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Abstract

The paper develops a general discrete-time framework for asset
pricing and hedging in financial markets with proportional transac-
tion costs and trading constraints. The framework is suggested by
analogies between dynamic models of financial markets and (stochas-
tic versions of) the von Neumann-Gale model of economic growth. The
main results are hedging criteria stated in terms of ”dual variables” —
consistent prices and consistent discount factors. It is shown how
these results can be applied to a number of specialized models involv-
ing transaction costs and portfolio restrictions.
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1 Introduction

Von Neumann'’s [63] model of economic growth, generalised by Gale [26], was
one of the first models in mathematical economics that served as the basis for
a rich and interesting theory. This theory, in its classical form, was developed
in the 1950s and 1960s. It was purely deterministic: it did not reflect the
influence of random factors on economic growth. First attempts aimed at the
construction of stochastic analogues of the von Neumann—Gale model were
undertaken in the 1970s by Dynkin [17], [18, Chapter 9], Radner [52] and
their research groups. However, the initial attack on the problem left many
questions unanswered, and a substantial progress in the field was made only
in the 1990s (see the survey by Evstigneev and Schenk-Hoppé [21]).

The main idea of this work is the observation that the stochastic version
of the von Neumann—Gale model can serve as a convenient vehicle for ana-
lyzing the dynamics of financial markets. We reinterpret in financial terms
the basic notions related to the model: commodity vectors—portfolios of
assets; technology constraints—self-financing (solvency) constraints; paths
in the model—self-financing trading strategies, etc. The study aims at the
systematic development of this approach with the view to its application to
asset pricing and hedging in incomplete financial markets with transaction
costs and trading constraints.

The well-known theory of asset pricing, based on the concept of arbitrage,
goes back to Black, Scholes, Merton, Kreps, Harrison, Pliska and others,
whose work is now regarded as the classics of Mathematical Finance (for
introductory expositions see e.g. Pliska [51], Bjork [6] and Follmer and Schied
[24]). This theory, in its standard form, deals with the case of a frictionless
market, where there are no transaction costs and no portfolio constraints—
in particular, short sales of all assets are allowed. Moreover, a clear and
unique solution to the asset pricing problem can be obtained only under the
assumption that the market under consideration is complete. In this case, the
"fair” (no-arbitrage) price of a derivative security is equal to the expectation
with respect to the unique martingale measure of the security’s discounted
payoff.

Attempts to build asset pricing models for real financial markets with
transaction costs and trading constraints, generalizing the above idealized
scheme, have been undertaken by many researchers (e.g., Bensaid, Lesne,
Pages and Scheinkman [4], Cvitani¢ and Karatzas [12, 13|, Soner, Shreve
and Cvitani¢ [60], Jouini and Kallal [35-37], Jouini [33, 34|, Follmer and
Kramkov [25], Carassus, Pham and Touzi [10], Napp [48], Jouini and Napp
[38], Kabanov and Stricker [42], Kabanov [39], Stettner [62], Schachermayer
[58], Cherny [11] and others, see further references below in the paper). In



spite of the large amount of work done, the previous studies have not led to a
complete and convenient framework unifying the results available. The main
difficulties appearing in this field are of a conceptual nature. In particular,
the notion of an equivalent martingale measure—playing a central role in
the case of a frictionless, and especially complete, market—appears to be
inadequate in the general context. It has to be replaced in more realistic
models by other, more complex notions. Moreover, transaction costs and
market incompleteness lead to the failure of the no-arbitrage pricing principle
in general: it does not provide a justified algorithm for asset valuation in the
presence of market frictions. Instead of no arbitrage, the principle of hedge
pricing—according to which the price of a contingent claim is defined as
the minimum level of initial wealth needed to hedge! the contingent claim—
comes to the fore.

We develop the hedge pricing principle using the parallelism between
paths of economic dynamics in the von Neumann—Gale model and hedging
strategies in a dynamic model of a financial market. We show that the prob-
lem of characterization of the set of initial states of an economic system from
which the given state at the end of the planning horizon can be attained is
analogous to the problem of characterization of the set of initial endowments
sufficient for hedging the given contingent claim. Dual paths in the von
Neumann—Gale model are counterparts of consistent valuation systems—the
notion which replaces in the context of a financial market with frictions that
of an equivalent martingale measure. By using this notion, we give a gen-
eral solution to the hedging problem and then show what specific forms this
solution takes on in various specialized models.

A consistent valuation system includes (a) a pair of discount factors pro-
viding a relative valuation of initial endowments and contingent claims at the
beginning and at the end of the time period under consideration and (b) a se-
quence of consistent asset prices defined for each moment of time within this
period. We show that the existence of discount factors mentioned in (a) is
equivalent to the no-arbitrage hypothesis. This result has essentially the same
nature as various results in economic theory involving the characterization of
Pareto-optimal states in terms of positive linear functionals (see e.g. Alipran-
tis, Brown and Burkinshaw [2, Section 3.5]). Having constructed consistent
discount factors, we construct consistent prices as dual variables (Kuhn-
Tucker multipliers) relaxing intertemporal balance constraints in a dynamic
optimization problem. Such dual variables are analogous to ”shadow prices”,
well-known in mathematical economics (e.g. Birchenhall and Grout [5, Chap-

!The notion of hedging we deal with (see the definitions in Section 2) covers what is
often referred to as ”superhedging” or ”superreplication”—e.g. Féllmer and Schied [24].



ter 9]).

The paper is organized as follows. In Section 2 we describe the basic data
of the model. In Section 3, we state the general hedging problem and define
the notion of consistent discount factors. In Section 4, we formulate the
basic assumptions of the model. Section 5 provides no-arbitrage and hedging
criteria in terms of consistent discount factors. Section 6 defines and discusses
the notion of a consistent valuation system (combining consistent prices and
discount factors). No-arbitrage and hedging criteria based on this notion are
obtained in Section 7. Section 8 contains some auxiliary material needed for
the further analysis of specialized models. Section 9 examines a conventional
model with proportional transaction costs and trading constraints. In Section
10, we apply these results to the special case of a market without transaction
costs but with portfolio restrictions. Section 11 discusses the classical case of
a frictionless market. Sections 12 and 13 analyze two different versions of a
currency market model. In Section 14, we discuss some basic concepts related
to the von Neumann—Gale model and their links to the theory developed
in the paper. The Appendix assembles some general mathematical facts
(basically, from convex analysis) used in this work.

2 Dynamic securities market model with trans-
action costs and trading constraints

Let (2, F, P) be a probability space and Fo C F; C ... C Fr = F a sequence
of o-algebras. Sets in the g-algebra F; are interpreted as events observable
prior to date t. For any natural number n > 1 and any t = 0, ..., T, we denote
by L;(n) the linear space of F;-measurable random vectors with values in an
n-dimensional Euclidean space R™. We normally do not distinguish between
random vectors if they coincide almost surely (a.s.). We omit "a.s.” when
this does not lead to ambiguity.

For each t > 0 and n > 1, vectors y(w) = (y*(w), ..., y™(w)) in Li(n) rep-
resent contingent portfolios of n assets (securities). The ith coordinate y*(w)
of the vector y(w) indicates the amount (the number of ”physical units”) of
asset 4 in the portfolio y(w). The assumption of F;-measurability of a vec-
tor function y(w) in L£¢(n) expresses the fact that the portfolio y(w) can be
chosen by an investor based on observation of events occurring at date ¢ or
earlier.

