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Abstract. This paper introduces the use of dynamic stochastic optimisation for the design of structured
products for pension funds. The design of such products involves econometric modelling, economic scenario
generation, generic methods of solving optimization problems and modelling of required risk tolerances. In
nearly all the historical backtests using data over roughly the past decade the system described (with
transactions costs taken into account) outperformed the benchmark S&P500.

1 Introduction

Defined benefit pension plans and most state schemes are becoming inadequate to cover the gap between the
contributions of people while working and their pensions once retired. A long-term minimum guarantee return
plan with a variable time-horizon and with the possibility of making variable contributions during the lifetime of
the product in addition to the initial contribution is a new investment instrument aimed at attracting investors
who are worried about the volatility of financial markets. Although potentially highly profitable for the provider,
the design of such instruments is not a trivial task, as it encompasses the need to do long-term forecasting for
investment classes and handling a number of stochastic factors together with providing a guarantee. This paper
shows that dynamic stochastic optimisation methodology is an ideal technique to solve these kinds of problems.

This paper describes the approach and outcomes of a joint project with a leading firm operating in the European
fund management industry to develop a state-of-the-art dynamic asset liability management (ALM) system for
pension fund management. The liabilities considered in this paper take the form of guaranteed returns, which
we refer to as quasi-liabilities.

2 Critical Issues for Pension Fund Management

Asset liability management concerns optimal strategic planning for management of financial resources in
stochastic environments, with market, economic and actuarial risks all playing an important role. The task of a
pension fund, in particular, is to attempt to guarantee benefit payments to retiring clients by investing part of
their current wealth in the financial markets. The responsibility of the pension fund is to hedge the client’s risks,
while meeting the solvency standards in force in such a way that all guarantees are met.

Below we list below some of the most important issues a pension fund manager has to face in the determination
of the optimal asset allocations over the time to product maturity.

Stochastic nature of asset returns
The future asset returns over the life of the product are unknown. It is critical that the portfolio decisions are
based on a realistic representation of these returns.

Long investment horizons

The typical investment horizon is very long (30 years). This means that the fund portfolio will have to be
rebalanced many times and can make “buy&hold” Markowitz-style portfolio optimisation inefficient. Multi-
period techniques are needed to take explicitly into account the on-going rebalancing of the asset-mix.



Risk of under-funding

There is a very important requirement to monitor and manage the probability of under-funding for both
individual clients and the fund, that is the probability that the pension fund will not be able to meet its targets
without resort to its parent guarantor.

Management constraints

The management of a pension fund is also dictated by a number of solvency requirements which are put in place
by the appropriate regulating authorities. These constraints greatly affect the suggested allocation and must
always be considered. Moreover, since the fund’s portfolio must be actively managed, the markets’ bid-ask
spreads, taxes and other frictions must also be modelled.

3 Pension Fund Management Through Stochastic Optimization

Most firms currently use static portfolio optimisation, such as the Markowitz mean-variance allocation [15],
which is short-sighted and when rolled forward can lead to radical portfolio rebalancing unless constrained by
the portfolio manager. Although such models have been extended to take account of liabilities in terms of
expected solvency (surplus) levels (see e.g. [18]), many difficulties with static models remain. In practice fund
allocations are likely to be wealth dependent and face time-varying investment opportunities, path-dependent
returns due to cash flows and transactions costs. Hence all conditions necessary for a sequence of myopic static
model allocations to be dynamically optimal are likely to be violated [20, pp 9-11].

By contrast, the dynamic stochastic programming models incorporated in the system described below
automatically hedge current portfolio allocations against future uncertainties over a longer horizon, leading to
more robust decisions and previews of possible future problems and benefits. It is this feature and its ability to
incorporate different attitudes to risk that make dynamic stochastic optimisation the most natural framework for
the effective solution of pension fund ALM problems.

