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Abstract

We apply a stochastic optimization framework to find the optimal investment pol-
icy for a global fund in a discrete time and space setting. This multiperiod framework
incorporates realistic constraints and market frictions such as portfolio restrictions
and transaction costs and models the preferences of the fund using utility functions
which only penalize downside performance. Two vector autoregressive models of
asset returns, exchange rates and macroeconomic variables are presented for the pur-
pose of generating scenarios for the optimization problem. Scenario tree generation
is discussed and optimization based methods of generating moment matching and
arbitrage free scenario trees are given. Comparisons to alternative methods of port-
folio management are given and a historical backtest is presented to judge how the

methodology would have done in practice.
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1 Introduction

The management of the portfolio of a fund with global investments is a complex problem.
A practical method should have the flexibility to accommodate different attitudes to risk
and different preferences and should take into account multiple periods, market frictions
such as transaction costs and portfolio constraints such as position limits. In addition, it
should be based on a realistic representation of the stochastics of the relevant factors such

as the asset prices and exchange rates.

Many of the existing methods of solving global fund management problems such as mean-
variance analysis have serious short comings in this regard. In particular, these methods
are usually one period (static), have inflexible attitudes to risk and preferences and ignore

market frictions.

In this paper we apply stochastic optimization to solve the global fund management prob-
lem and show that it meets all the requirements of a practical method described above.
Like many numerical methods, this approach has benefited from the advance of computing
technology and the development of effective algorithms (see e.g. Gassmann [10], Dempster
and Thompson [7] and Scott [21]). This is testified to by the growing body of literature
concerning the application of stochastic optimization to fund management problems. This
body includes Consigli and Dempster [4], Geyer et al. [11] and Dempster et al. [6] who
develop models for pension fund, Carino et al. [3] who develop a model for an insurance
company, Zenios [25] who develops a model for fixed income securities, and Berger and
Mulvey [1] who develop a model for individual investors. The present paper complements
this body by focusing on a global fund, emphasizing practical aspects such as scenario tree

generation and making comparisons to alternative methods of portfolio management.



The rest of this paper is organized as follows. In Section 2 we describe the stochastic
optimization framework which includes the problem set up, possible objective functions
and constraints, solution methods and a method of implementing the approach in prac-
tice. Section 3 presents two vector autoregressive models of assets, exchange rates and
macroeconomic variables used to generate scenarios for the fund management problems.
In Section 4 we derive and test methods of scenario tree generation which match moments
of the variables in the sampled scenarios to those of a given distribution and derive a
method for generating arbitrage free scenario trees. In Section 5 we discuss alternative
methods of portfolio management and compare them to the stochastic optimization based
methodology. Section 6 presents a historical backtest to show how the framework would
have done had it been implemented in practice, and Section 7 concludes. Throughout this

paper boldface is used to denote random entities.

2 Stochastic Optimization Framework

In this section we describe the framework for solving global fund management problems
using stochastic optimization. We focus on what is normally called strategic asset allo-
cation, which is concerned with allocation across broad asset classes such as stocks and

bonds of a given country.

2.1 Set Up

We consider a discrete time and space setting. It is assumed that the fund operates
from the view point of one currency which we call the home currency. Unless otherwise
mentioned, all quantities are assumed to be in local currencies. There are T+ 1 times
indexed by t = 1,...,T+1 where T'+1 corresponds to the planning horizon. Uncertainty is
represented by a finite set of states or scenarios of the world denoted by €2. Let pr(w) denote

the probability of state w for w € 2. Let I denote the set of assets which take the form of



stock, bond and cash indices. The fund begins with an initial endowment of assets given
by {z; : i € I}. The fund trades at t = 1,...,T, i.e. at all times except for the planning
horizon. A trading strategy is given by {(zi(w), zj;(w), 25 (w)) ;i€ I,t =1,...,T,w € Q}

where:

e z;;(w) denotes the amount held of asset ¢ between time ¢ and time ¢ 4 1 in state w

o 7} (w)/x;(w) denotes the amount bought/sold of asset i at time ¢ in state w. The
introduction of the buy/sell variables is used to account for proportional transaction
costs. Denote by f and g the proportional transaction cost of buying and selling

assets respectively.
The asset returns are given by {vy(w):i€ I,t =2,...,T 4+ 1,w € Q} where:

e v;;(w) denotes the net return on asset ¢ between time ¢ — 1 and time ¢ in state w.

home currency

The exchange rates expressed as
local currency

are given by {py(w) i€, t=1,...,T+

1,w € Q} where:
e p;(w) denotes the exchange rate of asset i at time ¢ in state w.

A trading strategy results in a wealth before rebalancing of w,(w) for t =2,...,T + 1 and
w € Q, and a wealth after rebalancing of Wy(w) for t =1,...,T and w € 2. The difference

in these two quantities reflects the transaction costs.