Trading on the market is possible at any of the dates t =0,1,...,T. For
each t =0,...,T — 1, a natural number n; is given. At date 0 an investor can
purchase ng kinds of assets; at any next date t = 1,...,T — 1, n;_; kinds of



assets can be sold and n; kinds of assets can be purchased; and at date T, an
investor can sell ny_; kinds of assets. Two natural numbers my and mr are
given. Elements of the spaces Lo(mg) and Lr(mr) are interpreted as initial
endowments and contingent claims, respectively.

In the model we study, the sets

Yo(w) C R™, (1)
and
Zy(w) CR™ ' xR™ t=1,..,T -1, (2)

are given for each w € ). A sequence

(Yo, Y1y -y yr—1)s Yt € Li(ny), t=10,...,T — 1, (3)

is called a (feasible) trading strategy if, with probability one,
Yo(w) € Yo(w), (4)
(Y-1w), (W) € Zy(w), t=1,...,T - 1. (5)

An investor implementing a trading strategy (vo,¥1, ..., Y7_1) starts at time
0 with the initial portfolio yo € Lo(ng). The set of admissible portfolios at
time 0 is specified by the constraint yo(w) € Yp(w) (a.s.). At the beginning
of each datet =1,2,...,T — 1, the investor possesses the portfolio y;_1, that
was created at the previous date. The dimension of the vector ;1 is ns_1,
and y;_; depends F;_;-measurably on w, so that y;_1 € £;_1(n;_1). Trading
on the market, the investor rebalances the portfolio y;_; into y;, which is
possible if and only if (y;—1(w), i (w)) € Z;(w) almost surely (a.s.). There are
n,; assets available for purchase at date ¢, and the choice of y; is made based
on the observation of events in F;, hence y; € L4(n;). The process of trading
terminates at date 7'— 1, when the investor constructs the terminal portfolio
Yr—1-

When speaking of portfolio rebalancing, we always presume that the in-
vestor can buy assets for the new portfolio y; only at the expense of selling
some assets contained in the old one, 3;_1, i.e. we mean rebalancing under the
assumption of self-financing. Generally, the operations of buying and selling
assets involve transaction costs. Furthermore, not all portfolios might be ad-
missible. For example, it might be required that admissible portfolio vectors
must be non-negative: when borrowing and short sales are ruled out. All
such restrictions—the portfolio admissibility constraints and self-financing
constraints—are specified by the sets Z;(w),t =1,...,T — 1.

S



Further, in the model under consideration, we are given sets

Vo(w) CR™ x R™, (6)
and
Vr(w) C R"-1 x R™T, (7)

describing possibilities of constructing initial portfolios and liquidating ter-
minal ones. A sequence

(UO, Yo, .- Yr-1, UT)a

where v, € Li(my), t =0,T, and (yo, ..., yr—1) is a feasible trading strategy,
is called a hedging strategy if

(vo,%0) € Vo(w), (8)

(yr-1,0r) € Vr(w). 9)

An investor implementing the hedging strategy (vo, %o, ..., yr_1, vr) starts at
date 0 with the initial endowment vy and constructs the initial portfolio yp.
The set of feasible pairs (vg, yo) is specified by (8) and (1). At each of the
datest = 1,2,...,T —1, the investor rebalances his/her old portfolio y;—; into
the new one, y;. At date T, the investor liquidates the terminal portfolio
yr_1 with the view of hedging the contingent claim vy. The set of those pairs
(yr_1,vr) for which this is possible is specified by (9).

Generally, the dimensions mg and my of vectors vy and vr, specifying
initial endowments and contingent claims, may be greater than one, but
in the classical case, we have my = mgy = 1. Then initial endowments
and contingent claims are measured in terms of a numeraire (e.g. cash).
Cases where my and mq are greater than one correspond to situations when
there are several reference currencies in the market under consideration (for
example, euro, dollar and the national currency, if different from the former
two). An important special case is when all the traded assets are currencies—
see Sections 12 and 13.

A contingent claim vy € Lr(ms) may be thought of as a contract pre-
scribing the delivery of some specified amount of each of the mt assets, e.g.
reference currencies, depending on the random situation w at date 7. If the
dimension m7 of the random vector v is equal to one, the contract requires
the payment of a specified amount of cash contingent on the random situation

6



w. An investor who follows a hedging strategy (vo, Yo, .-, Y7, v1) liquidates
at date T the portfolio yr—; € Lr_i(nr—_1) obtaining a sum of cash which
hedges the contingent claim vr.

To illustrate the above general definitions, consider the classical model
of a frictionless market—without transaction costs and trading constraints.
In this model, we have mg = my = 1 and ny = ... = ny_; = n. For each
t =0,...,T, we are given an F;-measurable n-dimensional random vector
Sy = Si(w) > 0 specifying the market prices of the n assets at date ¢t. The
portfolio rebalancing constraints are defined by the sets

Zy(w) :={(a,b) e R" x R": Sy(w)a = S(w)b}, t=1,..,T—1. (10)
There are no restrictions on the initial portfolios, so that
Yo(w) :=R". (11)

The sets characterizing possibilities of creating initial portfolios from initial
endowments and possibilities of liquidating a terminal portfolio with the view
to hedging contingent claims are as follows:

Vo(w) == {(a,b) € R x R™ : a = Sy(w)b}, (12)

Vr(w) :={(a,b) € R" x R' : Sp(w)a = b}. (13)
Alternatively, one can define Vr(w) by
Vr(w) :={(a,b) € R" x R* : Sp(w)a > b}, (14)

replacing the equality S7(w)a = b by the inequality Sr(w)a > b. The latter
definition corresponds to what is often called superhedging.? An investor
liquidating a portfolio yr at date T' can (super-)hedge a contingent claim vr
if Sr(w)yr > vr (a.s.).

In this paper, we will consider various examples of the data of the model
Yy, Z; and V; taking into account transaction costs and trading constraints.

2A contingent claim is conventionally called superhedgeable, if there exists a self-
financing trading strategy (with the given initial endowment) which obtains a final payoff
that is not less almost surely than the amount of the contingent claim. In the model
under consideration, this notion is a special case of the general notion of hedging defined
in terms of the set Vp(w). It corresponds to those cases when Vr(w) contains for each pair
of vectors (a, b) any pair (a,b’) with & <.



3 Hedging problem and consistent discount
factors

We shall say that an initial endowment vy € Lo(mg) allows the hedging of a
contingent claim vy € Lr(my) if there exists a hedging strategy of the form
(vo, Yo, ---, Yr—1, vr). The main question we are going to consider is as follows.
Suppose a contingent claim vy € Lr(mz) is given. How can we characterize
the set of initial endowments vy € Lo(myg) allowing the hedging of vy ? Let
H denote the set of pairs (v, vr) € Lo(mo) X Lr(my) such that vy allows
the hedging of v;. We are interested in the characterization of the set H.