Strategic ALM requires the dynamic formulation of portfolio rebalancing decisions together with appropriate
risk management in terms of a dynamic stochastic optimisation problem. Decisions under uncertainty require a
complex process of future prediction or projection and the simultancous consideration of a number of
alternatives, some of which must be optimal with respect to a given objective or utility function. The problem is
that these decisions are only known to be optimal or otherwise affer the realisation of all random factors
involved in the decision process. In dynamic stochastic optimisation the unfolding uncertain future is
represented by a large number of future scenarios (see e.g [14] and the references therein) and contingent
decisions are made in stages according to tree representations of future data and decision processes. The initial
— implementable stage — decisions are made with respect to all possible variations of the future (in so far as it is
possible to predict and generate this future) and are thus hedged within the constraints against all undesirable
outcomes. Each particular optimisation problem is formulated for a specific application combining the goals and
the constraints reflecting risk/return relationships. The dynamic nature of stochastic optimisation: decisions —
observed output — next decisions — etc ... allows a choice of strategy which is the best suited for the stated
objectives. For example, for pension funds the objective may be a guaranteed return with a low unexpected risk
and decisions reviewed every year.

Figure 1 summarizes the processes, models, data and other inputs required to construct a strategic system for
dynamic asset liability management with periodic portfolio rebalancing. It should be noted that knowledge of
several independent highly technical disciplines is required in addition to professional domain knowledge.
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Fig. 1. Strategic financial planning data requirements, models and objectives

Implementing the dynamic stochastic optimisation methodology can be highly non-trivial. The investment fund
will naturally want its set of potential investments to be as large as possible. Thus, it will want the option to
invest in global assets ranging from relatively low risk, such as cash, to relatively high risk, such as emerging
markets equity. The inclusion of such assets greatly increases the complexity and the amount of uncertainty in
the problem since it necessitates the modelling to some degree of not only the asset returns, but also of exchange
rates and correlations. Further sources of complexity arise from the multi-period nature of the problem and
frictions such as market transaction costs and taxes. However, the advance of computing technology and the
development of effective algorithms have made dynamic stochastic optimisation problems significantly more
tractable. We have applied the Stochastics™ optimisation system [8] to solve pension fund management
problems with global investments and have shown that it outperforms alternatives by analysing the returns of its
recommended portfolio decisions in terms of the appropriate Sharpe ratio [10].

Dynamic stochastic optimization model

We focus here on strategic asset allocation which is concerned with allocation across broad asset classes such
as equity and bonds of a given country. The canonical pension fund problem is as follows:

Given a set of assets, a fixed planning horizon and a set of rebalance dates, find the trading
strategy that maximizes utility subject to the constraints.

Different pension plan instruments are given by alternative utility functions (fund risk tolerances) and the
specification of risk management objectives through the constraints.

We consider a discrete time and space setting. It is assumed that the fund operates from the view point of one
currency which we call the home currency. There are T+1 times (the first T are decision points) indexed by
t=1,...,T+1, where T+1 corresponds to the planning Aorizon at which no decisions are made. Uncertainty is
represented by a finite set of time evolutions of states of the world, or scenarios, denoted by @ € £2. Assets
take the form of equity, bonds and cash. Let I denote the set of all assets. Let x;(®) denote the amount held of
asset i between times t and t+1 in state ®, and let x;; (0)/X; (®) denote the amount bought/sold of asset i at time t
in state ®. Let vi(®) denote the return on asset i between times t-1 and t in state o, and let p;(®) denote the
exchange rate of asset i at time t in state . A trading strategy results in a wealth before rebalancing of

w, (a)) for t=2,..., T+1 and o €Q, and a wealth after rebalancing of VV, (a)) for t=1,...,T and ® €Q.

Subject to the constraint structure, the fund acts by choosing the trading strategy which maximizes the (von
Neumann-Morgenstern) expected utility of the wealth process which is assumed to take the form
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where p(o) is the probability of state w. Utility functions are used in our system to represent the general attitude
to risk of the fund’s participants over a specified fund horizon. For example, short horizon funds which are
likely to attract relatively risk averse participants would typically use a different utility than very long horizon
funds whose long term participants can afford to tolerate more risk in the short run. In principle different
attitudes to risk may be imposed at each decision point with the additively separable utility U through a sum of
different period utility functions w, t=2,...,T+1, or through a sum of period utility functions with a common
form and different period-specific values of its parameters. In practice a common specification of period utility
is usually used and adjustment of the period-specific parameter values allows the shaping of the fund wealth
distribution across scenarios at a decision point. We consider the following period utility functions:

Exponential (CARA): u(w)y=—e", a>0 5)

Downside-quadratic: u(w)=(1—a)yw—a(w—w)>, 0<a<1,0<Ww<ow. )

Note that the downside-quadratic utility function reduces to the linear utility function (u(w)=w) for a=0. (Other
period utility functions are discussed in [7].)

