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VOLATILITY-INDUCED FINANCIAL
GROWTH *

Michael A.H. Dempster ?, Igor V. Evstigneev?® and
Klaus R. Schenk—Hoppé ¢

Abstract

We show that the volatility of the price process, which is usually
regarded as an impediment for financial growth, can serve as an en-
dogenous factor of its acceleration.

JEL classification: G11

1. Can price volatility, which is present in virtually every financial market
and usually thought of as a risky investment’s downside, serve as an “engine”
of financial growth? Paradoxically, the answer to this question turns out to
be positive.

To demonstrate this paradox, we examine the long-run performance of
constant proportions investment strategies in a securities market. Such
strategies prescribe to rebalance the investor’s portfolio, depending on price
fluctuations, so as to keep fixed proportions of wealth in all the portfolio
positions. In the basic model we deal with, it is assumed that asset re-
turns form stationary ergodic processes and asset prices grow (or decrease)
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at a common asymptotic rate p. It is shown that if an investor employs a
constant proportions strategy, then the value of his or her portfolio grows
almost surely at a rate strictly greater than p, provided the investment pro-
portions are strictly positive and the stochastic price process is in a sense
non-degenerate. The very mild assumption of non-degeneracy we impose re-
quires some randomness, or volatility, of the price process. If this assumption
is violated, then the market is essentially deterministic, and the result ceases
to hold. Thus, in the present context, the price volatility may be viewed as
an endogenous source of acceleration of financial growth. This phenomenon
might seem counterintuitive, especially in stationary markets [3], [4], where
the asset prices themselves, and not only their returns, are stationary. In
this case, p = 0, i.e. each asset grows at zero rate, while any constant pro-
portions strategy exhibits growth at a strictly positive exponential rate with
probability one.

In this introductory discussion, we focus primarily on the case where all
the assets have the same growth rate p. The results, however, are extended
to a model with different growth rates p!, ..., pX. In this setting, a constant
proportions strategy with proportions A! > 0, ..., A > 0 grows almost surely
at a rate strictly greater than >, A*pF.

The effect highlighted in this article is demonstrated in the framework of
a conventional, well-studied model of a financial market. Constant propor-
tions strategies are involved in many practical financial computations, cf. [9].
However, to our knowledge, the phenomenon examined here has not been
clearly described and systematically investigated in the literature. The only
reference we can indicate in this connection is [§], Section 15.2, where some
examples related to the topic under consideration are discussed. No general
results showing that the effect of volatility-induced growth can be estab-
lished in any securities market with stationary non-degenerate asset returns
are available in the literature. The aim of this note is to fill this gap.

It should be noted that our approach is a partial equilibrium one: the
stochastic process of asset prices is given, and investors’ decisions do not
influence it. It is certainly of interest, but outside the scope of this paper, to
build a general equilibrium model to explore the impact of volatility on asset
prices in the presence of self-financing constant proportions strategies. At
the same time, we note that the approach used in this work is standard and
commonly accepted in finance. In particular, by passing to the limit from
discrete to continuous time in the model at hand (see e.g. [5]), one can derive
the Black-Scholes formula. As is well-known, the Black-Scholes methodology



is not only widely used for practical computations but determined in many
respects the structure of existing derivative securities markets. This excep-
tional role of the model under consideration in financial theory and practice
enhances the significance of conclusions inferred from it.

We first present the results outlined above in the context of an ideal
(frictionless) market where there are no transaction costs. Then we show
that the main conclusions remain valid if transaction costs are present but
are small enough. The case of an ideal market is considered in Sections 2, 3
and 4, in which we describe the model, formulate the assumptions and state
the main results, respectively. Section 5 contains proofs of the assertions
formulated in Section 4. In the remainder of the paper, we show how the
main results can be extended to the case of small transaction costs.

2. Consider a financial market with K > 2 securities (assets). Let S; =

(S}, ..., SF) be the vector of security prices at time ¢ = 0,1,2,.... Assume
that SF > 0 for each ¢ and k, and denote by
Sk
Rf=_L (k=1,2,.,K, t=1,2,..) (1)
Si-1
the (gross) return on asset k over the time period (¢t — 1,t|. Define R, =
(R}, ..., RK).
At each time period ¢, an investor chooses a portfolio hy = (h}, ..., hX),

where h¥ is the number of units of asset k in the portfolio h;. Generally,
h; might depend on the observed values of the price vectors Sy, Si, ..., St-
A sequence H = {hy, hq, ...} specifying a portfolio hy = h(So, ..., St) at each
time t as a measurable function of Sy, 51, ..., S; is called a trading strategy. We
will deal only with those trading strategies for which h¥ > 0, thus excluding
short sales of assets.

