.1. The next section of the paper sets out the background and basic approach of 
practical strategic DFA systems for financial planning utilising modern dynamic stochastic 
optimisation techniques.  The remaining sections illustrate these in the context of this case 
study.  Section 3 treats the modelling and econometric estimation of a monthly global asset 
return model for four major currency areas and the emerging markets which includes 
macroeconomic variables.  In §4, the calibration and stochastic simulation of various versions 
of this statistical model for use in financial scenario generation for strategic DFA models is 
discussed.  The basic CALM dynamic stochastic optimisation model is treated in §5, 
including a discussion of risk management objectives, basic constraints, practical constraints 
and variants of the CALM model for the determination of optimal benchmark portfolios and 
risk managed return guarantees.  Section 6 describes the generation of dynamic stochastic 
optimisation models for their numerical solution, together with a brief description of solution 
algorithms and software.  Historical out-of-sample backtests of system portfolio 
recommendations are described in §7 for risk management criteria applied to both terminal 
fund wealth and the trajectories of the wealth accumulation process.  Finally, §8 draws 
conclusions and indicates directions for future work. 
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2. STRATEGIC DFA 

2.1. System Design 

2.1.1. Figure 1.1 depicts the processes, models, data and other inputs required to 
construct a strategic DFA system for dynamic asset liability management with periodic 
portfolio rebalancing.  It should be noted that knowledge of several independent highly 
technical disciplines is required for strategic DFA in addition to professional domain 
knowledge.  Corresponding to Figure 1.1, Figure 1.2 shows the system design which 
describes the separate – largely automated and software instantiated – tasks which must be 
undertaken to obtain recommended strategic decisions once statistical and optimisation 
models have been specified.  Each of the blocks of the latter figure will be treated in detail in 
a subsequent section of the paper.  The outer solid feedback loop recognizes the iterative 
nature of developing any implementable strategic plan in which process visualisation of data 
and solutions is key.  The inner solid loop will be described in §4.  The dotted feedback loops 
represent possible future developments which will be mentioned in the conclusion. 
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Figure 1.1  Strategic financial planning 
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Figure 1.2  System design for strategic financial planning 

2.2. Dynamic Stochastic Optimisation 
2.2.1. As noted above, strategic ALM requires the dynamic formulation of portfolio 

rebalancing decisions together with appropriate risk management in terms of a dynamic 
stochastic optimisation problem.  Decisions under uncertainty require a complex process of 
future prediction or projection and the simultaneous consideration of a number of 
alternatives, some of which must be optimal with respect to a given objective.  The problem 
is that these decisions are only known to be optimal or otherwise after the realisation of all 
random factors involved in the decision process.  In dynamic stochastic optimisation (often 
termed dynamic stochastic programming, as in mathematical programming, see e.g. 
Dempster (1980)) the unfolding uncertain future is represented by a large number of future 
scenarios from the DFA simulation process (see e.g. Kaufmann, et al. (2001) and the 
references therein) and contingent decisions are made in stages according to tree 
representations of future data and decision processes.  The initial – implementable stage – 
decisions are made with respect to all possible variations of the future (in so far as it is 
possible to predict and generate this future) and are thus hedged within the constraints against 
all undesirable outcomes.  This technique also allows detailed ‘what-if’ analysis of particular 
extreme future scenarios – forewarned is forearmed! 

2.2.2. The methods used are computationally intensive and have only recently become 
practical for real applications.  Each particular optimisation problem is formulated for a 
specific application combining the goals and the constraints reflecting risk/return 
relationships.  The dynamic nature of stochastic optimisation: decisions – observed output – 
next decisions – etc … allows a choice of strategy which is the best suited for the stated 
objectives.  For example, for pension funds the objective may be a guaranteed return with a 
low unexpected risk and decisions reviewed every year.  For a trading desk, the objective 
may be the maximisation of risk adjusted cumulative trading profit with decisions revised 
every minute, hour or day. 

2.2.3. The basic dynamic stochastic optimisation problem treated in this paper is the 
following.  Given a fixed planning horizon and a set of portfolio rebalance dates, find the 
dynamic investment strategy that maximises the expected utility of the fund’s (net) wealth 
process subject to constraints, such as on borrowing, position limits, portfolio change and risk 
management tolerances, viz. 
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maximise         �[U(w(x))] 

subject to        A x � b. 

Here U is a specified utility function which is used to express the attitude to risk adopted for 
a particular fund – tailored to broadly match those of its participants over the specified 
horizon – with regard to the wealth process w.  (Throughout the paper we use boldface type 
to represent random entities.)  U is used to recommend rebalance decisions which shape the 
state distributions of w over problem scenarios.  Risk attitude may concern only terminal 
wealth (Hakansson, 1974; Dempster & Ireland, 1998) or be imposed at each portfolio 
rebalance date.  The (deterministic equivalent form of the) decision process x represents 
portfolio composition at each rebalance date in each scenario subject to the data (A, b) 
representing the constraints.  As such it is a complete contingency plan for the events defined 
by the scenarios.  This basic model will be detailed in §5 and the appendices. 
2.3. Literature Review 

2.3.1. The problem of maximising expected utility under uncertainty subject to 
constraints can be a highly non-trivial problem.  From the point of view of maximising utility 
the fund will naturally want its set of potential investments to be as large as possible.  Thus, it 
will want the option to invest in global assets ranging from relatively low risk, such as cash, 
to relatively high risk, such as emerging markets equity.  The inclusion of such assets greatly 
increases the complexity and the amount of uncertainty in the problem since it necessitates 
the modelling to some degree of not only the asset returns, but also of exchange rates and 
correlations.  Further sources of complexity arise from the multi-period nature of the problem 
and frictions such as market transaction costs and taxes. 

2.3.2. The most well known and probably the most widely used method to solve such 
a problem is the mean-variance analysis pioneered by Markowitz (1952).  This analysis can 
be characterised by a quadratic utility function which depends only on the mean and variance 
of the portfolio return parameterised by a risk aversion coefficient.  Solving the utility 
maximisation problem for a range of values of the risk aversion parameter gives rise to the 
efficient frontier.  This method is now easily implemented in a spreadsheet and only requires 
an estimate of the mean and covariance of the returns, which are normally obtained from 
historical data and/or subjective opinion.  However, as noted above, the standard 
implementation of the mean-variance model is static (one-period) and thus fails to capture the 
multi-period nature of the problem.  It also ignores market frictions such as transaction costs.  
Mean-variance analysis has been extended to incorporate multiple periods and market 
frictions (see e.g. Steinbach (1999), Horniman et al. (2000) and Chellathurai and Draviam 
(2002)) but at the cost of greatly increased complexity. 

2.3.3. In this paper we apply dynamic stochastic optimisation to solve pension fund 
management problems with global investments.  The advance of computing technology and 
the development of effective algorithms (see e.g. Scott, 2002) have made stochastic 
optimisation problems significantly more tractable.  Following the early work of Bradley & 
Crane (1972), Lane & Hutchinson (1980), Kusy & Ziemba (1986) and Dempster & Ireland 
(1988), the growing body of literature concerning the application of stochastic optimisation to 
fund management problems includes Mulvey and Vladimirou (1992), Dantzig and Infanger 
(1993), Cariño et al. (1994), Consigli and Dempster (1998), Zenios (1998) and Geyer et al. 
(2002) and is a testament to the suitability of this method for solving such problems.  A 
comparison of the application of mean-variance analysis, stochastic control and stochastic 
optimisation to fund management problems can be found in Hicks-Pedron (1998) where it is 
shown that dynamic stochastic optimisation performs best in terms of the appropriate Sharpe 
ratio. 
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3. ASSET RETURN, EXCHANGE RATE AND ECONOMIC DYNAMICS 

3.1. Asset Return Model 
3.1.1. Our asset return model is in the econometric estimation tradition initiated by 

Wilkie (1986, 1995) and continued, for example, by Cariño et al. (1994), Dert (1995), 
Boender et al. (1998) and Duval et al. (1999).  An alternative approach, in the tradition of 
Merton (1990), is to set up a continuous time stochastic differential equation (sde) model for 
the financial and economic dynamics of interest, discretise time to obtain the corresponding 
system of stochastic difference equations and calibrate the output of their simulation with 
history by various ad hoc or semi-formal methods of parameter adjustment, see, for example, 
Mulvey & Thorlacius (1998) and Dempster & Thorlacius (1998).   

3.1.2. Several other alternative approaches have appeared in the literature which also 
attempt to generate scenarios known to be arbitrage free within the model.  One method 
widely used for very specific problems in financial stochastic optimisation is sampling 
scenarios from arbitrage-free lattice paths for the appropriate – e.g. short rate (Zenios, 1998) 
– arbitrage free model.  The resulting sampled scenarios however need not be arbitrage free 
unless the sampling procedure is carefully controlled (see §4.3).  More recently, arbitrage-
free methods (Cairns, 2000) and deflator techniques (Smith & Speed, 1998; Jarvis et al., 
2001) for designing models in more complex situations have appeared.  These modelling 
approaches involve – at least implicitly – risk neutral (i.e. risk discounted) probabilities and 
market price of risk premia to allow simulation of cash flows under real world probabilities.  
While such approaches are appropriate – indeed necessary – for full discounting for valuation 
purposes, they are totally inappropriate  for making dynamic ‘what-if’ forward investment 
decisions which must face an approximation of the real world risks.  Even for valuation 
purposes, calibration of complex arbitrage-free models to current –but not necessarily past – 
market data is difficult, not least since the literature on estimating multivariate market prices 
of risk or state price densities is sparse (but see §3.4 for such a 3-factor yield curve 
calculation).  By contrast with the assumption of no arbitrage – when portfolio decisions are 
irrelevant to total return (Jarvis et al., 2001) – time varying investment opportunities and 
potential macro-economic arbitrages occur in the real world. 

3.1.3. We have therefore opted for the econometric approach which can – if successful 
(cf. the positive results of system backtests in §7) – model these effects, together with the fact 
that the estimation procedures involved have been widely employed and most pitfalls in their 
use documented.  Although in our experience some further informal calibration (tuning) of 
parameter estimates is usually required, for the complex asset return models developed here 
this has been minimal. 

3.1.4. Note that real world scenario generation for stochastic optimisation models by 
any method may still introduce spurious arbitrages due to sampling errors.  Simple 
techniques for their suppression will be discussed in §4.3.  In this study sampling error has 
been found to completely swamp statistical parameter estimation error – even assuming that 
the fitted econometric model actually underlies the data. 

3.1.5. Figure 3.1 depicts the global structure of the asset return model involving 
investments in the three major asset classes – cash, bonds and equities – in the four major 
currency areas – US, UK, EU and Japan (JP) – together with emerging markets (EM) equities 
and bonds.  Arrows depict possible explanatory dependence. 
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Figure 3.1  Pioneer Asset Return Model Global 
3.1.6. Following Dempster & Thorlacius (1998), the approach is to specify a 

canonical model for each currency area which is linked to the others directly via an exchange 
rate equation and indirectly through correlated innovations (disturbance or error terms).  For 
capital market modelling with monthly data this approach was deemed likely to be superior to 
the usual macroeconomic (quarterly) trade flow linkages (see e.g. Pesaran & Shuermann 
2001) between currency areas.  Figures 3.2 and 3.3 show respectively at overall and detailed 
level the structure of the canonical model of a major currency area.  Potential liability models 
in each currency area are shown for completeness although of course pension or guarantee 
liabilities might be needed only in fewer currencies.  The next three sections discuss 
respectively the canonical model for the capital markets and exchange rate, the emerging 
markets model and the canonical economic model.  The home currency for these models is 
assumed to be the US dollar, but of course scenarios can be generated in any of the four 
major currencies since cross rates are forecast and any other currency (e.g. the Euro) can be 
taken as the home currency for the statistical estimation. 
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Figure 3.2  Major currency area model structure 
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Figure 3.3  Major currency area detailed model structure 

3.2. Capital Markets and Exchange Rate Model 

3.2.1. For simplicity we specify here the evolution of the four state variables – equity 
(stock market) index (S), short term (money market) interest rate (r), long term (Treasury 
bond) interest rate (l) and exchange rate (X) – in continuous time form as 
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3.2.2. Here the drifts and volatilities for the four diffusion equations are potentially 
functions of the four state variables and the dZ terms represent (independent) increments of 
correlated Wiener processes.  All dependent variables in this specification are in terms of 
rates, while the explanatory state variables in the drift and volatility specifications are in 
original level (S and X) or rate (r and l) form. 

3.2.3. Detailed specifications of discretised versions of this model are given in 
Appendix A.  The resulting econometric model has been transformed to have all dependent 
variables in the form of returns and the disturbance structure contemporaneously correlated 
but serially uncorrelated.  In vector terms, the econometric discrete time model has the form 

� x = diag(x) [ µ(x) + � ε ], 

where  denotes forward difference, diag (.) is the operator which creates a diagonal matrix 
from a vector, µ is a first order nonlinear autoregressive filter, 

�

�  is the Cholesky factor of 
the correlation matrix �   of the disturbances, and the vector ε has uncorrelated standardised 
entries. 

3.2.4. Although linear in the drift parameters to be estimated, this model is second 
order autoregressive and highly nonlinear in the state variables, making its long run dynamics 
difficult to analyse and potentially unstable.  For use in scenario generation over long 
horizons the model must therefore be linearised so that its stability analysis becomes 
straightforward.  Some linear variants used to date will be discussed in the sequel; we 
continue to experiment with appropriate forms.  Due to its linearity in the parameters this 
(reduced form) model may be estimated using the seemingly unrelated regression (SUR) 
technique, see e.g. Hamilton (1994) or Cochrane (1997), recursively until a parsimonious 
estimate is obtained in which all non-zero parameters are statistically significant. 

3.3. Emerging Markets Model 

3.3.1. After preliminary analysis of the emerging market equity and bond indices (see 
Table 3.1) using extreme value theory (Kyriacou, 2001) and experimentation with various 
ARMA/GARCH specifications, it was decided to fit the following ARMA (1,0) model with 
GARCH (1,1) error structure to index returns individually, viz. 
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where y denotes the (monthly) index return and ε is a serially uncorrelated standard normal or 
student t random variable.  Interestingly, although in the EM index data analysed individually 
the equity index was less extreme than the bond index in terms of tail parameter estimate 
(Kyriacou, 2001),  the above model fit both sets of index data reasonably well with Gaussian 
innovations.  However, these innovations could be expected to be contemporaneously 
correlated between EM indices and with the innovations of the other variables in the model. 

3.3.2. In this case the system model remains as in §3.2, but the enlarged 
contemporaneous covariance matrix  is no longer constant and becomes a process  for � �
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the entries corresponding to the two extra EM returns.  Following a general quasi-likelihood 
strategy (White, 1982) we may estimate a constant covariance matrix  as before using the 
residuals from the SUR capital market equation estimation and the normalised residuals 

�

/tu Ht  from the individual EM index estimations with sample variance (approximately) 1.  
Then we compute the Cholesky factor of the corresponding correlation matrix estimate and, 
for simulation of the full system equation, scale each correlated standardised innovation by 

the appropriate volatility estimate – constant �  or time and scenario dependent ˆ ˆ
tH . 
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3.4. Economic Model 

3.4.1. In order to capture the interactions of the capital markets with the economy in 
each major currency area, a small model of the economy was developed with four state 
variables in nominal values: three financial – consumer price index (CPI), wages and salaries 
(WS) and public sector borrowing requirement (PSB) – and gross domestic product (GDP).  
For stability the specification is in terms of returns similar to the capital markets model but 
with non-state-dependent volatilities, viz. 
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This is again a second order autoregressive model in the state variables which as shown is 
linear in parameters and nonlinear in variables.  It may be estimated using the techniques 
mentioned in §3.2. 

3.4.2. With a view to eventually including Treasury bond asset classes of different 
maturities in the system, a standard 3-factor yield curve model (Campbell, 2000) was 
developed for fitting to spot yield curve data.  The three factors in this model are a very short 
(one month) rate (R0) and long rate (L) corresponding to the capital markets model and a 
slope factor (Y: = L-R) between the short and long rates.  By using a time series of monthly 
yield curve data, it is possible to estimate the evolution over the sample period of the market 
prices of risk (MPRs) for the three factors in volatility units by assuming the model fits the 
yield curve exactly (commonly referred to as backing-out the MPRs).  

3.4.3. In more detail, suppose the processes for the three factors R0, Y and L under the 
real world probabilities satisfy 
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� � � �

� � �

� � �
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R R R R R R R

d

d

�

�

0R L + Y R W W
Y Y +
L L+

� �

� � � �

� � � �

 

To calculate market prices of risk time series � �  for t=1,…,T, we first calibrate 
the model to detailed yield curve data at t=1 in the usual manner giving estimates of the 
model parameters .  Estimates of the real world drifts 

0 Yt Lt,  , ,
R t

�

L�0, , , , , ,Y L Y L YR
k� � � � � �
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0 , , , 1,...,Yt LtR t
t� � � � T

0

 can then be obtained from the historical (monthly) time series for the 
factors using a suitable backward moving average and data prior to .  Estimates of the 
market prices of risk can then be calculated using the expressions 

1t �

/0 0
0( )

( ) /

( ) / .

t t tR t R t R

Yt Yt y y t Y

Lt Lt L L t L

kL kY kR

Y

L

� � �

� � � � �

� � � � �

� � � �

� � �

� � �

 

3.4.4.  Figure 3.4 depicts the result of this procedure for the US over nearly a 24 year 
horizon.  Note that while the MPRs of the very short rate and the yield curve slope are highly 
positively correlated, they are both negatively correlated with the MPR of the long rate, as 
might be expected for a market which shifts its interest rate risk focus back and forth from 
short to long term. 