The above question is of fundamental importance for asset pricing. Sup-
pose my = 1, initial endowments vy € Lo(1) are constants (the initial o-
algebra Fy is trivial) and the set {vy : (vo,vr) € H} is non-empty and
contains a smallest element. Then this element—the minimum initial en-
dowment sufficient to hedge the contingent claim vr—is called the hedging
price of the contingent claim vr.

We introduce a key concept in terms of which a solution of the general
hedging problem will be given. Let gy € Lo(my) and gr € Lr(mr) be strictly
positive vector functions such that, for all (vy,vr) € H, the expectations
Eqyvy and Eqrvr with respect to the measure P are well-defined and finite.
We shall say that qqg, qr is a pair of consistent discount factors if

EQOUO > EQTUTa (UOaUT) e H. (15)

If mg = mr = 1, i.e. initial endowments and contingent claims are
scalars, then go and qr are scalars as well. The discount factors ¢y and qr
provide relative valuation of initial endowments at date 0 and contingent
claims at date T. According to (15), this relative valuation is such that the
expected discounted profit Eqrvr — Eqqug is non-positive for any pair (v, vr),
as long as vy can be hedged starting from the initial endowment vg. If initial
endowments vy and/or contingent claims vz are vectors, e.g. when there are
several reference currencies in the market, then gy and qr are vectors as well.
Their coordinates are discount factors providing relative valuations of the
currencies at dates 0 and 7. By a convenient abuse of terminology, we refer
to qo and gr as consistent discount factors rather than ”consistent vector
discount, factors”.

We note that if H is a linear space (which is so in the classical model of a
frictionless market—see (10)—(13)), then condition (15) is equivalent to the
following:

Eqyvo = Eqrvr, (vo,vr) € H. (16)



4 Basic assumptions

We will analyze the model at hand under the assumption that, for each w, the
sets Zy(w) (¢t =1,...,T — 1), Yo(w) and V;(w) (¢t =0, T) are closed cones®. In
view of the assumption imposed, the model takes into account proportional
transaction costs. This is reflected by the property that if (a,b) is a pair
of portfolios in Z;(w), then (Aa,A\b) € Z;(w) for all A > 0. Furthermore,
if portfolios b and b can be obtained by rebalancing a and o/, respectively,
then b+ b’ can be obtained by rebalancing a + a’. Various models involving
proportional transaction costs considered in the literature lead to constraint
sets Zy(w) (t = 1,...,T — 1) possessing these properties. Recall that Z;(w)
(as well as Yy(w)) also incorporates restrictions on admissible portfolios. The
assumption that the sets Yy(w), Z1(w), ..., Zr—1(w) are cones reflects the fact
that the admissibility constraints (such as short sales constraints) in our
model are expressed in terms of proportions between holdings of different
assets in admissible portfolios. The analogous considerations apply to the
cones Vp(w) and V r(w) describing the possibilities of portfolio creation and
liquidation, respectively.

In this work, we will concentrate on the modeling issues and avoid techni-
calities as much as possible. Therefore we will assume throughout the paper
that the probability space €2 is finite. Generalizations of some of the results
to the case of a general €2 will be discussed in a subsequent publication.

We will assume that the sets Z;(w) Fi-measurably depend on w, which
means—in the case of a finite {2—that there exists a partition of €2 into F;-
measurable sets on each of which Z;(w) is constant. We will also assume that
Vi(w) are Fi-measurable (t = 0,T) and Yy(w) is Fo-measurable.

As long as €2 is finite, all the linear spaces of vector functions of w we
consider are finite-dimensional. We will assume that they are endowed with
the conventional Euclidean topology. We will suppose that the following
condition holds.

(C) The set 'H is closed.

Recall that H consists of those pairs (vg, vr) € Lo(mg) X Lr(mr) for which
there exists a hedging strategy (vo, Yo, ---, Yyr—1, vr). Thus H is the projection
on Lo(mo) x Lr(mr) of the set T of all hedging strategies (vo, yo, ..., yr—1, V1) €
Lo(mg) X Lo(ng) X ... X Lr_1(nr_1) X Lr(mr). If the cones Yy(w), Z;(w) and
V;(w) are polyhedral for all t and w,  then 7 and H are polyhedral and hence
closed. The cones mentioned are polyhedral in all the specialized models we

3A set in a linear space is called a (convex) cone if it contains with each vectors z and
y the vector ax + By, where « and 3 are any nonnegative numbers.

4A set in a linear space is called polyhedral if it can be represented as an intersection
of a finite family of closed half-spaces.



consider in this paper.

5 Consistent discount factors, no-arbitrage and
hedging

We are going to give a general solution to the hedging problem in terms of
consistent discount factors. First of all, we have to examine the question
of their existence. We will show that, under the assumptions on the model
introduced in the previous section, the existence of consistent discount factors
is equivalent to the no-arbitrage hypothesis:

(NA) If (vo,vr) € H, vo < 0 and vy > 0, then v = 0 and vr = 0.

Here and in what follows, all equalities between random vectors are un-
derstood coordinatewise and a.s. By defining

K := {(vo, vr) € Lo(mo)xLr(mr) : vo < 0 and vr > 0}, (17)

we can restate (NA) as follows:

HNK = {0}. (18)

Under quite general assumptions (see Section 7, Proposition 7.2), hypothesis
(NA) admits the following equivalent reformulation:

(NAy) If (vo,vr) € H, vo = 0 and vy > 0, then vy = 0.

A criterion for the existence of consistent discount factors is provided by
the following theorem.

Theorem 5.1. The existence of consistent discount factors is equivalent
to the no-arbitrage hypothesis (NA).

Proof. Let qo, qr be consistent discount factors. Suppose (vg, vr) € HNK.
Then —vy > 0, vz > 0 and Eqo(—vo) + Eqrvr < 0 by virtue of (15). The
last inequality, combined with the fact that the functions qg, g7 are strictly
positive, implies vg = 0 and vy = 0. (Recall that we identify functions of
w coinciding a.s.) Thus the existence of consistent discount factors implies
(18).

To prove the converse, we apply Theorem A.2 (see the Appendix) to
the cones H and K. Since H and K are closed and since K is proper (i.e.
KN (=K) = {0}), all the requirements needed for the validity of Theorem
A.2 are satisfied. The cones H and K are contained in the linear space
U = Lo(mo) X Lr(mr). Any linear functional [(u), u € U, on this space can
be represented as

l(u) = —Eqovo + Eqrvr [u = (vo,vr)], (19)

10



where gy € Lo(myp) and qr € Lr(mz). We have | € KT (i.e., (k) > 0 for
k € K\{0}) if and only if go,gr > 0. Let (18) hold. Then by virtue of
Theorem A.2, there exists a linear functional [ of the form (19) such that
do,qr > 0 and l(u) < 0 for u = (vo,vr) € H. We can see that the last
inequality is equivalent to (15). O

We now will give an answer to the general question posed in the previous
section and provide criteria for an initial endowment vy to be sufficient to
hedge a contingent claim vy. These criteria will be formulated in terms
of consistent discount factors. The following two results, Theorem 5.2 and
Theorem 5.3, correspond to two different cases important for the applications.
In the first case, we assume that the following requirement is fulfilled:

(SH) (”Superhedging hypothesis”.) We have

—K CH.