Let A = (AL, ..., \X) be a vector such that

K
N>0(k=1,2..,K)and Y M =1 (2)
k=1

A trading strategy H is called a constant proportions strategy with vector of
proportions A = (A}, ..., \K) if
SEhE = NeSihy 1 (k=1,2,.., K, t=1,2,..). (3)

If \* > 0 for each k, then H is said to be completely mized. The scalar product
Sthi_1 = Zszl Skhk | expresses the value of the portfolio h;_; in terms of
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the prices S¥ at time ¢t. An investor following the strategy (3) rebalances
(without transaction costs) the portfolio h;_; at time ¢ so that the available
wealth S;h;_; is distributed across the assets k = 1,2, ..., K according to the
proportions !, ..., \K. Tt is immediate from (2) and (3) that

Stht = Stht—la t - 1, 2, aeey (4)

and, consequently, the strategy H is self-financing. To specify a constant
proportions strategy it is sufficient to specify the vector A and an initial
portfolio hg = ho(Sp); then h; for each t is recursively determined by formula
(3).

We fix A and H satisfying (2) and (3) and denote by V;, = S;h; the value of
the portfolio h; at time ¢t = 0, 1,2, ... expressed in terms of the current prices
Sk. We will suppose that the price vectors S;, and hence the return vectors
R;, are random, i.e., they evolve in time as stochastic processes. Then the
trading strategy hy, t = 0,1,2, ..., generated by the investment rule (3) and
the value V, = S;h;, t =0,1,2, ..., of the portfolio h; are stochastic processes
as well. We are interested in the asymptotic behavior of V; as t — oo.

3. We will assume:

(R) The vector stochastic process Ry is stationary and ergodic. The ex-
pected values E|In RE| are finite.

Recall that a stochastic process R, Ry, ... is called stationary if, for any
m =0,1,2,... and any measurable function ¢(xg, z1, ..., Zp,), the distribution
of the random variable ¢, = ¢(Ry, Ryt1, ..., Reym) (t = 0,1,...) does not
depend on t. According to this definition, all probabilistic characteristics of
the process R; are time invariant. If R; is stationary, then for any measurable
function ¢ for which E|¢(Ry, Ry 1, ..., Riim)| < 00, the averages

¢1+ ...+ P
t

()

converge almost surely (a.s.) as t — oo (Birkhoff’s ergodic theorem — see,
e.g., [2]). If the limit of all averages of the form (5) is equal to a constant
a.s., then the process R; is called ergodic. In this case, the above limit is
equal a.s. to the expectation E¢; (which does not depend on t).

It follows from (R) that S¥ = SER%..RF, where the random sequence
RF is stationary. This assumption on the structure of the price process
is a fundamental hypothesis commonly accepted in mathematical finance.
Moreover, it is quite often assumed that the random variables RF ¢ = 1,2, ...
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are independent, i.e., the price process SF forms a geometric random walk.
This postulate, which is much stronger than the hypothesis of stationarity
of RF, lies in the basis of the Black-Scholes formula, see e.g. [8].

By virtue of Birkhoff’s ergodic theorem, we have

t

1 | k k

tllglo ; In Sy = tll)Ig n Z;ln R; = EIn Ry (as.) (6)
J:

for each £ = 1,2, ..., K. This means that each asset k£ has almost surely a

well-defined and finite asymptotic (exponential) growth rate, which turns out

to be equal a.s. to the expectation

p" .= ElnRF,

the drift of this asset. The drift can be positive, zero or negative. It does
not depend on t in view of the stationarity of R;.

4. We formulate central results of this article — Theorems 1 and 2. In
these theorems, H = {hq,hy,...} is a constant proportions strategy with
some vector of proportions A = (!, ..., \F) satisfying (2). It is assumed that
Vo = Soho > 0, which implies V; = Sih; > 0 for each t (see formula (8)
below). If the limit

. InV,
lim

t—oo ¢

exists, it is called the growth rate of the strategy H. In Theorems 1 and 2,
we assume that the following condition holds:
(V) With strictly positive probability,

Sk/Sm £ Sk /8™, for some 1 < k,m < K and t > 1.

Theorem 1. If all the coordinates \* of the vector \ are strictly positive,
i.e. the strategy H is completely mized, then the growth rate of the strateqy H
is almost surely strictly greater than >, N\*p*, where pF is the drift of asset
k.