2.2 Objective Functions

Subject to the constraints, the fund acts by choosing the trading strategy which maximizes

the expected utility of the wealth process which is assumed to take the form:



BlU(ws, ... wra)] = 3 pr(w) 3 uelun(w)), (1

where u; : R — R is the period utility function. wu,; defines the preferences of the fund
over the wealth at time ¢ and should thus have the standard properties of being strictly
increasing (more wealth is preferred to less) and concave (risk averse). The period utility

functions considered in this paper are:

o downside-quadratic: us(wy) = y1ws — Yor(we — W) 5 V1e, Yor, Wy > 0
e downside-linear: uy(wy) = Yyigwy — Yor(Wg — We) _; Y1e, Yot, Wy > 0,

where (w; — w;)— = max(0,wW; — w;). Note that both downside utility functions reduce to

the linear utility function (u(w;) = wy) for 4 = 1 and 9, = 0.

The w; parameter denotes a target wealth so that both downside utility functions aim to
maximize wealth and at the same time penalize downside deviations of the wealth from

the target.

2.3 Constraints

The constraints in this framework can be classified into two types. The first type of

constraints are called mandatory constraints and appear in every problem. These are:

e Cash balance constraints (financing constraints). These ensure that the net flow of

cash at each time and in each state is zero

Zpit(w)(gx;t(w) — fzi(w)=0;t=1,...,T,we Q. (2)

el



e Inventory balance constraints. These give the position in each asset at each time and

in each state

Tp(w) = zi+xi(w)—z;(w)i€ LweQ (3)

Ti(w) = T (W) (1 +vyw)) +aiw) —zz(w)iel,t=2,....,T,we N (4

e Nonnegativity constraints. These constrain the buy and sell variables to be nonneg-

ative

(W), z;w)>0i€t=1,...,T,w €. (5)

The second type of constraints are called requlatory and performance constraints and are

problem specific. The regulatory and performance constraints considered in this paper are:

e Solvency constraints. These constrain the wealth of the fund generated by the trading

strategy to be nonnegative at each time

wi(w) >0;t=2,..., T+ 1,weN. (6)

e Short sale limits. These limit the amount the trading strategy can short assets

o Position limits. These limit the amount invested in assets to be less than some

proportion of the fund wealth

pit(w)zu(w) < BWi(w)ie Iit=1,...,T,w € Q. (8)



o Turnover constraints. These limit the change in the amount invested in assets from

one time to the next to be less than some proportion of the fund wealth

Ipit(W)xi(w) — pir—1(W)Ti—1 (W)| < aWi(w);ie I t=1,...,T,w € Q. 9)

All the above constraints are piecewise linear.

2.4 Mathematical Formulation

The objective (1) with one of the period utility functions given in Section 2.2 along with the
mandatory constraints (2) - (5) and some subset of the regulatory and performance con-
straints (6) - (9) constitute the mathematical formulation of the global fund management
problem in deterministic equivalent form. It is a convex but possibly nonlinear dynamic

stochastic program (DSP) and is closely related to the CALM model of Dempster [5].

2.5 Scenario Tree Representation of ()

The uncertainty (£2) can be represented in the form of a scenario tree in which each path
through the tree corresponds to a scenario w € €2 and each node in the tree corresponds
to a time along one or more scenarios. An example scenario tree is given in Figure 1 for
T+1=3and |Q =4.

We call the number of branches emanating from each node in the scenario tree the branch-

ing factor of the tree. Thus the branching factor of the scenario tree in Figure 1 is 2.

The stochastic optimization approach has the advantage of being able to accommodate a
wide range of stochastic models of the underlying factors. This is because the scenario

tree is usually generated using Monte Carlo methods so all that is requried for a stochastic



scenario 1

scenario 2

scenario 3

scenario 4

t=1 t=2 t=3

Figure 1: Example scenario tree

model to be used in this framework is that it can be simulated. In this paper we consider

vector autoregressive models of the underlying factors.

2.6 Problem Generation and Solution Methods

The fund management DSP is formulated in the deterministic equivalent form of Section
2.4 using a modeling language and generated in a standard mathematical programming
format. The method employed in solving the generated DSP will depend on the choice
of period utility function. The downside-quadratic period utility problems can be solved
with interior point methods (see e.g. Wright [24]), and the downside-linear period utility

problems can be solved with either interior point or the simplex method (see e.g. Luenberger

[17]).