Hypothesis (SH) covers those situations when we are interested in ques-
tions of ”superhedging”—obtaining at date T payoff that is not less with
probability one that the amount of contingent claim. Condition (SH) is
equivalent to the requirement

H—- K CH, (20)

which means that if an initial endowment vy is sufficient to hedge a contin-
gent claim vr, then any initial endowment Lo(my) D v} > wvo is sufficient
to hedge any contingent claim Lr(mz) 3 v < vr (see the definition of K
in (17)). Assumptions on the data of the model guaranteeing the validity of
(SH) will be discussed in Section 7, Proposition 7.1.

Theorem 5.2. Let hypotheses (NA) and (SH) hold. Then, for any
(vo, vr) € Lo(mo)XLr(mr), the following conditions are equivalent.

(a) (vo,vr) € H.

(b) For all consistent discount factors qo, qr, we have Eqrvr < Eqyvy.

Proof. Put

N:={leKt:l(u) <0 for all u € H}.

Denote by u the given pair (vg,vr) of random vectors. In view of (20),
assertion (a) holds if and only if u € H — K. Assertion (b) means that, for
each linear functional | = (qo, gr) € N, we have I(u) = Eqrvr — Eqyvy < 0.
Thus (a) and (b) are equivalent by virtue of Theorem A.4. This theorem is
applicable because K is proper and closed, H is closed and H N K = {0}, the
latter property being postulated in (NA). O

In the second of the two cases we consider, H is supposed to be a linear
space. This situation is characteristic for the classical model of a frictionless

11



market defined by (10)—(13). The result below is proved exactly as the pre-
vious one with the only difference that instead of Theorem A.4 we have to
use Theorem A.5.
Theorem 5.3. Let hypothesis (NA) hold. Let H be a linear space. Then,
for any (vo,vr) € Lo(mo)XLr(mr), the following conditions are equivalent.
(a) (vo,vr) € H.

(b) For all consistent discount factors qo, qr, we have Eqrvr = Eqyvy.

6 Consistent valuation systems: the defini-
tion

The results obtained in the previous section provide hedging criteria based
on the concept of consistent discount factors. We now will introduce another
important concept—that of a consistent valuation system. In the next sec-
tion, we will establish refinements of the previous results allowing a solution
of the hedging problem in terms of consistent valuation systems.
Denote by P; the set of non-negative (a.s.) vector functions in £;(n;_1) (t =

1,...,T) and put Py := Lo(no). Let us write E; () := E(-|F;) for the condi-
tional expectation given F;. A sequence of vector functions

(pOapla "'apT)a Dt S Pta t= Oa "'aTa (21)

is called a consistent price system, if for almost all w, we have

(131 — po)a <OQforall ae Yz)(w)a (22)

Dr+1b — pra < 0 for all (a,b) € Zy(w), t=1,...,T — 1, (23)
where
Pev1 = Ey(ptt1), t=0,..,T — 1.

Requirements (23) state that the prices and discount factors under consid-
eration are such that the conditional expectation of profit one can get in the
course of asset trading cannot be greater than zero. If yq, ..., yr is a trading
strategy, then by virtue of (22) and (23), we have

PoYo > P1Yo = Eo(p1yo), (24)

PeYi—1 > D1yt = Ey(praye), t=1,...,T —1, (25)

12



and so the process

DoYo, P1Yo; P2Y1, - PTYT—1 (26)

is a supermartingale with respect to the filtration 7y C F; C ... C Fr.
It will be convenient to introduce the following notation. For every w € €2,
put

ZM (w) :={(c,d) e R} xR} : db < ca for all (a,b) € Z,(w)}.  (27)

Elements of the cone Z;(w) (cross-dual cone) can be interpreted as pairs
of non-negative price vectors (c,d) such that, for every pair of portfolios
(a,b) € Zy(w), the value db of portfolio b is not greater than the value ca
of portfolio a. Condition (23) involved in the definition of a consistent price
system can be written equivalently as

(21 (w), P (w)) € Z (W) (28)
(a.s.).

If (qo, qr) € Lo(mo) X Lr(mr) is a pair of strictly positive functions (dis-
count factors) and (po,p1, ..., pr) is a consistent price system, the sequence
(g0, Po, P1, ---, P15 qr) is called a consistent valuation system if, with probabil-
ity one,

pob — qoa <0, (a,b) € Vo(w), (29)

grb— pra <0, (a,b) € Vp(w). (30)

According to (29) and (30), the prices and discount factors under considera-
tion are such that, with probability one, the profit one can get in the course
of portfolio creation or liquidation cannot be strictly positive.

It follows from (24), (25), (29) and (30) that if (qo, po, p1, .-, PT,q7) iS
a consistent valuation system, then gqq, g7 are consistent discount factors.
Conversely, it can be proved under some general assumptions (see Section
7, Theorem 7.1) that if qo,qr are consistent discount factors, then there
exists a consistent price system (po, ..., pr) such that (qo, po, p1, ..., Pr, qr) is
a consistent valuation system.

We observe that if each of the cones Yy(w), Zy(w) (t =1,...,7 — 1) and
Vi(w) (¢ =0,T) is a linear space, then we can replace in formulas (24), (25),
(29) and (30) inequalities by equalities. This implies that the sequence (26)
is a martingale.

Why do we need to consider consistent valuation systems in place of (or in
addition to) consistent discount factors? The main advantage of the former
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notion comparative to the latter lies in the following. It might be difficult
to verify directly that some (qo, gr) is a pair of consistent discount factors.
To this end one has to check inequality (15) involving the cone H which
might generally have quite a complex structure. The analysis of consistent
valuation systems simplifies the problem. It allows one to ”decompose” it—
to reduce it to a family of simpler problems over each of the time periods
t—1,t. Indeed, to check that (po, ..., pr) is a consistent price system, we have
to verify the inequalities in (22) and (23) separately for every t. The analysis
of each of these inequalities requires a separate consideration of each of the
given cones Yy(w), Z;(w), ..., Zr—1(w). Analogous considerations pertain to
inequalities (29) and (30).

7 Consistent valuation systems, no-arbitrage
and hedging

For the analysis of consistent valuation systems, it is convenient to introduce
the following notion. Let

f = {UOa Zo,Yo,T1,Y1, --- TT-1,Y17-1, LT, UT} (31)
be a sequence of vector functions

U € Eo(mo), Y € Et(nt), t= 0, ,T - 1, (32)

Ty € Et(nt_l), t=0,..T, vr € ET(mT), (33)
(where n_; := ng) such that

(v, o) € Vo(w), %o € Yo(w), (34)

(x4, 4t) € Zy(w), t=1,....,T — 1, (x7,v7) € Vr(w) (35)

(a.s.). We shall say that £ is a generalized hedging strategy (or a hedging
strategy with consumption) if

Zo > Yo, Yo > T1, Y1 > T2y -ey Yr—1 > . (36)

If the above inequalities hold as equalities, we obtain an ordinary hedging
strategy.
Let us introduce the following conditions.
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(S) There exists a generalized hedging strategy
& := {(o, Zo, Jo, 1, §1, -y Fr_1, Y11, Z1, U1}
such that
Fo > foy Go1 > Fey t=1,..,T.

(M) If (a,c) € Vo(w), ¢ > b € Yy(w) and a' > a, then there exists b’ > b
such that ¥’ € Yy(w) and (o', ') € Vo(w).