The basic constraints of the optimization model are those of the dynamic CALM model (cf. [4]):
- Cash balance constraints. These ensure that the net flow of cash at each time and state is zero and take
the form

> pi(@)(gx, (@) - fi) (@) =0,

iel

where f and g are proportional transaction costs.
- Inventory balance constraints. These give the amount invested in each asset at each time and state and
take the form

Xis (o) = Xit-1 (0)(1+ Vit () + x; (@) - Xy (@).

This approach, due to Bradley & Crane [2], allows tax and business modelling structures to
be incorporated in constraints (see e.g.[3]).

- Wealth constraints. These define the before and after rebalancing wealths at each time and state and
take the form

Z P (@)1+v, (@)x, (@) =w, (@)

iel
W, (@)= p;(0)x,(@).
jel
Besides these basic constraints, the fund may face the following portfolio restrictions:

- Solvency constraints. These constrain the fund wealth at each time to be non-negative and take the
form

w, (@) =0

- Cash borrowing/short limits. These limit the amount borrowed/shorted of an asset and take the form

Dy (a))xit (a)) 2 ;i



- Position limits. These limit the amount invested in an asset to be less than some proportion of the fund
wealth and take the form

Dy (@)x, (w) < pW, (@)

- Turnover (liquidity) constraints. These limit the change in the amount invested in an asset from one
period to the next and take the form

| D (w)xit (a)) ~Pi (a))xit—l (a)) |S az‘VVt (a)) :
All the above constraints are piecewise linear convex.

For backtesting purposes we specify the following three types of constraint structures. T1 constraints have no
position limits or turnover constraints, T2 constraints have position limits and no turnover constraints and T3
constraints contain both position limits and turnover constraints. Short selling and borrowing are not allowed in
any of these constraint structures. Assuming that the simulated price processes are non-negative, this
automatically enforces solvency constraints.

- Guaranteed return constraints. The return guarantee to an individual investor is absolute given the
solvency of the guarantor. In the situation of a banking group such as the fund manager and its parent
guarantor this necessitates strategies both to implement the absolute guarantee for individuals and to
manage the investment strategy of the fund so as to ensure meeting the guarantee for a// participants of
the fund with a high probability.

Mathematically, this latter goal can be met by imposing a probabilistic constraint of the value at risk type on the
wealth process at specific trading dates, computing expected shortfall across scenarios which fail to meet the
fund guarantee and adding the corresponding penalty terms to period objective functions. For example, at the

horizon T+1 or any intermediate date ¢’ this would take the form P (Wt, 2 W; ) >1—a, where a: = 0.01 or
0.05, corresponding to respectively 99% or 95% confidence, and W: is calculated from the initial wealth and

the guaranteed period rate » as W), (1+r) . However, such scenario-based probabilistic constraints are

extremely difficult to implement in that they convert the convex (deterministic equivalent) large scale
optimisation problem to a nonconvex one. For practical purposes we have developed the capital guaranteed
products algorithm implemented for a pension fund using parametric nested optimization techniques [7].

Asset return statistical models

Our main asset return model (BMSIM) used to generate scenarios for the ALM problem is based on a set of
continuous time stochastic differential equations for the financial and economic dynamics of interest. We then
discretise time to obtain the corresponding system of stochastic difference equations, estimate them
econometrically (in the econometric estimation tradition initiated by Wilkie [23,24]) and calibrate the output of
their simulation with history by various ad hoc or semi-formal methods of parameter adjustment. (See, for
example, [19] and [6].)