 
Figure 3.4  Evolution of US yield curve factor market prices of risk 
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Variable Corresponding Proxy 

SUS S&P 500 stock index 

RUS US 3 month T-bill rate 

LUS US 30 year T-yield with semi-annual compounding 

SUK FTSE stock index 

RUK UK 3 month T-bill rate 

LUK UK 20 year GILT rate with semi-annual compounding 

SEU MSCI Europe stock index 

REU German 3 month FIBOR rate 

LEU German 10 year bond yield with annual compounding 

SJP TOPIX stock index 

RJP JP 3 month CD rate 

LJP JP 10 year bond yield with annual compounding 

SEM MSEMEI stock index 

BEM EMBI+ bond index with 10 year average maturity 

XUK UK/US Exchange Rate 

XEU EU/US Exchange Rate 

XJP JP/US Exchange Rate 

CUS US CPI 

WUS US wage index 

GUS US GDP 

PUS US public sector borrowing 

Table 3.1 Data proxies for model variables  
 

3.4.5. As a preliminary analysis of the interactions of the US macroeconomic and 
capital market variables over the sample period, these MPRs were regressed on the 
macroeconomic variables expressed in both levels and returns and significant relationships 
noted.  These accorded well with significant coefficients in the subsequent US system model 
estimation (see §3.6). 

3.5. Data and System Model Estimation 
3.5.1. Table 3.1 sets out the data used as proxies for the variables of the full system so 

far discussed.  Sources were Data Stream and Bloomberg at monthly frequency from 1977 
except for economic variables available only quarterly.  Monthly levels were computed for 
the latter by taking the cube root of the actual quarterly return and finding the corresponding 
monthly levels between announcements.  Figure 3.5 shows equity index evolution in the US 
and Japan over the 284 month period from July 1977 to February 2001.  Dummy variable 
techniques were required to estimate the effects on constant terms of the bubble and crash 
period, thereby enabling a meaningful estimation of the Japanese currency area capital 
market equations.  So far they have not proved necessary for recent US history!  A consistent 
database of model data is currently being maintained and updated monthly by the fund 
manager. 
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Topix Levels (JP)

Source:  DataStream

 

Figure 3.5a  Equity index evolution in JP  

 

S&P 500 Levels (US)

Source:  DataStream

 

Figure 3.5b  Equity index evolution in the US 
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3.5.2. Various subsystems of the full capital markets and economic model have been 
estimated (see §7) using the SURE model maximum likelihood estimation procedures of 
RATS (Doan, 1996).  For each model the full set of model parameters was first estimated and 
insignificant (at the 5% level) variables sequentially removed to obtain a parsimonious final 
model with all statistically significant coefficients.  This procedure has been automated in a 
PERL/RATS script, and (although we are well aware that for given data best variable 
selection is an NP-hard problem) the automated results agree virtually completely with the 
much more time consuming hand procedures.  Estimation of the emerging market individual 
ARMA/GARCH equations to yield the AR(1)/GARCH (1,1) specification  of §3.4 has been 
accomplished using S+.  The quasi-likelihood procedure for estimating full models with EM 
returns was described in §3.4. 

3.6. Results 
3.6.1. We summarise here only illustrative or highly significant findings;  more 

detailed results are forthcoming in Arbeleche (2002).   
3.6.2. In this project we have devised a way of presenting econometric model 

estimation results concisely and graphically.  For example, Figure 3.6 shows such an 
influence diagram for a full system model including the US economic variables.  Boxes 
(economic variables) or circles (capital market variables) denote dependent variables (in 
return form with corresponding adjusted R2 values shown in percentage terms) and arrows 
denote a significant influence (solid) or lagged influence (dotted) from a corresponding 
explanatory variable (tail) to a dependent variable return (tip).  The seemingly unrelated 
regression nature of the model is obvious as each currency area is directly related only 
through exchange rates and indirectly related through shocks.  In light of Meese & Rogoff’s 
(1983a, b) classical view on the inefficacy of macroeconomic explanations of exchange rates 
even at monthly frequency, after considerable single equation and subsystem analysis we 
have found that interest rate parity expressed as inter-area short rate differences – together 
with other local capital market variables – has significant explanatory power, while 
purchasing power parity expressed various ways does not (cf.  Hodrick & Vassalou, 2002). 
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Influence at time t �<5%

Influence at time t-1 �<5%

 

Figure 3.6  Influence diagram for CM +USE + EM 93/01-02/01 system model 
3.6.3. Figure 3.7 emphasises our main econometric finding that the world’s equity and 

emerging bond markets and currency exchange rates are linked simultaneously through 
shocks.  The first covariance (diagonal and below)/correlation (above diagonal) matrix is that 
of raw returns.  The second is estimated using residuals from the fitted system model.  The 
circled entries have high correlations and do not change significantly – some actually 
increase – from the one to the other showing that the dependent variables react mainly to 
current shocks (innovations) in spite of the stochastic nature of the explanatory variables.   



 17

Covariance/correlation matrix of raw returns 93:12 to 01:02 

 
Covariance/correlation matrix of residuals 93:12 to 01:02 

 
 

Figure 3.7  Covariance/correlation matrices for the model of Figure 3.6
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4. ASSET RETURN AND LIABILITY SCENARIO SIMULATION AND CALIBRATION 

4.1. Simulation and Calibration 
4.1.1. The system model discussed in the previous section is a vector nonlinear second 

order autoregressive model with a monthly timestep.  Given initial values of its state 
variables, it may be simulated without stochastic innovations as a discrete time deterministic 
dynamical system defining the mean paths of the state variables.  The nonlinear dynamics of 
this deterministic system may be exceedingly complex and the system may rapidly explode 
or die to zero values of some variables for certain configurations of the (significant) estimated 
parameters.  Graphical emulation of the central tendencies of the historical path by this 
deterministic system (see Figure 4.1) is a necessary condition for the generation of realistic 
scenarios – alternative histories – by Monte Carlo simulation of the stochastic dynamical 
system. Monte Carlo simulation of this nonlinear vector stochastic difference equation is 
effected by Euler (first order) stochastic simulation of the independent Gaussian or Student t 
disturbances which are correlated through the estimated Cholesky factor of the 
contemporaneous covariance matrix. The implication is that a limited number of estimated 
parameters – both coefficients and volatilities – may need adjustment to make both the 
deterministic and corresponding stochastic systems graphically match history (in-sample).  
Since the impacts of parameter changes is complex due to the nonlinearity of the system, this 
is not an easy task.  Nevertheless, intuitions can be developed to make the achievement of 
reasonably accurate calibrations tractable and we have developed a prototype graphical 
interface tool stochgen 3.0 (Dempster et al., 2002) to aid the process graphically.  Ideally, the 
calibration process itself should be formalised as a nonlinear optimisation problem for some 
out-of-sample prediction error criterion and we are currently working on limited versions of 
this.  However, the development of appropriate prediction criteria is itself a challenge, to say 
nothing of the fact that the parameter optimisation problem involving an out-of-sample 
prediction error criterion is a nonconvex optimisation problem of at least the difficulty of the 
dynamic stochastic optimisation problems we wish to solve.  As previously noted we have 
therefore made considerable use of graphics. 
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Figure 4.1a  In-sample drift with US history – stock index 

 
Figure 4.1b In-sample drift with US history – long rate 

4.1.2. Figure 4.1 shows a typical graphical result of a calibrated deterministic 
simulation of the nonlinear system in the estimation period (in-sample).  Figure 4.2 shows the 
corresponding in-sample scenario generation where one is looking for scenario paths with 
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similar properties to the historical path.  Similar scenarios may be generated out-of-sample.  
For calibration purposes however the 0, 25, 50, 75 and 100 percent scenario values in each 
out-of-sample period, as shown in Figure 4.3, are more valuable.  The US stock index plot in 
the figure shows the desirable calibration in which out-of-sample the historical path is centred 
in the 50 percent inter-quantile range of the scenario state distributions over time.  The US 
long rate plot shows the less desirable result in which the historical path is captured by the 
scenario distributions, but is probabilistically over-predicted.  As noted above, in- or out-of-
sample calibration of all variables is difficult and while the weaker criterion may always be 
met out-of-sample by calibration, in our experience the stronger criterion is usually only met 
for about 50% of the state variables in a calibration. 

 
Figure 4.2a  In-sample scenarios with US history – stock index 
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Figure 4.2b  In-sample scenarios with US history – long rate 

Calibration Period: 77Calibration Period: 77--9090

Figure 4.3a  OOuutt--ooff--ssaammppllee  ssiimmuullaattiioonn  qquuaannttiilleess  wwiitthh  UUSS  hhiissttoorryy  ––  ssttoocckk  iinnddeexx  
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Simulation Period: 90Simulation Period: 90--9595

  

Figure 4.3b  OOuutt--ooff--ssaammppllee  ssiimmuullaattiioonn  qquuaannttiilleess  wwiitthh  UUSS  hhiissttoorryy  ––  lloonngg  rraattee 

4.1.3. Another approach to econometric model calibration is to linearise a nonlinear 
system to obtain a vector autoregressive (VAR) system which is stable in the state variable 
returns, so that the deterministic system converges to steady state returns and shocks to the 
corresponding stochastic system are nonpersistent.  Stability analysis for such a system is 
more easily conducted by appropriate eigenvalue analysis of the explanatory variable 
coefficient matrices – the leading eigenvalue (root) must be less than one in modulus.  For 
given data the feasibility of fitting such a model may be checked by (autoregressive) impulse 
response analysis (Garratt et al., 2000; Hamilton, 1994) and testing on our full model data to 
August  2002 has been affirmative.  The VAR approach can be extended to an adaptive 
error-correcting VAR model (Boenders et al., 1998; Pesaran & Schuerman, 2001) on which 
we are currently engaged and will be reported elsewhere (Arbeleche, 2002). 

4.1.4. Finally, treating the process generating the historical data as stationary with 
independent increments – an unrealistic assumption – we may alternatively conduct historical 
simulation by resampling from the empirical marginal distributions of state variable returns 
constructed from the historical paths over the in-sample period. 

4.1.5. All these options have been evaluated and we report dynamic stochastic 
optimisation backtest results for all three approaches to scenario generation for our dynamic 
ALM problem in §7. 
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Calibration Period: 77Calibration Period: 77--9090

 

Figure 4.4a  Comparison of 1-month returns with US history – stock index 

Simulation Period: 90Simulation Period: 90--9595

 

Figure 4.4b  Comparison of 1-month returns with US history – long bond 
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Calibration Period: 92Calibration Period: 92--0000

FFiigguurree  44..55aa    CCoommppaarriissoonn  ooff  1100--yyeeaarr  aannnnuuaalliizzeedd  UUSS  rreettuurrnnss  wwiitthh  IInnQQAA  ––  ssttoocckk  iinnddeexx  

Simulation Period: 00Simulation Period: 00--1010

  

FFiigguurree  44..55aa    CCoommppaarriissoonn  ooff  1100--yyeeaarr  aannnnuuaalliizzeedd  UUSS  rreettuurrnnss  wwiitthh  IInnQQAA  ––  lloonngg  
bboonnddComparative Scenario Return Distribution Evaluation 

Out-of-sample scenario marginal return distributions from calibrated system models 
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were evaluated in two ways:  against the empirical marginal return distribution generated by 
the out-of-sample historical path (Figure 4.4) and against an alternative scenario generation 
system (Figure 4.5).  The 10 year out-of-sample annual return distributions in (the 
representative) Figure 4.5 were generated by the capital markets model and the market-
neutral version of InQA’s simulator based on the Wilkie global model (Wilkie, 2000).  These 
comparative results were judged to be more than acceptable. 

4.3. Suppression of Sampling Error 
Since we must always use a finite sample of scenarios, there will always be sampling 

error in the generation of scenario return state distributions relative to the calibrated estimated 
system model.  This can lead to serious errors and spurious arbitrages in subsequent portfolio 
optimisation.  These can however be suppressed by ensuring that the sample marginal return 
distributions corresponding to all generated scenarios at a specific point in time have two 
moments matched to those of the theoretical model underlying the simulations (Høyland & 
Wallace, 2001; Høyland et al., 2001).  This can be posed in terms of matching the moments 
of the sampled innovations with their theoretical –here independent standard normal or 
student t – distributions.  The first sample moments are easily set to zero by translation and 
the unit second moments can be matched in terms of a nonlinear programme which can be 
solved by sequential quadratic programming using the SNOPT sequential quadratic 
programming software (Villaverde, 2002). 

4.4. Liability Modelling and Simulation 
4.4.1. A proprietary stochastic Markov chain model for defined benefit pension fund 

liabilities has been developed which currently assumes (unrealistically) that liabilities and 
fund return performance and macroeconomic variables such as CPI and the wages and 
salaries index are independent.  Nevertheless, formidable calibration problems for the 
liability model remain due to lack of historical data. 

4.4.2. For defined contribution pension funds similar interdependence between lagged 
fund performance and participation rates is a reality.  In principle this can be handled 
(Dempster, 1988), but is again difficult to specify and calibrate. 

4.4.3. Tax liabilities for funds in the jurisdiction of the fund manager are particularly 
simple – a one percent proportional transaction cost. 

4.4.4. If complex liability models (including more complex tax liabilities) can be 
simulated – possibly together with asset returns and macroeconomic variables – to result in a 
net liability cash flow process, no difficulties arise in the optimisation model (see e.g. 
Consigli & Dempster, 1998).  In this paper however we concentrate on the newer – 
previously unsolved – problem of incorporating the guarantee liabilities of defined 
contribution pension plans into scenario based stochastic optimisation models (see §6.4). 

4.5. Scenario Tree Generation 
4.5.1. As mentioned in §2.2, in order to mirror reality dynamic stochastic optimisation 

models for strategic DFA problems must face alternative scenario uncertainty at each 
decision point in the model – e.g. at each forward portfolio rebalance.  Otherwise, the model 
decisions incorporate future knowledge along scenarios– hardly possible in the real world of 
finance!  The distinction is between the so-called flat out-of-sample scenarios of Figure 4.6 
and a scenario tree, an example of which is shown schematically in Figure 4.7.  Each path 
from the root to a leaf node in the latter scheme represents a scenario and the nodes represent 
decision points – the root node represents the initial implemented decision (e.g. initial 
portfolio balance).  Subsequent nodes represent forward ‘what-if’ decisions facing the 
uncertainty represented by all scenarios emanating from that node. 

 



 26

 

Figure 4.6   Out-of-sample flat scenario generation 
 

4.5.2. Note that the Monte Carlo simulation of scenarios corresponding to a given 
scheme is a nontrivial matter requiring generic software to handle a complex simulator such 
as is needed for the Pioneer model.  We have used the generic stochgen 2.3 software of the 
STOCHASTICS™ toolchain for dynamic stochastic optimisation (Dempster et al, 2002) and 
its variants tailored for Pioneer. 

Sce = 1
Sce = 2
Sce = 3
Sce = 4
Sce = 5
Sce = 6
Sce = 7
Sce = 8
Sce = 9

Sce = 10
Sce = 11
Sce = 12
Sce = 13
Sce = 14
Sce = 15
Sce = 16
Sce = 17
Sce =18

Sce = 19
Sce = 20
Sce = 21
Sce = 22
Sce = 23
Sce = 24
Sce = 25
Sce = 26
Sce =27
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low
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medium

low

T=1                            T=2                              T=3                 T=4

 

Figure 4.7  Schematic out-of-sample scenario tree branching structure 
with uniform branching factor 3 
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4.5.3. In this software the input tree structure is represented for a symmetric balanced 
scenario tree by a product of branching factors, e.g. 3.3.3 or 33 for the scenario tree of Figure 
4.7, or by a scenario or nodal partition matrix for asymmetric trees  as shown in Figure 4.8.  
The scenario partition matrix (Lane & Hutchinson, 1980) corresponds to the discrete 
scenario information partition inherent in the tree structure at each decision point while the 
nodal partition matrix (used in stochgen 2.3) denotes the node through which each scenario 
passes at each decision point and is useful for decomposition-based optimisers. 

1 1 1 1
1 1 1 2
1 1 1 3
1 1 4 4

L =
1 1 4 5
1 6 6 6
1 6 6 7
1 6 8 8

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
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1 2 4 8
1 2 4 9
1 2 4 10
1 2 5 11

M =
1 2 5 12
1 3 6 13
1 3 6 14
1 3 7 15

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 

Figure 4.8  Example of a scenario tree with corresponding scenario and 
nodal partition matrices 

4.5.4. The stochgen software must handle at each node multiple conditional stochastic 
simulations of versions of the asset return model initialised by the data at the node and two 
previous timesteps (months) along the scenario path.  Notice that the simulation time step (a 
month) is much shorter than the decision point frequency (for forward portfolio rebalancing: 
quarterly, semi annually or annually), cf. Dempster et al. (2000). 

4.5.5. In the reported project backtests we used balanced scenario trees with high 
initial branching (see §7.2). 

4.5.6. A number of variants of the BMSIM stochastic simulator for the Pioneer model 
have so far been written in C++/C, but in the stochgen 3.1 software currently under 
development these variants are specified as extensions or restrictions of a full model.  
Similarly VARSIM and VARSIM 2 are simulators for variants of the VAR linearisation of 
the asset return model and HSIM performs the historical bootstrap simulation described 
above in §4.1. 

4.5.7. Obtaining bond returns in a currency area is somewhat subtle since they must be 
derived from bond yields.  A representative derivation is given in Appendix B.  Handling a 
complex external stochastic simulator is just one function of the variants of the stochgen 
software and we will return to its other functions in §6 after describing in the next section the 
strategic ALM dynamic stochastic optimisation models used in our project. 

5. OPTIMAL DYNAMIC ASSET LIABILITY MANAGEMENT 

5.1. CALM Problem Formulation 
5.1.1. The dynamic ALM model used in the Pioneer project is a variant of the CALM 

 



 28

(computer-aided asset liability management) model (Dempster, 1993) used previously in 
other projects (Consigli & Dempster, 1998; Hicks Pedrón, 1998).  Here we describe the main 
features of the model.  A precise mathematical description is given in Appendix C. 

5.1.2. We focus in this paper on what is normally called strategic asset allocation 
which is concerned with allocation across broad asset classes such as equity and bonds of a 
given country.  The problem is as follows:  

Given a set of assets, a fixed planning horizon and a set of rebalance dates, 
find the trading strategy that maximizes the risk adjusted wealth accumulation 
process subject to the constraints.  

As noted in §4.4, defined contribution pension plans or other complex liabilities (such as 
insurance or reinsurance claims) may be added to the basic model as a stochastic net 
cashflow stream (see e.g. Consigli and Dempster, 1998). 