2.7 Implementation

In practice a separate DSP is solved at each trading time and only the first stage solution
is implemented. This approach is depicted in Figure 2 for a problem with two trading

times.
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t=1 t=2 t=3

Figure 2: Implementation of framework

Here the dotted red line corresponds to the realized path of the variables and the green and
blue scenario trees correspond to the ¢ = 1 and ¢ = 2 scenario trees respectively. There
are several reasons for implementing the approach in this manner. The first is that, as
depicted schematically in Figure 2, the actual values of the variables at t = 2 are unlikely
to coincide with the values of the variables in any of the simulated scenarios of the ¢t =1
scenario tree. If this were to be the case then the optimal investment policy would be
undefined. A second reason is that the asset return and exchange rate model’s parameters
can be updated at each trading time. Since this model is only an approximation to the
real stochastics, using the information contained in the most recent history can improve

the scenario simulation.
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3 Vector Autoregressive Models of Assets and Ex-
change Rates

In this section we present two vector autoregressive (VAR) models of assets and exchange
rates which we use to generate scenario trees for the global fund management problem. The
first, VARSIM 2.1, is a model of global assets and exchange rates. The second, USMACRO,
is a model of the US macroeconomy. In developing the models emphasis was placed on
(covariance or weak) stationarity and reasonable first and second moments. Conditions for
stationarity and formulas for the unconditional mean and conditional variance of a VAR
are given in Appendix A. A more detailed description of the development of these mod-
els can be found in Villaverde [22]. Other models of asset returns and exchange rates can

be found in Wilkie [23], Mulvey and Thorlacius [19], Duval et al. [9] and Dempster et al. [6].

Both VARSIM 2.1 and USMACRO are VAR(3)s and can be expressed as:

3
Yi=p+ Z DilYi—i + M, (10)

i=1
where y; are the variable net returns at time ¢, p is a vector of constants, ¢; is the lag ¢

coefficient matrix and the n; are distributed N(0,X) and are uncorrelated across time.

The models are estimated using monthly data, and each variable in the VAR is estimated
separately using ordinary least squares with backwards variable selection and a 95% con-
fidence level. The €; terms below refer to standard normal random variables that are

correlated across variables but uncorrelated across time.
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3.1 VARSIM 2.1

VARSIM 2.1 is a monthly model of EU stock, EU cash, EU bond, US stock, US/EU foreign
exchange (fx), JP stock and JP/EU fx. Variables in this model are only allowed to depend
on other variables in its country (for EU variables this includes the US/EU exchange rate).

Let:
e rseu - return on EU stock
e rceu - return on EU cash
e rbeu - return on EU bond
e rsus - return on US stock
e rxus - return on US fx
e rsjp - return on JP stock

e rzjp - return on JP fx.

The model estimated from February 1988 to February 2001 is given by:

rseu; = .0130+ .0461€;°" (11)
rceuy = .0003+ .2190rceu; | + .3741rceu; o + .3749rceu; 3 (12)

—.0243rbeu;_o 4 .0045rzus,—; + .0007€} (13)
rbeu; = .9413rceus_1 + .1607rbeu;_1 + .01006:1’6“ (14)
rsus; = .0106 + .0397€;%“* (15)
reus; = .0310€]°°" (16)
rsjps = .0596€;%P (17)
rejpy = .0348€;"P. (18)



13

This model is stationary with unconditional means and conditional standard deviations

and correlations given in Tables 1 and 2.

Variable | Mean | St. Dev.
rseu 0.0130 | 0.0461
rceu 0.0051 | 0.0007
rbeu 0.0057 | 0.0100
rsus 0.0106 | 0.0397
rXus 0.0000 0.0310
TSjp 0.0000 | 0.0596
rXjp 0.0000 | 0.0348

Table 1: VARSIM 2.1 means and standard deviations

3.2 USMACRO

USMACRO is a monthly model for US stock, US cash, US bond, US/EU exchange rate,

US short term interest rate, US money supply, US CPI and US GDP. Let:

e rcus - return on US cash

e rbus - return on US bond

e rrus - return on US interest rate

e rmus - return on US money supply

e rpus - return on US CPI

e ryus - return on US GDP.
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Correlations

rseu | rceu | rbeu | rsus | rxus | rsjp | rxjp
rseu | 1.00 | 0.08 | 0.30 | 0.68 | -0.43 | 0.47 | -0.29
rceu 1.00 | 0.26 | 0.04 | -0.01 | -0.07 | -0.05
rbeu 1.00 | 0.23 | -0.08 | 0.05 | -0.11
rsus 1.00 | -0.11 | 0.36 | -0.15
rXus 1.00 | -0.06 | 0.45
rSjp 1.00 | -0.14
IXjp 1.00

The model estimated from February 1988 to February 2001 is given by:

