
���������	�
����
��� ������ �����������

����������	
������������
�����
��
�
����������� ��������

�����
���
��������
� ��������� � ���� � �� ! �

" " " #$��#%��#�%#�&�

�

� �

�

�
�
�

�
�� ���������'(�����
���������� �
��
� �������) �
���%���
��*���

��

�
�
�

� �� �� �� �� �	
������� ����� �	�
�
�
�

� ����������

�
� ������������������	
���
���������
�������������	��� ������ ������ ����������	��� �� ��
����
�
� �����������������������
��	��
�������	������	����	������ ������	���������	��
����	���
���
�
������ ��������
������	���	�����	��
�� ���	�����������	�� ����� ����	���
�
�
�

� ��� ���� ��	
��� � ��
��������	� ��

� ������
�����	�� 	������	� 	����	�������

�

� �! �" �# �� ��������
�$ �%��� ����
�
�

& '�()*+,,-�
�
�

� �! �" �# �� ������
� �������	��.���������/ ��������
��
�������������	��� ������ ����

� ����������	��� �� ��
���
0� ���1�� �
�� �����2 3�� ����� �����4�

$ �%��� ����
� �������	��.���������/ ��������
��
�������������	��� ������ ����

� ����������	��� �� ��
���
0� ���1������� ���2 3�� ����� �����4�

�
� �

�

�

�

�

�

�

'�������

����������������	���������������	1�

�
/ ��������5���	���� �������

��
�������������	��� ������ �����
� ��� �����	��5������

� �� ��
���� 6+�(! 7 ��� 8 �
� ��1�,(++9�:;,<-;�.�=1�,(++9�99>:,(�
0?� ���1���������?����	��2 3�� ����� �����4�

AN AUTOMATED FX TRADING SYSTEM USING

ADAPTIVE REINFORCEMENT LEARNING

M.A.H. DEMPSTER and V. LEEMANS

Centre for Financial Research

Judge Institute of Management

University of Cambridge

&

Cambridge Systems Associates Limited

{mahd2, vl227}@cam.ac.uk
www-cfr.jims.cam.ac.uk

24th December 2004

Abstract

This paper introduces adaptive reinforcement learning (ARL) as the basis for a fully
automated trading system application. The system is designed to trade FX markets and
relies on a layered structure consisting of a machine learning algorithm, a risk management
overlay and a dynamic utility optimization layer. An existing machine-learning method
called recurrent reinforcement learning (RRL) was chosen as the underlying algorithm for
ARL. One of the strengths of our approach is that the dynamic optimization layer makes
a fixed choice of model tuning parameters unnecessary. It also allows for a risk-return
trade-off to be made by the user within the system. The trading system is able to make
consistent gains out-of-sample while avoiding large draw-downs.

1 INTRODUCTION TO TRADING SYSTEMS

An active subject of research among professionals as well as academics over the past decade
has been the construction of systems that autonomously trade in securities or currencies:
and a summary of earlier work can be found in [1]. In the quest for a trading algorithm,
artificial intelligence methods have been employed to construct systems that are better
than or at least as good as their human counterparts in timing trade entry and exit oppor-
tunities. Often such a system takes as inputs past market prices (or some transformation

1

thereof) and attempts to return a trading signal indicating the preferred position to hold in
a given currency relative to another (i.e. long or short). The majority of systems described
in the literature aim to maximize trading profits or some risk-adjusted measure such as the
Sharpe ratio.

Many attempts have been made to come up with a consistently profitable system and
inspiration has come from different fields ranging from fundamental analysis, econometric
modelling of financial markets, to machine-learning [5, 8]. Few attempts were successful
and those that seemed most promising often could not be used to trade actual markets
because of associated practical disadvantages. Among others these included large draw-
downs in profits and excessive switching behaviour resulting in very high transaction costs.
Professional traders have generally regarded those automated systems as far too risky in
comparison to the returns they were themselves able to deliver. Even if a trading model
was shown to produce an acceptable risk-return profile on historical data there was no
guarantee that the system would keep on working in the future. It would cease working
precisely at the moment it became unable to adapt to the changing market conditions.

This paper aims to deal with the above problems to obtain a usable, fully automated
and intelligent trading system. To accomplish this a risk management layer and a dynamic
optimization layer are added to a known machine-learning algorithm. The middle layer
manages risk in an intelligent manner so that it protects past gains and avoids losses by re-
straining or even shutting down trading activity in times of high uncertainty. The top layer
dynamically optimizes the global trading performance in terms of a trader’s risk prefer-
ences by automatically tuning the system’s hyper-parameters. While the machine-learning
system is designed to learn from its past trading experiences, the optimization overlay is
an attempt to adapt the evolutionary behaviour of the system and its perception of risk
to the evolution of the market itself. In the past an automated trading system based on 2
superimposed artificial intelligence algorithms was proposed [5]. This research departs from
a similar principle by developing a fully layered system where risk management, automatic
parameter tuning and dynamic utility optimization are combined. (For an earlier attempt
in this direction see [13].) The machine learning algorithm combined with the dynamic
optimization is termed adaptive reinforcement learning.

