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Abstract: In this paper, two structural models where firms have stationary capital structures 

and endogenous default barriers are extended to allow the principal value of a firm’s debt to 

grow at a constant rate.  This allows firms to have a dynamic capital structure.  These two 

models are then used in conjunction with observable equity data to calculate the implied asset 

volatilities of a sample of fifty firms.  Unit root tests are applied to the implied asset volatility 

and equity volatility processes to determine whether the processes are mean-reverting.  

Evidence that asset volatility is mean-reverting is found for forty-six of the fifty firms in the 

sample, regardless of which structural model is used to calculate the asset volatility, while the 

number of firms whose equity volatility is mean-reverting is in general lower for the poorer 

credit classes, consistent with the leverage effect.  The mean-reversion of asset volatility has 

implications for the modelling of both equity and debt, and for the pricing of equity options, 

corporate bonds and credit derivatives. 

 

Keywords : structural credit models, asset volatility, equity volatility. 
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1. Introduction 

 

There is now widespread empirical evidence of the leverage effect, which says that a firm’s 

equity volatility is positively related to its leverage (see, for example, Black (1976), Christie 

(1982) and Duffee (1995)).  Therefore, a firm’s equity volatility may appear to be mean-

reverting over a long period of time if its leverage remains steady.  However, if the credit 

quality of the firm worsens dramatically and the firm’s leverage increases, its equity volatility 

is likely to rise and may not fall again unless the credit quality of the firm improves.  As a 

result, equity volatility is not, in general, mean-reverting over the complete life of a firm. 

 

It has been noted widely, for example in Leland (1994), that structural models where the asset 

volatility of a firm is assumed to be constant give equity volatilities that are positively related 

to a firm’s leverage, consistent with the leverage effect.  However, there has been no 

empirical research into the asset volatilities calculated using structural models in conjunction 

with a time series of equity data.  In this paper, the observed equity volatility and calculated 

asset volatility processes between December 1993 and December 2003 are studied for a 

sample of fifty firms.  In particular, it will focus on whether the asset volatility of a firm is 

mean-reverting, and remains reverting to the same constant value as the credit quality of the 

firm changes. 

 

The rest of this paper is structured as follows.  In Section 2, two structural models where 

firms have a stationary capital structure and endogenous default boundaries are extended to 

allow the principal value of a firm’s outstanding debt to grow at a constant rate.  This allows 

firms to have a dynamic capital structure.  These two models are then used in Section 3 

together with observed equity data to calculate a time series of asset volatilities for each firm 

in the sample.  The time series of equity and asset volatilities are illustrated for a single firm, 

Delta Air Lines Inc.  Unit root tests are then performed on the time series of both equity and 

asset volatilities for all fifty firms in the sample to determine whether the volatility processes 

revert to a constant value.  Conclusions are drawn in Section 4.  
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2. Extending Structural Models with Endogenous Default Boundaries 

 

Two structural models with endogenous default boundaries, those models developed by 

Leland (1994) and Leland & Toft (1996), are extended in this section to allow the principal 

value of a firm's debt to grow at a constant rate over time.  Although the two models share a 

number of features, different debt structures are assumed: in one case, a firm's debt is 

assumed to consist of finite-maturity coupon bonds, while in the second case, the firm’s debt 

consists of perpetual coupon bonds. 

 

Seven assumptions are common to both of the models that are developed in this section, and 

these are described below: 

 

ASSUMPTION 1: The term structure of default-free interest rates is flat and known with 

certainty, i.e. the time- 0t  price of a default-free bond that promises a payment of one unit at a 

future time 1t  is 0 1 1 0( , ) exp[ ( )]P t t r t t= − − , where r is the (instantaneous) default-free rate of 

interest, which is constant over time. 

 

ASSUMPTION 2: Let tV  be the market value of a firm’s total assets at time t.  It is assumed 

that in the risk-neutral measure, the value of a firm’s assets follows the lognormal process  

 ( )
d

r dt dδ σ= − +t
t

t

V
W

V
. (1) 

Both the asset volatility σ  and the fraction δ  of the value of the assets paid out to holders of 

the firm’s debt and equity are assumed to be constant.   

 

ASSUMPTION 3: The principal value of the outstanding debt of a firm tF  satisfies the non-

random process, 

 t
F

t

dF
dt

F
µ= , (2) 

where Fµ  is a constant.  Therefore, the principal value of a firm’s outstanding debt at time t 

is 0
F t

tF F eµ= , where 0F  is the principal value of outstanding debt at time 0.   
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ASSUMPTION 4: A firm defaults on all of its outstanding debt when the process tV  hits a 

default boundary B
tV , which is taken to be a fixed proportion of the principal value of the 

firm’s debt1, i.e. B
t tV Fβ=  for some constant β . 

 

ASSUMPTION 5: If the firm defaults at a time τ , the asset value of the firm reduces by 
BVτα  due to the costs of default. 

 

ASSUMPTION 6: The equity value of the firm is zero at the default boundary, i.e. equity-

holders do not receive a rebate upon default by the firm. 

 

ASSUMPTION 7: All debt issued by the firm has the same seniority.  Furthermore, debt-

holders receive the same fraction of par at the time of default, regardless of remaining 

maturity, while the recovery rate of future coupon payments is zero. 

 

All of these assumptions apart from Assumption 3 are consistent with the models developed 

by Leland (1994) and Leland & Toft (1996).  However, both of these models assume that the 

principal value of a firm’s outstanding debt is fixed.  The non-random process used in this 

paper to model the principal value of a firm’s debt has been used before in Nickell, Perraudin 

& Varotto (2001) and Ericsson & Reneby (2003). 

 

Assumptions 4 and 5 imply that if the firm defaults at time τ , debt-holders receive a total of 

(1 ) Fτα β−  upon default, i.e. the recovery rate averaged over the firm’s debts is (1 )α β− .  As 

all of the firm’s debts have the same recovery rate as a consequence of Assumption 7, this 

implies that each debt has a recovery rate of (1 )α β− . 

 

 

Define the distance to default tX  to be the ratio of the value of the firm’s total assets to the 

default boundary B
tV , i.e. 