Table 2: VARSIM 2.1 correlations
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rsus; = 2.3484ryus;_o + .0398¢; %" (19)
rcus; = .00067rsus;_3+ .9841rcus;—; — .0017rbus;_; — .0021rbus;_o (20)
+.0021rrus;_1 + .0014rrus;_o + .0138rpus;_3 + .0108ryus;_o (21)
+.00009€re"* (22)

rbus; = —.1130rsus;_1 + 1.8775rcus;_1 + .2844rbus; 1 — .9658rpus;_1  (23)
+.0106€70us (24)

reus; = —.2487Trsus;_q + .8102rbus,—1 — .5631rmus,_z + .0290€;*** (25)
rrus; = .2522rsus;_; — 1.2235rbus;_; + .0816r1rus;—1 + .2392rrus;_3 (26)
+.846Trmus,_3 + .0407€;™"* (27)

rmusg = .0089 — 1.1602rcus; 1 + 1.0926rpus; o + .0059€;™** (28)
rpus; = .4629rcus;_; — .0301rbus;_; — .0373rbus;_o — .0126rrus;_; (29)
+.0836rmus;_3 + .1517rpus;_1 + .0017€, 7" (30)

ryus; = .0016 + .8140ryus;_; — .1859ryus;_3 + .0011€; Y™, (31)

This model is stationary with unconditional means and conditional standard deviations

and correlations given in the Tables 3 and 4.

4 Scenario Tree Generation

The generation of the scenario tree for the fund management problem is a crucial step in
the stochastic optimization approach. Since the resulting solution is based on the represen-
tation of uncertainty as given by the scenario tree, the usefulness of the entire framework
critically depends on how well the scenario tree is able to approximate reality. While

there seems to be no optimal method of scenario tree generation, the goal of any proce-
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Variable | Mean | St. Dev.
rsus 0.0105 0.0398
rcus 0.0043 0.0009
rbus 0.0062 0.0106
rXus -0.0012 0.0290
rTus 0.0008 0.0407
rmus 0.0066 0.0059
rpus 0.0025 0.0017
ryus 0.0044 0.0011

Table 3: USMACRO means and standard deviations

Correlations

rsus | rcus | rbus | rxus | rrus | rmus | rpus | ryus
rsus | 1.00 | -0.01 | 0.25 | -0.17 | -0.08 | 0.07 | -0.21 | 0.03
rcus 1.00 | -0.09 | 0.08 | 0.06 | -0.08 | 0.11 | 0.16
rbus 1.00 | 0.00 | -0.39 | 0.00 | -0.06 | -0.24
rxus 1.00 | -0.15| 0.14 | 0.00 | -0.10
TTUS 1.00 | 0.04 | -0.05 | 0.19
rmus 1.00 | -0.40 | -0.13
rpus 1.00 | 0.08
ryus 1.00

Table 4: USMACRO correlations



17

dure should be the best representation of the underlying uncertainty. Methods of scenario
tree generation existing in the literature include random sampling (Bradley and Crane
[2]), binary lattices (Zenios [25]), adjusted random sampling that matches the means and
variances of the underlying processes (Carino et al. [3]) and a general method for satis-

fying specified statistical properties of the underlying processes (Hoyland and Wallace [15]).

In this section we first address the problem of suppressing sampling error in scenario trees
using moment matching algorithms. We then present experiments which show that as
compared to the benchmark method of random sampling, these methods lead to greater
stability and accuracy. Here the stability of a problem refers to how the expected utility
and first stage solution change with respect to the seed used to generate the scenario tree.
The accuracy of a problem refers to how well the optimal expected utility and first stage
solution approximate the solution obtained by solving the same model with a very large
scenario tree. We then derive a general method for generating arbitrage free scenario trees
and explain how it can be combined with the moment matching algorithms to generate

arbitrage free moment matching scenario trees.

4.1 Moment Matching and Sampling Error

If the scenarios in the scenario tree are generated by randomly sampling from a given dis-
tribution using Monte Carlo methods there will always be sampling error, i.e. differences
in the given distribution and the distribution of the sampled scenarios. These errors can
lead to a representation of the uncertainty in the scenario tree that is very different than
that implied by the given distribution, which in turn can result in errors in the solution of

the resulting stochastic program.

Clearly the larger the branching factor the smaller the sampling error. However, as the
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computational burden grows with the branching factor, the problem becomes how to gen-

erate the smallest sampling error for a given branching factor.

The sampling error can be reduced by generating the scenario tree such that the moments
of the variables in the sampled scenarios are matched to those of the given distribution. We
refer to this process as moment matching and derive a general optimization based method

of achieving this below.