Section 2 of this paper briefly discusses the RRL machine-learning algorithm underlying
the trading system. Section 3 looks at the different layers of the trading system individually.
In 3.1 the modifications to the standard algorithm are set out and in 3.2 and 3.3 the risk
management and optimization layers are explained. The impressive performance of the
trading system is demonstrated in Section 4 and the final section concludes.

2

2 THE MACHINE-LEARNING ALGORITHM

The basic model from which we depart was originally applied with some success to FX
trading by Moody and Saffell [8] in 1999. This section briefly reviews the mathematical
model specification and estimation procedure as explained in [9]. The trading model takes
as inputs standardized past time series changes and outputs the preferred position (long or
short) in one of the two currencies involved. Further, it is assumed that the model can be
specified as a recurrent single layer neural network of the price of one currency in terms of
another, i.e.

Ft = sign(
M∑

i=0

wi,trt−i + wM+1,tFt−1 + vt) (1)

where Ft ∈ {−1, 1} is the position to take at time t, wt and vt are respectively the weight
vector and threshold of the neural network at time t and rt := pt − pt−1 are the returns
in terms of price changes of the FX time series. For simplicity of exposition we assume
here that the discrete time index t refers to a basic data frequency. We also assume in
this section only that the trading system always takes one position or another. For a more
detailed discussion of the actual continuous time situation see [1-5].

At every trade exactly 1 unit of a certain currency is bought or sold and hence the
profit at time T can be calculated (ignoring interest rates) as:

PT =
T∑

t=0

Rt (2)

Rt := Ft−1rt − δ|Ft − Ft−1|, (3)

where δ is the transaction cost per trade.

For computational efficiency, [8, 9] choose the differential sharpe ratio as the risk-
adjusted return measure to be optimized. It is derived by considering a moving average
version of the classical sharpe ratio given by:

Ŝ(t) :=
At

Bt
(4)

At = At−1 + η(Rt −At−1) (5)

Bt = Bt−1 + η(R2
t −Bt−1). (6)

When Ŝ(t) is expanded as a Taylor series in the adaptation parameter η, the first derivative
term can be regarded as an instantaneous performance measure

Dt :=
dŜ(t)
dη

|η=0 (7)

=
Bt−1∆At − 1

2At−1∆Bt

(Bt−1 −A2
t−1)

3
2

. (8)

3

Because of its simplicity and tractability, a simple gradient ascent is used as optimization
algorithm to gradually improve the model parameters by means of the recursion:

wi,t = wi,t−1 + ρ∆wi,t. (9)

∆w can then be approximated for an on-line update by considering only the term that
depends on the most recent trading return Rt, viz

∆wi,t =
dDt

dwi
(10)

≈ dDt

dRt
{dRt

dFt

dFt

dwi,t
+

dRt

dFt−1

dFt−1

dwi,t−1
}. (11)

Since the neural network is recurrent, an updating scheme similar to back-propagation
through time can be applied with:

dFt

dwi,t
≈ ∂Ft

∂wi,t
+

∂Ft

∂Ft−1

dFt−1

dwi,t−1
. (12)

All terms and factors in (11) and (12) can be calculated from the previous expressions.
Together, they form the set of equations necessary for updating the model weights. This
machine-learning technique was termed recurrent reinforcement learning (RRL) [9].

As demonstrated by Gold [6], RRL lends itself perfectly to a rolling-window approach
[3]. Here, the model is trained for a number of epochs ne on a training set of length Ltrain

and then applied to a test set of length Ltest. Next, the training window is advanced
by Ltest points and the whole procedure is repeated. The out-of-sample performance of
the model is the sum of the performances on the individual non overlapping test sets. We
found that the optimal values of Ltrain and Ltest on our FX (midpoint quote) datasets were
around 2000 and 500 ticks respectively, which are the values chosen in [6]. The number of
recursive training epochs ne was set to 10. The optimal values of these 3 parameters did
not change significantly when different FX data sets were used.

3 THE TRADING SYSTEM

The trading system discussed in this paper consists of 3 layers: the basic trading system, the
risk and performance management layer, and the paramater optimization layer as shown
in Figure 1. Each of these layers is discussed in more detail in the sequel, starting with the
bottom-most layer.

3.1 Layer 1: Extensions to the machine-learning algorithm

The core of the trading system discussed here is the RRL algorithm [8], discussed in the
previous section. A number of changes to this basic algorithm were necessary however to

4

Figure 1: Schematic illustration of the automated trading system consisting of 3 main layers: the
machine-learning algorithm, the risk and performance management layer and the dynamic optimization
layer. The combination of the first and third layer is termed adaptive reinforcement learning (ARL).
The trader’s risk aversion ν is an exogenous parameter to the system. Layer 3 optimizes the trailing
stop-loss level x, the trading threshold y, the trading cost δ, the adaptation parameter η and the learning
rate ρ. The auto-shut-down critical loss parameter z was fixed.