The global structure of this model involves investments in the three major asset classes — cash, bonds and
equities — in the four major currency areas — US, UK, EU and Japan (JP) — together with emerging markets
(EM) equities and bonds. Each currency area is linked to the others directly via an exchange rate equation and
indirectly through correlated innovations (disturbance or error terms). Figure 2 shows the structure of the
canonical model of a major currency area. The home currency for these models is assumed to be the US dollar,
but scenarios can be generated in any of the four major currencies since cross rates are forecast and any other
currency (e.g. the Euro) can be taken as the home currency for the statistical estimation. Detailed specifications
of this model are given in [1] and [7].
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Figure 2. Major currency area detailed model structure

The formulation of the US capital market model with the UK/US exchange rate is given below where S denotes

the equity level, R denotes the short term (money market) interest rate,

L denotes the long term interest rate, X

denotes the exchange rate, C denotes the consumer price index, W denotes the wages level, G denotes GDP and

P denotes public sector borrowing.
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Here and below the a,b,c,d and o terms are parameters of the model and the & terms are correlated standard
normal random variables. All dependent variables in this specification are in terms of returns, while the
explanatory variables are in original level or rate form. Although linear in the parameters, this model is second
order autoregressive and nonlinear in the state variables, making its long run dynamics difficult to analyse and
potentially unstable. Due to its linearity in the parameters this model may be estimated using the seemingly
unrelated regression (SUR) technique, see e.g. [9, Chapter 11], recursively until a parsimonious estimate is
obtained in which all non-zero parameters are statistically significant. Since the work of Theil in the 1970’s, it
has been demonstrated that there is a gain in efficiency in using SUR vs. OLS if the residuals are correlated
across equations and/or the regressors are not the same in each equation.

The formulation of the US economic model is given next.

c.-C g, + a%C +a,, W, + a%G + a%P, C
= +0.¢,
Ct +bcpi2 Ct—l + bcpi3 + I/Vt—l + bcpi4 Gt—l + bcpi5 t-1
W, —W a, +a,C+a, W +a, G +a,F v
1t = +0,&
W, +b, C +b, + W \+b,, G_+b, P, v
Pt+1 _Pt _ apvbl pvb C + apvb W + apvb G + apvbSPt to £P
- Pt
Pz +bpsb C + bpsb; t—l + bpsb4 Gt—l + bpsb5 t-1
G, -G Aogp + gy G+ Ay, W+ a,, G +a,,, F o s
—— = 058, .
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This model captures the interactions of the capital markets with the economy in each major currency area. For
stability the specification is in terms of returns similar to the capital markets. This is again a second order
autoregressive model in the state variables which is /inear in parameters and nonlinear in variables. It may be
estimated using the techniques mentioned above.

The emerging markets equity and bond index returns are modelled with the following AR(1) / GARCH(1,1)
processes in a similar fashion as the original work on generalized autoregressive conditional heteroscedasticity
models done by Bollerslev (1986) as

Vi=a,ta)y, ,—au,  +tu

H =b,+bH,  —bu’,,

where y, denotes the index return. These models are estimated using maximum likelihood and the residuals are
used to estimate the correlations of their innovations with those of the other state variables.

Asset classes are given by data on selected stock indices, government bonds and treasure bills: S&P 500 stock
index, FTSE stock index and MSCI Europe stock index; US 3 month T-bill rate and US 30 year T-bond with
semi-annual compounding; UK 3 month T-bill rate and UK 20 year GILT rate with semi-annual compounding,
and so on. Sources were Data Stream and Bloomberg at monthly frequency from 1977 except for economic
variables available only quarterly. Monthly levels were computed for the latter by taking the cube root of the
actual quarterly return and finding the corresponding monthly levels between announcements. A consistent
database of model data is currently being maintained and updated monthly by the fund manager.



Various subsystems of this model have been estimated using the SURE model maximum likelihood estimation
procedures of RATS 4.0. For each model the full set of model parameters was first estimated and insignificant
(at the 5% level) variables sequentially removed to obtain a parsimonious final model with all statistically
significant coefficients. The seemingly unrelated regression nature of the model is obvious as each currency
area is directly related only through exchange rates and indirectly related through shocks. In light of Meese &
Rogoft’s [16, 17] classical view on the inefficacy of macroeconomic explanations of exchange rates even at
monthly frequency, after considerable single equation and subsystem analysis we have found that interest rate
parity expressed as inter-area short and long rate differences — together with other local capital market variables
— has significant explanatory power, while purchasing power parity expressed various ways has less (cf. [11]).