Suppose under the given distribution a random vector x has a k" marginal moment of
u* and a covariance matrix of 0. Suppose the random vector y is generated by randomly
sampling from this given distribution and is thus defined on the scenario tree. Let E[y*]
and Covy| denote the k™ marignal sample moment and sample covariance of y or the
k' marignal moment and covariance of y on the scenario tree. Because of sampling error,
it will usually be the case that o # Cov[y] and p* # E]y*] for any k. The idea of the
proposed moment matching method is to find a new random vector on the scenario tree
z that is close to y subject to moment matching conditions on z. To match the first n

marginal moments and the covariance we solve the following optimization problem:

min, Ell|z — ] (32)

st. BE[zFl=pf:k=1,...,n (33)

Covlz] = o, (34)

where || - ||, denotes the I, norm. This problem finds a random vector z that is close to

the original randomly sampled vector y with the first n marginal moments and covariance
matched to the given distribution. It has nonlinear constraints but can be solved with

sequential quadratic programming (see e.g. Gill [12]).
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4.2 Stability

This section presents an experiment which compares the stability of problems using ran-
dom sampling, mean matching and mean-covariance matching methods of scenario tree
generation with VARSIM 2.1 . For simplicity we consider a one stage problem with a
planning horizon of one month. For each tree generation method and for branching factors
ranging from 10 to 100 we generate 100 one stage scenario trees using different seeds. For
each scenario tree we then solve a problem with an initial portfolio of 1 in cash in the home
currency and a downside-linear (y; = 5,7, = 1000, = 1.01) period utility function. We

use .5% transaction costs and the realistic T'3 constraint structure defined in Appendix B 2.

For each method and each branching factor the mean and standard deviation (with re-
spect to seed) of the portfolio weights and expected utility are recorded. This allows us
to determine the minimum branching factor needed for the problem to be stable where we
consider a problem to be stable if the standard deviation of each asset weight is less than

0.10 and the standard deviation of the expected utility is less than 10% of its mean.

Table 5 gives that the minimum branching factors needed for stability for each scenario
tree generation method. The smaller minimum branching factors for the moment matching

methods given evidence that they lead to more stable problems.

4.3 Accuracy

This section addresses the accuracy of the problem of the previous section using the same

three scenario tree generation methods. To address this issue we repeated the stability

! This instance of VARSIM 2.1 was estimated from February 1988 to February 2001. The initial condi-

tions of the problem are those in February 2001.
2This constraint structure was suggested by Pioneer Investments.
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Method Minimum Branching Factor
Random Sampling >100
Mean Matching 30
Mean-Covariance Matching 10

Table 5: Minimum branching factor needed for stability

experiment of the previous section with scenario trees generated using random sampling
with larger and larger branching factors until the problem appeared to converge. We took

convergence to occur at a branching factor of 10000 3.

Table 6 gives the mean allocation for each of the three methods from the stability experi-
ment of the previous section with a branching factor of 100 and the mean allocation using
random sampling from a stability experiment with a branching factor of 10000. The fact
that the moment matching allocations are closer to the allocation produced with 10000

branches gives evidence that they lead to more accurate problems.

EUstock | EUcash | EUbond | USstock | JPstock
Random Sampling 1124 .2500 .5866 .0471 .0039
Mean Matching .1446 .2500 5766 .0288 .0000
Mean-Covariance Matching 1427 .2500 5832 .0242 .0000
10000 Branch Problem 1526 .2500 .5825 .0149 .0000
Table 6:

3 At this branching factor all standard deviations were less than 0.10.
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4.4 Arbitrage

An arbitrage is a trading strategy which is guaranteed not to lose money and is expected to
make money. As such it is generally assumed that arbitrage opportunities do not exist. In
this section we derive a method for generating one stage scenario trees which are arbitrage
free. Multistage arbitrage free trees can then be generated by applying this algorithm at

each node.

Consider a one stage problem with I assets and J possible states. Let S denote the vector
of initial asset prices (in the home currency) and let D denote the matrix of terminal
payoffs (in the home currency) where D;; denotes the payoff of asset ¢ in state j. A state

price vector is a vector m € R’ such that:

S =Dr (35)

>0 (36)

where 7 > 0 denotes that each element of the vector 7 is strictly greater than 0. It is well
known (see e.g. Duffie [8], Section 1A) that there is no arbitrage if and only if there is a
state price vector. This suggests the following algorithm for generating an arbitrage free
scenario tree. First generate an initial value of D, denoted by D, using random sampling.
Then obtain a new value of D, denoted by D/, by solving the following optimization

problem:

min Y Y (DE - Df)? (37)

f . ;
W,Dij.'LEI,]EJ iel jeJ

st. S=D'r (38)

T >0, (39)
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where ¢ is chosen to be a small strictly positive vector. This problem determines new
terminal payoffs which are close to the original randomly generated payoffs (in the least
squares sense) for which there is a state price vector. This problem has nonconvex con-
straints but can be solved to at least a local constrained optimum with sequential quadratic

programming.