5.1.3. In the model description given below we begin with a discussion of alternative 
utility functions (fund risk tolerances) (§5.2) and continue on to treat the specification of risk 
management objectives through the problem objective function (§5.3) and then the 
constraints (§5.4).  The last two sections discuss respectively the optimal setting of 
benchmark portfolios (§5.5) and the specification of probabilistic value at risk (VaR) 
constraints for the model connected with defined contribution guarantee liabilities (§5.6). 

5.1.4. We consider a discrete time and space setting.  It is assumed that the fund 
operates from the view point of one currency which we call the home currency.  Unless 
otherwise mentioned all quantities are assumed to be in the local currency.  There are T+1 
times (the first T are decision points) indexed by t=1,...,T+1, where T+1 corresponds to the 
planning horizon at which no decisions are made.  Uncertainty is represented by a finite set of 
time evolutions of states of the world, or scenarios, denoted by �.  The probability p(�) of 
scenario � in � is here always the reciprocal of the number of scenarios since these scenarios 
are being generated by Monte Carlo simulation as discussed in the previous section.   

5.1.5. Assets take the form of equity, bonds and cash.  Let I denote the set of all equity 
and bond assets and K denote the set of cash assets.  The fund begins with an initial 
endowment of equity and bonds given by {xi: i � I} and of cash in the home currency given 
by w1.   The fund trades in the assets at t=1,...,T, i.e. at all times except for at the planning 
horizon.   

5.1.6. A trading strategy is given by �ikt(�):=(xit(�),xit
+(�),xit

-(�),zkt
+(�),zkt

-(�)) for i 
in I, k in K, t=1,..., T, � in �, where: 

- xit(�) denotes the amount held of asset i between time t and time t+1 in state �. 

- xit
+(�)/xit

-(�) denotes the amount bought/sold of asset i at time t in state �.  The 
introduction of the buy/sell variables is used to account for proportional transaction costs on 
buying and selling equity and bond assets.  Denote by f and g respectively the proportional 
transaction cost of buying or selling an equity or bond asset..  For example, a 1% 
proportional transaction cost on buying and selling an equity or bond asset corresponds to 
f=1.01 and g=0.99.   

- zkt
+(�)/zkt

-(�) denotes the amount of cash lent/borrowed in asset k between time t and 
time t+1 in state �.  The positions in cash are split into long and short components to account 
for different rates of borrowing and lending.  We assume that cash lent and borrowed at time t 
in any currency is automatically converted back to the home currency at time t+1.    

- The asset returns are given by {vit(�), (rkt
+(�),rkt

-(�)): i in I, k in K, t=2,...,T+1, � in 
�} where: 

- vit(�) denotes the net return on asset i between time t-1 and time t in state �. 
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- rkt
+(�)/rkt

-(�) denotes the net return on lending/borrowing asset k between time t-1 
and time t in state �. 

5.1.7. The exchange rates are given by {(pit(�),pkt(�)): i in I, k in K, t=1,...,T+1, � in 
�} where: 

- pit(�) denotes the exchange rate of asset i at time t in state � expressed as home 
currency/local currency. 

- pkt(�) denotes the exchange rate of asset k at time t in state � expressed as home 
currency/local currency. 

5.1.8. The fund may face cash inflows and outflows given by {(qt
+(�),qt

-(�)): 
t=2,...,T, � in �} where: 

- qt
+(�)/qt

-(�) denotes the cash flow in/out at time t in state �. 

5.1.9. A trading strategy � results in a wealth before rebalancing of � �tw�
�  for 

t=2,...,T+1 and � ��, and a wealth after rebalancing of � �t
�
�W  for t=1,…,T and � ��. 

5.1.10. Subject to the constraint structure, the fund acts by choosing the trading strategy 
which maximizes the (von Neumann-Morgenstern) expected utility of the wealth process 
which is assumed to take the form 

1

2 1
2
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Alternative period utility functions ut are discussed in the next section. 

5.2. Utility Functions 

5.2.1. The functional U is used to define the risk preferences of the fund over the 
wealth process in such a way that  if and only if the 
wealth process generated by �  is strictly preferred to the wealth process generated by � .  
Thus a clearly desirable property of U is that it be strictly increasing.  Another desirable 
property of U is that it be concave.  If U is concave 

.  The interpretation is that the utility of having 
the certain quantities is preferred to the expected utility of having the 
uncertain quantities .  Thus if U is concave the fund is said to be risk-averse and 
if it is linear it is said to be risk-neutral.  (If U is convex then it is said to be risk-loving or 
risk-seeking.)  Since U is a linear combination of the u
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t, U will be strictly increasing and 
concave if they are. 

5.2.2. As noted in §2.1 the utility functional is used here to represent the general 
attitude to risk of the fund’s participants over a specified fund horizon.  Short horizon funds 
are likely to attract more risk averse participants than very long horizon funds whose long 
term participants can afford to tolerate more risk in the short run.  Even for such problems 
however the fund manager will likely wish to mitigate the long term participants’ risk 
tolerances in the short run in the interest of maintaining competitive participation rates.  In 
any event, choice of a sequence of period utility functions can be used to shape the evolution 
of the wealth process over the scenarios in the scenario tree of the problem.  Appropriate tree 
size and branching structure – together with variance reduction (§4.3) – can be used to ensure 
that these distributional properties resulting from the implemented decisions continue to hold 
against sufficiently large samples of further flat scenarios not included in the problem 
scenario tree – a prerequisite for good out-of-sample performance (see §7.2). 
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5.2.3. We consider the following period utility functions: 
1. Exponential (CARA):    ( ) awu w e�

� � 0a �

2. Power (CRRA):           
1

( )
1

aw
a

�

�

�

u w      0a �

3. Downside-quadratic:  u  . 2( ) (1 ) ( )w a w a w w
�

� � � � � 0 1,0a w� � � � ��

5.2.4. Note that log utility given by u w is a limiting case of power utility as 
.  The  parameter that appears in the downside-quadratic utility function denotes a 

target wealth. Note that this utility function reduces to linear (risk-neutral) utility given by 
 for a:=0. 

( ) log( )w�

1a �

( )u w �

w�

w

 
Figure 4.9  Scaled risk averse utility functions 

5.2.5. The exponential utility function is also referred to as the constant absolute risk 
aversion (CARA) utility function because its Arrow-Pratt absolute measure of risk aversion 
defined by ( ) ( )u w u w�� ��  is equal to the constant a.  The power utility function is also 
referred to as the constant relative risk aversion (CRRA) utility function because the Arrow-
Pratt relative measure of risk aversion defined by ( ) ( )wu w u w�� ��  is equal to the constant a.  
The downside-quadratic utility function, similar to the mean-downside-variance or mean-
semi-variance utility function except that it has w  in place of E[w], aims to maximize wealth 
and at the same time penalize downside deviations of the wealth from the target.  This is 
illustrated in Figure 4.9 which depicts the different amounts of risk aversion implied by the 
curvature of the utility functions – for a fixed slope the greater the curvature the greater the 
aversion to risk.  Of particular interest is the curvature for wealth levels less than the initial 
wealth (1) or the target wealth ( ). 

�

w�

5.2.6. Table 4.2 gives the Arrow-Pratt absolute measure of risk aversion for each 
utility function considered above and used in our models. 
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Exponential a 

Power a/w 

Downside-Quadratic 2a/[(1-a)-2a(w- )] w�

Table 4.2  Arrow-Pratt Absolute Measure of Risk Aversion 
Kallberg and Ziemba (1983) have shown in the one period case that utility functions with 
similar Arrow-Pratt absolute measures of risk aversion result in similar optimal portfolios. 

5.3. Risk Management Objectives 

As noted above, in principle different attitudes to downside risk in fund wealth may be 
imposed at each decision point through the additively separable utility U which is a sum of 
different period utility functions ut, t=2,…,T+1, or may be of a common form with different 
period-specific values of its parameters.  Adjustment of these parameter values allows the 
shaping of the fund wealth distribution across scenarios at a decision point as we shall see in 
more detail in §6.  In practice however a common specification of period utility is usually 
used. 

5.4. Basic, Diversification and Liquidity Constraints 

5.4.1. The basic constraints of the dynamic CALM model (cf. Consigli and Dempster, 
1998) detailed in Appendix C are: 

- Cash balance constraints.  These are the first set of constraints of the model referring 
respectively to period 1 and the remaining periods before the horizon. 

- Inventory balance constraints.  These are the second set of constraints and involve 
buy (+), sell (-), and hold variables for each asset (and more generally liability, with buy and 
sell replaced by incur and discharge).  This approach, due to Bradley & Crane (1972), allows 
(with double subscripting) all possible tax and business modelling structures to be 
incorporated in constraints (see e.g. Cariño et al., 1994). 

- Current wealth constraints.  The third set of constraints involves the two wealth 
variables: beginning of period wealth before rebalancing (w) from the previous period and 
beginning of period wealth (W) after a possible cash infusion from borrowing, or an outflow 
from the costs of portfolio rebalancing and possible debt reduction, i.e. after rebalancing. 

5.4.2. The remaining constraint structures required will likely differ from fund to 
fund.  Possible constraints include: 

- Solvency constraints.  These constrain the net wealth of the fund generated by the 
trading strategy � to be non-negative (or greater than a suitable regulatory constant) at each 
time, i.e. � � 0tw�

� �  for t=2,…,T+1 and � in �. 

- Cash borrowing limits.  These limit the amount the trading strategy can borrow in 
cash and take the form: ( ) ( )kt kt kp z� �

�

� z  for k in K, t=1,…,T and � in �, where recall pk 
denotes the appropriate exchange rate. 

- Short sale constraints.  These limit the amount the trading strategy can short the 
equity and bond assets and take the form: ( ) ( )it it ip x� � � x  for i in I, t=1,…,T and � in �.  

- Position limits.  These limit the amount invested in an asset to be less than some 
proportion �  of the fund wealth and take the form: 1�

( ) ( ) ( )
( )( ( ) ( )) ( )

it it i t

kt kt kt k t

p x W
p z z W

�

�

� � � �

� � � � �� �

�

� �
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for i in I, k in K, t=1,…,T and � in �. 

- Turnover (liquidity) constraints.  These limit the approximate change in the fraction 
of total wealth invested in some equity or bond asset i from one time to the next to be less 
than some proportion of the fund wealth �i <1 and take the form: 

1 1 1| ( ) ( ) ( ) ( ) | (it it it it i tp x p x W �
� � � � � �

� � �

� � )  

for i in I, k in K, t=1,…,T and � in �.  They are imposed on large funds primarily from 
market liquidity considerations which are not modelled. 

5.4.3. All the above constraints are piecewise linear convex. 

5.4.4. For backtesting purposes (see §7) we define the following three types of 
constraint structures.  T1 constraints have no position limits or turnover constraints.  T2 
constraints have 20% position limits on all assets and no turnover constraints.  T3 constraints 
contain both position limits and turnover constraints as summarized in Table 4.3. 

 

Asset 
Position 

Limit 
Turnover 
Constraint 

US Equity 0.40 0.15 
US Bonds 0.40 0.15 
UK Equity  0.80 0.15 
UK Bonds 0.80 0.15 
EU Equity  0.80 0.15 
EU Bonds 0.80 0.15 
JP Equity  0.15 0.15 
JP Bonds 0.15 0.15 

EM Equity 0.05 - 
EM Bonds 0.05 - 

Sum of Cash 0.25 - 
US Equity + Bonds 0.50 - 
JP Equity + Bonds 0.20 - 

EM Equity + Bonds 0.08 - 

Table 4.3  Position limits and turnover restrictions by proportion of value 
 

5.4.5. Short selling and borrowing are not allowed in any of these constraint 
structures.  Assuming that the simulated price processes are non-negative, this automatically 
enforces the solvency constraints.   

5.5. Benchmark Portfolio (Fixed Mix) Constraints 

5.5.1. A common problem in the management of funds of all types is the setting of 
realistic benchmarks.  This is usually done in an ad hoc manner in light of experience.  For a 
given set of asset classes a benchmark portfolio whose performance can be used to set a 
return benchmark may be decided optimally by applying a further constraint to any variant of 
the dynamic strategic ALM model so far defined.  The corresponding portfolio rebalance 
(trading) strategy is to rebalance the asset portfolio to the initial optimally determined 
proportions – i.e. fixed mix – at each trading date (decision point), see Mulvey (1995).  Thus 
assets which have appreciated since the last rebalance will be sold to finance the purchase of 
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depreciating assets to bring their value up to the initial fixed proportion of portfolio value – 
buy low and sell high! – but of course this policy is no protection against generally falling 
asset values. 

5.5.2. Mathematically, the fixed mix constraint on asset values held in each scenario � 
in � at each time period t=1,…,T is given by 

� �

� � � � � � � �

1 1 0

1

 ,

i I i

i i i

it it i jt jt
j I

p x w i I

p x p x

�

� �

� � � � �

�

�

�

� �

� � �

� �
� �� �

	 

� i I

 

where , are the initial portfolio proportions to be optimally determined,  is 
initial wealth and �  is an estimate of the transaction costs of the initial portfolio balance.  
Obviously the imposition of these constraints reduces the terminal wealth achievable in the 
model relative to the full optimum without such constraints – sometimes severely in practice 
(Hicks Pedrón, 1998) – and hence constitutes a benchmark to beat.   Unfortunately, due to the 
bilinear nature of the constraints applying to the portfolio decisions subsequent to the initial 
one the resulting optimisation problem becomes nonconvex (Dempster et al., 2003), but we 
shall address its practical solution in §6. 

0,i i I� � � 0w

5.6. Guaranteed Return Constraints 

5.6.1. Of course the return guarantee to an individual investor in a defined 
contribution pension fund is absolute, given the solvency of the guarantor.  In the situation of 
a banking group such as the fund manager and its parent guarantor this necessitates strategies 
both to implement the absolute guarantee for individuals and to manage the investment 
(trading) strategy of the fund so as to ensure meeting the guarantee for all participants of the 
fund with a high probability. 

5.6.2. Mathematically, this latter goal can be met by imposing a probabilistic 
constraint of the VaR type on the wealth process at specific trading dates, computing 
expected shortfall across scenarios which fail to meet the fund guarantee and adding the 
corresponding penalty terms to period objective functions.  For example, at the horizon T+1 
or any intermediate date t  this would take the form �

� �* 1 ,t tP w �
� �
� � �w  

where α: = 0.01 or 0.05, corresponding to respectively 99% or 95% confidence, and  is 

calculated from the initial wealth and the guaranteed annualised rate r as   
However, such scenario-based probabilistic constraints are extremely difficult to implement 
in that they again convert the convex (deterministic equivalent) large scale optimisation 
problem to a nonconvex one.  We will nevertheless describe a practical approximation 
procedure in the next section, but we leave expected shortfall penalties to future work. 

*
tw
�

� �w r�0 1 .t�

6. PROBLEM GENERATION AND SOLUTION TECHNIQUES 

6.1. Optimisation Problem Generation 

6.1.1. Instantiations of the CALM model and other similar strategic DFA models lead 
to very large deterministic equivalent nonlinear optimisation problems involving perhaps 
hundreds of thousands of scenarios and millions of variables and constraints.  Moreover in a 
production setting both parameter values and the model itself are constantly changing due to 
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changes of view, objectives and regulations.  Mathematical programming modelling 
languages such as AMPL (Fourer et al., 1993) and OPL (ILOG, 2000) have been developed 
to handle deterministic optimisation models in this regard by specifying the variables, 
objective and constraints of the problem in an algebraic language in terms of entity sets 
which is similar to the ordinary mathematical specification of the Pioneer CALM model 
given in Appendix C.  Such systems take as input the model in algebraic form together with 
specific parameter values and they output a structured file in a standard format such as MPS 
(IBM, 1972) which is readable as input by a wide range of optimisation solvers.  These 
concepts have been extended to large scale dynamic stochastic optimisation problems with 
the STOCHASTICS™  software (Dempster et al., 2002) and the SMPS standard solver input 
format (Birge et al., 1986) which have been used for this project.  As discussed in §4.4 the 
stochgen subsystem handles the scenario tree generation using routine dynamic stochastic 
simulation from a standardised tree structure specification – horizon and branching structure 
–and making use of AMPL (or a new modelling language SAMPL currently under 
development for stochgen 3.1) outputs the optimisation problem for decomposition based 
techniques – or appropriate pieces of the optimisation problem – in the SMPS or MPS 
formats to the solver – possibly as it runs.  See Dempster & Consigli (1998) and Dempster et 
al. (2002) for more details. 

6.2. Optimal Strategic ALM Algorithms and Software 

6.2.1. A variety of large scale optimisation algorithms have been used to solve 
variants of the CALM model.  For linear and quadratic problems – both linearly constrained – 
these are simplex, interior point and nested Benders decomposition methods.  For general 
linearly constrained convex and general nonlinear problems both nested Benders 
decomposition and sequential quadratic programming algorithms have been used.   

6.2.2. Simplex and interior point algorithms are well documented (see e.g. Vanderbei, 
2002) and the basic reference to nested Benders decomposition is Gassmann (1990), see also 
Scott (2002).  Nested Benders decomposition is a sequential cutting plane technique in which 
the subproblems at each node of the scenario tree are solved independently for each major 
iteration until the cuts for each subproblem lead to the solution of the problem.  Like interior 
point methods, the number of major iterations required for convergence by nested Benders 
decomposition depends more upon the size of the feasible region than on the problem 
dimensions (size) itself.  We have used CPLEX 5.1 for linear and quadratic programming, 
solgen 1.2 of the STOCHASTICS™ toolchain for nested Benders decomposition and SNOPT for 
general nonlinear programming by sequential quadratic programming (see Gill et al., 2002). 

6.2.3. For the CALM model of Appendix C and its variants - which are linearly 
constrained convex problems generally and quadratic problems for the best performing 
downside quadratic utilities (see §7.3), we usually first solve a quadratic version of a new 
instantiation with a few thousand scenario tree using CPLEX interior point.  For the very 
large scenario trees corresponding to long horizon multi-portfolio rebalance problems 
however the solgen 1.2 implementation of nested Benders decomposition is required since 
the other techniques must load the full problem into the computer’s memory. 