 
0

    
F t

tF F eµβ β
= =t t

t

V V
X . (3) 

                                                                 
1 Later it will be shown that the optimal default boundary is of this form for both of the capital structures that are 
investigated in this paper. 
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Default therefore occurs when tX  hits one.  As a consequence of Itô’s Lemma, the distance 

to default satisfies the stochastic differential equation 

 ( )F

d
r dt dµ δ σ= − − +t

t
t

X
W

X
, (4) 

while results from Harrison (1990) show that if the firm has a distance to default of 
0t

X  at 

time 0t , then the risk-neutral probability that the firm defaults in the period 0 1[ , ]t t  is given by 

 20 0

0 0

2
1 0 1 0

1 0
1 0 1 0

log ( ) log ( )
( , )  

a
t t

t t

X a t t X a t t
Q X t t X

t t t t
σ

σ σ

−   − − − − + −
− = Φ + Φ      − −   

,   (5) 

where 

 21
2Fa r µ δ σ= − − − . (6) 

Differentiating (5), it can be seen that the probability density function of the first passage 

time of tX  to 1 (or equivalently of the first passage time of tV  to B
tV ) is equal to 

 2 0 0

0 0

2
2

1 0
1 0 3/2

1 0 1 0

log ( ) log1 1
( , ) exp

( ) 22

a
t t

t t

X a t t X
q X t t X

t t t t
σ

σπ σ

−   − −
 − = −   −  −  

. (7) 

 

 

2.1 Debt Structure Consists of Finite-Maturity Bonds  

 

First, it is assumed that a firm continuously offers bonds with an initial time-to-maturity of 

T < ∞ , so that the capital structure of a firm is dynamic and consists of equity and finite-

maturity coupon bonds.  This capital structure was originally analysed by Leland & Toft 

(1996), and therefore, the model developed in this subsection will be referred to as the 

Extended Leland & Toft model (or ELT for short).  It is assumed here that the firm issues 

bonds with a principal value of  

 F sFe dsµ%  (8) 

during the interval [ , ]s s ds+ , where 

 0(1 )F

F
T

F F
e µ

µ
−

=
−

% . (9) 

Then the principal value of all of the outstanding bonds at time t is given by 
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 0        (1 )     F F F F

t
s T t t

t
Ft T

F
F F e ds e e F eµ µ µ µ

µ
−

−

= = − =∫
%

% , (10) 

consistent with Assumption 3.  Leland & Toft (1996) analysed the special case where 

0Fµ = . 

 

It is assumed that the bonds pay a continual stream of coupons at a rate of c.  Then the time-t 

market value of the bonds that were issued in the interval [ , ]s s ds+  (where t T s t− ≤ ≤ ) is 

 

( ) ( )

( )

[1 ( , )] [1 ( , )]

                                                                    (1 ) ( , ) .

F F

F

s T
s ss r u t r s T t

t t t
t

s T
s r u t

t
t

SB ds cFe ds e Q X u t du Fe dse Q X s T t

Fe ds e q X u t du

µ µ

µα β

+
− − − + −

+
− −

= − − + − + −

+ − −

∫

∫

% %

%
 (11) 

The first term on the right-hand side of (11) corresponds to the time-t value of the remaining 

coupons, the second term relates to the value of the principal payment made at time s T+ , 

while the third term corresponds to the value of the recovery payment if the firm defaults 

before time s T+ . 

 

Define 
01( , )tG X t  to be 

 
0 0

( )
1

0

( , ) ( , )F

t
r u

t tG X t e q X u duµ− −= ∫ . (12) 

Using results from Rubenstein & Reiner (1991), the function 
01( , )tG X t  is given by 

 
1 1

2 20 0

0 0 0

1 1
1

log log
( , ) ,

a b a b
t t

t t t

X b t X bt
G X t X X

t t
σ σ

σ σ

− + − −− − − +   
= Φ + Φ   

   
 (13) 

where  

 2 2
1 2( )Fb a r µ σ= + − . (14) 

Similarly, define 
02 ( , )tG X t  to be 

 
0 02

0

( , ) ( , )
t

ru
t tG X t e q X u du−= ∫ , (15) 

which can be shown to be equal to 

 
2 2

2 20 0

0 0 0

2 2
2

log log
( , )

a b a b
t t

t t t

X b t X b t
G X t X X

t t
σ σ

σ σ

− + − −− − − +   
= Φ + Φ   

   
, (16) 

where  



 7

 2 2
2 2b a rσ= + . (17) 

 

A change of variable and an integration by parts shows that (11) is equal to 

 

( )

2

1 [1 ( , )]

                                                                       (1 ) ( , ).

F F

F

s ss r s T t
t t

s
t

c c
SB ds Fe ds Fe dse Q X s T t

r r

c
Fe dsG X s T t

r

µ µ

µα β

− + − = + − − + − 
 

 + − − + − 
 

% %

%
 (18) 

 

The market value of a firm’s debt at time t is found by integrating the time-t value of all 

bonds that are outstanding at time t, i.e. bonds that were issued during the period [ , ]t T t− .  

Therefore, the time-t market value of a firm’s debt is given by 

 

( )

2

  1 [1 ( , )]

                                                       (1 ) ( , ) .

F F

F

t t t
s ss r s T t

t t
t T t T t T

t
s

t
t T

c c
SB ds F e ds F e e Q X s T t ds

r r

c
F e G X s T t ds

r

µ µ

µα β

− + −

− − −

−

 = + − − + − 
 

 + − − + − 
 

∫ ∫ ∫

∫

% %

%
 (19) 

After performing the first integral, using the definition of F%  from (9), and applying a change 

of variable to the second and third integrals, it is seen that (19) is equivalent to 

 0 0 01 ( , ) (1 ) ( , )F F Ft t t
t t

c c c
F e F e I X T F e J X T

r r r
µ µ µα β   + − + − −   

   
, (20) 

where 

 
( )

( )

0

1
( , ) ( , )

1 ( )

F F
F

F

TT r T
r uF

t tT
F

e e
I X T e Q X u du

e r

µ µ
µ

µ

µ
µ

− − −
− −

−

   −
= −  − −   

∫  (21) 

and 

 2
0

( , ) ( , )
1

F

F

F

TT
uF

t tT

e
J X T e G X u du

e

µ
µ

µ

µ − 
=  − 

∫ . (22) 

As 0
F t

tF F eµ=  (see Assumption 3), the market value of a firm’s debt at time t can be written 

as 

 1 ( , ) (1 ) ( , )t t t t t

c c c
F F I X T F J X T

r r r
α β   + − + − −   

   
, (23) 

while performing integration by parts on the integrals in (21) and (22) shows that ( , )tI X T  

and ( , )tJ X T  are given by 
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 ( )1( , ) [1 ( , )] [1 ( , )]
( )(1 )

F

F

T rTF
t t tT

F

I X T e G X T e Q X T
r e

µ
µ

µ
µ

− −
−= − − −

− −
 (24) 

and 

 2 1

1
( , ) [ ( , ) ( , )]

1
F

F

T
t t tTJ X T G X T e G X T

e
µ

µ
−

−= −
−

. (25) 

L’Hôpital’s rule is needed to calculate the value of ( , )tI X T  in the case when F rµ =  and the 

values of ( , )tI X T  and ( , )tJ X T  when 0Fµ = . 

 

Firms may receive tax benefits associated with debt financing.  As is explained in Leland 

(1994), the tax benefit of a coupon of c  is equal to ( )tax c , where tax is the effective tax rate, 

as long as the firm is solvent2.  It is proposed here that the total value of the firm only 

includes the tax benefit of future coupon payments on the debt that is currently outstanding.  

From an examination of (20), it can be seen that the time-t value of the remaining coupon 

payments on bonds that are outstanding at time t is 

 [ ]1 ( , ) ( , )t t t

c
F I X T J X T

r
− − . (26) 

Therefore, the time-t value of the tax benefits to the firm is given by 

 [ ]( )
1 ( , ) ( , )t t t t

tax c
TB F I X T J X T

r
= − − . (27) 

 

According to Assumption 5, the value of the firm’s assets is assumed to fall by a proportion 

α  at the time of default.  The value of the default costs of the firm at time t is taken to be the 

reduction in the value of the debt that is outstanding at time t due to the costs of default.  