5 Comparison to Alternative Methods of Portfolio
Management

In this section we first discuss the solution of one stage portfolio management problems us-
ing mean-variance analysis and compare this method to a one stage stochastic optimization
approach. We then discuss the solution of multistage portfolio management problems us-
ing a sequence of one stage problems and empirically compare this method to a multistage

stochastic optimization approach.

5.1 Comparison of One Stage Methods

The most common method used to solve one stage portfolio management problems is the
mean-variance analysis pioneered by Markowitz [18]. The approach is characterized by
maximizing a weighted combination of the two goals of having a high expected portfolio
return and a low portfolio return variance, or equivalently by maximizing a utility func-
tion which is quadratic in the portfolio return. While mean-variance analysis is easy to

implement, it has serious drawbacks.

A major deficiency of this approach is that it assumes that only the mean and variance

of the portfolio return are important in determining optimality. If the portfolio return
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is normally distributed then it is completely characterized by its first two moments and
the mean-variance analysis is sensible. However, if the portfolio return is not normal then
other aspects of the return distribution such as the skewness and kurtosis may need to
be considered to determine optimality. There is a large body of evidence which points to
the fact that stock and bond returns are not normally distributed. This is particularly
true for daily and high frequency data (see e.g. Kon [16]), but may also be true data at a
monthly frequency (see e.g. Villaverde [22]). In addition, the inclusion of derivatives such

as options would also tend to make the portfolio return nonnormal.

A second serious short coming of mean-variance analysis is that the canonical implemen-
tation ignores market frictions such as transaction costs and portfolio restrictions such as
position limits. It has recently been extended to incorporate these frictions (see e.g. Horn-

iman et al. [14]), but at the cost of increased complexity.

Lastly we note that mean-variance analysis is subsumed by a one stage stochastic opti-

mization approach. Setting the period utility function equal to:

up(Wy) = V14w — Yorwy; Yie, Yor > 0 (40)

and ignoring the constraints in Section 2.3 results in the mean-variance analysis.

5.2 Comparison of Multistage Methods

The most common method used to solve multistage portfolio management problems is to
solve a sequence of one stage problems. This approach is depicted in Figure 3 for a problem
with five rebalancing times.

Regardless of how each single stage problem is formulated there can be serious drawbacks

to solving a multistage problem with a sequence of one stage problems. In general a series
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1 stage problem
1 stage problem
1 stage problem
1 stage problem
1 stage problem

=1 =2 t=3 t=5 J=4 =6

Figure 3: One stage formulation

of one stage problems may not be multistage optimal if there are aspects of the problem

that link two or more stages together. Scherer [20] notes the following three conditions:

e (1 - there are transaction costs
e (2 - the utility function does not have constant relative risk aversion

e ('3 - asset returns are time dependent or serially correlated.

Below we make two comparisons of the series of one stage formulation (or rolloing one
stage formulation) and a multistage formulation. In both cases a stochastic optimization
approach is used. In the first comparison the two formulations are assessed based on the
expected utility over the same scenarios used to generate the trading strategies. In other
words, the scenario tree used to construct the problems is then used as a set of test sce-
narios. This test is meant to compare the two strategies for a given representation of
uncertainty and implicitly assumes that the scenario tree sufficiently reflects the under-
lying uncertainty. In this comparison we first consider violations of conditions C1 - C3

individually and then a realistic case where all three conditions are violated at once.
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In the second comparison the two formulations are assessed based on the expected utility
over a set of historically bootstrapped test scenarios. In this case an underlying stochastic
model is used to generate the scenario trees for the optimization problems, and a differ-
ent historical bootstrap simulator is used to generate the test scenarios. In an ideal test
the historically bootstrapped scenarios would be replaced by actual historical scenarios.
Unfortunately, we do not have sufficient data to carry out the latter, but the comparison
made here should give an indication of the sensitivity of the formulations with respect to
differences in the true stochastics and those implied by the underlying stochastic model.

In this comparison we consider the case where conditions C1 - C3 are violated all at once.

For simplicity we consider a two stage problem with monthly rebalancing. The only assets
are US stock, US cash and US bond, and the initial portfolio is 1 in cash. All scenario
trees are generated using a mean-covariance matching algorithm and a branching factor of

20 4.

5.2.1 First Comparison

In this comparison we first generate a two stage scenario tree as in Figure 1. For the
multistage formulation we solve the multistage problem and record the first stage portfolio
and expected utility. For the rolling one stage formulation we first solve the t=1 one stage
problem as depicted in Figure 4 and record the portfolio and expected utility. We then
solve the one stage problems for the nodes at t=2 given the initial conditions implied by
the t=1 portfolio and the asset returns in the appropriate state as depicted in Figure 5.
The expected utilities of these problems are also recorded and the expected utility for
the rolling one stage formulation can then be obtained from the expected utility of the
individual one stage problems.