We recall that, since the process R; is stationary, the expectation F In(R;\)
involved in the statement of the theorem does not depend on t. Condition
(V) is a very mild assumption of volatility of the price process. This con-
dition does not hold if and only if, with probability one, the ratio SF/S™



of the prices of any two assets k£ and m does not depend on t. Clearly, the
ratios SF/S™ do not depend on ¢t if and only if, for every ¢t > 1, the return
RF = SF/SF | on each asset k is equal to the same number «:

Rl =R’=..=Rf =q.

If RF = o for all k (as.), then p* = Flnay, and the growth rate of H is
equal to Eln(R\) = Elna; = p* =, A¥p*. Consequently, if (V) fails to
hold, then the assertion of Theorem 1 is not valid.

Example. Consider the case where there are two assets, i.e., K = 2 and
k = 1,2. Suppose the first asset (kK = 1) is riskless, i.e., its return R} is
a constant: R} = R > 0. Then condition (V) is fulfilled if the stationary
process R?, describing the returns of the risky asset k = 2, is not constant
a.s. Indeed, if (V) does not hold, then, as has been noticed above, R? = R} =
R = const with probability one.

We are primarily interested in the situation when all the assets under
consideration have the same drift, and hence a.s. the same growth rate:

(R1) There ezists a number p such that, for each k = 1,..., K, we have
ElnRF = p.

Assumption (R1) allows to concentrate, for example, on those assets in
the market that grow at the maximum rate. One may think that all the
others, growing slower, will eventually be driven out of the market. As long
as we deal with an infinite time horizon, we may exclude such assets from
consideration.

From Theorem 1, we immediately obtain the following result.

Theorem 2. Under assumption (R1), the growth rate of the strategy H
1s almost surely strictly greater than the growth rate of each individual asset.

In the context of Theorem 2, the volatility of the price process appears
to be the only cause for any completely mixed constant proportions strategy
to grow at a rate strictly greater than p — the growth rate of each particular
asset. This result looks at first glance unexpected, since the volatility of asset
prices is usually regarded as an impediment for financial growth, while here it
serves as a factor of its acceleration. In a stationary market, where the process
S, (and not only R;) is ergodic and stationary and where E|In SF| < co, the
growth rate of each asset is zero,

ElnRF=ElnSf—EmS, =0,

while any completely mixed constant proportions strategy grows at a strictly
positive exponential rate.



Common intuition suggests that if the market is stationary, then the
portfolio value V; for a constant proportions strategy must converge in one
sense or another to a stationary process. (This is the most common first guess
regarding the asymptotic behaviour of V;.) The usual intuitive argument in
support of this conjecture appeals to the self-financing property (4). The
self-financing constraint seems to exclude possibilities of unbounded growth.
The truth, however, lies in the opposite direction: unbounded exponential
growth is not only compatible with self-financing, but is characteristic for
any completely mixed constant proportions strategy.

We have seen how one might arrive at a wrong conclusion about the
behaviour of a constant proportions strategy. But what is the intuition for
the right conclusion? It is quite simple. It lies in the fact that the constant
proportions always force one to ”buy low and sell high” - the common sense
dictum of all trading. Indeed, those assets whose prices have risen from the
last rebalance date will be overweighted in the portfolio and their holdings
must be reduced to meet the required proportions and to be replaced in
part by assets whose prices have fallen and whose holdings must therefore be
increased. (Obviously, for this mechanism to work the prices must change in
time; if they are constant, one cannot get any profit from trading.) Further,
under suitable conditions the specified portfolio proportions can be optimised
to maximize the exponential growth rates of the portfolio returns implied by
Theorems 1 and 2. Such maximization problems are considered in the theory
of log-optimal investments (see [1] and [6]). In this paper we do not touch
this topic: our focus is on the analysis of any, not necessarily log-optimal,
constant proportions strategies.

Our result bears some similarity with the concept of asymptotic arbitrage,
see e.g. [7]. Three features, however, stand out: growth is exponentially fast,
unbounded wealth is achieved with probability one, and the effect of growth
is demonstrated for specific (constant proportions) strategies. None of these
properties can directly be deduced from asymptotic arbitrage.

5. The proof of Theorem 1 relies upon the following two lemmas.

Lemma 1. The growth rate of the strategy H is equal to EIn(R;\) (a.s.).

Proof. We have

K K gm
W:Stht:ZSZnh?il:ZS—;l bty =
m=1 m=1 -



K m K
D om NSty =Vie Y RPN = (BA)Vis. (7)
m=1 "1

m=1
Thus
Vi = Vo(R1A) (Ra)...(Re M), (8)
and so
lim -V, = lim > zt: In(R;\) = Eln(R.) (as.), (9)
t—ool t—oof s

which proves the lemma.
Lemma 2. If condition (V) holds, then EIn(R,\) > S r_ Npk.
Proof. Observe that condition (V) is equivalent to the following one:
(V1) For some t > 1 (and hence for each ¢t > 1), the probability

P{RF + R™ for some 1 < k,m < K}

is strictly positive.