Again from an examination of (20), the time-t value of the default costs of the firm can be 

seen to equal  

 ( , )t t tDC F J X Tαβ= . (28) 

 

The total value of the firm at time t, tv , is taken to be 

 
( ) ( )

    [1 ( , )] ( , ).t t t t t t t t t

tax c tax c
v V TB DC V F I X T F J X T

r r
αβ = + − = + − − + 

 
 (29) 

                                                                 
2 Leland (1994) also explains that under US tax codes, a firm must have earnings before interest and taxes that 
are at least as large as the coupon payment if they are to receive the tax benefits.  However, this technicality is 
not considered here. 
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The market value of equity is given by the total value of the firm minus the market value of 

the debt that is currently outstanding: 

 
(1 ) (1 ) (1 )

  1 ( , ) ( , ).t t t t t t t

tax c tax c tax c
S V F F I X T F J X T

r r r
β

− − −   = − − − − −   
   

 (30) 

 

Default can be viewed as a decision by the managers of a firm: if a firm is struggling to make 

payments to debt-holders, managers can choose whether to liquidate assets to make the debt 

payments or to default on the debt.  As equity-holders own the firm, one of the aims of 

managers is to maximise the value of a firm’s equity.  Therefore, it is assumed that managers 

choose the default boundary optimally so that the firm’s equity value is maximised.  

Following Leland & Toft, the optimal default boundary is assumed to satisfy the smooth-

pasting condition, 

 0
B

t t

t

t V V

S
V

=

∂
=

∂
. (31) 

Therefore, the optimal boundary is given by ˆB
t tV Fβ= , where 

 
1 2 1

2

(1 )
( )

ˆ
1 FT

tax c
C C C

r
e Cµβ −

−
− −

=
− −

 (32) 

and 

 

1 1 1 1
1 2 2

2

2 2
( )

2 2
                                                          

( )

FT
F

F

rT
F

F

e a b b b b
C T T

r T

e a a a
T T

r T

µµ
φ

µ σ σ σ σσ

µ
φ

µ σ σ σσ

−

−

 − +        = − Φ −        −         
    + Φ +    −     

 (33) 

and 

 

2 2 2 2
2 2 2

1 1 1 1
2 2

2 2

2 2
                        .FT

a b b b b
C T T

T

a b b b b
e T T

T
µ

φ
σ σ σ σσ

φ
σ σ σ σσ

−

 − +        = − Φ −                
 − +        − − Φ −                

 (34) 

L’Hôpital’s rule is needed to calculate the value of 1C  in the case when F rµ =  and the value 

of β̂  when 0Fµ = . 

 

The expression for the equity value, and therefore the form of the optimal boundary, for the 

0Fµ =  case is different to that derived by Leland & Toft (1996).  Leland & Toft assume that 
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the total value of the firm includes the tax benefit of all future coupon payments, including 

coupons on bonds that are to be issued in the future.  Similarly, they assume that the default 

costs of the debt that is currently outstanding and the debt that will be issued in the future are 

included in the calculation of the total value of the firm.  One consequence of this is that the 

expression for the equity value derived by Leland & Toft was dependent on the costs of 

default, while the expression derived in this paper, (30), is independent of α .   

 

As an example, Figure 1 shows the optimal boundary as calculated by Leland & Toft (1996) 

together with the optimal boundary given by (32) for different values of the asset volatility.  

The default-free interest rate r and the coupon rate c are both set at 6%, the net payout rate δ  

is 5%, the effective tax rate is 15%, the proportion α  of the asset value that is lost due to 

default costs is 40%, the principal value of debt is assumed to be constant over time, and the 

firm is assumed to issue bonds with an initial time-to-maturity T of 5 years.   
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Figure 1: Optimal Default Boundary 

 

Further tests on the two optimal default boundaries were performed using a wide range of 

input parameters.  For all realistic values of the input parameters that were tested, the optimal 

default boundary given by (32) was found to be a monotonic decreasing function of the asset 

volatility for asset volatilities above 1% (for a small set of values of the input parameters, the 

boundary increases very slightly with asset volatility if the asset volatility is below 1%).  On 

the other hand, Figure 1 shows that the boundary proposed by Leland & Toft is not a 
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monotonic function of asset volatility for some realistic values of the input parameters3.  

Also, for the particular values used in Figure 1, it is optimal for a firm with an asset volatility 

of between 3% and 12% to default when the value of its total assets is above the principal 

value of the firm’s debt if the Leland & Toft boundary is used.  On the other hand, the 

optimal default boundary proposed in this section is below the principal value of debt for all 

values of the asset volatility.  

 

Although the optimal default boundary derived by Leland & Toft was higher than the 

boundary given by (32) for most values of the asset volatility in the example above, it should 

be noted that there are many values of the input parameters where the optimal boundary 

proposed in this paper gives the higher default boundary.  As an example, if δ  is reduced to 

1%, α  falls to 5% and all other parameters are kept the same as for Figure 1, the optimal 

boundary derived in this paper is higher than the default boundary derived by Leland & Toft 

for all asset volatilities less than 100%. 

 

 

2.2 Debt Structure Consists of Perpetual Bonds  

 

As in Leland (1994), it is now assumed that the debt structure of a firm consists of perpetual 

bonds.  As a result, the model developed in this subsection will be referred to as the Extended 

Leland model (or EL for short).  However, unlike in Leland, it is assumed that the firm 

continuously issues bonds, with the bonds issued in the interval [ , ]s s ds+  having a principal 

value of 0
Fs

F F e dsµµ .  As a result, the principal value of all outstanding bonds at time t is  

 0 0        F F

t
s t

t FF F e ds F eµ µµ
−∞

= =∫ , (35) 

consistent with Assumption 3.  The time-t market value of the bonds that were issued in the 

interval [ , ]s s ds+ , where s t≤ , is equal to  

 

( )
0

( )
0

[1 ( , )]

                                                        (1 ) ( , ) .

F

F

ss r u t
t F t

t

s r u t
F t

t

SB ds c F e ds e Q X u t du

F e ds e q X u t du

µ

µ

µ

α βµ

∞
− −

∞
− −

= − −

+ − −

∫

∫
 (36) 

                                                                 
3 The numerical tests revealed that there are many sets of input parameters where the default boundary proposed 
by Leland & Toft first increases and then decreases with asset volatility in the manner illustrated in Figure 1. 



 12 

A change of variable and an integration by parts on the first integral reveals that (36) is equal 

to 

 0 0 2(1 ) ( , )F Fs ss
t F F t

c c
SB ds F e ds F e dsG X

r r
µ µµ α β µ = + − − ∞ 

 
. (37) 

The function 2 ( , )tG X u  was given earlier by (16), and therefore, the time-t value of bonds 

that were issued in the interval [ , ]s s ds+  is 

 
2

2

0 0(1 ) ,F F

a b
s ss

t F F t
c c

SB ds F e ds F e dsX
r r

µ µ σµ α β µ
− −

 = + − − 
 

 (38) 

where a and 2b  are given by (6) and (17) respectively.  Note that the expression (38) is equal 

to the limit of (18) as T → ∞ , i.e. the time-t value of a perpetual bond is equal to the time-t 

value of a finite-maturity bond as its initial time-to-maturity tends to infinity. 