6.3. Optimal Benchmark Portfolio Algorithms 

6.3.1. Due to the bilinear nature of the constraints – in initial portfolio proportions and 
subsequent portfolio asset positions – which apply to portfolio decisions subsequent to the 
initial one the fixed mix problem for setting optimal benchmark portfolios is nonconvex.  
However these nonconvexities add only finescale “noise” to a generally well behaved, though 
not unimodal, problem value considered as a function of the initial portfolio proportions � ��  
to be optimised.  This formulation as a low dimensional general nonconvex problem in the 
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number of asset classes in the model is possible since for fixed s subsequent rebalance 
decisions may be computed either by one iteration of nested Benders decomposition or 
directly by algebraic calculation (Dempster et al., 2003). 

�

67
99

1

 un

6.3.2. In an attempt to reduce transaction costs it is also possible to define a model and 
corresponding trading strategy which rebalances to the fixed mix proportions only when 
current portfolio proportions have varied by more than specified percentages.  Such a relaxed 
fix mix model has dead zones in which no portfolio rebalancing is necessary and may also be 
formulated as a global optimisation problem (using nested Benders decomposition) in the 
initial portfolio proportions. 

6.3.3. To attack these nonconvex problems we have applied a variety of algorithms 
and software – local smooth approximate conjugate directions (Powell, 1964), the DIRECT 
global Lipschitz smooth partitioning algorithm (Gablonsky, 1998) and several others – to 
fixed mix variants of the CALM model with reasonable success (Scott, 2002).  Currently we 
are working on improving the efficiency of these methods to make their routine operational 
use more robust. 
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Figure 6.1  Terminal wealth distribution from a scenario tree 
6.4. Capital Guaranteed Products Algorithm 

6.4.1. The so-called chance-constrained programme arising from applying one or 
more probabilistic VaR-type capital guarantee constraints to the CALM model would only be 
convex if the distribution of current wealth  satisfies certain analytic conditions (Prékopa, 
1980).  This is not the case of course for a finite scenario-based distribution and hence the 
resulting problem is nonconvex and will require approximation for practical purposes.  Like 
the benchmark portfolio problem however this approximation problem is not intractable.  
Instead of solving a problem (involving, for example, expected terminal wealth) of the form 

tw
�

1max T �
�w  
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subject to 
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while searching for a value of target wealth  for which the probabilistic constraint is 
satisfied.  Alternatively, a severe downside linear penalty can be employed and this appears 
to be better at shaping wealth so as to reproduce scenario-based problem confidence levels 
out-of-sample using simulator or historical data, see Figure 6.1.  We are currently perfecting 
this method for operational use with long horizon problems. 

1Tw
�

�

6.4.2. We have also tested a 0-1 mixed integer programming formulation in which the 
binary variables are used to count explicitly scenarios on which the guaranteed fund wealth is 
violated, but this approach currently appears intractable for anything but toy problems. 

7. SYSTEM HISTORICAL BACKTESTS 

7.1. Implementation 

7.1.1. In a practical implementation of the dynamic stochastic optimization approach 
to strategic DFA a new problem is solved for each trading time, t=1,…,T, and the initial 
portfolios implemented.  At each time t, the asset return and exchange rate model's 
parameters are re-estimated and re-calibrated using historical data up to and including time t, 
and the initial values of the simulated scenarios are given by the actual values of the variables 
at that time.   

7.1.2. There are several reasons for implementing our approach in this manner.  The 
first is that the actual value of the variables at t=2 are unlikely to coincide with any values of 
the variables in the simulated scenarios at t=2.  If this is the case then the optimal investment 
policy will be undefined.  The second and more important reason is that re-estimating and re-
calibrating the simulator's parameters at each time t captures information in the history of the 
variables up to that point.  Since the asset return and exchange rate model employed is only 
an approximation to the real dynamics, using the most recent history should improve the 
scenario simulation.  

7.1.3. For a given problem formulation, the process of implementing the stochastic 
optimization approach at each trading time t can be represented by the following system 
diagram of Figure 7.1 (cf. Figure 1.1).  Much of this system has been automated for the 
purposes of this research. 
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Figure 7.1  Pioneer CALM model system diagram 

 

7.1.4. The quality of the first stage implementable and subsequent ‘what-if’ portfolio 
rebalance decisions of a dynamic stochastic optimisation ALM model clearly depend on a 
number of real world scenario contingent factors. 

7.1.5. Obviously the most crucial factor is the ‘predictive’ power of the asset return 
statistical model underlying the scenario (tree) simulations.  (We shall return to ad hoc tests 
of this factor in the next section).  Less obvious perhaps is the impact of the number of 
scenarios used in the optimisation model and even more importantly the branching structure 
used in the scenario tree.  Although there is general consensus that in dynamic models 
branching should be larger for the earliest decisions – in particular for the first implementable 
one – than for those later in the tree (see e. g. Dempster & Thompson, 2002) the number of 
scenarios required to stabilise problem value and decisions is highly model dependent.  This 
is clearly a sampling problem for a continuous state stochastic optimisation problem – one 
level higher than a (discrete time) stochastic process sampling problem.  Although asymptotic 
consistency results for both value and decisions are available (see Dempster (1998) or 
Shapiro (2002) and the references therein) the proofs are mathematically very difficult and 
the results of limited practical use.  It is however generally agreed for a given problem that its 
value is stabilised by smaller scenario trees (samples) than are required to stabilise its (even 
implementable) decisions.  Moreover, suppressing sampling error by the techniques discussed 
in §4.3 has also generally been seen to be beneficial for decision stability (although to an 
extent not reported in any detail in the literature).  In our experiments, tree sizes (i.e. numbers 
of scenarios) have been reduced by a factor 5 by these means with a slightly greater problem 
run time reduction (to several minutes on a top end PC) which is of great practical use in fund 
design – although much remains to be done.  We define a practical decision stability criterion 
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in the next section. 

7.2. Backtesting 

7.2.1. Backtesting strategic DFA systems out-of-sample can take two forms: 
experimental and historical.  In the more familiar historical backtest, statistical models are 
fitted to data up to a trading time t, scenario trees are generated to some chosen horizon 
t+T+1, the optimal decisions implemented at t are evaluated against historical returns at t+1, 
and the whole procedure rolled forward for T trading times.  Experimental backtests can 
repeat this procedure as many times as is necessary to suppress sampling error by treating 
independently generated out-of-sample flat scenarios to T+1 as pseudo-histories.  Such tests 
are invaluable in exploring the stability properties of decisions in specific models and we 
have termed a given model decision stable in scenario tree size and structure experiments 
when the standard deviation of the sampling error in each implementable decision portfolio 
proportion has been reduced to 10% of its sample mean value by a suitable choice of scenario 
tree for the model.  Typically, 10,000 flat scenarios are used for such experiments. 

7.2.2. Either type of backtest can involve a telescoping horizon as depicted in Figure 
7.2 or a rolling horizon as shown in Figure 7.3. 

 

Figure 7.2  Telescoping horizon backtest schema 
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Figure 7.3  Rolling horizon backtest schema 
7.3. Pioneer CALM Model Backtests 

7.3.1. A number of historical backtests have been run on variants of the CALM global 
model, with perhaps surprisingly uniformly good results, see Villaverde (2002) for complete 
details.  The aims of these tests were several.  First we wished to establish the relative 
‘predictability’ or otherwise of the alternative Pioneer tuned econometric models for short 
horizons.  (Long horizon (20 or 30 year) experiments – where the simpler aim is merely to 
recapture historical statistical patterns – are currently in progress but require significant 
computational resources.)  Secondly, we wished to understand the impact of the alternative 
utility functions available to the system on optimal portfolio decisions.  Thirdly, we wished to 
evaluate the impact of risk attitudes imposed on fund wealth trajectories period-by-period (in 
terms of additively separable utility functionals) versus their imposition only on fund terminal 
wealth.  Fourthly, we were interested in the farsightedness or otherwise of the dynamic 
stochastic optimisation approach to strategic DFA relative to rolling over single period-based 
systems à la Markowitz – the raison d’être of dynamic models.  Finally, we were interested in 
what effects imposing the practical diversification and liquidity (turnover) constraints (T3 in 
Table 4.3) would have on backtest returns.  We discuss the (at least partial) evidence to date 
on all these topics here. 

7.3.2. All historical asset allocation backtests we report were from the viewpoint of a 
US dollar-based fund in Eire.  The benchmark used is therefore the S&P500 equity index 
over the out-of-sample period for each test.  All portfolio rebalances are subject to a 1% value 
tax on transactions which of course does not apply to the benchmark index.  Monthly data (as 
set out in Table 3.1) were available from July 1977 to August 2002. 

7.3.3. Figure 7.4 shows the results in terms of annualised returns of a typical backtest 
with a 2 year telescoping horizon and semi-annual rebalancing from February 1999 to 
February 2001 using the model of Appendix C with 8192 scenarios, a 128.16.2.2 branching 
structure and a terminal wealth criterion.  During this period the S&P500 returned 0 percent.  
With no position limits the model tends to pick the best asset(s) and so in this case a high 
annual historical return is an indication of predictability in the tuned econometric model used 
to generate the scenarios.  Once more realistic constraints are imposed in this test however 
portfolios become well diversified and in the results corresponding to the various attitudes to 
risk there is little to choose from.  However, performance is improved by the use of the 
emerging market asset returns even though they were actually not used in the optimal 

 



 40

portfolios.  Corresponding results for the addition of the US economic model to the system 
are mixed.  When this backtest was extended one period to August 2001 – when the S&P500 
annualised return over the 2.5 year period was –2.3% – similar results were obtained with the 
best position limited result being 6.8% per annum for the downside-quadratic utility with a: = 
0.5 and target wealth a 61% increase over the period. 

Utility Function No  Limits 20%  Limits No  Limits 20%  Limits No  Limits 20%  Limits
Linear 91% 9% 92% 10% 31% 11%
Quadratic 8% 9% 6% 11% 21% 6%
Downside-quadratic 54% 9% 70% 11% 29% 9%
Exponential 72% 9% 92% 10% 51% 11%
Power 91% 92% 49%

Capital Markets
Capital Markets + Emerging 

Markets

Capital Markets + Emerging 
Markets + US Economic 

Model

                         Figure 7.4    Asset allocation backtests: Annualised returns  
                                               from February 1999 – February 2001 

7.3.4. Overall, the best overall historical backtest results were obtained using the 
downside-quadratic utility function with appropriate parameters.  A summary of the backtests 
performed to date for this attitude to risk is given in Table 7.1.  Note here that imposing the 
practical liquidity (T3) constraints, which could be expected generally to reduce returns, 
sometimes led to significantly increased returns.  Notice also that the imposition of an 
attitude to risk of wealth in each period – the 10 year 5 year horizon rolling 4 area backtest 
using the linearised VARSIM simulation – improved annual return over the position limited 
returns for the two constituent 5 year periods (using 3 and 4 area capital market models) 
employing only an attitude to risk on fund terminal wealth. 

7.3.5. Table 7.2 shows analysed implemented solver output for an historical backtest 
over the period 1996-2001 with annual rebalancing and the liquidity (T3) constraints imposed 
(corresponding to the bolded entry in Table 7.1).   Note that the successive implemented 
portfolios are responding as much as possible to changing market conditions by asset 
allocations with varying diversification. 

7.3.6. Overall, we found that the imposition of the T3 liquidity constraints in the 
model forced its decisions to take full advantage of the information in future scenarios and 
optimal forward rebalances to result in well diversified portfolios and significant 
improvement in historical backtest performance over rolling myopic single period models (cf. 
Hicks-Pedrón, 1998).  

8. CONCLUSIONS 

8.1. �his paper describes an innovative joint project to construct the model base for a 
decision support system for defined contribution pension fund design at the strategic level.  
Each block of the system diagram of Figure 1.2 has been described in detail (including the 
third party component software utilised).  The methods developed are much more widely 
applicable to a range of strategic DFA problems in finance.  Practical solutions to two new 
problems – optimal fund benchmark setting and value-at-risk constrained guaranteed return 
fund design – have been outlined.  In all historical backtests using data over roughly the past 
decade the global asset allocation system equalled or outperformed the S&P500 when 
transactions costs are taken into account.  All system returns for the nonlinear statistical 
model were positive – even through the recent high tech crash.   

8.2. A number of areas for further work have been identified throughout the paper and 
much work remains to be done.  However if we have convinced the reader that the dynamic 
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stochastic optimisation approach to strategic DFA problems is a practical reality today, the 
paper will have achieved its aims.  

8.3. Currently we are developing an industrial strength version of the expected value of 
perfect information importance sampling algorithm (Dempster, 1998) represented by the 
inner dotted feedback loop in Figure 1.2.  Eventually it should be possible to automate the 
reestimation and updating procedure of the outer dotted loop in the figure, but this adaptive 
filtering approach for this application is still a long way off. 

8.4. The fund manager intends to become a leader in the management of pension funds 
for third parties.  Its collaboration with the Centre for Financial Research at Cambridge has 
already made possible important advances in both its long-term forecasting engines and its 
optimisation techniques.  Such know-how is currently used in the development of its new 
financial products and services.   
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Constraint Annualised 
Return %  

(see Section 5.4) 

Initial 
Estimation 

Period 

Out-of-
sample 
Period 

Length Asset Return Model Simulator Number of 
Scenarios k

Rebalance 
Frequency 

Risk 
Management

Criterion 

Horizon 

T1   T2 T3

S&P 500 
Benchmark 
Annualised 
Return % 

1972-1990 1990-1995 5 years 3 areas (ex Japan) BMSIM 4 annual terminal telescoping 10.33 9.34 - 7.41 
1992-1996 1996-2001 5 years 4 areas BMSIM 4 annual terminal telescoping 13.36 7.13 - 14.12 
1992-1996 1996-2001 5 years 4 areas VARSIM 4 annual terminal telescoping 1.51 8.30 - 14.12 
1992-1999 1999-2001 2.5 years 4 areas BMSIM 8.2 semi-annual terminal telescoping 27.89 6.48 2.69 -2.30 
1992-1999 1999-2001 2.5 years above + emerging markets BMSIM 8.2 semi-annual terminal telescoping 16.98 5.72 3.38 -2.30 
1992-1999 1999-2001 2.5 years above + US economy BMSIM 8.2 semi-annual terminal telescoping 19.16 4.64 -0.38 -2.30 
1992-1999 1999-2001 2.5 years 4 areas VARSIM 8.2 semi-annual terminal telescoping -6.40 - -3.92 -2.30 
1990-1996 1996-2001 5 years 4 areas BMSIM 8.2 annual all periods telescoping 8.54 - 8.37 14.12 
1990-1996 1996-2001 5 years 4 areas VARSIM 8.2 annual all periods telescoping 5.78 9.99 9.37 14.12 
1990-1996 1996-2001 5 years 4 areas HSIM 8.2 annual all periods telescoping 4.95 - 6.04 14.12 
1972-1991 1991-2001 10 years 4 areas VARSIM 8.2 annual all periods 5-year rolling 3.56 - 9.98 12.72 

Table 7.1 Summary of CALM US$ fund historical backtests 
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VARSIM, 1996-2001, annual rebalancing, 8192 scenarios, additive downside-quadratic utility, T3 constraints
USstock UScash USbond UKstock UKcash UKbond UK  fx EUstock EUcash EUbond EU  fx JPstock JPcash JPbond JP  fx

Date: Feb-96
First Stage Weights 0.19 0.25 0 0.03 0 0.52 0 0 0 0 0 0 0 0 0
Historical return (dollar) 1.23 1.05 1 1.22 1.13 1.24 1.07 1.21 0.92 1.01 0.9 0.78 0.88 0.98 0.87
12-Month Portfolio Return Against History 1.18
Date: Feb-97
First Stage Weights 0.23 0.25 0 0 0 0.4 0 0 0 0 0 0.12 0 0 0
Historical return (dollar) 1.33 1.05 1.19 1.28 1.08 1.26 1.01 1.36 0.96 0.99 0.92 0.87 0.96 1.04 0.95
12-Month Portfolio Return Against History 1.17
Date: Feb-98
First Stage Weights 0.4 0.06 0.06 0 0 0.28 0 0.15 0 0 0 0.04 0 0 0
Historical return (dollar) 1.18 1.05 1.13 1.03 1.04 1.24 0.98 1.11 1.06 1.15 1.02 0.93 1.06 1.04 1.06
12-Month Portfolio Return Against History 1.16
Date: Feb-99
First Stage Weights 0.4 0 0.06 0 0 0.15 0 0.29 0 0 0 0.09 0 0 0
Historical return (dollar) 1.1 1.05 0.94 1.04 1.04 1 0.99 1.17 0.9 0.8 0.88 1.66 1.08 1.12 1.08
12-Month Portfolio Return Against History 1.15
Date: Feb-00
First Stage Weights 0.41 0 0 0 0 0 0 0.45 0 0 0 0.14 0 0 0
Historical return (dollar) 0.91 1.06 1.19 0.88 0.97 0.98 0.92 0.86 1.01 1.06 0.96 0.68 0.94 1 0.94
12-Month Portfolio Return Against History 0.85

Table 7.2  Implemented annual portfolio rebalances for an historical backtest with liquidity constraints using VARSIM 
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APPENDIX  A  DETAILED PIONEER ASSET RETURN MODELS 

Let the home currency be USD, and for a given scenario let: 

�� St
c denote the equity price at time t for c=US,UK,EU,JP,EM.  St

EM is assumed to be 
denominated in USD 

�� Rt
c denote the percent return on lending cash between time t-1 and time t for 

c=US,UK,EU,JP. The percent return on borrowing cash is taken to be Rt
c + � for 

some � > 0 
�� Lt

c denote the bond yield, expressed as a monthly percent, at time t for 
c=US,UK,EU,JP.  The maturity and compounding frequency depends on c and is 
specified in Table 3.1 

�� Xt
c denote the exchange rate at time t for c=UK,EU,JP expressed as $/local currency 

of c 
�� Bt

EM denote the EM bond price at time t denominated in USD; the (average) maturity 
of the bond (index) is specified in Table 3.1 

�� Ct
US denote the US Consumer Price Index (CPI) at time t 

�� Wt
US denote US wages at time t 

�� Gt
US denote US GDP at time t 

�� Pt
US denote US public sector borrowing (PSB) at time t. 