5

improve its performance and to make it suitable for a structural risk management approach.

RRL was extended to take account of other inputs than past returns rt−i and the current
position Ft. Experiments were conducted to include signals originating from 14 popular
technical indicators as first suggested in [4]. Performance did not increase by adding in-
dicators to current data, except when a low number of past returns M was fed into the
system. The filtering of the price data timeseries offered by the technical indicators thus
did not contribute to increased performance on current data. This indicates that the RRL
algorithm is able to efficiently exploit the information in past returns timeseries.

During the training phase, the transaction cost factor δ was not fixed to the actual
bid-ask spread as in [6], but was instead left as a tuning parameter. Setting a higher cost
factor, necessitates a higher expected raw profit before engaging in a trade. Consequently
the parameter δ will influence the performance and risk profile of the resulting trading
strategy.

Large jumps in FX returns, as e.g. when central banks intervene, can introduce instabil-
ity into the underlying RRL algorithm. To prevent the weights from taking unreasonably
large values, all weights were rescaled by a factor f < 1 as soon as one of the weights
hit a certain threshold value. This also prevents the weights from drifting slowly upwards
without bound. This phenomenon is undesirable because the user may get incorrect model
evaluations at some point because of the numerical instabilities associated with very large
weights.

We also improved the performance of the RRL trading model by implementing a bet-
ter position updating scheme. The traditional update scheme sometimes causes indecisive
switching between different positions from one tick to the next. This can generate huge
transaction costs and is highly undesirable. This behaviour is reduced by recalculating the
output Ft of the trading model in (1) twice. The first time is as before: after the new
inputs have been received a new trading signal is generated. This trading signal is in fact
based on the weights wi,t−1 that were calculated in the previous time period. Here a sec-
ond evaluation of the model is added after the weights are updated for the current period.
Since the weight updating is designed to improve the model at each step, it makes sense to
recalculate the trading decision with the most up-to-date version of the parameters wi,t.
This recalculation may result in a different trading signal than was previously output by
the model. This final trading signal is used for effective decision making by the risk and
performance control layer.

6

3.2 Layer 2: Risk and performance management

One of the strengths of the layered structure is that the decision to actually enter a trade is
separated from the trade recommendations made by the basic structure in Layer 1. While
Layer 1 outputs the preferred position to hold in the model and thus idealized world, Layer
2 evaluates this trade recommendation by considering additional risk factors relating to
the real world before taking a decision to trade. These risk factors impose requirements
on real world trading systems that are hard to include in the trading model itself, but can
more easily be treated in the risk management overlay structure.

More than half a century ago J.M. Keynes, the famous economist noted that: ‘The
markets can stay irrational longer than you can stay solvent.’ When a trade goes bad, a
psychological tendency exists to keep the position open in the hope that the market will
reverse itself and the trade will again turn profitable. This implies a risk-seeking attitude
towards losses as opposed to risk-aversion with regard to profits. However, the market
could very well not reverse itself and eventually force the close out of the position at a
huge loss. This characteristic of human psychology needs to be avoided by a successful
automated trading system. Layer 2 avoids this pitfall by building in a trailing stop-loss
for every trade. A stop-loss is set and adjusted so that it is always x basis points under
or above the best price ever reached during the life of the position. At this point x is an
unknown parameter that will influence the performance. A numerical value for x will be
obtained via the optimization in Layer 3.

If a position is closed out before a trade exit signal is given by the system, the current
market behaviour was clearly not expected by the RRL trading model. Otherwise it could
have foreseen the situation and would not have suffered a loss. If the market behaves ‘irra-
tionally’ according to the model, it is likely that its deviant behaviour will persist for some
time. For this reason a cool-down period is included in Layer 2. After the position has been
closed out the system needs to wait a while before trading can be resumed. The length
of this optimal period of non-activity was determined experimentally as a fixed number of
basic time intervals (here 1 minute).

An important feature of the risk management layer is that allows the evaluation of the
strength of the trading signal given by Layer 0. This is accomplished by looking at the
unthresholded output generated by (1). For example, a very strong buy signal corresponds
to an output close to +1. The performance management systems offers the possibility of
validating a trading signal only when the output exceeds a specified non-zero threshold
instead of just applying a sign-function. This threshold is a parameter y that is not fixed
in advance but that can be set by the optimization in Layer 3 to influence the risk-return
trade-off made by the trading system as a whole.

7

It is common knowledge in the trading community that automated trading systems
often work for a certain while until they suddenly stop being profitable. At that point, the
system must be shut down to avoid further losses and should be redesigned and thoroughly
tested before making it operational again. The performance management layer makes sure
that anomalous performance is detected in an early stage to protect the profits already
earned. In that case, the system is automatically shut down and a warning is issued. The
detection module employs a measure known as maximum draw-down. If at a certain point
the draw-down in cumulative profits from its maximum proves larger than an amount z,
the auto-shut-down procedure is initialized. This number z can be determined as a Value
at Risk by using a fitted draw-down distribution, or it can be set more pragmatically to a
fixed value.