Tables 7, 8, 9, 10 and 11 give the t=1 portfolio weights and expected utilities of the

4The initial conditions of the problems are those in February 2001.
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t=1 t=2 t=3

Figure 4: t=1 rolling one stage problem

two formulations for a number of experiments. In the first experiment (Table 7) none
of the conditions (C1 - C3) that may make the rolling one stage formulation multistage
suboptimal are violated. A linear period utility function is used, there are no transaction
costs and the asset returns are assumed to be given by the following system of independent

discretized geometric Brownian motions:

rsusy = .0123 + .0374€;°%* (41)
rcus; = .0042 + .00009€7°*# (42)
rbus, = .0067 + .0100€;%2, (43)

where the € terms are uncorrelated. In this case the rolling one period formulation is mul-

tistage optimal.

In the second experiment (Table 8) condition C1 is violated by incorporating .05% propor-
tional transaction costs on buying and selling all assets. In this case the rolling one period

formulation does not see that the loss due to transaction costs is offset by the return on
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t=1 t=2 t=3

Figure 5: t=2 rolling one stage problems

stock if it is held for two stages and is therefore not multistage optimal.

In the third experiment (Table 9) condition C2 is violated by using a downside-linear
(71t = 1,72: = 1000, % = 1.0016") period utility function. In this case the rolling one stage

formulation invests too much in cash and is not multistage optimal.

In the fourth experiment (Table 10) condition C3 is violated by incorporating autocorre-
lated returns by setting the mean return on stock in the second stage to be the negative of
the mean return on stock in the first stage. It also incorporates a 15% turnover constraints
on all assets. In this case the rolling one stage formulation does not hedge against the
negative return in stock in the second stage and its inability to rebalance significantly due

to the turnover constraints and is not multistage optimal.

In the last experiment (Table 11) all three conditions (C1 - C3) are violated. This problem

incorporates .05% transaction costs on all assets, 15% turnover constraints on all assets,
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50% position limits on all assets, a downside-linear (y;; = 1,79 = 1000,% = 1.0016")
period utility function and asset returns generated by USMACRO °. Here the rolling one
stage formulation invests too little in stock and is not multistage optimal. Compared to
the previous experiments, the difference in expected utility between the two formulations

is now more pronounced.

stock | cash | bond | utility

multistage 1 0 0 2.0371

rolling one stage 1 0 0 2.0371

Table 7: No violations of conditions C1 - C3

stock | cash | bond | utility

multistage 1 0 0 2.0168

rolling one stage 0 1 0 2.0126

Table 8: Condition C1 violated - transaction costs

stock | cash | bond | utility

multistage .03 771 .20 | 2.0156

rolling one stage | .01 91 .08 | 2.0145

Table 9: Condition C2 violated - downside utility function

5This instance of USMACRO was estimated from February 1988 to February 1999.
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stock | cash | bond | utility

multistage .15 0 .85 | 2.0218

rolling one stage 1 0 0 2.0150

Table 10: Condition C3 violated - time dependent returns and turnover constraints

stock | cash | bond | utility

multistage 1 5 4 ]-6.2324

rolling one stage | .05 D 45 | -7.4160

Table 11: All three conditions (C1 - C3) violated

5.2.2 Second Comparison

In this comparison we first generate 1000 two month historically bootstrapped test scenar-
ios . We then implement both formulations on each of the bootstrapped scenarios and
record the realized utilities. Both formulations use USMACRO 7 as the underlying dy-
namic model, a downside-linear (y;; = 1,72 = 1000, % = 1.0016") period utility function,
.05% transaction costs on all assets, 50% position limits on all assets and 15% turnover con-

straints on all assets. Statistics of the utility distribution over the bootstrapped scenarios

for the two formulations are given in Table 12.

Mean | St. Dev. Min Max

multistage -.1139 | 4.8128 | -45.4002 | 2.0868

rolling one stage | -.4013 | 5.0111 | -43.1712 | 2.0816

Table 12: Second comparison summary statistics

6These scenarios were generated by randomly drawing monthly returns from the time period February

1988 - February 1999.
"This instance of USMACRO was estimated from February 1988 to February 1999.
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With the exception of the minimum utility, the multistage formulation produces better
statistics than the rolling one stage formulation. To test whether or not the mean utility
for the multistage formulation is statistically significantly higher than the mean utility for
the rolling one stage formulation we use a t test. Specifically we use a paired (by scenario),
two sample, one tailed (multistage > rolling one stage) test where the null hypothesis is
that the means of the two formulations are equal. The p value for the resulting test is
4.4592e-33 suggesting definitive rejection of the null and a statistically significantly higher

mean for the multistage formulation as compared to the rolling one stage formulation.