The formulation of the capital markets discrete time model corresponding to the 
BMSIM3 simulator (see §4.4) is given by the following (with a monthly time step): 
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for c=UK,EU and Xt
US: =Xt

UK .  The � terms are correlated standard normal or standardized 
student t random variables.  The a, b and � terms are parameters of the model.  Note that 
since we are assuming the home currency is USD, modelling an exchange rate for the US in 
unnecessary.  Salient features of the model include non-linear drifts, a lag structure and 
constant volatilities in this form. 

The formulation of the model for the BMSIM4 simulator is identical to that for BMSIM3 
with the addition of Japan so that c=UK,EU,JP and with Xt

US: =Xt
JP.  As noted in §3.2 

additive binary dummy variables were used to remove the St
JP bubble and crash. 

The formulation of the model for the BMSIM4EM simulator is identical to that for 
BMSIM4 with the addition of the following AR(1)/GARCH (1, 1) processes for EM equity 
and bonds 
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We assume that all � terms are contemporaneously correlated but serially uncorrelated.  
Because the EM variables in BMSIM4EM only influence the US, UK, EU and JP financial 
variables via the shocks (the contemporaneously correlated � terms) the EM variables will 
normally not influence the US, UK, EU and JP financial variables significantly. 

The formulation for BMSIM4EME is similar to that for BMSIM4EM with the exception 
of two changes.  The first is that we introduce the model for the US macroeconomic variables 
of §3.4.  The second is that we the replace the US equations with: 
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The addition of the US macroeconomic variables is an attempt to create a more realistic 
model for asset returns and exchange rates.  Because they influence the US financial 
variables through the drift terms and the shocks they should have a significant impact on the 
US financial variables.  Again we assume that all � terms are contemporaneously correlated 
but serially uncorrelated. 

 
The generation of the dynamic stochastic optimisation problems requires the asset 

returns and exchange rates in each scenario.  Appendix B explains how bond yields are 
transformed into bond asset returns. 
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APPENDIX B  DERIVATION OF BOND RETURNS FROM BOND YIELDS 

The following is a derivation of the 1 month bond return for the US.  The UK, EU and 
Japan formulas differ only in the maturity and compounding frequency of the bond yield.  

The US bond has a 30 year maturity with semi-annual compounding.  Let L1t denote the 
30 year  annualised bond yield with semi-annual compounding, i.e. L1t = 12Lt/100.  Let F 
denote the face value of the bond, and let ct denote the annual coupon rate.   

Consider holding a newly issued 30 year bond from time t to time t+1 which is 1 month 
later.  The value of the investment at time t is the cash price of the 30 year bond which is 
given by: 
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At time t+1 or 1 month later there has been no coupon payment and the value of the 

investment is the cash price of a bond with a 1129
12

 year maturity and which pays a coupon in 

5 months and then every 6 months until maturity.  The cash price of this bond is: 
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If we assume that the yield of this bond � 1 11 1t tL L�
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Then the 1 month bond return can be estimated as: 
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The coupon rate ct can be approximated as some fraction of L1t, i.e. ct =mL1t, with m 1.�
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APPENDIX C  THE PIONEER CALM ASSET ALLOCATION MODEL 

The mathematical formulation of the basic asset management problem in deterministic 
equivalent form for solution is given by the following version of the CALM model of 
Dempster (1993).  We assume that u is given by one of the utility functions described in §5.2, 
that as a consequence of Monte Carlo simulation each scenario � in � is equally likely, that 
there are no cash inflows or outflows and that the only regulatory and performance 
constraints are cash borrowing limits, short sale constraints, position limits and turnover 
constraints.  Liabilities are easily added in terms of cash inflows or outflows (Consigli and 
Dempster, 1998). 
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where ( ) 1 | |p � � �  and �ikt(�):=(xit(�),xit
+(�),xit

-(�),zkt
+(�),zkt

-(�)) for i in I, k in K, t=1,..., 
T, � in � .   

The first set of constraints are known as cash balance constraints.  They insure that the 
net flow of cash at each time and in each state is zero.  The next set of constraints are known 
as inventory balance constraints.  They give the position in each equity and bond asset at 
each time and in each state.  The third set of constraints define respectively the before and 
after rebalancing wealth at each time in each state.  The next six constraints are the cash 
borrowing constraints, short sale constraints, position limit constraints, turnover constraints 
and solvency constraints discussed in the previous section.  This deterministic mathematical 
programming problem is convex, linearly constrained and (unless u is the identity) has a non-
linear objective.   
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Global Asset Liability Management 

ABSTRACT OF THE DISCUSSION 

Mr M. Germano (introducing the paper): Firstly, I should like to thank all of you for this exciting 
opportunity to present the results of the last three years of our work, in partnership with Professor 
Dempster and the financial research laboratory at Cambridge. I will give you a brief introduction to 
the background and objectives behind the system development, to highlight the true dilemma that 
we have been facing as an industry and as a fund management firm, and then discuss how we have 
been trying to cope with it. 

In United Kingdom, the recent market, as you will know, has been characterised by extremely 
high volatility.  We have seen nevertheless a growing appetite for long-term retirement plans in 
continental Europe.  Clients have been attracted to products with either a minimum-return 
guarantee or a target-return with an associated level of probability of achievement.  The general 
problem is familiar to all of you.  That is, the problem of trying to fill in what we call the "Pensions 
Gap" by attempting to support the first and the second Pillars with products that will allow us to 
close the gap in order to maintain current standards of living for the new pensioners. 

If you look at the problem from the client's point view, it is very difficult to identify the client 
with a single paradigm.  Consequently, we spent a lot of time trying to understand their true needs.  
We will outline how it was difficult to associate all the clients with the standard "life cycle model", 
in which the employees keep contributing to have enough money to maintain their standard of 
living until death.  We have a second model in which there is a true interest from the employee in 
contributing in order to build a final endowment to leave future generations.  So a second model 
that we can identify is the "legacy model".  There is a third model, the true entrepreneur, whose 
interests and risk aversion do not follow the usual path, but instead follow a path in which the risk 
aversion does not decrease with age and who retains an appetite for risky assets during the later 
stages of life. 

So we have very complex needs.  We try to answer with a complex model, that allows us to 
solve what we call the pensions plan dilemma.  On one hand we keep trying to optimise long-term 
returns, and on the other side, minimise the downside risk over an intermediate horizon.  Being able 
to cope with multiple schemes, in terms of contribution, is a necessity because we have some 
clients who may wish to make their contributions at the beginning through a lump sum investment, 
others, who wish to make regular contributions and each of these will have different risk aversion 
and different target for expected returns and minimum guaranteed returns. 

These are the ingredients that we need to consider when offering complete customised 
products.  Such solutions will give the opportunity to some further soft aspects, such as human 
capital.  A young employee of 25 years of age is easily identifiable as a long-term investor.  If we 
take into account factors like human capital, such as job security and the risk of being fired, it is 
clear that this potential future pensioner has different characteristics and may have some 
intermediate horizon, say over five years or six years, during which he wants to secure a minimum 
return at a certain level of probability in order to cope with such adverse events. 

Professor M. A. H. Dempster, Hon.F.I.A. (introducing the paper): I suppose that as leading the 
quantitative attack on the development of the system of this paper, I should advise that the paper is 
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really a case study to investigate two aspects of general problems in asset management or asset 
liability management: uncertainty -- stochastics -- and even more importantly dynamics.  In other 
types of dynamic financial modelling these two aspects appear.  For example, in the banking 
industry at this time there is a great deal of interest in dynamic capital allocation against the risks of 
various business units.  Again, the technology of this paper can be employed. 

So, how does this technology differ from ones that actuaries are more familiar with?  If 
actuaries try to optimise asset management over a fixed horizon, with or without liabilities, one 
typically use some kind of fairly static model, usually after generating -- perhaps very complex 
generation -- dynamic scenarios of capital market variables, of economic variables, demographic 
variables, and so on.  Then they use some kind of discounting, deterministic or stochastic, to 
produce present values and finally employ static optimisation using essentially Markowitz 
technology.  It might be surplus that is optimised in an insurance application, but it is still static. 

Something I want to emphasise -- and the paper gives a great many details about this case, but 
this is the basic point -- is that it is better to use dynamic models.  Nobody says that they are simple; 
but 30 years ago Markowitz models were not simple either, and now everyone uses Markowitz 
models.  Since then computers have advanced.  Mathematics have advanced.  Statistics have 
advanced.  Stimulation has advanced.  I would argue that it is now time to employ these models 
because they offer very significant advantages.   

Another way of looking at this is that in leading applications in the actuarial and financial 
worlds people currently make very complex simulations, which in the actuarial world, usually go by 
the name dynamic financial analysis.  I referred to scenario generation earlier.  These simulations, 
however, employ very complex models and have many parameters.  They are extremely difficult to 
fit to the data available and it is extremely difficult to optimise their decision parameters price fit, 
because the typical method is simply to take a few parameters, step them through various values 
and then try to analyse the output, which is quite bewildering. 

So, from that point view we have coined the term strategic dynamic financial analysis, 
meaning that we will add industrial strength optimisation to this recipe. 

To deal with a system like this is extremely complex.  In figure 1.1 I want to stress the left-
hand side of the diagram, which shows that one has to put a lot of different skills together.  The 
computer science which deals with data, that is raw statistical analysis of data, cleaning it, filtering 
it, and so on.  Next comes building the econometric models for both asset returns (as begun in this 
country and, indeed, generally by Professor Wilkie) and possibly complex liability models, although 
we are not going to stress these in this paper.  Then, once we have these models fitted and tuned to 
data, we must use stochastic Monte Carlo stimulation, which is dynamic financial analysis and take 
us essentially down to the end of the third bar.  Below that is what we want to add to the process; 
namely, the handling of essentially large-scale dynamic financial analyses models with parameters 
and optimisation of those parameters.  They might be portfolio balances.  They might be certain 
decisions such as capital allocations or more complicated business decisions.  One needs complex 
software for this, and there is quite a bit about this of the problem in the paper. 

To go to building the scenario generators, we have in fact (and there are details in the paper of 
the models used, and so on) a global system -- hence the title of the paper -- that deals with the four 
major currency areas and emerging markets.  We do this in a way that has been pioneered by 
Professor Wilkie and others; to build a canonical model for a currency area and then link them 
together.  We have linked the areas together with foreign exchange on the grounds that rates react 
faster than, for example, trade flows, which would come to mind initially for a macro economist. 
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What makes our dynamic financial analysis approach different from usual dynamic financial 
analysis.  In dynamic financial analysis this is a typical case of scenario generation involving the 
New York Stock Exchange Valuated Weighted (refer figure 4.6) Index. What we do here is set up 
our econometric model, or use some stochastic differential equation model with parameters which 
we tune until we feel that the model fits the data represented by the black line.  Then we generate 
scenarios forward out of sample.  These are the coloured paths in the figure.  We look initially to 
see if they have the kind of variants, and so on, variability, volatility as the black path, which is the 
history, and they have a suitable distribution around historical path, and so on.  All a bit of art rather 
than science, however, broadly used these days. 

On the other hand, we do not just do this for one variable.  In our model using 15 variables and 
throwing in the economic variables, we can have a system of up to 33 state variables.  So this is 
already fairly large-scale.  However, the key point about stochastic optimisation is that it is not the 
optimisation problem necessarily that is now so difficult, because there are industrial strength 
optimisers which used cleverly can double running speed or even raise it two orders of magnitude 
using decomposition techniques.  Rather it is that one has to generate high dimensional  scenarios in 
a conditional mode (figure 4.7).  This is just a scheme that represents the dynamic decisions every 
node this tree represents, for example, a portfolio balance.  Every such decision must face 
alternative real-world scenarios.  That is what makes it different.  Even the scenario generation is 
thus more complex than basic dynamic financial analysis and requires extra software although in 
principle is straightforward. 

The second type of problem we have solved, and generated software to address, concerns the 
formulation and solution of asset liability management problems, particularly those of defined 
contribution pension plans.  These products are essentially mutual funds with a guarantee or a target 
return that is achieved at least with high probability.  We use utility functions here not in the sense 
of individuals, but to represent the risk attitude of perhaps a sort of representative individual for a 
specific fund, tailored with respect to a specific horizon and specific risk characteristics, to which 
Mr Germano alluded to. 

However, for scenario based models, such problems with a probabilistic constraint pose a new 
scientific class, which we believe we have solved in the applications that we have looked so far.  
There is still a lot to do.  Rather than use a simplified theoretical model, say, with independent 
returns, period to period, and other restrictive assumptions, we have been able to solve these 
problems when the scenario generator is of the complex type, which I showed you. 

The third type of problem that we looked at was the idea of setting up benchmark portfolios 
optimally.  I have just come back from Princeton and our colleagues there have worked on a similar 
type of problem as an asset allocation strategy.  Here what are trying to do, since these problems 
define a restriction of the full optimum, and impose a lower bound on it, is use this bound and the 
associated returns as a benchmark against which other strategies, including the full optimum, can be 
measured. 

 What happens for general cases of all three of these classes of models is that one obtains other 
suitable formulations really a very large-scale deterministic problem.  Essentially, every node of the 
tree, that I showed you, has assigned to it a set of asset allocations or capital allocations, depending 
on the application (here it is asset allocation) that correspond to the states, that is the values of the 
state variables, at the time.  That can be expanded so that we have, for every such node a decision, 
what is represented in the deterministic model are the constraints which are shown and enumerated 
in section 2.23.  These are usually linear, because accounting is usually a linear operation.  
However, the attitude to risk, which is embodied for a particular fund and a particular horizon, can 
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be represented by either a sum of risk attitudes represented period by period by a utility function or 
in fact just looking at risk in the terminal wealth achieved at the horizon. 

What we are doing is designing tools to shape the wealth distribution at a particular point in 
time as the fund evolves (refer figure 6.1). We are interested in not failing to meet a guarantee, for 
example, by calculating value at risk through accounting scenarios which fail to meet the guarantee. 
We will use here tens of thousands of scenarios, possibly, and always we can trade off a kind of 
return variable with the risk variable to shape the wealth distribution.  We have put a lot of work 
into understanding this trade off and in effecting it technically. 

We have also done a lot of backtesting of the systems and are very pleased with the backtests.  
They are as honest as they can be and the returns have been quite good relative to the S&P 500, 
which we used as a benchmark because we treated this as a dollar fund.  These results may not 
really mean anything due to the small size, as I am sure many people will point out, but it is very 
nice to have good results rather than bad results, even through the peak and the crash of the world’s 
markets. 

The last point is that the kind of systems described require pretty fancy graphics, because one 
has to go back and forth between tweaking data, tweaking models, optimising, and so on.  We will 
never get away from that process.  As the models get more complicated, we may have to do a little 
more.  Figure D1 shows a sort of prototype screen which we are redesigning and implementing in 
practice. 

To conclude, strategic asset liability management in tactical risk systems which are dynamic 
are a reality today.  Multiperiod models yield multiple advantages.  They tend to have a more stable 
portfolio path as we roll them forward because they hedge against a great deal of alternative 
scenarios, both good and bad.  We can get best, worst and value at risk limited portfolio views, or 
asset and liability views, looking down the scenarios so that we can do a lot of ‘what-if’ analyses 
with these kinds of models.  The assumptions, that are needed to make rolling over of myopic 
models correct, are almost entirely violated by real market data. 

Using the type of software systems, which are used now in industrial optimisers, both linear 
and non-linear, we can model any kind of constraint structure, including regulatory and tax 
structures, and so on.  The dynamic stochastic, strategic DFA, approach results in very large 
models, because they are contingency plans.  All possibilities are being considered simultaneously, 
so they involve literally millions of equations and variables, but they can be solved in a few minutes 
on a current PC.   

Flexibility and visualisation are keys to providing effective decision support systems of this 
type for strategic pension planning, and the other financial applications that I mentioned (see Figure 
D1). 
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Figure D1 Prototype User Interface for the Fund Manager STOCHASTICS™  
System Stochgen 3.0 

Dr A. J. G. Cairns, F.F.A. (opening the discussion): Dempster, Germano, Medova and 
Villaverde’s paper is very interesting and comprehensive with many stimulating ideas contained 
within it, which the wider profession needs to be learning about. 

The paper assumes a certain knowledge of the subject of dynamic optimisation.  It may be 
helpful to cover some of the basic ideas in this subject area. A very simple example will illustrate 
some of the basic ideas, which will provide a firmer base from where we can look at the more 
complex environment that is in the paper. 

In this simple example we have two assets: cash and equities.  Investment is carried out over 
two periods.  We have to decide what proportion of our fund, or what I will from now on call 
wealth, should be invested in equities over each of the two investment periods.  So p0 represents the 
proportion in equities from time 0 to time 1 and p1 the proportion in equities from times 1 to 2. 

Our investor has a utility function U which he will apply to his wealth at time 2. His objective 
is to maximise his expected utility by choosing p0 and p1 optimally. 

One way of going about this is to find the optimal static investment strategy, that is, we assume 
that p0 and p1 are equal and then optimise over p0. 

On the other hand, you have the opportunity at time 1 to revise your strategy in light of what 
has happened over the previous year. 
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What are the consequences of this? Well, first it makes sense to take advantage of this 
opportunity. If you do not, then you may be acting suboptimally, and you know you are acting 
potentially suboptimally by not taking this opportunity. 

Second, how much you invest in equities at time 0 should take into account how you will act at 
time 1. This is the dynamic element. 

Now compare this with the static investment strategy.  The second approach must be better in 
terms of optimising in advance the expected utility because the first, static approach is just a special 
case of the second. 

What we can also point out at this stage is that p1 does not need to be specified at time 0. 
Instead the optimal equity proportion can and should take account of what has happened in the first 
year.  So it might be random, but we will have a rule, or a set of rules, which will allow us to 
determine p1 at the time when we need it. 

This simple problem leads us to the Bellman Principle, which tells us that any optimisation 
problem over T years can be broken down into a sequence of T one-year optimisation problems. 
Each one-year problem (or whatever time-step you want) is effectively a static utility maximisation 
problem which is clearly much easier to tackle. 