 

The market value of a firm’s debt at time t is found by integrating over the time-t value of all 

bonds that have been issued up to time t.  As 0
F t

tF F eµ= , the time-t value of a firm’s debt is 

 
2

2  (1 )
a bt

s
t t t t

c c
SB ds F F X

r r
σα β

− −

−∞

 = + − − 
 ∫ . (39) 

 

As with the ELT model, it is assumed that the total value of the firm includes only the costs 

of default and the tax benefits of coupons on the debt that is currently outstanding.  From an 

examination of (39), it is seen that the time-t value of the tax benefits and default costs are 

equal to 

 
2

2( )
1

a b

t t t

tax c
TB F X

r
σ

− − 
= −  

 
 (40) 

and 

 
2

2
a b

t t tDC F X σαβ
− −

= . (41) 

Therefore, the total value of the firm at time t, tv , is taken to be 

 
2 2

2 2( )
    1

a b a b

t t t t t t t t t

tax c
v V TB DC V F X F X

r
σ σαβ

− − − − 
= + − = + − −  

 
, (42) 

and the value of equity is given by the total value of the firm minus the market value of debt, 

 
2

2(1 ) (1 )
  

a b

t t t t t
tax c tax c

S V F F X
r r

σβ
− −− − = − − − 

 
. (43) 
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Again, it should be noted that (43) is equal to the limit as T → ∞  of (30), the expression for 

the value of equity in the ELT model.  Further, if Fµ  is set equal to zero in (43), the 

expression for the value of equity derived by Leland (1994) is recovered.  

 

As in the previous subsection, the optimal default boundary is assumed to satisfy the smooth-

pasting condition 

 0
B

t t

t

t V V

S
V

=

∂
=

∂
. (44) 

As a result, the optimal boundary is given by  

 ˆB
t tV Fβ= , (45) 

where 

 

2
2

2
2

(1 )ˆ   
1

a b
tax c

a b r
σβ

σ

+ 
  −  =  +   +  

 

. (46) 

 

 

2.3 Calibration using Equity Data 

 

In both of the models developed in this section, the expressions for the value of a firm’s 

equity contained three unobservable variables: the market value of the firm’s assets tV , the 

asset volatility σ , and the net payout rate to security holders δ .  To find estimates for the 

values of these three variables, three equations are needed that link the unobservable 

variables to observable variables.  One equation is provided by the expression for the firm’s 

equity value, so two more equations are required. 

 

In both models, the equity value is a function of the firm’s asset value and the principal value 

of its outstanding debt, 

 ( , )tS F=t tS V . (47) 

An application of Itô’s Lemma to (47) reveals that the market value of a firm’s equity follows 

the process4 

                                                                 
4 Although Itô’s Lemma can be used to derive the form of the drift term in (48), it is not necessary for the work 
here. 
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 ( , ) .t
S t t t

t

S
d V F dt V d

V
µ σ

 ∂
= +  ∂ 

t tS W  (48) 

This can be written as  

 
( , ) SS t t

t

V F
d dt d

µ
σ

 
= + 

 
t t t t

t

S S S W
S

, (49) 

so that by comparing (48) and (49), the equity volatility at time t, S
tσ , can be seen to equal  

 S t t
t

t t

V S
S V

σ
σ

∂
=

∂
. (50) 

 

In the case of the ELT model, a firm makes three sets of payments to security holders: 

dividend payments to equity-holders, and coupon and principal payments to debt-holders.  

However, the firm receives two sets of payments: the tax-sheltering value of the coupon 

payments made to debt-holders, and the money received from issuing new debt.  Therefore, 

the net payout rate to security-holders is taken to be 

 
( )(1 ) F t TS t

t t t t

t

S tax cF Fe SB
dt dt

V

µδ
δ

−+ − + −
=

%
, (51) 

where S
tδ  is the dividend yield at time t, ( )F t TFe dtµ −%  is the principal payment for bonds that 

were issued in the interval [ , ]t T t T dt− − + , and t
tSB dt  is the time-t market value of the 

bonds that are issued in the interval [ , ]t t dt+ , which is given by (18).  Therefore, the right-

hand side of (51) provides an estimate of the net payout rate of the firm at time t.  The net 

payout rate δ  is then fixed at this value as δ  is assumed to be constant over time (see 

Assumption 2). 

 

In the case of the EL model, the firm does not make principal payments, and thus the net 

payout rate to security-holders is taken to be  

 
(1 )S t

t t t t

t

S tax cF SB
dt dt

V
δ

δ
+ − −

= , (52) 

where the time-t market value of the bonds that are issued in the interval [ , ]t t dt+ , t
tSB dt , is 

given by (38).  Note that (52) is the limit of (51) as T → ∞ . 

 

Three equations linking the unobservable variables to observable variables have now been 

derived.  Therefore, given values for the equity value tS , equity volatility S
tσ , and the 
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principal value of outstanding debt tF  of the reference firm as well as r, S
tδ , c, T, tax and α , 

the time-t market value of the reference firm’s assets, the asset volatility and the net payout 

rate can be found by solving (30), (50) and (51) simultaneously in the case of the ELT model, 

and by solving (43), (50) and (52) simultaneously in the case of the EL model. 

 

 

3. Mean-Reversion of Volatility 

 

The two models developed in the previous section are now used in conjunction with equity 

data to derive a time series of calculated asset volatilities for a sample of firms.  Unit root 

tests will then be performed on the time series of asset and equity volatilities to determine 

whether the processes are mean-reverting. 

 

The equity price data that is used in this section was collected by Reuters and made publicly 

available through the Yahoo.com website.  In this work, equity volatility is calculated using a 

simple moving average on the previous 250 days of price data.  Thus, equal weighting is 

placed on all of the data points that are used in the calculation of equity volatility.  Data that 

needs to be obtained from the balance sheet of a firm (the level of debt and the number of 

outstanding shares) was obtained from the Mergent Online database.  The principal value of a 

firm’s debt tF  is taken to be the book value of its total liabilities.  All reference firms studied 

in this section are based in the US, where balance sheets are published quarterly.  To 

calculate the book value of a firm’s liabilities and the number of outstanding shares at 

intermediate months, it is assumed that the growth rate of both processes is constant during 

each quarter, e.g. if the debt of a firm is known at times 0t  and 1t , the debt at time 0 1[ , ]t t t∈  

is taken to be 

 

0

1 0
1

0

0

t t
t t

t
t t

t

F
F F

F

−
− 

= ×   
 

. (53) 

 

In this section, the ten-year US Treasury rate that is calculated by the Federal Reserve and 

published in their Statistical Release H.15 is converted into a continuously-compounded rate 

and then used as the default-free interest rate r.  In the absence of historical data about the 

coupon rates that firms pay on their debt, there are two main approaches that can be taken.  
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The first is to use the coupon rate where the market value of a firm’s debt is equal to the 

principal value of the debt.  Therefore, firms with a low credit quality pay a higher coupon 

rate, so that the net payout rate to security holders δ  is greater for these firms ceteris paribus.  