We found model residuals correlated across equations and a similar level of correlation was also found in actual
returns for the same variables and periods of time. Our main econometric finding is that the world’s equity
markets are linked simultaneously through shocks [1] and [7].

Montel Carlo simulation

Given initial values of its state variables, asset return scenarios may be simulated without stochastic innovations
as a discrete time deterministic dynamical system defining the mean paths of the state variables. The nonlinear
dynamics of this deterministic system may be exceedingly complex and the system may rapidly explode or die
to zero values of some variables for certain configurations of the (significant) estimated parameters. Graphical
emulation of the central tendencies of the historical paths by this deterministic system is a necessary condition
for the generation of realistic scenarios by Monte Carlo simulation of the stochastic dynamical system.
Intuitions can be developed to make the achievement of reasonably accurate calibrations tractable and we have
developed a prototype graphical interface tool stochgen 3.0 [8] to aid the process graphically.

A second asset return model we have used is is a vector autoregressive (VAR) system, VARSIM, which is
stable in the state variable returns, so that the deterministic system converges to steady state returns and shocks
to the corresponding stochastic system are non-persistent. Finally, a third asset return model we have used is a
historical bootstrap model, HSIM. This model treats the process generating the historical data as stationary with
independent increments, and conducts historical simulation by resampling from the empirical distributions of
state variable returns constructed from the historical paths over the in-sample period. All these models have
been evaluated and we report dynamic stochastic optimisation backtest results for all three approaches to
scenario generation for our dynamic ALM problem in our joint project [7] in the next section.

Due to a finite sample of scenarios, there will always be sampling error in the generation of scenario return
distributions relative to the calibrated estimated system model. This can lead to serious errors and spurious
arbitrages in subsequent portfolio optimisation. However these may be suppressed by ensuring that the sample
return distributions corresponding to all generated scenarios at a specific point in time have two moments
matched to those of the statistical model underlying the simulations [12, 13, 21].

In order to mirror reality the alternative unfolding future scenarios in the model must be organized in a tree
form. Each path from the root to a leaf node in the tree represents a scenario and the nodes represent decision
points — forward portfolio rebalances. The root node represents the initial implemented decision that is an initial
portfolio balance. Note that the Monte Carlo simulation of scenarios corresponding to a given scheme is a
nontrivial matter requiring generic software to handle a complex simulator. We have used the generic stochgen
2.3 software of the Stochastics™ toolchain for dynamic stochastic optimisation [8]. The stochgen software must
handle at each node multiple conditional stochastic simulations of versions of the asset return model initialised
by the data at the node and two previous timesteps (months) along the scenario path. Notice that the simulation
time step (a month) is much shorter than the decision point frequency (for forward portfolio rebalancing:
quarterly, semi annually or annually). In the backtests reported below balanced scenario trees with high initial
branching were used.

4 System Historical Backtests

A number of historical backtests have been run on variants of the global model, see [21] for complete details.
The aims of these tests were several. First, we wished to evaluate how well the system would have performed
had it been implemented in practice relative to a benchmark. Since each backtest is performed from the point of
view of a US dollar-based firm, the benchmark used is the S&P 500. Second, we wished to understand the
impact of alternative utility functions on optimal portfolio decisions. Thirdly, we were interested in what effects



imposing the practical diversification and liquidity (turnover) constraints would have on backtest returns. A
comparison of backtests for single and multi period formulations of ALM problems can be found in [21]. All
portfolio rebalances are subject to a 1% value tax on transactions which of course does not apply to the
benchmark index. Monthly data were available from July 1977 to August 2002.