As a side remark, in continuous rather than discrete time we use the Hamilton-Jacobi-Bellman 
equation (or HJB equation).  There are growing numbers of papers on this in the international 
actuarial journals such as ASTIN Bulletin and Insurance: Mathematics and Economics.  Typically 
these papers are more concerned with the development of qualitative results using simpler models, 
than we have before us today.  However, the analytical nature of their results do allow us to 
quantify exactly how much popular, but suboptimal, strategies cost to the policyholder in terms of 
expected utility. 

Coming back now to the discrete-time problem, in some cases, for example, power utility, the 
static optimal solution is the same as the dynamic optimum. In other cases, the static optimum 
delivers a far inferior optimal expected utility to an investor than the dynamic optimum.  It is in this 
sort of case that we need to be able to identify and solve the dynamic problem as accurately as 
possible. 

The Bellman Principle requires what we call a finite-dimensional state variable, X(t), that is, 
how we predict the future depends on a finite number of variables observable at the current time.  
For example, 

X1(t)=W(t)=current wealth 

X2(t)=r(t)=short-term interest rate 

X3(t)=DY(t)=equity dividend yield 

X4(t)=I(t)=inflation rate 

etc. 

In the simplest case we have only one state variable which is relevant and the investment problem is 
simple to optimise. 
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Figure D2 

However, it is still not trivial, because we need to establish the optimal p* for each possible 
wealth at time t as I have tried to show in Figure D2. 

As the number of state variables increases things get much more complex as we need to find 
the optimal asset mix for each combination of the state variables as we see in Figure D3. 

 

Figure D3 

In today's paper we find ourselves in the situation where 

(a) we want to carry out dynamic optimisation 

(b) we have a large number of state variables. 

Indeed, to add to the complexity of the problem the authors include transaction costs.  This, 
then, also increases the number of state variables. 

For example, think back to my very simple example with two assets. 

What the investor will choose to do at time 1 will depend not just on 

(a) total wealth at time 1 (as before), but also  

(b) how this wealth is distributed between cash and equity at the end of the first period 
of investment. 
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The reason is that the effective wealth available depends on how much trading you want to do 
at time 1 and what the transaction costs of this are. 

So we have a complex optimisation problem, particularly in terms of computer programing and 
processing times.  The paper brings to us a wealth of expertise built up over many years in the field 
of dynamic stochastic optimisation.  The authors have brought together and summarised a number 
of technically difficult toolkits to address this problem. 

The other important part to this paper is the authors' presentation of their asset model.  This 
gives us the state variables for the dynamic optimisation problems.  However, the model is very 
interesting to see in its own right given the relative scarcity of other published models.  It would 
have been nice to have typical parameter values for this model to allow us to get a feel for how it 
compares with other models. 

Some specific observations now and questions, which the authors may wish to respond to 
during the meeting. 

In ¶3.4.3 the authors describe a possible term-structure model and I have some thoughts and 
questions on this. 

(1) What is the difference between R0 and R? 

They need to be different because of the use of the process Y and its dependence on a 
third dZ term. 

(2) Both R0 and L can go negative, so how do you deal with this in practical terms? 

(3) It appears that the real world version of these processes follows a random walk with drift 
through the constants δ. Could the authors comment on this, because my interpretation 
seems rather unsatisfactory and therefore probably incorrect. 

(4) Finally how are we to interpret the α’s, the market prices of risk?  For example, how do 
they translate into risk premiums on various bonds? 

In ¶3.1 the authors describe the different types of asset model: in particular, those developed in 
the econometric-modelling school and those developed in the arbitrage-free modelling school.  To 
me the paper polarises things in a slightly misleading way.  That is, a given model will belong to 
one school or the other with no middle ground.  However, I can take my own model, cited in this 
section, as an example.  This model was indeed developed starting from an arbitrage-free modelling 
standpoint.  The approach implied in today's paper is to calibrate the model using today's market 
prices with a view to getting the best possible estimate of the market price of, say, some insurance 
or pensions liabilities.  On the other hand, most of the arbitrage-free models can be calibrated using 
historical data.  In particular, we can use exactly the same statistical methods of estimation as 
employed in fitting the econometric models.  Thus there is no a priori reason why econometric 
models should be better than arbitrage-free models for long-term risk management purposes.  
Indeed, if a model is being used for dynamic optimisation, then it must be arbitrage free otherwise 
dynamic optimisation, properly implemented, will find the arbitrage to create infinite profit. It 
might well be that the authors feel that typical, arbitrage-free models are unnecessarily complex 
within the context of a global asset model, and this is true, but this is quite a different issue from the 
point that is brought out in that particular section. 

At a couple of points in the paper the authors describe the use of a branching structure in the 
scenario generator.  In particular, in ¶7.3.3 they use a 128x16x2x2 structure.  I was quite intrigued 
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by this.  It is obvious that having two branches is quite inadequate for determining the optimal 
strategy in the final step, so the natural conclusion, perhaps, is that we should have, say, a 
100x100x100x100 branching structure, or even bigger than that. 

However, there is probably something much more clever going on here.  The real aim is to 
determine the optimal strategy in the first step, where there are 128 branches, rather than in the final 
step of the tree.  My question to the authors is this: does the chosen 128x16x2x2 structure give a 
reasonably accurate result?  I am sure that there are, but in the time available to me for reading the 
paper I did not find the relevant references.  However this looks like a very useful approach which 
is worth pursuing. 

I was reminded here of an alternative approach to combining scenario paths with dynamic 
optimisation.  Longstaff and Schwartz in 2001 looked at the pricing of American options — a 
problem which also requires dynamic optimisation.  They proposed quite a different approach from 
the branching structure used in today's paper.  What they did was to fit regression surfaces to the 
value function at each time step, working backwards from the terminal time.  However, theirs was 
really a one-dimensional problem or a low dimensional problem, whereas today's paper deals with a 
multi-dimensional one.  Perhaps the authors could comment on the relative merits of the two 
approaches. 

For my final comments I come back to the main theme of the paper.  The authors have 
described a global asset model with many assets.  They then overlay a potentially complex dynamic 
optimisation problem and describe the various tools which exist to solve this type of problem.  In 
the paper the authors note three types of error: 

(1) sampling error - the result of using a finite number of scenarios 

(2) parameter uncertainty - the result of having only a finite amount of historical data with 
which to estimate parameters 

(3) model risk - any model we propose can only be an approximation to reality. 

Suppose we have been able to eliminate the sampling error.  Parameter and model risk are still 
quite significant and this led me to wonder if there is an element of spurious accuracy in the 
methods being proposed by today's authors.  In order to illustrate my point, we can take a much 
simpler example, the one-period Markowitz portfolio theory model.  The output from this model is 
well-known to be very sensitive to parameter uncertainty.  In particular, if we make even quite 
small changes to the mean returns on different assets, then the optimal portfolio mix can change 
quite markedly.  In today's paper we have many assets and many time steps so it seems likely that 
the consequences of parameter error might be at least as big. 

On the other hand, this does not invalidate the optimisation exercise.  For example, we may 
find the results of an optimisation exercise which are not, in fact optimal.  Indeed, the resulting 
investment strategy might be quite different from the true optimum.  However, in terms of expected 
utility to the investor we will often be very close to the true, maximum utility: that is, if we had 
known the correct model and parameter set. So even though the asset mix is very far away from the 
optimal asset mix, the actual effects in terms of optimal utility are small. 

So the existence of parameter and model risk should not be used as an excuse for not trying to 
optimise expected utility or some other objective.  However, work needs to be done to establish 
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when, in the presence of parameter and model risk, dynamic optimalisation delivers a result where 
the actual utility value is indeed close to the optimum. 

Reference: 

LONGSTAFF, F.A., and SCHWARTZ, E.S. (2001) Valuing American options by simulation: a 
simple least-squares approach.  Review of Financial Studies, 14(1):113-147. 

Mr A. D. Smith: A few years ago, I thought dynamic optimisation was a prohibitively difficult 
problem.  I looked at investment on  the basis that a strategic asset allocation would stay in place for 
several years.  We talked about stochastic optimisation, but it was a lot of effort to get it working 
and the answers made no sense.  For example, in my 1996 paper, which the authors quote, I got 
enormous potential trading profits from the Wilkie model, without taking much risk.  In the 
discussion of that paper, Professor Wilkie pointed out you could not rely on a model behaving like 
that and I agreed with him. 

Judging from today's paper, much progress has been made.  The authors are right to be proud 
of the generic dynamic optimisation tools they have developed.  On this occasion they show an 
application to a utility problem.  Dynamic optimisation problems also come up in a corporate 
context: for example, the management of profit sharing insurance funds.  The same optimisation 
tools might be useful for the problems that occur here, too, although the objective functions would 
be rather different.  If we believe this paper, then there is a whole industry building optimisation 
tools, which actuaries should be able to tap into. 

As it stands, the process seems demanding on input and parsimonious on output.  For example, 
I would like to see some in-sample testing.  How much reward does the model say is achievable for 
a given constraint on risk?  How does this compare to the out-of-sample tests of what is actually 
achieved? 

Out there in the market, there might (or might not) be some gold, that is, some exploitable 
opportunities to make investment profits with low risk. If you want to mine these gold nuggets, you 
need to make sure any model correctly captures them. But the process of fitting a model, can 
generate what I call ‘fools’ gold’.  By this I mean trading opportunities that exist only in the model 
and not in the real world. 

Now we start mining, using dynamic optimisation.  We think we find lots of gold nuggets — 
the question is: are they real gold or are they fools’ gold? 

Calibration by statistical time series analysis, which the authors advocate in ¶3.1.1, or even by 
eye, which they also seem to advocate, is notorious for producing fools’ gold in simulation models.  
Parameter estimates might be unbiased individually, but the optimisation process serves to 
concentrate any sampling error.  You can see this at work as follows. Simulate from your favourite 
efficient market model — so you know there is no real gold — then use one of your efficient 
simulations and apply the methodology in this paper to calibrate a second time series model.  You 
will find that gold nuggets pop up all over the place in the second model, but you know they are not 
real because of the way you put the experiment together. 

The paper is too dismissive, in ¶3.1.2, of economically based models.  These more theoretically 
based models use asset pricing theory, which minimises the amount of fools’ gold.  See for example 
Chapter 16 of Cochrane's 2001 book for a clear explanation of how this works. 
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The backtests in Section 7, which we have seen amplified on the screen, claim a performance 
that is impressive without being extravagant.  As the authors point out, in ¶7.3.6, their moderate 
success is probably due to the position limits they impose, and in particular the constraint of 
turnover to 15% of the portfolio.  This is like telling a gold prospector he can only take 15% of any 
nugget he finds, irrespective of whether its real gold or fools’ gold.  The total volume of gold that 
the authors declare is perhaps within believable limits, but in the small print they are asking us to 
believe that there is another six times as much out there and up for grabs.  At this point I believe 
that greater scepticism is in order. 

In conclusion, we should congratulate the authors for their ambitious steps forward in 
stochastic optimisation.  These techniques raise the hurdles for asset models.  For the current paper, 
the asset model is surely the weakest link.  But as the old adage goes, the best way to get rich in a 
gold rush is to sell shovels.  Then you do not care whether the gold is real or not.  And you cannot 
fail to be impressed with the shovels in this paper. 

Mr C. A. Speed. F.F.A.: The authors bring to the attention of the profession dynamic optimisation 
techniques, which have great potential for many areas of actuarial work. 

In the pensions arena the work before us offers new possibilities for Defined Contribution (DC) 
schemes.  The techniques in the paper could be applied to DC asset allocation strategies by setting 
investment strategies, which would take account of the utility of the member.  We need to be 
cautious as there is much work still to be done in finding plausible utility functions and to be able to 
consider all aspects of the member's wealth and also personal liabilities.  Then we have the problem 
of communicating that. 

In the realm of Defined Benefit (DB) schemes, the paper has less to offer.  The results make it 
clear that risk must be taken with investments when applying these methods.  For any organisation 
there is clearly a limit on the amount of risk that can be assumed, particularly if that organisation 
might have need to raise further finance at a later date.  So where should an organisation take risks? 

There are two attractive possibilities. 

(1) the company could invest in business projects in its current line of business.  This 
should coincide with where the company has a competitive advantage. 

(2) alternatively, the company could gear up its balance sheet and so use a tax advantage 
available for financing through debt instead of equity. 

Both these approaches to risk-taking have clear advantages to the shareholders. 

In contrast, taking risk in a pension scheme, for example, through equity investment, provides a 
shareholder with neither tax advantages nor the benefits of competitive advantage.  As the amount 
of risk an organisation can take it has practical limits, equity investment or other risky strategies in 
DB schemes is clearly sub-optimal.  The introduction of dynamic optimisation does not change this 
analysis. 

It is a cause for concern that standard financial results we are aware of are not recovered within 
the current framework. 

In ¶2.2.3 the authors talk about utility theory.  Utility theory should be applied to individuals, 
as we are all aware.  In this context the authors use it as applying to a fund. Using utility theory for 
a collection of individuals is fraught with difficulty.  Essentially, we are using utility to measure the 
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benefit to members.  The utility function optimised seems to depend upon the fund, but in a defined 
benefit scheme there is also the implicit guarantee which is given by the sponsor and ultimately the 
shareholders.  This does not seem to be allowed for.  True we could update and optimise different 
functions but we are going to need to take this a step further. We know there is a guarantee, what 
value should a member put upon that or alternatively, what is the cost to shareholders of this 
guarantee? 

We really ought to be able to value and to say something about that guarantee.  The current 
paper does not, but this is possible, because we have arbitrage-free models, which, for example, 
include deflators.  However these are precisely the models, which the authors reject in ¶¶3.1.2 and 
3.1.3, so the key question relating to DB schemes cannot be answered in the current framework. 

Again, this is another example of the problems of using econometric models rather than 
arbitrage-free models. Arbitrage-free models are harder for advisers.  There are no magic solutions, 
which crop up and make everyone a winner, though they are a useful reality check. 

In summary, the paper offers promise of dynamic stochastic optimisation.  As a profession, I 
hope that we go away and learn from the important techniques presented.  There is much work to be 
done still.  We ought to be aware of unjustifiable simplifications or possible wrong terms, be it the 
use of the asset model or the representation of the economic interests of the different stakeholders.  
If we are not careful, these simplifications could lead to illusory gains rather than tangible results. 

Mrs S. Bridgeland. F.I.A.:  As Chairman of the Finance and Investment Board of the profession at 
the moment, I thank the authors for this paper.   

With regard to the case study, it is useful to have a concrete example of a project in an area, 
which is of particular relevance to the profession.  There are significant challenges in dealing with 
Defined Contribution arrangements as opposed to Defined Benefit arrangements, which this paper 
helps us consider. 

There are four main challenges.   

Firstly, the choice of the asset model when modelling for a single individual rather than a group 
of individuals merits special attention. In a group you expect there to be some sharing of risks over 
time, which permits some approximations.  Previous speakers have mentioned the comments made 
in ¶3.1.2 about the different sorts of asset models that are available when modelling for an 
individual.  I favour a scientific theoretically accurate model rather than, what Professor Dempster 
might have described as, a more artistic model that takes into account some of the real world risks. 
However, the profession should not be focusing too much debate on whether a model is particularly 
right or not, when the real issue for the profession is how wrong it could be. 

Our responsibility is to ensure that we do not advise individual members of pension schemes in 
a way which might mislead them about the potential risks of a particular investment strategy. 

Second, it is vital to have a better understanding of utility functions. I agree that using a 
dynamic approach to the asset allocation problem helps when modelling realistically. We know 
when advising Defined Benefit pension plan trustees that they have different utility functions when 
the market has just gone down by 20% compared to when it has just gone up.  They have different 
demands for risks and return and a different way of thinking about scheme assets and potential 
rewards. 
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Much of the existing work on utility theory highlights the difficulties in actually desiring 
somebody’s unique utility function, their real trade-off between risk and return. Whatever 
investment questions you ask someone, it is clear that when they come down to make investment 
decisions, reality kicks in and some other rules apply. For example, what they read in the paper last 
night about which way markets have gone may influence their attitude.  We might be deluding 
ourselves, it might be another fools’ gold to believe that we can actually tune into that aspect of 
human behaviour in a way that means that we can optimise the solution through a single model. 

I do not see any harm in selecting a tractable model for utility functions if that means that we 
can find an answer but we need to be sure that we understand how wrong that answer might be. 

Thirdly, communication.  There are some useful concepts in the paper, for example, the 
expected shortfall across scenarios in ¶5.6.2, and the severe downside linear penalty in ¶6.4.1, 
which may be difficult to explain to an individual member of a pension scheme.  But there is 
potential to use these sorts of models to develop new ways of communicating risk, and the 
compromises involved in suboptimal activity and suboptimal investment strategies to members. For 
example, looking at the traditional lifestyle approaches that we might use at the moment, how 
suboptimal are those?  How much better could we do? 

That leads on to the final challenge which is to help design better investment products targeted 
more on the risk and return requirements of individuals. In ¶6.3.2 the relaxed fit/rebalancing rule 
model looks like a promising move for further investigation. 

I hope that this paper will trigger off further research to enable us to help those that we advise 
understand the risks involved in saving for their future. 

Mr M. Lamb (a visitor; Managing Director, Investment Banking, Dresdner Kleinwort 
Wasserstein): I am an investment banker. This paper provides a very important framework for 
understanding the trade-offs between risk and reward, not just for the actuarial profession, but also 
for others working with it as well.  It laid down a number of principles for optimising wealth, not 
just for institutions but also for the individual market as well.  

The debate raises two worries. Firstly about communication, for the non-actuary and maybe for 
the actuary.  As Ms Bridgeland mentioned, there was a communication issue or challenge, not just 
communicating this type of analysis to the profession, but also to the institution and to the people, 
who will need to rely on this type of analysis.  There is a far greater challenge probably for the 
institutions, the providers operating in the life and pensions industry, to communicate the benefits 
of this type of analysis to individuals, who are entrusting their pension assets to the industry. 

When there is fragile confidence in the industry, there is an issue about how the results are 
interpreted as well.  One of the benefits of this type of analysis is that it does identify risks.  What is 
important is that those risks are interpreted as well and that judgements are made around that. 