Fort=1,...,T — 1, consider the following hypothesis:

(M) If (a,b) € Zy(w) and @’ > a, then there exists ' > b such that
(d,b) € Z(w).

(M) If (a,b) € Vr(w) and @' > a, then (a/,b') € Vp(w) for some & > b.

Hypothesis (S) (an analogue of ” Slater’s constraint qualification”, see the
Appendix) says that there exists a trading strategy with consumption such
that an investor following it can sell, with a view to consumption, strictly
positive amounts of assets of each type at every date.

Conditions (M;) (properties of ” monotonicity”) are supposed to hold for
each w and t = 0,...,7. Their meaning is, roughly speaking, ”"the more
the better”. According to (M;) (¢t = 1,...,T — 1), if a portfolio a can be
rebalanced into an admissible portfolio b at date ¢ then any portfolio a’ that
is not less (in each position) than a can be rebalanced into some admissible
portfolio &’ containing not less assets of each type than b. Similar properties
are reflected in hypotheses (Mp) and (Mr), dealing with the constraints on
portfolio construction at date 0 and liquidation at date 7. Additionally,
hypothesis (My) imposes restrictions on the set Yp(w) of initial portfolios.

Let us say that the model under consideration, specified by the cones
Yo(w), Zi(w), t = 1,..,T — 1, and Vi(w), t = 0,7, is reqular if either
condition (S) is fulfilled or the cones are polyhedral for each ¢ and w. We
shall say that the model is monotone if it possesses the properties described
in (M;) for each w and t = 0,...,T. The following theorem establishes links
between the concepts of consistent discount factors and consistent valuation
systems.

Theorem 7.1. (a) If (qo,po0,---, P, qr) is a consistent valuation system,
then qo, qr are consistent discount factors.

(b) Let the model be regular and monotone. If qo,qr are consistent dis-
count factors, then there ezists a consistent price system (py, ..., pr) such that
(Qo, Pos ---» DT, qT) 1S @ consistent valuation system.

This result is similar to various assertions on the existence of ”shadow
prices” (or ”supporting prices”) in stochastic models of economic dynamics—
see, e.g. Arkin and Evstigneev [3, Section 2.4]. It is especially close to one
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of the first results of this kind obtained by Dynkin [17], [18, Section 9.5].
Before proving Theorem 7.1, the following remark is in order.

Remark 7.1. If the model is monotone, than for any generalized hedg-
ing strategy (31), there is a hedging strategy (v(, ¥y, ---; Yr_1, V) such that
vy =, Yy > Y (t =0,...,T —1) and v}, > vp. This is easily proved by
induction using (M;), t =0, ..., T, and a measurable selection argument—see
the Appendix, Theorem A.7.

Proof of Theorem 7.1. The first assertion of the theorem is immediate
from the definition of a consistent valuation system. To prove the second,
consider consistent discount factors (g, ¢r). By virtue of their definition,
we have Eqrur — Eqyuy < 0 for all (vg,vr) € H. Consequently, Eqrv, —
Eqovy < 0 for all hedging strategies (vg, yg, --- Yr_1, V). Denote by = the
set of all generalized hedging strategies (31) and for each ¢ € =, define
F (&) = Eqrvr — Eqovp. In view of Remark 7.1, we have

F(&) = Eqrvr — Eqovg < Eqrvy — Eqoug < 0

for some hedging strategy (v4,vg,---» Yr_1, V) With v) = vy and v}, > vp.
Consequently, F'(¢) < 0 for all £ € Z. Thus, the maximum of the functional
F(&) over all sequences (31) satisfying (32) — (36) is equal to zero. By ap-
plying the Kuhn—Tucker theorem (see Theorem A.5 in the Appendix) to this
maximization problem, we relax constraints (36). The theorem is applica-
ble because the model at hand is regular. Consequently, there exist vector
functions p, € Py (t =0, ..., T) such that

T
Eqrvr — Eqovo + Epo(To — Yo) + Z Epi(yr-1 —2:) <0 (37)
t=1

for all sequences {vo, Zo, Yo, Z1, Y1, ---, TT—1, Yr—1, TT, U7 } satisfying (32) — (35).
Rearranging the summands in (37), we obtain

(Epozo — Eqovo) + (Ep1yo — Epoyo) +

T-1

[Z(Ept+lyt — Epiz:)| + (Eqrvr — Epror) < 0.
t=1

This inequality holds if and only if the inequalities

Epozo — Eqovo <0, (vo,20) € Vo(w), (38)

Ep1yo — Epoyo <0, yo € Yo(w), (39)
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Epii1y: — Epixy <0, (21, 4) € Z4(w), t=1,...,T — 1, (40)

Eqrvr — Eprxr <0, (z7,v7) € Vp(w), (41)

hold. By using Theorem A.8 in the Appendix, we deduce (29), (22), (23)
and (30) from (38), (39), (40) and (41), respectively. Thus (qo, po, ---, 1, 91)
is the sought-for consistent valuation system. O

In Theorems 7.2 and 7.3 stated below, we assume that the model under
consideration is reqular and monotone.

Theorem 7.2. The validity of the no-arbitrage hypothesis (NA) is equiv-
alent to the existence of a consistent valuation system.

This result is an immediate consequence of Theorems 5.1 and 7.1.

Theorems 5.1 and 7.2, providing criteria for the absence of arbitrage in
terms of consistent discount factors and consistent price systems respectively,
may be regarded as generalizations of the classical Fundamental Theorem of
Asset Pricing—Kreps, Harrison, Pliska and others. A detailed discussion of
the classical (frictionless) case will be given in Section 11.

By using Theorems 5.2 and 7.1, we arrive at the following hedging crite-
rion stated in terms of consistent valuation systems.

Theorem 7.3. Let hypotheses (NA) and (SH) hold. Then, for any
(vo, vr) € Lo(mo) X Lr(mr), the following conditions are equivalent:

(a) (vo,vr) € H.

(b) For all consistent valuation systems (qo, po, --., P, qr ), we have Eqrur <
EqOU().

Conditions guaranteeing the validity of hypothesis (SH) are provided in
Proposition 7.1 below. Consider the following assumption (”superhedging
hypothesis at time 77):

(SHr) For each w, if (a, b) € Vr(w) and b > b’ € R™, then (a, ') € Vr(w).

Proposition 7.1. Hypothesis (SH) holds if the model is monotone and
requirement (SHr ) is satisfied.

Proof. To deduce (SH) from (SHr) and the assumption of the monotonic-
ity of the model, consider any (vp,vr) € —K. We have vy > 0 and vy < 0.
Since (0,0) € Vp(w), 0 € Yo(w) and vo > 0, hypothesis (M), combined with a
measurable selection argument, implies the existence of yo € Lo(ng) such that
Yo € Yo(w), yo > 0 and (v, yo) € Vo(w). We have (0,0) € Z;(w) and yo > 0,
and so, by using (M;), we can construct y; € £;(n;) such that y; > 0 and
(Y0,y1) € Z1(w). Continuing this process and using (M,), t = 2, ..., T, we ar-
rive at a feasible hedging strategy (vg, Y, ---s Yr_1, V) With v§ = vo such that
Yo > 0,...,yp_y > 0,0 > 0. Then, by virtue of (SHr), (vo, Yp, ---s Yr_1, vr) I8
also a feasible hedging strategy, which proves (SH). O
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In the case when H is a linear space (which is so when all the cones Y, (w),
Zy(w), Vi(w) are linear spaces), we obtain the following result.