Although this method may be valid for investment-grade firms, this can lead to unrealistically 

high coupon rates in the case of firms with a very low credit quality.  A second approach, 

which is taken here, is to assume that the coupon rate is equal to r y+ , where y is a constant.  

Therefore, the coupon rate is not affected by the credit quality of the firm, but firms with a 

low credit quality receive less money from issuing new debt.  Again, this causes low credit 

quality firms to have a higher net payout rate to security holders than high-quality firms 

ceteris paribus.  In this section, y is taken to be 0%, so that the coupon rate is equal to the 

default-free rate.  The dividend yield at time t is taken to be  

 
1

i

i

n
tS

t
i t

p

S
δ

=

= ∑ , (54) 

where the sum is over all dividend payments made in the previous year and 
it

p  is the 

dividend payment made at time it .  One-off special dividends are not included as they can 

lead to artificially high dividend yields, and therefore high payout rates, for short periods of 

time.  Also, the growth rate of a firm’s debt, Fµ , is taken to be equal to the default-free 

interest rate r.  In the case of the ELT model, the initial time-to-maturity of a firm’s bonds, T, 

is assumed to be 8.5 years.  Suppose that the remaining time-to-maturity of a firm’s 

outstanding bonds is calculated by an average that is weighted by the principal value of the 

bonds, i.e. 

 
1 1

( )     
1

F

F

t
s

T
t Ft T

T
s T t Fe ds

F e
µ

µ µ−
−

+ − = −
−∫ % . (55) 

The mean 10-year default-free rate between December 1993 and December 2003 was 5.61%.  

When Fµ  is set equal to 5.61%, a value of 8.5 yearsT =  implies that a firm’s outstanding 

bonds have a weighted-average remaining time-to-maturity of 4.59 years, close to the values 

reported by Stohs & Mauer (1996) for many credit classes.  Following Leland (2004), the 

effective tax rate is taken to be 15%.  Finally, empirical studies such as Andrade & Kaplan 

(1998) have shown that the costs of default are usually between 10% and 20% of the firm’s 

asset value.  Therefore, the default costs are taken to be 15% of the firm’s asset value at the 

time of default, i.e. 15%α = .  
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As an illustration, the volatility processes of a single firm, Delta Air Lines Inc., are shown.  

Figure 2 shows the observed equity volatility, and the asset volatility calculated using the 

ELT model, at monthly intervals between December 1993 and December 2003. 
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Figure 2: Asset Volatility and Equity Volatility of Delta Air Lines Inc. 

 

The above graph has a number of interesting features.  The equity volatility of Delta Air 

Lines increased sharply in September 2001 and then continued to rise throughout 2002 and 

early 2003.  Even though the equity volatility fell in the second half of 2003, the level in 

December 2003 was still double that seen in August 2001.  However, asset volatility behaved 

very differently.  The increase in asset volatility in September 2001 is far less noticeable, and 

the asset volatility remained at a level throughout 2002 and 2003 that was similar to that seen 

in the 1990s. 

 

To determine whether the volatility processes are mean-reverting, it is assumed that the 

volatility (either equity or asset) of firm i at time t, i
tσ , can be written as 

 log( )i i i
t tσ α ε= + , (56) 

where the residuals i
tε  follow an AR(d+1) process, 

 
1

1

d
i i i i
t j t j t

j

ε ρ ε υ
+

−
=

= +∑ . (57) 

It will further be assumed that 
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 ( )2~ 0,( )i i
t Nυ η , (58) 

and that i
tυ  is independent of i

t jυ − , where 1j ≥ .  By letting 

 
1

1

,     0
d

i i
j k

k j

j dη ρ
+

= +

= ≤ ≤∑ , (59) 

the relation (57) can be rewritten as 

 0 1 1
1

( )
d

i i i i i i i
t t j t j t j t

j

ε η ε η ε ε υ− − − −
=

= − − +∑ . (60) 

By substituting (56) into (60) and subtracting log( )i
tσ  from both sides, the following relation 

is obtained 

 1 0 1 1
1

log( ) log( ) ( 1)log( ) [log( ) log( )]
d

i i i i i i i i i
t t t j t j t j t

j

σ σ π η σ η σ σ υ− − − − −
=

− = + − − − +∑ , (61) 

where iπ  is a constant.  To test the null and alternative hypotheses, 

 0 0 1 0: 1                             : 1i iH Hη η= < , (62) 

an augmented Dickey-Fuller test, as developed in Dickey & Fuller (1981), could be 

performed on (61).  A rejection of the null hypothesis would indicate that the volatility 

process (or more precisely, the logarithm of the volatility process) reverts to a constant value. 

 

However, this test is notorious for being very weak.  To improve the power of the unit root 

test, the approach proposed by Elliott, Rothenberg & Stock (1996) is adopted.  The null and 

alternative hypotheses are given by 

 0 0 1 0: 1                             : 1i i k
H H

N
η η= = − , (63) 

where k is a constant and N is the number of observations in the time series.  Elliott, 

Rothenberg & Stock showed that a value of 7k =  is often close to the value of k that 

optimises the power of the test, and thus this value of k is used here.  The procedure proposed 

by Elliott, Rothenberg & Stock is to first detrend the volatility time series iσ , and then 

perform an augmented Dickey-Fuller test on the relation 

 1 0 1 1
1

ˆlog( ) log( ) log( ) [log( ) log( )]
d

i i i i i i i i
t t t j t j t j t

j

σ σ η σ η σ σ υ− − − − −
=

− = − − +∑ , (64) 

where 0 0ˆ 1i iη η= −  and iσ  is the detrended volatility time series.  This unit root test is often 

referred to as the DF-GLS test.  The number of lag terms, d, is calculated by minimising the 

modified information criterion proposed by Ng & Perron (2001).  The t-statistic of 0ˆ
iη  is then 
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compared to critical values determined by Cheung & Lai (1995) to determine whether the 

null hypothesis is rejected. 

 

The volatility processes between December 1993 and December 2003 of a sample of fifty 

firms that are based in the US are investigated.  To ensure that firms with a broad range of 

credit qualities are studied, ten firms that were rated Aa or above by Moody’s Investors 

Services on December 31 2003 are chosen, and ten firms from each of the A, Baa, Ba and B 

ratings classes are also selected.  All of the investment-grade firms in the sample are in the 

S&P 500.  However, there are few B-rated firms in the S&P 500 with an equity history dating 

back to December 1992.  Thus, some of the speculative-grade firms in the sample are not in 

the S&P 500, but instead come from the wider S&P Composite 15005. 

 

First, at the end of each month in the period being studied, the equity volatility of each firm is 

measured (using 250 days of historical price data) and the asset volatility is calculated using 

the ELT and EL models.  As a result, there are 121 data points in each of the three time series 

for each firm.  Tables 1 and 2 give the t-statistics of 0ˆ
iη  for the asset volatilities calculated by 

the two structural models and the equity volatility process for the fifty firms in the sample.  