Indeed, we have SF/S™ # SF,/S™, if and only if SF/SF | # S™/S™,,
which can be written as RF # R™. Denote by &, the random variable that
is equal to 1 if the event {Ric # R for some 1 < k,m < K} occurs and
0 otherwise. Condition (V) means that P{max;>; 6 = 1} > 0, while (V.1)
states that, for some ¢ (and hence for each t), P{6; = 1} > 0. The latter
property is equivalent to the former because

t>1

By using Jensen’s inequality and (V1), and we find that

K K
In ) REX* > X¢(In Rf)
k=1 k=1

with strictly positive probability, while the non-strict inequality holds always.
Consequently,

K K
Eln(RA) > > XE(nRf) =) MpF, (10)
k=1 k=1



which proves the lemma.

Proof of Theorem 1. The result is immediately obtained by combining
Lemmas 1 and 2.

6. We now assume that, in the market under consideration, there are
transaction costs for buying and selling assets. When selling = units of asset
k at time t, one gets the amount (1 — *)SFz (rather than SFx as in the
frictionless case). To buy z units of asset k, one has to pay (1 + £%)SFz.
The numbers e*,e¥ > 0, k = 1,2,..., K (the transaction cost rates) are
supposed to be given. In this market, portfolio rebalancing might lead to a
loss of wealth, therefore self-financing trading strategies H = {hg, h1, ...} are
defined as those satisfying the condition

K

S (A +8)SERE—hf ) <D (L—F)SF(RE, — R, (11)

where £, = max{z,0}. Inequality (11) means that asset purchases can be
made only at the expense of asset sales.

In the current context, we say that H = {hq, hy, ...} is a constant propor-
tions strategy with vector of proportions A = (!, ..., \F) if

SFRF = (1 = )N Sihy_y (B=1,2,.., K, t=1,2,..), (12)

where § € (0, 1) is some constant. We include into this definition the require-
ment that Vo = Spho > 0, which guarantees that V; = S;h; > 0 (and hence
hy # 0) for all ¢. Strategies of the form (12), as well as those defined by
(3), prescribe to keep constant shares of wealth in all the portfolio positions,
but in contrast with (3), the equality S;h; = Sihi—1 does not hold. We have
Sihy = (1 —6)Sthi—1 < Sthi—1, and so the value of the portfolio h;, expressed
in terms of the prices S¥, is strictly less than the value of h;_;.

Theorem 3 below extends the results of Theorems 1 and 2 to the model
with transaction costs. As before, we assume that hypotheses (R) and (V)
hold.

Theorem 3. Let A = (!, ..., \X) be a strictly positive vector with A +...+
MK =1. If § € (0,1) is small enough, then a constant proportions strategy
H of the form (12) has a growth rate strictly greater than Zszl Nepk (a.s.),
and if p' = ... = p* = p, then the growth rate of H is strictly greater than p
(a.s.). Further, if the transaction cost rates €*,e* >0, k =1,2,..., K, are
small enough (in particular, if they do not exceed §/2), then the strategy H
is self-financing.



Proof. We first observe that the growth rate of the strategy H is equal to
E1n[(1—6)R;A]. This fact is proved exactly like Lemma 1 (replace in (7), (8)
and (9) A by (1—6))\). By virtue of Lemma 2, EIn(R,\) > S i MpF. This
inequality will remain valid if A is replaced by (1 — §)A, provided 6§ € (0,1)

is small enough. Fix any such § € (0,1). Denote by € the greatest of the

numbers €*, % . It remains to show that H is self-financing when ¢ > §/2.

To this end we note that inequality (11) is implied by

K

K
Y (1+e)SERY —hiy) <Y (1 —e)SF(hE, — hf)s,

k=1 k=1

which is equivalent to
K
e |SEhf — SEhE | < Sy(hu—y — hy). (13)
k=1

If formula (12) holds, then the right-hand side of the last inequality is equal
to 6S;h;_1, and the left-hand side can be estimated as follows:

K K K
e (1= 8)NeSphyy — SFhY 4| <e> (1= 6)NeShyy +e > SFhF | =
k=1 k=1 k=1
8(1 — 6)Stht_1 + SStht_l < QSStht_l.

Consequently, if 0 < e < §/2, the strategy H is self-financing.
The proof is complete.
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