That brings me to my second point in terms of confidence.  I think Mr Smith also made this 
point.  It is very important that this is only a framework.  It cannot replace judgement.  Certainly, 
investment managers, actuaries and boards, will be using this as an important tool to make 
decisions, to make judgements, but it would not necessarily eliminate experience in terms of 
making those very important and what are often binary judgements. 

In terms of the opportunities, this type of analysis enables us more accurately to quantify risk 
and analyse that form of risk, and  there is an opportunity here for the investment banking 
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community to tailor products to address those types of risks.  But generally, if those risks are more 
precisely quantified in order to develop cheaper and more effective pricing for products to address 
risk, that should be beneficial for all people who place their assets in pension funds. 

The President (Mr J. Goford, F.I.A.):  I think that we have had some considerable meat in the 
contributions that we have had so far.  I wonder whether Mr Dempster would like to reply to what 
he has heard so far. 

Professor M. A. H. Dempster, Hon.F.I.A. (responding): There appear to be two principal 
criticisms, which are not new.  The debate is not new between generating asset free models and 
using econometric models.  Both of these, as Dr Cairns pointed out, can be fitted to data.  The 
question is what do you get with the fit? 

We are taking the naive approach that history tells us something about the future.  History tells 
us something about the relatively near future and not very much about the long future.  If we are 
looking at long horizon problems, which we are, 20-30 years, then of course we need some kind of 
arbitrage-freeness. 

However, this debate about the two classes of asset return models is more subtle because to 
generate the real world probabilities from a deflator model one has to tune it to something.  The 
literature is a bit thin on this as much of it is in terms of, for example, state prices, Arrow-Debrem 
securities, and so on, which I find very hard to see or to buy in the marketplace, actually.  Therefore 
this turning is quite difficult.  I think that Mr Smith, Mr Speed, and Dr Cairns, would admit that it is 
equally difficult to calibrate these kinds of models as it is for generally specified econometric 
models, at least without using econometric techniques.   

There is one criticism I should like to address immediately.  Mr Smith made much about the 
fact that optimisers find the spurious things and then show you fools’ gold, etc. This point is fairly 
easily addressed.  One of our co-authors has been working on relatively simple schemes to make 
sure that those kinds of trivial arbitrages are not found and can be automatically eliminated as 
scenario trees are generated. 

We were accused perhaps of being artistic, and that may be a compliment.  We are also 
scientific in that we have taken a kind of schoolboy approach to spurious arbitrages which is to 
generate problems and see the outcomes.  It was a surprise to me that suppressing the sampling 
error of the generated scenarios actually stabilises the decisions and, answers the question that Mr 
Smith raised: what happens in a sample?   

Since the paper’s topics were defined we have been spending our time studying the decision 
stability question. For example, Mrs Bridgeland referred to the probabilistic constraints and how 
these are related to individuals.  It is critical that in assessing the scenarios that are generated to 
optimise the probabilities of violating a guarantee or a value at risk number, either of which might 
be considered, must use out-of-sample for flat scenarios generated exactly as the ones used in the 
model’s scenario tree. 

That turns out to be not as trivial as one might think, but with proper manipulation of 
parameters of the model one can ensure virtually the same probability of violation of a guarantee 
constraint within the model that has been optimised on, say, 10,000 scenarios as for 100,000 further 
flat scenarios that have been generated over the same time period from your scenario generator.  
That is a key result. 
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That leads me to a second misconception.  Those of us who have been trained as economists, 
or in a latter day way, have come to financial economics, think of utility as applying to individuals.  
We have heard several comments along these lines.  However, to go back to von Neumann and 
Morganstern a utility is simply a representation of preferences over probability distributions, and 
the probability distributions that count in the models of the paper are wealth distributions at 
particularly the horizon and possibly at time points before the horizon.  As Mr Smith pointed out, as 
we roll forward we are only going to implement the first decision, the first portfolio balance, in the 
light of all the uncertainties.  We want to handle the risk of the wealth distributions that come from 
the model. That is all we are attributing to utilities.  You could call them objective functions, which 
we are using to shape distribution at the horizon or as we go along, which is more difficult, but it 
still can be done.  There what we do is assign a utility function at each period.  More recent 
experiments, than those in the paper, have been carried out by Michael Villaverde along those lines, 
although some of the early work is in the paper. 

So I should like to dispel the notion that we are really exactly trying to get individuals.  Mr 
Germano can clarify because he said in his opening remarks that we are dealing in fund design with 
a whole lot of different horizons.  That is what is going to be needed to be provided to a bunch of 
individuals. 

Another point, which was mentioned, is that we need to consider liabilities, as we go along.  
This is what the system was designed for, to deal with cash requirements or cash inflows as one 
goes over time and to see the possible nature of that over future scenarios, and their implications for 
today's balance for the fund.   

Another point, made by Mr Lamb, was that no matter how complex the model, it does not 
replace human judgement.  We used the term “decision support system” in the paper, and we meant 
exactly that.  I tried to stress that with the graphics, which are a real technical challenge from a 
computer science point view, you want to be able to look at data that went into the statistical 
models, scenarios that are generated, and paths of the portfolios on the dynamic models to see what 
you would do in various scenarios that have been projected forward, and you would want to look at 
all that together and be able to flip back and forth between them.  That is because the only way to 
get this right is to apply human judgement and knowledge.  We are certainly not suggesting that this 
will be a turn on operation that just flicks out what you want.   

Dr Cairns mentioned the yield curve model.  We got the model from Lehman Brothers.  It was 
one widely used for pricing fixed income derivatives in the past. It is a bit confusing, partly because 
we could not manipulate one symbol on the diagram; I hope we will solve this problem before the 
paper is published.  (We have.) 

It is essentially a three factor model.  There is a very short rate, which is a one month rate, a 
three month rate, which is there implicitly because it defines is a slope with a long-term rate, which 
in this case is a 30 year rate, the Bellweather bond rate. Dividing up the yield curve this way, we are 
aiming to back out the market prices of risk for the three factors, not so much because we wanted to 
interpret them carefully but, because we knew they changed over time, even fitting them to today's 
yield curve data, and we wanted to see whether the variation of these quantities over time really 
correlated well with our macro economic variables.   

Mr M. Germano: Starting from the last contribution, and the effort that has been put together in 
terms of communication, I will try to give more insight about wealth distribution and the study on 
the true distribution of the population in terms of true needs.  We have also set up, in parallel with 
this working group, a research group for the past year.  This will be a long-term partnership, in 
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order to understand a bit more in-depth expectation of the client and how to interpret and to study 
the distribution of the population.  So we are not trying to go down to the single individual future 
pensioner, but we are trying to classify them in a few classes and trying to answer with proper 
products.  We are going close to a customisation of the products without going into the individual 
long-term plans.   

This increases the number of inputs.  The demand for new inputs is even higher, because we 
have a lot of work to do in order to understand what are the proper products to meet individual 
needs. 

The true goal of the system is risk management, studying future scenarios in order is to limit 
the downside.  The system is also used in order to develop stress scenarios, to verify where the 
current products already in the markets are really reliable and in which different scenarios would 
produce the wealth distribution expected as they arise. 

Another point about judgement, the system has been built in order to be used with judgement 
and it is not replace the decision-making of the portfolio manager, it is just giving the portfolio 
manager an extra tool in order to analyse extreme scenarios and have more insight about the 
possible near and long-term future. 

In terms of communication, a big effort has to be made.  The client does not need to have all 
the information about the technicalities.  What is important is to give a clear understanding of 
possible future scenarios. 

Professor M. A. H. Dempster, Hon.F.I.A.:  This paper is part of the effort of communication of 
this technology, which is being considered in the actuarial world, in the investment-banking world, 
and financial services generally. Just as in the early 1970s people began, 20 years after it was 
proposed, to look at the Markowitz model, people are beginning to look at stochastic optimisation 
models, 20 years after they were first studied. In the introduction to our paper we discussed the very 
restrictive assumptions under which myopic models are optimal.  The inappropriateness of these 
assumptions and the advance of the technology generally is what is driving a lot of institutions, 
banks, actuarial consultants, and so on, to use some version of these kinds of models, and to try to 
optimise them.   

Communication is a problem because they are complex.  Regarding use for individuals, there 
have been several attempts round the world, by various financial services companies, to produce 
individual advice based on these kinds of models or approximations to them.  These so far have 
been uniform failures.  At least the banking industry is now backing off and seeing that so-called 
high net worth individuals are a more sensible market.  There are several projects underway along 
those lines.  These should come ultimately to individuals but not yet. Then utility, in the classical 
sense, will be usable.  It is not, however, how we use it here. 

Mr M. H. D. Kemp:  I want to share one or two thoughts about asset liability modelling more 
generally. 

When I have reviewed the results of asset liability modelling exercises, they gave the same 
relatively straightforward answer.  The more you invest in equities, if you believe equities are going 
to deliver good returns in the long-term, then the better off generally you are, except in a relatively 
few circumstances, when you are worse off.  This seems to be an almost universal result. 
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It seems, subject to a few sweeping generalisations, that with all such exercises you start off 
with a stance that is very low-risk indeed, and then you consider alternatives that move away from 
that stance in some shape or form.  Whatever financial institution that an actuary might advise, the 
starting point is essentially to approach a very highly rated bank, or institution, and say: "Please sell 
me an instrument that will deliver exactly what my liabilities look like."  In principle, let us assume 
that it is possible to do this.  The next step is then to say: "This instrument costs 100, I have 120”. 
Then there is a margin to play with. Conversely "I have only 80!"  Then there is a need to find more 
funds.  You always start with the low-risk position and then take a view as to whether and how to 
move away from that stance.  "Arbitrage-free" or "not arbitrage-free" instruments and several of the 
tools covered in the paper can be used to produce possible outcomes. 

Firstly, there is the problem of how to price a complicated derivative of the sort just highlighted 
that is to match exactly a specified liability.  The methodology actually used in the marketplace 
seems to be very similar to the sorts of technique described in the paper.  The techniques are widely 
used in derivatives houses for pricing complicated derivatives.  Second, this approach also helps 
with the arbitrage-free vs not arbitrage-free question.  A derivative house pricing such a derivative 
will work out some kind of low risk investment strategy or some other kind of dynamic hedging 
approach "to match" the liabilities.  Therefore all the other aspects of the asset liability problem can 
be thought of as a divergence from the matched stance.  If inefficiencies or arbitrages exist in an 
asset-liability model, then it is possible to work out where they are coming from by analysing the 
difference between the strategy the model claims is optimal when incorporating differential returns 
between asset classes and what it would have claimed as optimal if you had adopted a very high 
preference towards the lowest possible risk.  In summary, there is a very strong link between some 
of the techniques described in this paper and some of the techniques already used by the 
investment-banking community, when pricing derivatives. 

Mr P. J. Nowell: I have been using the techniques described in the paper for about 10 years or so 
now, that is asset-liability techniques, and mainly using them with with-profits funds.  Therefore I 
should like to make a few observations. 

The main thrust of the paper is the concept of optimisation.  In my work I find it difficult, 
despite trying different ploys and interrogating the data, to hone in on the things that would help 
lead to optimal solutions and funding methods to do that in some way would be helpful. 

My interpretation of history would be that in the 1990s, when we were looking at these issues, 
we started off with a simple conundrum of maintaining solvency continuously, as we are supposed 
to do in a life company, and to optimise what the asset allocation should be in order effectively to 
maximise returns to policyholders and, by implication, if you are taking 10% of the profits for 
shareholders, then to optimise that as well. 

We did a huge amount of trial and error.  What we tried to do, in order to come to some sort of 
conclusion, was converge on solutions as opposed to just trying out something and then trying 
something else and spending hours not converging.  But that process involved more sitting and 
thinking what to do next, and trying to eliminate silly things, rather than any scientific optimisation 
process. 

Later we focused on not only the actual return and the total bonus, but also how much of it we 
could give by way of reversionary bonus.  That put a new dynamic into it.  We came up with 
different types of solutions, and a better understanding of the underlying dynamics of the model.  
We then examined or modelled the different types of shareholders' transfers, the difference between 
a fixed and a floating benchmark, and, generally, what was the optimal strategy.  This work caused 
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us to think in terms of not just the quantum but the shape of the distribution.  We were also able to 
use the model to calculate the cost of the support loans when acquiring other life companies.  We 
learnt a tremendous amount about the dynamics of the funds but never found a clear way of 
optimising strategies. 

I agree with the authors about the importance of use of graphics as a communication tool.  The 
more ways you can turn the results around and zero in on particular issues, the better.  We collect a 
tremendous amount of data, that is not always analysed fully, but to be able to look at it when 
necessary is very valuable.  For example, the recent work of the Continuous Mortality Investigation 
Bureau, analysing the cohort effect, which was there all the time but which we had never seen 
before.  Use of graphics is an extremely good way of seeing with great clarity something that is very 
difficult. 

Adopting the models set out in this paper will enable us to get away from trial and error and 
come up with optimal solutions.  My concerns are about the difference between arbitrage-free 
models and ones that are not arbitrage-free, the question to the authors is: do these techniques work 
well with arbitrage-free models?  In other words, do they actually help you in the zeroing in on the 
right solution process, or is the optimisation heavily influenced by the fools’ gold type of approach, 
in which case that may help to guide you in the right direction only if the model is correct but in 
which case you then have to worry about whether you are looking at what the model is telling you 
rather than what the real-world does.  

Professor D. Blake (a visitor; Professor of Financial Economics, Birkbeck College, University of 
London and Director of the Pensions Institute): When I entered my profession in the early nineteen 
seventies, the big thing was large-scale macroeconomic models.  They started pretty small, 
beginning with a few equations, and then hundreds of equations and then thousands of equations.  
You could end up getting big government grants for building large-scale macroeconomic models of 
the U.K., the U.S.A., Japan, and even the whole world.  This was fine until you started to predict.  
There were many little variations and permutations on this model.  One of the variations always 
gave very good predictions.  The problem was that you never ever knew which one.   

After a while, research money dried up.  It became clear that these large-scale models were of 
little practical use.  They had too much of a ‘black box’ feel about them.  This is also my feeling 
about the techniques used in this paper despite their sophistication.  Instead of large-scale models 
we reverted to simple models, going back to first principles.  I later became interested in pensions.  
My simple approach to this was the life cycle model, in which you want to smooth consumption 
over your life cycle.  You have fluctuating wealth, fluctuating income, and so forth, but want to 
smooth consumption over your life cycle.  A pension plan is just a way of smoothing consumption 
over your life cycle.  It is an investment vehicle for switching resources from when you are young to 
when you are old, that is an investment vehicle to hold stores of wealth while you are young to 
accumulate a fund or funds from which you can drawdown when you are retired. 

The key issue is the simple design of investment products, not the complicated models that we 
now see in the paper; models exhibiting all these risks, sampling risk, modelling risk, and so on.  
You can never be sure how precise and useful the predictions are, as was the case with large-scale 
macro models.  I would always go back to first principles. 

The models in the paper only focus on the accumulation phase.  It does not discuss what to do 
during the drawdown decumulation phase.  Ideally, two types of assets are needed, zero-coupon 
wage indexed bonds during the accumulation phase, to hedge the earnings risk during the working 
career, and during the decumulation phase something I call "survivor bonds" (see reference below).  
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Survivor bonds are annuity bonds where the coupons fall over time at the same rate as the cohort of 
the population drawing pension annuities dies out.  For example, for every 100,000 people on the 
issue date of the bond, if, after a year, 98% of that group were still alive, then the coupon on the 
bonds would fall to 98% of the starting coupon.  But the coupon payments would continue so long 
as cohort members were alive.  Survivor bonds would enable life offices to hedge the mortality 
risks. 

The interesting question, given all the arbitrage-free modelling in this paper, is why do the two 
types of assets not exist?  Why do we need to look at emerging market funds and all the other asset 
categories discussed in the paper in order to find accumulation vehicles and decumulation vehicles 
for what is a very simple problem: transferring resources over time from when you are young to 
when you are old?  The Pension Metrico approach to pension plans design is much simpler. 
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Mr A. D. Smith: I should like to come back on the question of utility.  Utility is a way of ranking 
distributions.  That is where von Neumann and Morganstern start (reference).  The question is what 
do you apply the utility to?  von Neumann and Morganstern appear to be trying to apply it to 
somebody's total wealth.  But what if you have a model describing only part of somebody's wealth?  
For example, perhaps somebody is buying a house and stock market investments.  Maybe they have 
some bonds overseas and maybe some legacies in the pipeline from rich relatives.  Does it make 
sense to take just the equities that they are investing in and put them through some sort of utility or 
Markowitz model?  No, it would be better to get hold of the whole of their wealth to use that sort of 
model. 

In the case of some defined contribution pension funds, you might find that the vast majority of 
somebody's retirement savings were in those funds.  In such cases that might be appropriate to use a 
utility approach. For the paper, the client is a corporation that operates these funds and provides 
guarantees to those funds.  To try to advise that corporation on the basis of the utility function of the 
fund seems a bit nonsensical.  For a start, the corporation does not receive any of the upside, 
because that goes to the members of the fund.  They are interested only when there is an event, 
when they have to make up the guarantees.  When you are dealing with a corporation, rather than 
considering the corporation to have a utility, why not consider the investors in that corporation and 
their utilities?  Very few investors have only a single equity in their portfolios, one should probably 
suppose that those investors can diversify and have already done so.   

That rather changes the problem.  It means that you might want to look at options from an 
option pricing point view rather than from a utility maximisation point view.  There is no 
justification for applying utilities to corporations.  If you take the utility approach to its limits you 
find that no corporations should ever specialise.  As well as running investment funds, the 
corporation should also start making automobiles, organise package deals to far-flung places, 
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exploring for crude oil, and so on, because you are going to improve the utility function merely by 
diversification.  Of course, that only makes sense if the person who invests in this particular 
institution cannot diversify on their own.   