The number of lag terms, d, that minimises the modified information criterion is given in 

parentheses in the tables.  Then the equity volatility is measured, and the asset volatility is 

calculated using the two models, at the end of each year in the period being studied, so that 

there are eleven data points in the time series for each firm.  The t-statistics of 0ˆ
iη  for each 

firm are given in Table 3 and 4, and as before, the optimal number of lag terms is given in 

parentheses.  In all four tables, if the p-value of 0ˆ
iη  is less than 1%, i.e. the null hypothesis 

that the volatility process contains a unit root is rejected at the 1% significance level, the 

relevant t-statistic is denoted by three asterisks.  The t-statistic is denoted by two asterisks if 

the p-value is between 1% and 5%, while a p-value of between 5% and 10% is shown by 

denoting the t-statistic with one asterisk.  If the t-statistic of 0ˆ
iη  is denoted by no asterisks, 

then the p-value of 0ˆ
iη  is greater than 10%, i.e. the null hypothesis is not rejected at the 10% 

significance level. 

 

                                                                 
5 The S&P Composite 1500 is an equity index of 1500 US firms that combines the S&P 500, S&P MidCap 400 
and the S&P SmallCap 600. 
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Firm Name Rating ELT Asset 
Volatility 

EL Asset 
Volatility 

Equity 
Volatility 

Exxon Mobil Corp. Aaa   -1.851  (1) *   -1.841  (1) *   -1.768  (1) * 
General Electric Co. Aaa   -1.961  (0) **   -1.787  (0) *   -1.175  (1) 
Johnson & Johnson Aaa   -1.422  (0)   -1.421  (0)   -1.428  (0) 
Merck & Co. Inc. Aaa   -1.021  (0)   -1.486  (1)   -1.603  (1) 

Pfizer Inc. Aaa   -1.058  (1)   -1.114  (1)   -1.352  (1) 
3M Co. Aa1   -1.714  (0) *   -1.645  (0) *   -1.543  (1) 

Microsoft Corp. Aa2   -1.449  (1)   -1.464  (0)    -1.538  (1) 
Coca-Cola Co. Aa3   -1.475  (1)   -1.477  (1)   -1.429  (1) 

Colgate-Palmolive Co. Aa3   -1.361  (1)   -1.372  (1)   -1.420  (1) 
Home Depot Inc. Aa3   -1.588  (2)   -1.645  (2) *   -1.332  (1) 

BellSouth 
Telecommunications Inc. 

A1   -1.800  (0) *   -1.879  (1) *   -1.910  (1) * 

International Business 
Machines Corp. 

A1   -1.301  (0)   -1.142  (0)   -1.492  (1) 

Alcoa Inc. A2   -1.655  (0) *   -1.576  (0)   -1.584  (1) 
Baker Hughes Inc. A2   -1.432  (1)   -1.331  (1)   -1.060  (1) 

Caterpillar Inc. A2   -2.202  (0) **   -2.010  (0) **   -1.228  (0) 
McDonald's Corp. A2   -1.969  (1) **   -1.952  (1) **   -1.812  (1) * 

Target Corp. A2   -1.857  (2) *   -1.818  (2) *   -1.688  (1) * 
The Boeing Co. A3   -1.627  (0) *   -1.819  (0) *   -2.216  (0) ** 

Campbell Soup Co. A3   -1.294  (1)   -1.365  (1)   -1.579  (1) 
Schering-Plough Corp. A3   -1.205  (1)   -1.226  (1)   -1.166  (1) 

Ford Motor Co. Baa1   -1.561  (0)   -1.633  (0) *   -1.313  (1) 
May Department Stores 

Co. Baa1   -1.750  (0) *   -1.590  (0)   -1.523  (1) 

Ryder System Inc. Baa1 -2.510  (0) **   -1.923  (0) *   -1.280  (0) 
Altria Group Inc. Baa2   -2.037  (1) **   -1.991  (1) **   -1.850  (1) * 

Black & Decker Corp. Baa2   -3.809  (0) ***   -3.526  (0) ***   -1.812  (0) * 
Kellogg Co. Baa2   -1.541  (1)   -1.483  (1)   -1.262  (1) 
Mattel Inc. Baa2   -1.369  (0)   -1.252  (0)   -1.030  (0) 

Clear Channel 
Communications Inc. 

Baa3   -1.853  (0) *   -1.702  (0) *   -2.238  (1) ** 

Computer Associates 
International Inc. Baa3   -1.816  (0) *   -1.496  (0)   -1.243  (0) 

Eastman Kodak Co. Baa3   -2.443  (0) **   -2.730  (0) ***   -1.863  (0) * 
 

Table 1: t-statistics for Investment-Grade Firms (Monthly Frequency) 
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Firm Name Rating ELT Asset 
Volatility 

EL Asset 
Volatility 

Equity 
Volatility 

Bowater Inc. Ba1   -2.454  (0) **   -2.199  (0) **   -2.329  (1) ** 
Hilton Hotels Corp. Ba1   -2.593  (0) ***   -2.460  (0) **   -1.308  (0) 

Unisys Corp. Ba1   -1.324  (0)   -1.355  (0)   -1.284  (0) 
Apple Computer Inc. Ba2   -1.124  (0)   -1.063  (0)   -0.771  (0) 

Cummins Inc. Ba2   -2.854  (0) ***   -2.333  (0) **   -1.169  (0) 
Edison International Ba2   -1.679  (0) *   -1.367  (0)   -1.287  (1) 

Smithfield Foods Inc. Ba2   -1.578  (0)   -1.318  (0)   -0.636  (0) 
Westar Energy Inc. Ba2   -1.473  (0)   -1.526  (1)   -1.103  (1) 

Dana Corp Ba3   -2.611  (0) ***   -2.333  (0) **   -1.895  (1) * 
Georgia-Pacific Corp. Ba3   -1.837  (0) *   -1.659  (0) *   -1.488  (1) 
Delta Air Lines Inc. B1   -2.591  (0) ***   -2.817  (0) ***   -1.154  (0) 

Goodyear Tire & Rubber 
Co. B1   -1.639  (0) *   -1.790  (0) *   -0.448  (1) 

Xerox Corp. B1   -2.210  (0) **   -1.978  (0) **   -1.264  (1) 
Dillard's Inc. B2   -1.800  (0) *   -1.982  (0) **   -1.299  (1) 

Pep Boys - Manny, Moe 
& Jack 

B2   -1.968  (0) **   -1.678  (0) *   -1.151  (0) 

Advanced Micro Devices 
Inc. B3   -1.278  (0)   -1.044  (0)   -0.966  (0) 

CMS Energy Corp. B3   -1.186  (0)   -0.661  (0)   -0.608  (1) 
Kulicke & Soffa 
Industries Inc. 