3.3 Layer 3: Dynamic optimization of utility

The trading system up to Layer 2 is able to trade autonomously and manage risk appro-
priately. However, the system’s risk-return profile depends on a number of parameters
δ, η, ρ, x, y and z discussed above. It is the task of Layer 3 to search for optimal values
of these parameters so that some utility of the resulting risk-return profile is maximized.
Therefore, it is key to find a suitable utility function that is dependent on the cumulative
profit, on a measure of trading risk and on the supervising trader’s personal risk aversion.
We define the risk measure Σ and utility function U as follows:

Σ :=
∑N

i=0(Ri)2I(Ri < 0)∑N
i=0(Ri)2I(Ri > 0)

(13)

U(R, Σ, ν) := a.(1− ν).R − ν.Σ, (14)

where the strategy’s raw return at time i is Ri := Wi −Wi−1, Wi is the wealth or cumula-
tive profit at time i, R = WN

N is the average profit per frequency interval, ν is the trader’s
personal risk aversion, a is a constant and N is the number of out-of-sample time intervals.
A trader will get a higher utility from a larger average profit R and a lower risk factor Σ.
A higher risk aversion parameter ν induces the optimization to find a performance profile
with lower risk. Often this also implies a lower return.

The risk measure in (13) was constructed in such a way that it satisfies the following
conditions:

1. Large negative strategy returns imply a higher risk value than several smaller ones
that result in the same total negative return. This is because we want to avoid large
sudden draw-downs that could, for example, lead to margin calls.

2. A larger total impact of losing trades (as measured by the cumulative sum of squares of
the negative strategy returns

∑N
i=0(Ri)2I(Ri < 0)) versus the total impact of winning

trades (as measured by the cumulative sum of squares of the positive strategy returns

8

∑N
i=0(Ri)2I(Ri > 0)) implies a higher risk value even if the total profit remains

the same. The risk measure Σ essentially implies that systems with monitonically
increasing profits should be favoured over ones with whipsawing profits.

3. Comparing the total impact of losing versus winning trades is done in a relative way,
i.e. by using a ratio, so that strategies that produce returns which only differ by a
constant scaling factor result in the same risk value. Since the positive mean return
would be multiplied by the scaling factor, the scaled up strategy would be preferred
in a risk-return framework.

4. The risk measure Σ penalizes only negative strategy returns, and not positive returns
smaller than the mean. Using a centered semivariance measure would perversely
assign a higher risk value to a strategy with infrequent very profitable trades as these
shift the mean upwards while leaving the lower part of the distribution unaltered.

It should be noted that due to the non-standard from of our chosen risk measure Σ, we can
not rely on earlier theoretical work by Ruszczyński et al. [11],[12] that determines bounds
for the risk-aversion parameter in order for efficient strategies in terms of risk-return utility
to be second order stochastically dominant. It is left to further research to extend to our
risk measure Σ proofs of consistency between the volatility risk measure and second order
stochastic dominance as in Ogryczak and Ruszczyński [10].

Our utility function depends on the average profit R and the risk measure Σ, which
in turn are controlled by the values of 5 parameters: trading cost δ, adaptation parameter
η, learning rate ρ, stop-loss parameter x and trading threshold y. Hence the parameter
optimization problem becomes formally:

max
δ,η,ρ,x,y

U(R, Σ : δ, η, ρ, x, y; ν). (15)

Unfortunately, (15) cannot be solved analytically as we use an online updating scheme.
Moreover, numerical optimization in a 5-dimensional space requires too much computing
power and time. Therefore, we implement a one-at-a-time random search optimization in
which each parameter is approximately optimized individually while keeping the others
constant:

max
δ

max
η

max
ρ

max
x

max
y

U(R, Σ : δ, η, ρ, x, y; ν). (16)

The individual optimizations were performed by evaluating 15 random values distributed
normally around the starting value and picking the best. This saves function evaluations
and we do not have to estimate numerical derivatives of a utility function that is not
smooth in the optimized parameters. Of course, other more sophisticated optimization
schemes could be applied.

One-at-a-time optimization only works if the objective function is sufficiently well-
behaved. To make a preliminary qualitative assessment of the response behaviour of the

9

system when its 5 tuning parameters are adjusted, two numerical initialization vectors for
these 5 parameters were chosen and the local performance behaviour monitored. Each
of the 5 parameters were modified in turn while keeping the other parameters constant.
Figures 5 and 6 show the local performance behaviour for one of the initialization vectors
chosen. The other vector gave very similar results. In Figures 7 and 8 the associated per-
formance profiles are plotted in risk-return space to illustrate the impact on performance.
The main empirical observation is that performance measured in each of the dimensions
is generally well-behaved when each of the 5 parameters lies within vague boundaries that
can easily be read from the graphs. Allowing values outside these boundaries will generally
increase the search time of the optimization.