Theorem 7.4. Let hypothesis (NA) hold. Let H be a linear space. Then,
for any (vo,vr) € Lo(mo)XLr(mr), the following conditions are equivalent.

(a) (vo,vr) € H.

(b) For all consistent valuation systems (qo, Po, ---, P, g1 ), we have Eqrvr =
EqOU().

Theorem 7.4 is a direct consequence of Theorems 5.3 and 7.1.

We conclude this section with a proposition analyzing the question of
equivalence of the no-arbitrage hypotheses (NAg) and (NA). For each ¢t =
0,...,T, let us introduce a stronger version, (SM;), of the monotonicity con-
dition (M;). Hypothesis (SMy) is stated ezactly as (M) with the additional
requirement that b’ # b when o' # a. If (SM;) holds for each t =0, ..., T, the
model is said to be strictly monotone.

Put Zy(w) = {(a,b) : (a,b) € V(w), b € Yy(w)} and Z7(w) := Vp(w).
From the definition of strict monotonicity of the model, we immediately
obtain the following consequence:

(SM) For each t,w, if (a,b) € Z;(w), a’ > a and @’ # a, then there exists
b’ such that (a’,V') € Zy(w), ¥’ > b and b # b.

It is easily proved by means of induction that condition (SM) implies the
following property of the cone H.

(SMy) If (vo,vr) € H, Lo(mg) D vy > v and v # vg, then there exists
vy such that (v), v}) € H, v > vr and v}, # vr.

Proposition 7.2. Under assumption (SM+y), hypothesis (NA) is equiv-
alent to (NAy ).

Proof. Clearly, (NA) implies (NAg). Suppose (NA) does not hold, while
(NAy) is valid. Then there are vy < 0 and v > 0 such that (vo, vr) € H and
(vo,vr) # 0. By virtue of (NAy), we have vy # 0. Since 0 > vy and 0 # vy, it
follows from (SMy), that there exists v}, > 0 such that (0,v}) € H, v}, > vr
and v}, # vr. We have v/, # 0 (because otherwise, v, = vr = 0), which leads
to a contradiction with (NAy). O

8 Solvency cones and portfolio values
Fix some t (1 <t < T — 1) and assume that n,_ ; = n; = n. Suppose that

the cone Z;(w) involved in the model description (see (2)) is of the form

Zy(w) ={(a,b) ER* xR": b —a € My(w), b€ Yy(w)}, (42)
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where M;(w) C R™ and Y;(w) C R™ are some given closed cones depending
Fi-measurably on w. According to (42), one can obtain a portfolio b by
rebalancing a portfolio a if and only if the vector b — a is an element of the
solvency cone M(w) (see Kabanov [39] and references therein). The cone
Y;(w) specifies what portfolios are admissible at each moment of time and
each random situation w.

If for all t = 1,...,T — 1 the cones Z;(w) are given by formula (42),
the rebalancing constraints (y;—1(w), y:(w)) € Zi(w) (a.s.), involved in the
definition of trading strategies, can be decomposed into two parts: y;(w) —
Y—1(w) € My(w) (a.s.) and y(w) € Yi(w) (a.s.). The former deals with the
difference between two successive portfolios y; and 3;_;. The latter imposes
restrictions on the portfolio y; obtained as a result of rebalancing y;—;.

The structure of consistent price systems in models defined by (42) can
be examined by using the following proposition.

Proposition 8.1. If Z,(w) is given by (42), then

ZJ (w) ={(c,d) e R} xR} : —c € M (w), c—de Y (w)}. (43)

Proof. We omit ¢t and w. According to the definition of Z*, a pair
of vectors (c,d) € R} x R} belongs to Z* if and only if db < ca for all
(a,b) € Z. In the model at hand, (a,b) € Z if and only if f :==b—a € M and
b €Y. Consequently, Z consists of pairs (a,b) of the form (a,b) = (b — f,b)
where f and b run through M and Y respectively. Thus (¢,d) € Z* if and
only if

db—c(b—f)<Oforall fe MandbeY.
The last inequality is equivalent to the following two conditions:
cf <0, feM; (d—c)b<0,beY.

These two conditions are equivalent to the requirements —c € M* and c—d €

Y™, respectively. O
From Proposition 8.1, we obtain the following consequence.
Proposition 8.2. If the cone Zi(w) is of the form (42), then condition

(28) involved in the definition of a consistent price system holds if and only

if
—pt € M (w), pt — Eiprv1 € Y (w). (44)

Sequences of random vectors p; such that p; is F;-measurable and
Pt — Eipyr € Y¥(w) (a.s.) are called Y*-martingales.
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The main results about consistent price systems are obtained under the
assumption that the model under consideration is regular and monotone.
The assumption of regularity is guaranteed if all the cones we deal with are
polyhedral. Conditions on M;(w) and Y;(w) under which the monotonicity
hypothesis (M;) (¢ =1,...,7 — 1) holds are provided in the following propo-
sition.

Proposition 8.3. Let the cone Zy(w) be defined by (42). Then the hy-
pothesis of monotonicity (M) holds if any of the following requirements is
satisfied:

(a) My(w) 2 —R?% for all w;

(b) Yy(w) 2 R% for all w;

(c) the vector (k,0,...,0) belongs to Yi(w) for all k > 0 and for every
non-zero vector ¢ € R% there is £ > 0 for which (k,0, ...,0) —c € My(w).

Conditions (b) and (c) are sufficient for the validity of the hypothesis of
strict monotonicity (SM).

Condition (a) means that the solvency constraints do not restrict short
sales of any asset; such restrictions, if any, are imposed only by the portfolio
admissibility constraints specified by the cones Y;(w). According to (b),
all portfolios with non-negative positions are admissible. We will typically
interpret the first position a' of a portfolio (a?,...,a") as the (discounted)
amount of cash in the bank account. Condition (c) states that any positive
sum of cash can be held in the bank account and any non-zero portfolio with
non-negative positions can be exchanged to some strictly positive amount of
cash.

Proof of Proposition 8.3. We will fix ¢ and w and omit these symbols in
formulas. Consider any (a,b) € Z such that ¢’ > a and a’ # a. To verify
(M;) we have to show that (a’,b") € Z for some & > b. To check (SM;), we
need additionally that b’ # b. By the definition of Z, we have b—a € M and
beY.

If (a) holds, put &’ = b. Then (a’,V’) € Z because ¥ —a’' =b—a' < b—a €
M by virtue of (a).

If (b) is valid, define ¥’ = b+ (a’ —a). Then b’ € Y in view of (b) and we
have b’ —a' = b—a € M. Finally, b’ > b and b’ # b.