B3   -2.082  (0) **   -1.846  (0) *   -2.223  (1) ** 

Milacron Inc. B3   -4.120  (0) ***   -2.776  (0) ***   -0.568  (1) 
Williams Cos. Inc. B3   -1.736  (0) *   -1.405  (0)   -1.180  (1) 

 

Table 2: t-statistics for Speculative-Grade Firms (Monthly Frequency) 
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Firm Name Rating ELT Asset 
Volatility 

EL Asset 
Volatility 

Equity 
Volatility 

Exxon Mobil Corp. Aaa   -2.016  (0) *   -2.041  (0) *   -1.531  (1) 
General Electric Co. Aaa   -1.542  (0)   -1.524  (0)   -1.519  (0) 
Johnson & Johnson Aaa   -1.719  (1) *   -1.696  (1) *   -1.566  (1) 
Merck & Co. Inc. Aaa   -1.899  (0) *   -1.978  (0) *   -2.112  (0) * 

Pfizer Inc. Aaa   -1.639  (0)   -1.743  (0) *   -1.263  (1) 
3M Co. Aa1   -1.354  (0)   -1.351  (0)   -1.307  (0) 

Microsoft Corp. Aa2   -1.744  (0) *   -1.762  (0) *   -1.862  (0) * 
Coca-Cola Co. Aa3   -2.022  (0) *   -2.035  (0) *   -2.055  (0) * 

Colgate-Palmolive Co. Aa3   -1.392  (0)   -1.432  (0)   -1.652  (0) 
Home Depot Inc. Aa3   -1.755  (0) *   -1.785  (0) *   -1.174  (1) 

BellSouth 
Telecommunications Inc. 

A1   -2.263  (1) **   -2.184  (1) **   -1.773  (1) * 

International Business 
Machines Corp. 

A1   -1.691  (0) *   -1.706  (0) *   -2.110  (0) * 

Alcoa Inc. A2   -1.787  (0) *   -1.735  (0) *   -1.689  (0) * 
Baker Hughes Inc. A2   -1.399  (0)   -1.297  (0)   -1.124  (0) 

Caterpillar Inc. A2   -1.884  (0) *   -1.919  (0) *   -1.689  (0) * 
McDonald's Corp. A2   -2.204  (0) **   -1.702  (1) *   -1.438  (1) 

Target Corp. A2   -2.065  (0) *   -2.035  (0) *   -2.043  (0) * 
The Boeing Co. A3   -2.121  (0) **   -2.286  (0) **   -2.468  (0) ** 

Campbell Soup Co. A3   -1.858  (0) *   -1.939  (0) *   -2.101  (0) * 
Schering-Plough Corp. A3   -1.975  (0) *   -2.030  (0) *   -2.092  (0) * 

Ford Motor Co. Baa1   -1.975  (0) *   -2.125  (0) **    -0.920  (1) 
May Department Stores 

Co. Baa1   -1.918  (0) *   -1.843  (0) *   -1.561  (0) 

Ryder System Inc. Baa1   -3.451  (0) ***   -2.931  (0) **   -2.173  (0) ** 
Altria Group Inc. Baa2   -2.304  (0) **   -2.244  (0) **   -2.072  (0) * 

Black & Decker Corp. Baa2   -2.421  (0) **   -2.190  (1) **   -1.302  (1) 
Kellogg Co. Baa2   -2.467  (0) **   -2.478  (0) **   -2.008  (0) * 
Mattel Inc. Baa2   -1.936  (0) *   -1.821  (0) *   -1.590  (0) 

Clear Channel 
Communications Inc. 

Baa3   -2.603  (1) **   -2.550  (1) **   -1.881  (1) * 

Computer Associates 
International Inc. Baa3   -1.951  (0) *   -2.114  (0) *   -1.369  (1) 

Eastman Kodak Co. Baa3   -2.347  (0) **   -2.932  (0) **   -1.910  (0) * 
 

Table 3: t-statistics for Investment-Grade Firms (Annual Frequency) 
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Firm Name Rating ELT Asset 
Volatility 

EL Asset 
Volatility 

Equity 
Volatility 

Bowater Inc. Ba1   -3.649  (0) ***   -3.540  (0) ***   -3.136  (0) ** 
Hilton Hotels Corp. Ba1   -3.876  (0) ***   -3.551  (0) ***   -1.999  (0) * 

Unisys Corp. Ba1   -2.325  (0) **   -2.247  (0) **   -1.858  (0) * 
Apple Computer Inc. Ba2   -1.146  (0)   -1.127  (0)   -1.363  (0) 

Cummins Inc. Ba2   -2.987  (0) **   -2.072  (0) *   -1.800  (0) * 
Edison International Ba2   -2.195  (0) **   -1.864  (0) *   -1.599  (0) 

Smithfield Foods Inc. Ba2   -2.322  (0) **   -2.488  (0) **   -1.216  (1) 
Westar Energy Inc. Ba2   -2.200  (0) **   -1.945  (0) *   -1.541  (0) 

Dana Corp Ba3   -2.466  (1) **   -2.285  (1) **   -1.600  (0) 
Georgia-Pacific Corp. Ba3   -1.791  (0) *   -1.785  (0) *   -1.634  (0) 
Delta Air Lines Inc. B1   -2.534  (0) **   -3.224  (0) ***   -1.087  (0) 

Goodyear Tire & Rubber 
Co. B1   -1.770  (0) *   -2.088  (0) *   -0.475  (0) 

Xerox Corp. B1   -2.306  (0) **   -2.018  (0) *   -1.323  (0) 
Dillard's Inc. B2   -2.200  (0) **   -3.289  (0) ***   -1.457  (0) 

Pep Boys - Manny, Moe 
& Jack 

B2   -2.065  (1) *   -1.594  (1)   -1.519  (0) 

Advanced Micro Devices 
Inc. B3   -1.791  (0) *   -1.876  (0) *   -2.007  (0) * 

CMS Energy Corp. B3   -2.220  (0) **   -1.493  (0)   -0.697  (0) 
Kulicke & Soffa 
Industries Inc. 

B3   -2.251  (0) **   -2.241  (1) **   -1.370  (1) 

Milacron Inc. B3   -4.534  (0) ***   -3.017  (0) **   -0.212  (0) 
Williams Cos. Inc. B3   -2.015  (0) *   -1.858  (0) *   -0.420  (1) 

 

Table 4: t-statistics for Speculative-Grade Firms (Annual Frequency) 
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Looking at the sample of fifty firms as a whole, the null hypothesis that the asset volatility 

process contains a unit root is rejected at the 10% significance level either at the monthly or 

annual frequency for 46 of the firms, regardless of whether the ELT or EL model is used.  As 

a rejection of the null hypothesis indicates that the volatility process reverts to a constant 

value, this provides strong evidence that the asset volatility of many firms is mean-reverting.  

On the other hand, the hypothesis that the equity volatility process of a firm contains a unit 

root is rejected at the 10% significance level for 26 firms. 

 

The weakest evidence of volatility being mean-reverting is for firms with a Aaa or Aa rating.  

If the ELT model is used to calculate asset volatility, the null hypothesis is rejected at the 

10% significance level for three firms if monthly data is used and for six firms if annual data 

is used.  On the other hand, if the EL model is used, slightly more firms are found to have an 

asset volatility process that is mean-reverting: the hypothesis of a unit root is rejected at the 

10% significance level for four firms if monthly data is used and for seven firms if the data is 

of an annual frequency.  However, at the 10% significance level, only one firm with a Aa 

rating or higher (Exxon Mobil) had an equity volatility that was mean-reverting if monthly 

data is used, while the equity volatility of three firms was seen to be mean-reverting when 

annual data is used.  Therefore, even though the group of ten firms with a rating of Aaa or Aa 

provides the weakest evidence of asset volatility being mean-reverting, the evidence is far 

stronger for asset volatility to be mean-reverting than for equity volatility to be mean-

reverting. 