The length of the time for this top-layer optimization interval is set to a multiple of the
training interval length Ltrain so that it is safe to superimpose it on the previous layers.
It is sensible to choose a relatively lower frequency for this optimization as the parameters
being optimized determine the risk management characteristics as well as the adaptive
behaviour of the underlying learning algorithm. As these are both aspects of the system
that typically span multiple time periods or even multiple trades, more time is required
to see the impact of these hyper-parameters on trading performance. At the start, the 5
parameters δ, η, ρ, x and y are initialized with 5 randomly chosen values because there is
no information available about what values result in good performance. The optimization
then searches for values that result in optimal utility of performance over some past period
of time. The ARL framework not only eliminates the problem of having to choose and
fix hyper-parameters a priori, but also allows the trading system to dynamically adapt to
changing market conditions and even to take into account changing risk preferences of the
user over time.

4 APPLICATION TO FX TRADING

This section reports the use of the ARL trading system to trade the foreign exchange (FX)
markets based on historical data. For this purpose, the system was fed historical FX data
and its out-of-sample performance on this data recorded and analyzed. A few more exper-
iments were conducted to test the impact of the dynamic optimization of utility.

Figure 2 shows the out-of-sample cumulative profits when the system was used to trade
the Euro-Dollar currency pair1. Trading was only allowed during the active hours that cor-
respond to sufficient liquidity: from 9 a.m. London time until 5 p.m. London time. During
these hours, the average bid-ask spread in the inter-dealer FX market was lower than 2 pips.

1Historical FX data for Euro-Dollar was kindly supplied by HSBC Bank, London, for which we are grateful.

The frequency is 1 minute and the data spans a period from January 2000 until January 2002.

10

As execution speeds and liquidity are usually very high on interdealer electronic trading
platforms like EBS and Reuters3000, no further slippage was assumed. The ARL system
was able to earn 5104 pips over 2 years, or more than 26% per annum. Given the absence
of any serious draw-dawns in the profit graph, this is not a bad performance. Preliminary
results on recent FX market data covering a period up to January 2004 indicates that the
profit curve exhibits a diminishing slope. This could signify that markets are becoming
more and more efficient and that it is becoming more difficult to make profits when only
price information is fed into the system.

0 0.5 1 1.5 2 2.5

x 10
5

−1000

0

1000

2000

3000

4000

5000

6000

Time (01−2000 01−2002)

A
bs

ol
ut

e
P

ro
fit

 (
pi

ps
)

0 0.5 1 1.5 2 2.5

x 10
5

0.8

0.85

0.9

0.95

1

1.05

Time (01−2000 01−2002)

E
ur

o−
D

ol
la

r
E

xc
ha

ng
e

R
at

e
(p

ip
s)

(a) (b)

Figure 2: (a) Out-of-sample cumulative profit measured in basis points for trading exactly one Euro
against Dollar from January 2000 until January 2002. The trading system was dynamically optimized
for a risk-aversion parameter of 0.5. The automated trading system earned a profit of 5104 pips or
approximately 26% p.a., whereas a buy and hold strategy would have resulted in a 1636 pips loss or
approximately an 8% p.a. loss. (b) The Euro-Dollar exchange rate over the period considered.

To illustrate the benefits of our structural approach and the top-level utility optimiza-
tion, a series of experiments was run to compare performance and utility of performance
with and without dynamic optimization turned on. Table 1 shows the resulting perfor-
mance statistics for traders with different risk aversions. From these experiments we see
that as risk aversion increases, utility generally goes down because of heavier penalization
of the risk factor. This makes the system less free to chose a utility maximizing strategy.
When very low risk aversion parameters of 0 until 0.2 are used, the impact of risk in the
utility function is insufficient to obtain a less risky strategy. When risk aversion is increased
until 0.4, the cumulative profit and total number of trades go up, but the average profit
made per trade decreases. The reason why the system is choosing less profitable trades

11

on average is most likely because it needs to select less risky trades. Fortunately at this
point the system adopts a new strategy that takes on a larger number of trades so that the
cumulative profit still ends up high, despite the average profit and the utility going down.
When the risk aversion is further increased until 0.9, the system needs to select only the
most profitable trades and thus the average profit increases again. The total number of
trades drops and unfortunately so does the cumulative profit.

ν WN Σ N R Direction U with U without
(pips) (pips) Correct (%) layer 3 layer 3

0 4779 0.5334 2854 1.67 62 % 2.07 1.92
0.1 4717 0.5369 2852 1.65 62 % 1.79 1.67
0.2 4717 0.5369 2852 1.65 62 % 1.53 1.43
0.3 4663 0.5596 3004 1.55 62 % 1.25 1.18
0.4 5144 0.5225 3353 1.53 62 % 1.13 0.93
0.5 5104 0.4880 3337 1.53 62 % 0.86 0.69
0.6 5083 0.4962 3220 1.58 62 % 0.58 0.44
0.7 4780 0.4254 3129 1.53 61 % 0.32 0.19
0.8 4635 0.3901 2657 1.74 62 % 0.09 -0.05
0.9 4669 0.3761 2639 1.77 63 % -0.14 -0.30

Table 1: Out-of-sample heuristics on the trading simulations: Risk aversion ν, cumulative profit WN ,
risk σ, total number of trades N , average profit per trade R, percentage of trades in the right direction
(after deduction of costs), utility with dynamic layer 3 optimization and the corresponding utility
without layer 3 optimization turned on. While trading, the spread was fixed at 2 pips and the system
was restricted to only trade during hours when the true spread was not higher than 2 pips.