Let (c) hold. Put e; = (1,0,...,0) and consider that number x > 0 for
which ke; — (@’ —a) € M. This number exists because a’ — a > 0 and
a —a # 0. Define b = b+ ke;. Then b € Y because b € Y and ke; € Y.
Furthermore, ¥ > b and b’ # b. Finally, ¥ — o’ € M because

b —a' =b+ke;—a =(b—a)+ ke; — (6 —a) € M.
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Suppose the sets V;(w), t =0, T, are defined by

Vo(w) == {(a,b) e R x R™ : a > Wy(w,b)}, (45)

Vr(w) :={(a,b) € R" x R : Wp(w,a) > b}, (46)

where the functions Wy : Q x R — R! and Wy : Q x R*"7-1 — R! satisfy
the following conditions:

(W1) if ¢ > ¢, then Wi(w, ') > Wi(w, c);

(W2) the functions Wp(w,:) and —Wr(w,-) are convex and positively
homogeneous;

(W3) Wi(w,b) is Fi-measurable with respect to w (t =0,T).

Here Wy(w, b) is the acquisition value of the portfolio b, while Wy (w, b) is
its liquidation value. According to (45), an initial endowment v, allows the
construction of an initial portfolio yo if and only if vy > Wy(w, yo). By virtue
of (46), a terminal portfolio yr_; is sufficient for hedging a contingent claim
vy if and only if Wr(w, yr_1) > vr.

If condition (W1) is satisfied, the function W;(w, -) is called monotone. It
is called strictly monotone if Wy(w, c') > Wy(w,c) when ¢’ > cand ¢ # ¢. In
the following proposition, assumptions (W1) — (W3) are supposed to hold.

Proposition 8.4. (a) The sets (45) and (46) are cones satisfying the
following condition:

(V) If (a,b) € Vi(w), a’ > a and b >V, then (a',V') € Vi(w) (t =0,T).

(b) Condition (V) implies the validity of hypotheses (My) and (M1 ).

(c) If the function Wr(w,-) is strictly monotone, then (SMr) holds.

(d) If Yo(w) contains (k,0, ...,0) for each k > 0, then hypothesis (SMg)
s valid.

Proof. We focus on the last assertion; all the others are straightforward.
Since the function Wy(w, -) is convex on R, it is continuous. Therefore if ' >
a > Wy(w,c) and ¢ > b, then ¥/ := b+ ke; € Yp(w) and o' > Wy(w, b+ key)
for all K > 0 small enough, which yields (SM,). O

Proposition 8.5. The cone Vg (w) consists of those (c,d) € R x R}
for which

cWo(w, b) > db, b€ R". (47)
Elements of the cone VX (w) are pairs (c,d) € R} x R" satisfying
ca > dWr(w,a), a € R™ (48)

Proof. Straightforward. O
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9 A model with proportional transaction costs
and portfolio constraints

In the remainder of the paper, we will consider several specific models which
can be included in the general framework we have developed. All the models
we are going to examine are defined in terms of polyhedral cones, hence
they are regular. We will be interested in the characterization of consistent
valuation systems and in hedging criteria stated in terms of them. Recall
that the existence of consistent valuation systems is equivalent to the no
arbitrage hypothesis (NA). When analyzing hedging criteria, we will assume
that (NA) holds.

The material of this section is based, in particular, on the work of Jouini
and Kallal [35, 36] and Pham and Touzi [49].

Suppose that, for each ¢t = 0,...,7, we are given a vector S;(w) =
(S} (w), ..., S*(w)) > 0 specifying the market prices of n assets i = 1,2,...,n
at date t. Assume that mq = mz = 1, so that initial endowments and contin-
gent, claims are measured in terms of cash. Fix some F;-measurable random
variables o(w) > 0 and 1 > fi(w) > 0 — transaction cost rates (t =0, ..., T,
i=1,...,n). By selling one unit of asset i at time ¢, one gets (1 — 3)S?, and
in order to buy one unit of asset 4, one has to pay (1+ a£)S¢. For any vector
a=(a',...,a") € R" and any i = 1,2, ...,n, define

Ti(w,a) == (1 + aj(w))a} + (1 - Bi(w))al, (49)
where o’ := max{a’,0} and o' := min{a’,0}. The functions 7i(w,a) are
convex and positively homogeneous in a. Consider the mapping 7i(w, ) :
R™ — R"™ acting by the formula

74(w, a) :== (11 (W, a), ..., T (w, a)). (50)

For each t = 0,1,...,T — 1, let Y;(w) be a polyhedral cone depending
Fi-measurably on w. Let Yy(w) specify constraints on initial portfolios and
put

Zy(w) :={(a,b) e R* x R™: Sy(w)1¢(w,b—a) <0, b €Y (w)} (51)
(t=1,..,T—1),

Vo(w) == {(a,b) e R* x R™ : a > Sp(w)7o(w,b)}, (52)

Vr(w) == {(a,b) e R* x R' : —Sp(w)7r(w, —a) > b}. (53)
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The inequality S;7¢(b — a) < 0 in involved in (51) can be written
n n
D (1 +a)Si(H —a) < =D (1-B)Si(b' —ai)_ .
i=1 =1
This relation expresses the self-financing condition: assets are purchased only
at the expense of sales of other assets. In order to construct a portfolio b at
time 0, one needs the amount

n

Soo(b) = > (14 af)Se(b')+ + > (1 — Bh)Sa(b') ,

i=1 i=1
and when liquidating a portfolio a at time 7', one gets

n n

~Srrr(—a) = =Y (1+ah)Sp(—a’)s — Y (1 - B7)Si(—a’)- =

i=1 i=1

Y (1+ak)Si(a))- + Y (1= B7)Si(a))s-
i=1 i=1
This motivates the definitions of the cones V; and Vr in (52) and (53).

Define B; := S} and assume that By = 1 and B;(w) > 0 for all ¢ and w.
Suppose that the following condition is fulfilled.

(B) The vector (k,0,...,0) belongs to the cone Y;(w) for all K > 0 and
w e .

This assumption means that the bank account can contain any positive
amount of cash. It follows from (B) and from the strict monotonicity of
the function —S7(w)7r(—a) that the model under consideration is strictly
monotone—see Proposition 8.3, (c) and Proposition 8.4, (c) and (d). The
property of strict monotonicity implies the equivalence of the no arbitrage hy-
potheses (NA) and (NAy) (see Proposition 7.2). Condition (SHr), following
from (53), implies the validity of hypothesis (SH) (see Proposition 7.1). The
model is regular, since all the cones involved in its description are polyhedral.
Thus, by virtue of Theorem 7.2, the absence of arbitrage opportunities in the
model at hand is equivalent to the existence of consistent valuation systems,
and the hedging criterion stated in Theorem 7.3 is valid.

Let (Xo,...,Ar) be a sequence of strictly positive scalar-valued random
variables such that ); is F;-measurable (t = 0, ...,T). We say that A, ..., Az is
a chain of consistent discount factors if there exists a Y*-martingale pq, ..., pr
satisfying

ASH1 = BY) < pi < ASE(1+al), t=0,...,T. (54)
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Recall that Y*-martingales satisfy, by definition, the condition p; — Eyp;,1 €
Y*(w) (a.s.).

Theorem 9.1. The following assertions are equivalent.

(a) A sequence (qo, po, ---, DT, qr) 1S a consistent valuation system in the
model (51) — (53).

(b) There exists a chain of consistent discount factors Ay, ..., A\p such that
Qo = Ao, g7 = A1, and the sequence po, p1, ..., pr s a Y *-martingale satisfying
(54).