Table 1 shows the results in terms of annualised returns of a typical backtest with a 2 year telescoping horizon
and semi-annual rebalancing from February 1999 to February 2001 using a model with 8192 scenarios, a
128.16.2.2 branching structure and a terminal wealth criterion. During this period the S&P500 returned 0
percent. With no position limits the model tends to pick the best asset(s) and so in this case a high annual
historical return to the chosen low diversification portfolios is an indication of the predictive merits of the tuned
econometric model used to generate the scenarios. When more realistic constraints are imposed in this test
however portfolios become well diversified and there is little to choose from in the results corresponding to the
various attitudes to risk. However, performance is improved by the use of the emerging market asset returns
even though they were actually not used in the optimal portfolios. Corresponding results for the addition of the
US economic model to the system are mixed. When this backtest was extended one period to August 2001 —
when the S&P500 annualised return over the 2.5 year period was —2.3% — similar results were obtained with the
best position limited result being 6.8% per annum for the downside-quadratic utility and target wealth a 61%
increase over the period.

Table 1. Asset allocation backtests: Annualised returns from February 1999 — 2001

Capital Markets + Emerging
Capital Markets + Emerging Markets + US Economic
Capital Markets Markets Model
Utility Function No Limits 20% Limits No Limits 20% Limits No Limits 20% Limits
Linear 91% 9% 92% 10% 31% 11%
Downside-quadratic 54% 9% 70% 11% 29% 9%
Exponential 72% 9% 92% 10% 51% 11%

A summary of backtest results using the downside-quadratic utility function is given in Table 2. Taken
altogether this utility function appears to be most effective and limited tests with other utility functions confirm
the results in Table 2.



Table 2. Summary of historical backtests'

Initial Out-of- Length Asset Return Model Simulator | Number of | Rebalance Risk Horizon Constraint Annualised S&P 500
Estimation sample Scenarios k| Frequency |Management Return % Benchmark

Period Period Criterion (see Section 5.4) Annualised

Return %
T1 T2 T3

1972-1990 | 1990-1995 | 5 years 3 areas (ex Japan) BMSIM 4 annual terminal telescoping | 10.33 | 9.34 - 7.41
1992-1996 | 1996-2001 | 5 years 4 areas BMSIM 4 annual terminal telescoping | 13.36 | 7.13 - 14.12
1992-1996 | 1996-2001 | 5 years 4 areas VARSIM 4 annual terminal telescoping 1.51 | 8.30 - 14.12
1992-1999 | 1999-2001 | 2.5 years 4 areas BMSIM 8.2 semi-annual terminal telescoping | 27.89 | 6.48 | 2.69 -2.30
1992-1999 | 1999-2001 | 2.5 years | above + emerging markets | BMSIM 8.2 semi-annual | terminal telescoping | 16.98 | 5.72 | 3.38 -2.30
1992-1999 | 1999-2001 | 2.5 years above + US economy BMSIM 8.2 semi-annual | terminal telescoping | 19.16 | 4.64 | -0.38 -2.30
1992-1999 | 1999-2001 | 2.5 years 4 areas VARSIM 8.2 semi-annual terminal telescoping | -6.40 - -3.92 -2.30
1990-1996 | 1996-2001 | 5 years 4 areas BMSIM 8.2 annual all periods | telescoping 8.54 - 8.37 14.12
1990-1996 | 1996-2001 | 5 years 4 areas VARSIM 8.2 annual all periods | telescoping 578 19.99 | 9.37 14.12
1990-1996 | 1996-2001 | 5 years 4 areas HSIM 8.2 annual all periods | telescoping 4.95 - 6.04 14.12
1972-1991 | 1991-2001 | 10 years 4 areas VARSIM 8.2 annual all periods | 5-year rolling | 3.56 - 9.98 12.72

1 e e

entries not calculated.

10




Note here that imposing the practical liquidity and turnover (T3) constraints, which could be expected generally
to reduce returns, sometimes led to significantly increased returns. Overall, we found that the imposition of the
T3 constraints in the model forced its decisions to take full advantage of the information in future scenarios and
optimal forward rebalances to result in well diversified portfolios and significant improvement in historical
backtest performance.

5 Conclusions

This paper has described the use of dynamic stochastic optimisation methodology for structured products for
pension fund management. Practical solutions to the design of guaranteed return investment products for
pension funds have been outlined. In nearly all the historical backtests using data over roughly the past decade
the global asset allocation system outperformed the S&P500 when transactions costs are taken into account.
Nearly all system returns for the nonlinear statistical model were positive — even through the recent high tech
crash. Thus the dynamic stochastic optimisation approach to pension fund management is a practical reality
today.
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