Figure 3 demonstrates that when realistic risk aversion parameters larger than 0.3 are
used, the optimization layer makes sure that the resulting system becomes less and less
risky as the risk aversion parameter is increased. The average net profit made per trade
ranged from 1.53 pips up to 1.77 pips, depending on the trader’s risk aversion.

To demonstrate further that the dynamical optimization performed in layer 3 adds to an
increased trading performance, we compared the utilities of performance for different risk
aversions with the corresponding utilities when no dynamic optimization was performed.
In the second case, the values of the 5 hyper-parameters were set so that they gave optimal
performance on the whole dataset. To assure that this static parameter setting is the best
one possible, and thus provides a reliable benchmark, static optimal values were calculated
based on the training as well as the test sets. It should be noted that the results with
those static parameters are only meant as an upper boundary on performance without op-

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

Risk Aversion Parameter

T
ra

di
ng

 S
tr

at
eg

y
ris

k

Figure 3: Out-of-sample trading risk vs. risk aversion parameter. The resulting performance of the
trading system becomes less risky as the risk aversion parameter in the layer 3 optimization is increased.
For very low risk aversion parameters, the impact of risk in the utility function is insufficient to make
the strategy less risky.

timization and not as a reflection of real performance. Indeed, when optimizing over both
training and test sets, knowledge of all future prices is assumed at any point in time. Hence,
these static parameter results are better than what can be achieved in out-of-sample trad-
ing. Nevertheless, they provide us with a best-case scenario for static parameter settings.
Ideally the ARL system should be able to deliver an even better performance compared to
this hard-to-beat benchmark. Figure 4 shows the utilities that were obtained for several
risk aversions of the trading system with and without Layer 3 activated. Clearly the ARL
system performs consistently better than the benchmark which illustrates that the addition
of Layer 3 to the trading system contributes significantly to better performance.

5 CONCLUSIONS

In this paper we have developed an automated trading system based on adaptive reinforce-
ment learning. The parameters that govern the learning behaviour of the machine-learning
algorithm and the risk management layer are dynamically optimized to maximize a trader’s
utility. A risk-aversion parameter allows control of the system’s trade-off between strategy
risk and return. ARL automatically tunes the hyper-parameters and thus eliminates the
need for manual model calibration or fitting and hence greatly reduces the risk of data-
snooping. The system performed very well on the high-frequency historical FX dataset

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.5

0

0.5

1

1.5

2

2.5

Risk Aversion Parameter

U
til

ity
 o

f P
er

fo
rm

an
ce

Figure 4: Utility of out-of-sample trading performance vs. risk aversion parameter. The dotted line
represents utility when Layer 3 is deactivated and the parameters are fixed to their optimal static
values. The solid line represents utility when dynamic optimization in Layer 3 is activated. For every
risk aversion setting, applying dynamic optimization was clearly beneficial.

that was examined. A first possible avenue for future research is to examine whether the
trading performance of this system can be further improved by feeding other information
than price data into the system. In earlier work [2, 7] we have demonstrated that order
book or order flow information is able to enhance the performance of automated trading
systems. Secondly, the risk management layer could be extended to control several auto-
mated FX trading systems that trade different currencies, in an attempt to emulate the
actions of a human FX trader.

14

A
P

P
E
N

D
IX

A

0
2

4
6

8
10

12
14

16
18

20
−

10
000

10
00

20
00

30
00

40
00

50
00

T
ot

al
 C

um
ul

at
iv

e
P

ro
fit

 (
pi

ps
)

0
2

4
6

8
10

12
14

16
18

20
0

10
00

20
00

30
00

40
00

50
00

N
um

be
r

of
 T

ra
de

s

0
2

4
6

8
10

12
14

16
18

20
−

4

−
2024

A
ve

ra
ge

 P
ro

fit
 p

er
 T

ra
de

 (
pi

ps
)

0
2

4
6

8
10

12
14

16
18

20
10203040506070

P
er

ce
nt

ag
e

of
 T

ra
de

s
P

ro
fit

ab
le

 (
%

)

0
2

4
6

8
10

12
14

16
18

20
0.

3

0.
350.
4

0.
450.
5

0.
550.
6

S
tr

at
eg

y
R

is
k

F
ac

to
r

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3
0.

35
−

50
00

50
0

10
00

15
00

20
00

25
00

T
ot

al
 C

um
ul

at
iv

e
P

ro
fit

 (
pi

ps
)

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3
0.

35
0

20
0

40
0

60
0

80
0

10
00

N
um

be
r

of
 T

ra
de

s

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3
0.