That is the point that both Mr Speed and I were seeking to make.  From an individual 
investment point view, we can see that at least in principle it makes sense to say let us try to figure 
out what this individual's utility function is.  From the point view of managing a corporation, 
whether it is an insurance company with a with-profits fund, or whether it is a company with a 
defined benefit pension scheme, it really does not make a lot of sense to take just the fund in 
isolation and to imagine that somehow it was going to serve the corporation or its shareholders by 
applying a utility function to what is a tiny proportion of somebody's total wealth.   
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Mr J. P. Ryan, F.I.A.: I should like to cover the issue which Mr Smith just raised, because I have 
recently been exposed to pension funds from a rather different angle, that is trying to find market 
solutions to some of the risks that one finds. The marketplace for a number of risks is very different 
from what the profession in general and the funds are investing for.  The reason for that is in many 
cases there is not the proper marketplace, frustrating the use of a utility function for the individual 
corporation.  If you look at issues like longevity risk vis-à-vis the fund, you cannot simply diversify.  
There is not a market out there that actually does that.  Capacity is exhausted.   

You start getting into a capacity pricing type approach rather than a utility type approach, 
which means that you go then into some of the non-life type assets because you cannot diversify.  
That starts putting the risk loadings up on these things quite substantially.  The parameter for 
operation type risks again comes very significantly into play and significantly increases the price 
over and above the outcomes of a lot of these optimisation type issues. 

The other issue, which in terms of pension funds where utility theory does not come into play, 
is often a lot of this depends on the credit standing of the individual institution that is standing 
behind it, which for the pensioner or the employee means that he has his risk very heavily 
concentrated in that institution.  Again, that needs to be reflected and priced, which seems to be 
allied to the issues that Mr Smith raised. 

There are many interesting points in the paper in terms of techniques, but when it comes 
through to pricing some of these things, we need to follow some of these matters through further. 

The President (Mr J. Goford, F.I.A.): One of the advantages of sitting here, and in no way this 
being my field, is that I can ask some naïve questions.    

Those of you who have read my Presidential Address may or may not be aware that I advocated 
much more involvement of actuaries with financial economics, and indeed recommended that all 
actuaries should read certain chapters of Brealey and Myers.  That was the book of the month for 
July.   

The book of the month for November, which I am two-thirds of the way through, and hence the 
naïveté of the question, is “When Genius Failed”, which is the story of Long Term Capital 
Management's demise. 
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So, my first question is: would what you have done have informed Long Term Capital 
Management, in particular on the issue of the assumption of constant volatility?  The answer may 
simply be "No", in which case you can say so. 

The second question is looking at what employees are now being confronted with in their 
defined contribution schemes. They are being given access at their workplace to information on 
their choice of investment advice or investment funds and being shown the different expanding 
funnels of doubt depending on what particular funds they have chosen from low-risk to high risk. 
Employees are encouraged to ask for information like "I do not want an expected return; I want a 
return that is 85% likely to happen.”  Would a fund manager with these sort of techniques enable a 
narrower funnel of doubt for a particular investment choice and therefore, for a given propensity for 
wanting an 85% probability of pension, enable a more risky underlying investment? 

Question 3 relates to derivatives.  Would what you are talking about enable an organisation to 
have a reduced demand for derivatives or indeed would it reduce the cost?  Would decisions, that 
are likely to be supported by what you are showing here, reduce the need for esoteric derivatives or 
perhaps reduce their costs? 

Professor A. D. Wilkie, C.B.E., F.F.A., F.I.A. (closing the discussion): I start by making a 
comment on the system, that we have in the actuarial profession, for organising sessional meetings, 
or strictly, Ordinary General Meetings, of the Institute.  Years ago, the Institute used to have six 
sessional meetings a year.  That included the Presidential Address every second year.  Now we have 
about nine a year and that is too many.  We do not have a queue of good papers waiting to be 
presented, as some other organisations do.  Instead, we look around for papers, accept almost any 
volunteers and then put pressure on authors to meet a deadline.  As a result, papers are often late; 
they receive very little scrutinising and certainly not proper academic refereeing.  The quality and 
reputation of the British Actuarial Journal consequently suffers.  I suggest that we have fewer 
formal sessional meetings and take up all the spaces with discussion sessions, as sometimes we do 
have, introduced by unrefereed notes, not necessarily all printed in the British Actuarial Journal, as 
this meeting will be, but making a distinction between the refereed papers and the unrefereed notes. 

I, and colleagues, are producing a paper for the next Faculty sessional meeting in January, and 
we are running late.  I am conceited enough to think it will be an important paper, and it would be a 
better paper if certain aspects of it could receive more investigation, than would be possible in the 
remaining few days left to finish it off. 

The paper before us this evening has clearly suffered from this problem.  It has not been 
available for long enough for most of us to study carefully, and the lack of time to consider it has 
been reflected in the rather few technical contributors that we have had in the discussion, although 
there have been plenty of practitioners making extremely useful points in general.  The paper has 
been hastily printed, so one needs both the A5 photocopy and the PDF version to get all of it.  It 
also suffers from a necessary defect, that is common to all academic papers, which is it relies 
heavily on references to other papers.  This is normal and quite proper in the academic field, 
because academics usually have access to good libraries and ought to have time to look up other 
papers on their relevant subjects, as research is part of their job.  But actuaries, apart from those 
who are also academics, usually do not have access to the same quality of library or the time to 
make themselves familiar with all the previous literature.  Of course, it will be difficult for anybody 
to do so in the space of a few days.   
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Here I can say these things, because the paper this evening is a good one.  Its subject is perhaps 
the most important one that actuaries face: the guidance over time of a financial institution.  It is not 
referring specifically to a defined contribution pension fund.  The principles apply to any financial 
institution. 

Most of us drive cars and also navigate a car to where we wish to go.  Guiding a ship or an 
aeroplane, navigating it to its destination, are also skills that many have.  Sending space ships round 
the solar system is also possible for those who have the skill.  However, guiding a financial 
institution to avoid disaster and with the best possible outcome seems to be a lot harder.  Part of the 
reason for this is that spacecraft obey the laws of Newtonian mechanics, which are well understood.  
There is some stochastic uncertainty, but it is less than with financial systems and the error 
correction mechanisms are better formulated.  Ships and aeroplanes are subject to uncertain winds 
and weather but, barring accidents, they normally reach their destinations.  We even manage it with 
cars, though traffic delays may mean that it turns out, in retrospect, that we have chosen a sub-
optimal route. 

Financial institutions are harder because there is so much stochastic uncertainty and the laws, if 
one can call them that, that guide them are not understood all, as we can see from the discussion 
this evening.  Further, the overall structure of all but the simplest financial institution is very 
complex, and this has defeated previous attempts to tackle the problem comprehensively.   

The authors this evening have shown us a serious and complex system for tackling this 
problem, or at least part of it.  A real life office can influence its sales of new business; it can adjust 
its bonus rates in response to changes in the financial environment and in order to keep it on a good 
track.  A real defined benefit pension fund may be subject to surprises from changes in legislation 
or accounting requirements and may have to deal with bulk transfers in or out.  But there is often 
some flexibility and discretion in awarding pension increases or improving benefits and in 
contribution rates.  If all else fails, one can close the scheme to new entrants or even to future 
accrual, as some schemes recently have done.  It would be too difficult to add these real world 
complexities to what is already a very complex problem.   

The methodology of the authors derives from two sources, which we have heard something 
about already.  The first was dynamic programing, which Dr Cairns described briefly, to optimise 
over time.  The other approach starts with linear programing. Like dynamic programing, it is a 
common part of any course in Operational Research.  A great many OR techniques are rather like 
actuarial techniques applied in different fields, and much OR methodology can be useful for 
actuaries. 

Linear programing maximises a linear function in an n dimensional space, probably subject to 
linear constraints.  It is deterministic; it is not a trivial problem if the dimensions are high.  
Quadratic programing, what is needed to solve the Markowitz portfolio selection problem, 
maximises a quadratic function subject to linear constraints, and so on. Stochastic programing then 
moves up a step.  Instead of a deterministic objective function of fixed constraints, we may have 
uncertainty in any or all aspects of them.  Then dynamic stochastic programing, which is what the 
authors are doing, combines the two strands.  One is optimising over multiple time steps using a 
Bellman principle with each step as stochastic and that produces an enormously large linear 
programing problem, that the authors have developed methods to solve. 

Most of their methods are described in other papers referred to in their paper, but some of the 
methods may be proprietary and therefore not fully described in the published material and that is a 
pity. 
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As Dr Cairns said, to solve the problem one would really like a tree simulation with 1,000 steps 
on each branch or 100 steps on each branch so that there would be 100 choices in period 1, 
followed by 100 more in period 2, making 10,000, followed by 100 more in period 3, making 1 
million.  It is possible to specify such a problem, but it is just as impractical as to specify every 
possible game for chess, which can nevertheless be shown by logical argument to be a wholly 
deterministic game if only one had big enough computers. 

In solving this problem, there are some things that the authors have mentioned at the very 
beginning.  They talk about guarantees but do not mention, although mentioned in the discussion, 
option pricing methodology, and the comparable dynamic hedging that goes with that.  The option 
pricing method determines a possible investment strategy with dynamic hedging investment, which 
requires pretty frequent portfolio revisions, and I wonder whether some splicing in of dynamic 
hedging in respect of the downside guarantees might be possible. 

The econometric model in Section 3 gets a lot of emphasis in the paper.  It deserves a separate 
paper, because the heart of the paper in Section 5 could be tackled with any particular model, not 
necessarily the one that the authors have presented.  This model is very difficult to assess without 
knowing the parameters, and without seeing specimen outputs.  There is a problem in putting in too 
many influences. It is not quite a vector autoregressive model, certainly not a linear one, but there 
are so many possible parameters, that you cannot necessarily see what the important effects are. 

There has been discussion about the difference between econometric and arbitrage-free models.  
I think "arbitrage-free" is the wrong word.  The Wilkie model, or any other of these types of 
models, is arbitrage-free in that there are no guaranteed profits to be made from particular strategies 
within the model, whereas they may be not market consistent in the sense that they may at times 
suggest that some particular investment has a very low rate of return as compared with others.  I am 
a little surprised that Mr Smith is continuing to support, as he would call it, the arbitrage-free 
market efficient models as representing the real world.  The Wilkie model, or those that might have 
followed it, would not have lost money in the last three years, whereas those who believe in the 
random walk model and therefore thought shares always did the same thing every year, at least had 
the same possibilities every year, might well have lost much.  I can also possibly say that the Wilkie 
model had not made any money in the previous three years!  It thought that share prices were too 
high in 1997 and it is still thinks they are a bit high in some countries. 

Utility functions have come in for a bit of discussion.  I am happy to follow Professor 
Dempster's approach, that utility functions are there to allow decision-makers to choose between 
different probability distributions.  I do not think that it matters, as Mr Smith was bringing up in his 
last point, that the decision-makers do not have total information about the potential beneficiaries of 
the scheme.  They have to make some sort of assumptions, the best assumptions that they can, about 
what the right level of security and the right level of pension increase is and what the right level of 
bonus would be for those beneficiaries, knowing that they are not dealing with the total wealth of 
the customers.  On the other hand, they are the people who have to make decisions about alternative 
probability distributions and they need some strategy for taking them into account.  The particular 
utility function that the authors have used, which adds up utilities over the years, I am not 100% 
happy with.  I like the downside quadratic part.  The sigma utility function over years does not take 
account of a possible trade-off between years.  You may want a smooth consumption pattern over 
the years, but an individual may not mind too much whether he gets a bonus this year, when he can 
take a specially good holiday, or a bonus next year, when he can take that good holiday.  You can 
trade off one against the other, and it is quite different to have the certainty of a bonus, but 
uncertainty about the timing of it as opposed to uncertainty about no bonuses, one bonus or two 
bonuses in successive years.  So, taking into account correlation between years would be nice. 
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This is the sort of paper that I hope some younger actuaries will take account of. I hope they 
will have time to study it and to learn about the really very complicated mathematical process that is 
at the heart of Section 5. Dealing with very large systems is necessary for solving problems.  
Dealing with very large numbers of simulations is necessary.  The problem about doing huge 
numbers of simulations is that you get such enormous results all hidden inside the computer, and 
having some visualisation system for looking at the results you need can be very useful.   

In my forthcoming paper I was producing one graph, which told me not an awful lot if I plotted 
it in one way, but I plot the same data in a slightly different way and see something rather striking 
coming out of it.  It is just a matter of sometimes being fortunate in choosing the right way to look 
at something visually.  It can give you lessons, which simply the numerical statistics do not do.  The 
emphasis on visualisation presentation is important.   

I hope many people in future study this paper and the other papers referred to in it, learn from it 
and take up this exciting subject, which I first discovered something about about 10 years ago when 
I first met Professor Dempster.   

Professor M. A. H. Dempster, Hon F.I.A. (in reply): I will tackle the President’s questions, some 
of the other questions that have been discussed, and some of the points that Professor Wilkie raised. 

On the point of non-constant volatilities, we do have non-constant volatilities in our model.  
What we did was transform the model in such a way that it had constant volatilities in spite of the 
fact that we began with state-dependent volatilities.  For the emerging markets returns in equities 
and bonds, these are strategic asset/liability problems, so we are dealing really with emerging 
market indices: we use Generalised Autoregressive Conditional Heteroscedastic (GARCH [1,1]) 
models and the now usual sort of way of dealing with non-constant volatilities.  That was just a 
small comment in answer to the President’s first question. 

What the President next questioned concerning LTCM amounts to asking, does the use of these 
models help the manager to narrow the funnel of doubt?  That is the whole point of the exercise.  
The proof of the pudding is in the eating.  I believe that some pudding has been eaten, but there is 
more to come!   

So far as “Will this reduce the cost or demand for derivatives?”, if the funnel of doubt goes 
down, the need for derivatives goes down as well.  So the answer to that question is one hopes so to 
a certain extent. 

The point was made earlier that these techniques can be used to price derivatives, particularly if 
you study risk management problems for derivatives. We, and other people, have in fact done that, 
so our technology has been applied for that kind of technique.  

A point that Professor Wilkie, Mr Smith and Dr Cairns made was that they would really like to 
see great big trees.  We can solve problems with great big trees.  In the experiments, I mentioned 
earlier, about stability we have been solving some trees, 100x100x100 and perhaps by another 100.  
But that means that we will not be able to study a dynamic problem, which might be over 20 years.  
We are not going to be able to rebalance every year or assume that we can solve a problem the size 
of the universe or something.  We are not going to be able to do that.  However, that is what the 
experiments are about, the stability of both the portfolio and actually the extreme scenarios in which 
the guarantees are violated.  What this is really about is to try to see how to get the same results as 
for the huge problems that run for hours with appropriately chosen scenarios.  We have a few more 
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tricks up our sleeves for this, which we have not talked about in this paper.  But we are working 
very hard on that problem because it is the key limitation.  

Some of our points have been reinforced in this discussion.  With others the jury is out, but we 
have been arguing back and forth about these questions for some time. 

Mr M. Germano (in reply): In reply to Professor Blake, we have been looking into ways to 
simulate wage inflation and trying to find the instruments that will allow us to add that risk, as well 
as mortality risk.  It is under development.   

Regarding Mr Smith’s query, the point of view of the guarantor rather than the single 
individual, we are keeping that separate.  The guarantor behind the product has his own model to 
add to the risk.  We are looking to achieve a minimum wealth for the class of individual, not to add 
the risk for the corporation in terms of not meeting the target.  There are two separate models.  One 
is an underlying model system in a bank and that is different from the function that is in the model 
for the class of the individuals. 

Professor M. A. H. Dempster, Hon.F.I.A.:  To take up the comment of Professor Blake, it is 
really about a simpler world in which people work in corporations, firms or professions.  They 
finished training, started work and then retired.  As Mr Germano mentioned earlier on, in the 
modern world that is not necessarily the case.  People change professions.  They are laid off.  They 
change countries, and so on.  So there are a lot more liabilities in an individual's life cycle.  One of 
the points of this kind of modelling, is that it can be applied to this.  In the first instance, it will only 
be a practical and economic solution if it applies to people who have a great deal of money and are 
facing some strange liability, shall we say.  But, ultimately, we are going to be able to walk into a 
financial institution and have something tailored for each individual, using this kind of technology.  
However that may be many years away.  

The President (Mr J. Goford, F.I.A.): The great joy of this paper was Mr Germano's introduction, 
where he demonstrated some serious customer needs focus which is very close to my heart, 
recognising that employees do have different needs, saving for pensions, for legacy, and those not 
so risk-averse.   

I express my sincere thanks and the thanks of all of us to the authors, the opener and the closer 
and those who participated in the discussion. 
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WRITTEN CONTRIBUTION 

Mrs N. T. Ralston: It concerns me that we could be moving yet further into a world in which the 
senior managements, and boards, of insurance companies may well struggle to comprehend fully 
the basis on which their risks are taken. The same could apply to investment banks or others which 
use the sort of techniques outlined in the paper. This is a particularly insidious risk, as it is hard for 
boards to admit. 

Professor M. A. H. Dempster, Hon F.I.A. (final comments in reply on behalf of the authors).  A 
few short comments picking up questions raised but unanswered in the discussion. 

Dr Cairns asked how this work relates to fast Monte Carlo the techniques for American and 
Bermudan derivative pricing recently introduced by Longstaff and Schwartz (op.cit.).  The 
theoretical answer has been noted by both Dr Cairns himself and Professor Wilkie – their technique 
is a variant of Bellman’s dynamic programming backward recursion in time, while we are using a 
mathematical programming approach which considers decisions at all time points (and all 
scenarios) simultaneously.  Practically, such optimal stopping or fixed time impulse control 
problems are conceptually simpler than the strategic ALM problems treated in the paper.  In 
practice, however, numerical evaluation of, say, long dated cross currency swaps in three state 
variables is in our experience equally computationally intensive. 

To partially address Dr Cairns’ question on the three types of possible errors in the methods of 
the paper, we have seen in our experiments to date that sampling error far overwhelms statistical 
parameter estimation error and that the robustness of current decisions due to the effects of the 
averaging of responses to future alternative scenarios tends to suppress the latter’s effects once 
sampling error has been controlled.  Unfortunately, model error is possible with any approach. 

Several commentators have asked for further details on our asset return models.  We draw 
readers’ attention to the working papers, cited as forthcoming in the paper, which are now available 
(http://www-cfr.jims.cam.ac.uk). 

Finally, Professor Wilkie mentioned the possibility of dynamic hedging in respect of the 
downside guarantees of defined contribution pension products.  This is an area of no little 
importance which is being investigated in our current research. 
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