6 Historical Backtest

In this section we implement the stochastic optimization framework on historical data
to judge how it would have done in practice. The backtest was carried out using a
mean-covariance matching version of VARSIM 2.1 implemented on historical data be-
tween November 2000 and February 2001 with monthly rebalancing. The planning horizon
was fixed at February 2001 and at each trading time, ¢, VARSIM 2.1 was estimated from
February 1988 up to ¢. The proportional transaction cost was .5%, and the initial portfolio
was 1 in cash in the home currency. A branching factor of 20 was used for each problem
along with a downside-quadratic (yi; = 1,7, = 10000, @, = 1.01") period utility function

and T3 constraint structure (see Appendix B).

Table 13 gives the portfolio, expected first stage scenario tree asset returns, first stage
scenario tree standard deviations of asset returns, realized asset returns, realized portfolio
return and period utility for each month in the backtest as well as the total return and

utility over the backtest period 2.

valuey
values_1°

8Returns are in the form of gross returns, i.e.
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Nov-00 EUstock | EUcash | EUbond | USstock | JPstock
Weight 0.06 0.25 0.67 0.02 0.00
Expected Return 1.01 1.00 1.00 1.01 1.01
St. Dev. Return 0.05 0.00 0.01 0.05 0.07
Historical Return 0.99 1.00 1.01 0.93 0.84
Portfolio Return 1.00
Period Utility 0.13
Dec-00
Weight 0.05 0.25 0.68 0.02 0.00
Expected Return 1.01 1.00 1.01 1.01 1.00
St. Dev. Return 0.05 0.00 0.01 0.05 0.07
Historical Return 1.01 1.00 1.01 1.04 1.00
Portfolio Return 1.01
Period Utility -0.52
Jan-01
Weight 0.05 0.25 0.68 0.02 0.00
Expected Return 1.01 1.00 1.01 1.01 1.00
St. Dev. Return 0.05 0.00 0.01 0.05 0.07
Historical Return 0.93 1.00 1.01 0.92 0.96
Portfolio Return 1.00
Period Utility -4.62
Total Return 1.01
Total Utility -5.01

Table 13: Backtest results
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As a benchmark, the total utility and return of the MSCI Europe stock index over this
time period were -121.36 and 0.92 respectively. The table shows the stochastic optimization
framework produces well diversified portfolios that do not change drastically from one time

to the next and results in a better total utility and return than the benchmark.

7 Conclusions

This paper has described a method of managing the portfolio of a global fund using a
stochastic optimization framework. Downside-quadratic and downside-linear period utility
functions were used to represent the preferences of the fund while short sale constraints,
position limits and turnover constraints were used to represent the fund’s regulatory and
performance constraint structure. Two VAR models of assets, exchange rates and macroe-
conomic variables were presented to describe the underlying dynamics of the problem.
Optimization based methods of generating moment matching scenario trees were shown to
drastically improve both stability and accuracy and a method for generating arbitrage free
scenario trees was given. The one stage stochastic optimization approach was shown to
be more appropriate to and to subsume mean-variance analysis, and it was shown that a
multistage formulation was able to outperform a rolling one stage formulation with respect
to two separate comparisons. Lastly, a historical backtest was carried out which showed
that the framework would have produced well diversified portfolios and a relatively good

return and utility had it been implemented in practice.

Appendix A

Let:

3
Ye=p+ > by i+ (44)
i=1
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be a d dimensional VAR(3) and let I; denote the d x d identity matrix, 0; denote the
d dimensional vector of 0s and 0, denote the d x d matrix of 0s. Then a d dimensional

VAR(3) can be written as the VAR(1):

Y, =M + ®Y;_; + Ny, (45)
where:
Yi % T
Yi=1 y M:=1 0, Ny:=| 0, (46)
Yi—2 6d ()d
b1 P2 O3
(I) = Id ﬁd ﬁd . (47)
ﬁd Id 6(1

The process is stationary if all the eigenvalues of ® lie within the unit circle (see e.g.

Hamilton [13], Chapter 11). Assuming stationarity (44) implies:

Bly] = p+ 3 6:Elwl; (48)

where E[y,] is the unconditional mean of the process. Thus:

3

Ely] = (I - Z¢i)_lﬂ- (49)

=1

The conditional covariance of the process is given by:

COU[yt|yt71ayt72; yt73] = COU[ﬂt] = . (50)
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Appendix B

The T3 constraint stucture is defined by the short sale limits, position limits and annual

turnover constraints given in in Table 14.

Asset | Short | Position | Turnover
USstock 0 0.40 0.15
EUstock 0 0.80 0.15
EUbond 0 0.80 0.15
JPstock 0 0.15 0.15
EUcash 0 0.25 -

Table 14: T3 constraint structure

Assuming that the returns in € are > 1 (prices are non-negative), the solvency constraints

are automatically enforced in this constraint structure.
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