35
−

2

−
101234

A
ve

ra
ge

 P
ro

fit
 p

er
 T

ra
de

 (
pi

ps
)

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3
0.

35
203040506070

P
er

ce
nt

ag
e

of
 T

ra
de

s
P

ro
fit

ab
le

 (
%

)

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3
0.

35
0.

3

0.
4

0.
5

0.
6

0.
7

0.
8

S
tr

at
eg

y
R

is
k

F
ac

to
r

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

0

50
0

10
00

15
00

20
00

25
00

30
00

T
ot

al
 C

um
ul

at
iv

e
P

ro
fit

 (
pi

ps
)

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

0

50
0

10
00

15
00

20
00

N
um

be
r

of
 T

ra
de

s

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

0123456
A

ve
ra

ge
 P

ro
fit

 p
er

 T
ra

de
 (

pi
ps

)

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

3040506070
P

er
ce

nt
ag

e
of

 T
ra

de
s

P
ro

fit
ab

le
 (

%
)

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1

0.
3

0.
350.
4

0.
450.
5

0.
550.
6

S
tr

at
eg

y
R

is
k

F
ac

to
r

(a
)

(b
)

(c
)

V
ar

yi
ng

th
e

tr
ad

in
g

co
st

δ.
V

ar
yi

ng
th

e
ad

ap
ta

ti
on

pa
ra

m
et

er
η
.

V
ar

yi
ng

th
e

le
ar

ni
ng

ra
te

ρ
.

F
ig

ur
e

5:
L
oc

al
pe

rf
or

m
an

ce
be

ha
vi

ou
r

fo
r

di
ffe

re
nt

va
lu

es
of

th
e

pa
ra

m
et

er
s.

D
ot

te
d

lin
es

re
pr

es
en

t
a

sy
st

em
fe

d
w

it
h

14
te

ch
ni

ca
l
in

di
ca

to
rs

as
ex

tr
a

in
pu

ts
.

15

−
20

0
−

18
0

−
16

0
−

14
0

−
12

0
−

10
0

−
80

−
60

−
40

−
20

0
0

50
0

10
00

15
00

20
00

25
00

30
00

T
ot

al
 C

um
ul

at
iv

e
P

ro
fit

 (
pi

ps
)

−
20

0
−

18
0

−
16

0
−

14
0

−
12

0
−

10
0

−
80

−
60

−
40

−
20

0
0

10
00

20
00

30
00

40
00

50
00

60
00

N
um

be
r

of
 T

ra
de

s

−
20

0
−

18
0

−
16

0
−

14
0

−
12

0
−

10
0

−
80

−
60

−
40

−
20

0
01234

A
ve

ra
ge

 P
ro

fit
 p

er
 T

ra
de

 (
pi

ps
)

−
20

0
−

18
0

−
16

0
−

14
0

−
12

0
−

10
0

−
80

−
60

−
40

−
20

0
020406080

P
er

ce
nt

ag
e

of
 T

ra
de

s
P

ro
fit

ab
le

 (
%

)

−
20

0
−

18
0

−
16

0
−

14
0

−
12

0
−

10
0

−
80

−
60

−
40

−
20

0
0.

4

0.
450.
5

0.
550.
6

0.
650.
7

S
tr

at
eg

y
R

is
k

F
ac

to
r

0
0.

5
1

1.
5

2
2.

5
3

0

10
00

20
00

30
00

40
00

T
ot

al
 C

um
ul

at
iv

e
P

ro
fit

 (
pi

ps
)

0
0.

5
1

1.
5

2
2.

5
3

0

20
00

40
00

60
00

80
00

N
um

be
r

of
 T

ra
de

s

0
0.

5
1

1.
5

2
2.

5
3

01234
A

ve
ra

ge
 P

ro
fit

 p
er

 T
ra

de
 (

pi
ps

)

0
0.

5
1

1.
5

2
2.

5
3

3040506070
P

er
ce

nt
ag

e
of

 T
ra

de
s

P
ro

fit
ab

le
 (

%
)

0
0.

5
1

1.
5

2
2.

5
3

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

S
tr

at
eg

y
R

is
k

F
ac

to
r

(d
)

(e
)

V
ar

yi
ng

th
e

st
op

-l
os

s
de

pt
h

x
.

V
ar

yi
ng

th
e

tr
ad

in
g

tr
es

ho
ld

y
.

F
ig

ur
e

6:
L
oc

al
pe

rf
or

m
an

ce
be

ha
vi

ou
r

fo
r

di
ffe

re
nt

va
lu

es
of

th
e

pa
ra

m
et

er
s.

D
ot

te
d

lin
es

re
pr

es
en

t
a

sy
st

em
fe

d
w

it
h

14
te

ch
ni

ca
l
in

di
ca

to
rs

as
ex

tr
a

in
pu

ts
.