 

One reason that the long-term mean asset volatility of a firm may change is if the nature of 

the firm changes, for instance, through a merger or acquisition.  As an example, if a large 

firm with a low asset volatility buys a smaller firm with a high asset volatility, it is likely that 

the asset volatility of the large firm will increase.  Out of the firms in the sample, those with 

Aaa or Aa ratings went through the greatest amount of merger and acquisition activity 

between 1993 and 2003, and this may explain why this group of firms shows the weakest 

evidence of asset volatility being mean-reverting.  

 

For the forty firms with a rating of A or lower, the evidence that firm-specific asset volatility 

is mean-reverting is seen to be strong, with the null hypothesis of a unit root being rejected at 

the 10% significance level for thirty-eight firms if annual data is used together with the ELT 

model (the null hypothesis is not rejected for Baker Hughes and Apple Computer only).  
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However, the evidence that equity volatility is mean-reverting becomes weaker as the credit 

quality of firms decreases: the null hypothesis is rejected at the 10% significance level for 

eight, five, four and one of the groups of firms with an A, Baa, Ba and B rating respectively.  

This is a consequence of the leverage effect mentioned in the introduction.  The credit quality 

of many of the firms with a B-rating had fallen in recent years and their leverages had 

increased substantially.  Consistent with the leverage effect, their equity volatilities had risen 

noticeably during this period, so that the hypothesis of a unit root could not be rejected.  The 

one firm with a B-rating whose equity volatility is seen to be mean-reverting is Advanced 

Micro Devices, whose senior unsecured debt had a rating of Ba or B throughout the period 

being studied.  As a result, the leverage of this firm did not vary as much as the other nine 

firms with a B-rating, and thus it is not too surprising that the null hypothesis that its equity 

volatility process contains a unit root is rejected at the 10% significance level.   

 

The asset volatilities implied by the EL model provide slightly weaker evidence for mean-

reversion of asset volatilities, with the null hypothesis that the asset volatility process 

contains a unit root being rejected at the 10% significance level for thirty-six of the forty 

firms with a rating of A or below when annual data is used.  Although the t-statistics of 0ˆ
iη  

for the ELT and EL models were similar for investment-grade firms, there was a greater 

differential for the speculative-grade firms.  For many values of the input parameters, the 

optimal default boundary is lower for the EL model than for the ELT model ceteris paribus6.  

Hence, for firms with a very low equity value, the value of the firm’s assets will be lower if 

the EL model is used.  As a consequence of (50), the asset volatility implied by the EL model 

will therefore be higher than that implied by the ELT model for firms of a poor credit quality.  

However, far from the default boundary, the asset volatilities given by the two structural 

models are similar. 

 

Although the evidence of volatility being mean-reverting is weaker when monthly data is 

used, the evidence is stronger for the mean-reversion of asset volatility than for the mean-

reversion of equity volatility.  Out of the sample of fifty firms, the null hypothesis that the 

asset volatilities implied by the ELT and EL models contains a unit root is rejected at the 

                                                                 
6 In the ELT model, the debt structure of a firm consists of finite-maturity bonds, and therefore the firm has to 
pay coupons and the principal of debt that matures.  However, the debt structure in the EL model consists of 
perpetual bonds, so that the firm only has to pay coupons.  Therefore, a firm is more likely to remain solvent if 
the value of its assets is far below the principal value of outstanding debt in the EL model than in the ELT 
model.  As a result, the optimal default boundary in the EL model is often below that in the ELT model.    
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10% significance level for thirty and twenty-seven firms respectively.  However, the null 

hypothesis that the equity volatility process contains a unit root is rejected at the 10% 

significance level for only twelve of the fifty firms when monthly data is used.  Focusing on 

the forty firms with a rating of A or below, the asset volatilities implied by the ELT and EL 

models were found to be mean-reverting at the 10% significance level for twenty-seven and 

twenty-three firms respectively, while equity volatility was mean-reverting for only eleven 

firms.  

 

 

4. Conclusions 

 

In this paper, two structural models with endogenous default barriers were extended to allow 

the principal value of a firm’s debt to grow at a constant rate.  The value of the tax benefits 

and the costs of default were calculated in such a way that for realistic values of the input 

parameters, the optimal default boundary is a monotonic decreasing function of the asset 

volatility.  Also, the Extended Leland model was seen to be a special case of the Extended 

Leland & Toft model, so that all expressions in the EL model are equal to the limit of the 

corresponding expressions in the ELT model as the initial time-to-maturity of the bonds tends 

to infinity.   

 

These two models were then used in conjunction with observable equity data to calculate 

implied asset volatilities.  Unit root tests were applied to the implied asset volatility and 

equity volatility processes to determine whether the processes are mean-reverting.  Evidence 

that asset volatility is mean-reverting was found for forty-six of the fifty firms in the sample, 

regardless of which of the two structural models were used.  Further, the number of firms 

whose asset volatility is mean-reverting was approximately the same for each credit class, 

apart from firms with a rating of Aa or above, which provided the weakest evidence.  

However, the number of firms whose equity volatility is mean-reverting was in general lower 

for the poorer credit classes, consistent with the leverage effect. 

 

As mentioned in the introduction, structural models with a constant asset volatility give 

equity volatilities that are positively related to a firm’s leverage, consistent with empirical 

evidence.  This paper suggests a slightly stronger result: the equity volatilities that are 
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observed in the market are consistent with a mean-reverting asset volatility for the majority of 

firms. 

 

The consequences of this result are many and varied, both in terms of implications for current 

models and for suggesting a possible direction for future research.  First, this is further 

evidence that a structural model with a constant asset volatility provides benefits to both 

equity and debt modelling, and is more consistent with empirical evidence than, say, 

assuming that the equity volatility of a firm is constant.  In the structural approach, changes in 

equity volatility can be split into two components: change due to variations in a firm’s 

leverage (through the leverage effect) and change due to variations in a firm’s asset volatility.  

The result that this second component is mean-reverting has consequences for the modelling 

of equity and the pricing of equity options, e.g. if a firm’s asset volatility is below its long-

term mean, then its equity volatility is likely to rise in the future provided that the firm’s 

leverage does not fall significantly.  Also, the mean-reversion of asset volatility has 

implications for the calibration of structural models, the modelling of debt and the pricing of 

corporate bonds and credit derivatives, e.g. that a long-term measure of asset volatility should 

be used when pricing long-dated credit products.  Furthermore, this paper suggests that a 

structural credit model with a stochastic asset volatility that is mean-reverting would be a 

powerful tool.  As the model would be consistent with equity data, it could be used to model 

equity prices and price equity derivatives.  Being a structural model, it could also be used to 

price debt and credit derivatives; depending on how consistent these debt prices are with 

empirical data, the model could be used in the integration of equity and debt modelling. 

 

This paper looked at equity volatility calculated using 250 days of historical price data.  For 

firms where there is a long history of option prices available, the implied equity volatilities 

could be used to calculate asset volatilities.  It would be interesting to note whether the 

implied equity volatilities are also consistent with a mean-reverting asset volatility process.    
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