16

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

da
ta

 1

P
ar

am
et

er
 s

et
tin

gs
st

ar
tin

g
po

in
t s

im
ul

at
io

n

O

O

2
lo

ca
l r

is
k−

re
tu

rn
 o

pt
im

a

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

da
ta

 7

P
ar

am
et

er
 s

et
tin

gs
st

ar
tin

g
po

in
t s

im
ul

at
io

n

O

O

2
lo

ca
l r

is
k−

re
tu

rn
 o

pt
im

a

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

da
ta

 9

P
ar

am
et

er
 s

et
tin

gs
st

ar
tin

g
po

in
t s

im
ul

at
io

n

O

O

3
lo

ca
l r

is
k−

re
tu

rn
 o

pt
im

a

O

(a
)

(b
)

(c
)

V
ar

yi
ng

th
e

tr
ad

in
g

co
st

δ.
V

ar
yi

ng
th

e
ad

ap
ta

ti
on

pa
ra

m
et

er
η
.

V
ar

yi
ng

th
e

le
ar

ni
ng

ra
te

ρ
.

F
ig

ur
e

7:
L
oc

al
pe

rf
or

m
an

ce
be

ha
vi

ou
r

fo
r

di
ffe

re
nt

va
lu

es
of

th
e

pa
ra

m
et

er
s,

pl
ot

te
d

in
ri

sk
-r

et
ur

n
sp

ac
e.

17

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

da
ta

 1
0

P
ar

am
et

er
 s

et
tin

gs
st

ar
tin

g
po

in
t s

im
ul

at
io

n

O

2
lo

ca
l r

is
k−

re
tu

rn
 o

pt
im

a

O

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

da
ta

 1
1

P
ar

am
et

er
 s

et
tin

gs
st

ar
tin

g
po

in
t s

im
ul

at
io

n

O

2
lo

ca
l r

is
k−

re
tu

rn
 o

pt
im

a

O

(d
)

(e
)

V
ar

yi
ng

th
e

st
op

-l
os

s
de

pt
h

x
.

V
ar

yi
ng

th
e

tr
ad

in
g

tr
es

ho
ld

y
.

F
ig

ur
e

8:
L
oc

al
pe

rf
or

m
an

ce
be

ha
vi

ou
r

fo
r

di
ffe

re
nt

va
lu

es
of

th
e

pa
ra

m
et

er
s,

pl
ot

te
d

in
ri

sk
-r

et
ur

n
sp

ac
e.

18

References

[1] Austin M.P., Bates R.G., Dempster M.A.H., Leemans V. and Williams S.N. (2004)
Adaptive Systems for Foreign Exchange Trading. Quantitative Finance 4 (4) 37-45.

[2] Bates R.G., Dempster M.A.H. and Romahi Y.S. (2003). Evolutionary Reinforcement
Learning in FX Order Book and Order Flow Analysis. Proceedings of the 2003 IEEE
International Conference on Computational Intelligence for Financial Engineering,
Hong Kong March 2003 355-362.

[3] Dempster M.A.H. and Jones C.M. (2001). A real-time adaptive trading system using
genetic programming. Quantitative Finance 1 397-413.

[4] Dempster M.A.H., Payne T.W., Romahi Y.S. and Thompson G.W.P. (2001). Compu-
tational learning techniques for intraday FX trading using popular technical indicators.
Special issue on Computational Finance, IEEE Transactions on Neural Networks 12
744-754.

[5] Dempster M.A.H. and Romahi Y.S. (2002). Intraday FX trading: An evolutionary re-
inforcement learning approach. Intelligent Data Engineering and Automated Learning
2002, Lecture Notes in Computer Science, Springer-Verlag 2412 347-358.

[6] Gold C. (2003). FX trading via recurrent reinforcement learning. IEEE International
Conference on Computational Intelligence in Financial Engineering 2003.

[7] Leemans V. (2003). Real time trading systems. MPhil dissertation, Centre for Finan-
cial Research, Judge Institute of Management, University of Cambridge.

[8] Moody J. and Saffell M. (1999). Minimising downside risk via stochastic dynamic
programming. 6th International Conference Computational Finance 1999 Edited by
Abu-Mostafa Y. S., LeBaron B., Lo A. W. and Weigend A. S., MIT Press, Cambridge,
MA. 403-415.

[9] Moody J. and Saffell M. (2001). Learning to trade via direct reinforcement. IEEE
Transactions on Neural Networks 12 (4) 875-889.

[10] Ogryczak W. and Ruszczyński A. (1999). From stochastic dominance to mean-risk
models: Semideviations as risk measures. European Journal of Operations Research
116 33-50.

[11] Ogryczak W. and Ruszczyński A. (2002). Dual stochastic dominance and related mean-
risk models. SIAM Journal on Optimization 13 (1) 60-78.

[12] Ruszczyński A. and Vanderbei R.J. (2003). Frontiers of stochastically nondominated
portfolios. Econometrica 71 (4) 1287-1297.

[13] Venturi S. (2003). Evolutionary Algorithms for Currency Trading. PhD thesis, Centre
for Financial Research, Judge Institute of Management, University of Cambridge.

19