Proof. By using Propositions 8.1, 8.2, 8.5 and the definitions of the
cones Yy, Z;, V; in the model under consideration, we obtain that a sequence
(g0, Po, ---» P, q7) is a consistent valuation system if and only if ¢, > 0, t =
0,T,

q0S0To(b) > pob, b € R™, (55)

po— D1 €Yy, (56)

Sie(b) <0 = pb<0,t=1,..,T -1, (57)
pi— Epr €Yr, t=1,2,...,T 1, (58)
pra > —qrSrTtr(—a), a € R™. (59)

Condition (57) holds if and only if
LSi(1=B) <P < LS+ ap) i=1,.m, (60)

for some real-valued Fi-measurable functions l; = l;(w) > 0. To show this, let
us fix w € ) and omit it in the notation. Consider the following optimization
problem: maximize p;b over b € R™ subject to —S;7,(b) > 0. Property (57)
means that b = 0 is a solution to this problem. By virtue of the Kuhn—Tucker
theorem (see Theorem A.6 in the Appendix), this assertion holds if and only
if there exists l; = l;(w) > 0 such that

ptb - ltStTt(b) S 0 for all b € R™. (61)

(The Kuhn—Tucker theorem can be applied because the function —S;74(b)
is concave in b and the Slater condition —S;7,(b) > 0 is fulfilled for b =
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(-1,0,0,...,0).) Since Si4(b) = > 1, SiTi(b), inequality (61) is valid if and
only if the analogous ” coordinatewise” inequality

pi’l" - ltSszﬁ(’r) S Oa Z: 1) "'ana T E Rl’ (62)

is valid. We observe that, for r < 0, (62) is equivalent to the first inequality
in (60), and for r > 0, (62) is equivalent to the second inequality in (60). We
have constructed the desired l; with properties (60) for each w. It remains
to choose l; = l;(w) in an F;-measurable way (see Theorem A.7).

We note that relations (55) and (59) hold if and only if, for t = 0, T, we
have

@Si(1—-6) <p <gSi(1+al),i=1,...,n,t=0,T. (63)

This follows from the fact that (61) is equivalent to (60) (put l; = g, t =0, 7).

(a)=(b) Suppose (qo, po, ---, Pr, gr) is a consistent valuation system. Con-
sider the functions /; in (60) and define \; = l;,t =1,2,....T—1, \; = ¢, t =
0,T. Then, as we have shown above, py, ..., pr is a Y*-martingale satisfying
(54). By virtue of assumption (B), p} is a supermartingale, and so p; > 0 be-
cause pk > qrSk(1—B3) > 0. Consequently, \; > 0 since p! < A\S}H(1+a}).
Thus Ay, ..., Ar is a chain of consistent discount factors.

(b)=(a) We have ¢4 = Ay > 0, t = 0,7. Since py,...,pr is a Y*-
martingale, conditions (56) and (58) hold. As we have seen, relations (54)
imply (55), (57) and (59). Consequently, (qo,po, ..., Pr, gr) is a consistent
valuation system. O

From Theorems 9.1 and 5.2, we obtain the following result.

Theorem 9.2. In the model at hand, an initial endowment vy allows
the hedging of a contingent claim vy if and only if Elqug > EArvr for all
chains of consistent discount factors Ag, ..., Ar.

Let us introduce the following assumptions (expressing the notion of an
”ideal bank account”) :

(IB) The vector (k,0, ..., 0) belongs to the cone Y;(w) for all K € (—o0, +00)
and w € Q.

(IB;) We have o} = 8; = 0.

According to (IB) and (IB;), the bank account can be used for both
lending and borrowing—with the same interest rate and without transaction
costs.

Consider the discounted asset prices St/B; (i =1,...,m,t=0,...,T). Let
us call a real-valued random variable A(w) > 0 a consistent density if EX =1

and there exists a sequence of random vectors fy, ..., fr such that
Si : , St )
FA-8) < fi<F(A+a}), t=0,..,T, (64)
B, B,
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and the process fo, ..., fr is a Y*-martingale with respect to the probability
measure P*(dw) = A\(w)P(dw) equivalent to P with density \(w) (equivalent
consistent measure).

Proposition 9.1. Let A\g > 0,..., A\r > 0 be a sequence of random vari-
ables such that A\, is Fi-measurable. Under assumptions (IB) and (IB,), the
following assertions are equivalent:

(a) The sequence g, ..., At is a chain of consistent discount factors.

(b) There exists a constant k > 0 and a consistent density A such that

At = n%t)\, t=0,..T. (65)

Proof. By using the formula E} = (E;\E)/E), valid for the conditional

expectation E}¢ of a random variable £ with respect to the measure P?,

we obtain that a process fy, ..., fr is a Y*-martingale with respect to the
probability measure P*(dw) = A\(w)P(dw) if and only if

_ Ey(Mfir1)

fi h)

€ Y (w). (66)
Since Ei(Afi11) = Ei[(Ei1) fir1] and since Y;*(w) is a cone, relation (66) is
equivalent to the following one:

(B fe — E[(Eya\) fraa] € Y (w). (67)

Consequently, the process f;, t =0,...,T, is a Y*-martingale with respect to
P* if and only if the process (E\)f;, t = 0,...,T, is a Y*-martingale with
respect to the original measure P.

Suppose (b) holds. Let k > 0 be a constant and let A be a consistent
density such that the functions M, ..., Ay admit the representation (65). Then
there exists a process fy, ..., fr such that the sequence (E M) fy, t =0, ..., T, is
a Y*-martingale with respect to the original measure P and inequalities (64)
hold. Define p; = k(E;A)fi. Then the process py, ..., pr is a Y*-martingale
and

(EA)

K —Bt

i i i E) i i
Si1=0y) <p; < “(Ttt)st(l + a}),
which implies that the sequence of functions Ay, ..., Az given by (65) is a chain
of consistent discount factors.
Conversely, assume (a) is valid. Then there exists a Y *-martingale py, ..., pr
satisfying (54). By virtue of (IB) and (IB;), the sequence p; = \;B;, t =
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0,...,T, is a martingale, and so A\; = [Ey(ArBr)|/B;. Put k = E(ArBr) and
A = (ArBr)/k. Then formula (65) holds. From (54) we get

S . . S .
(BN (1= 8) <p < w(BXN) 5 (1+a), t=0,..T.

Define f; = p;(kF;\)~!. Then the sequence fy, ..., fr satisfies (64), and the
process (E\)f;, t =0, ..., T, is a Y*-martingale (with respect to the original
measure P). Thus ) is a consistent density. O

By using Proposition 9.1 and Theorems 7.2 and 9.1, we obtain the fol-
lowing necessary and sufficient condition for the absence of arbitrage oppor-
tunities in the model we study in this section.

Theorem 9.3. Under assumptions (IB) and (IB;), hypothesis (NA) is
valid if and only if there exists an equivalent consistent measure.

Proposition 9.1 and Theorem 9.2 allow to give a hedging criterion stated
in terms of equivalent consistent measures.

Theorem 9.4. Let the algebra Fy be trivial and let assumptions (IB) and
(IB:) be fulfilled. If (NA) holds, then an initial endowment v is sufficient
to hedge a contingent claim vy if and only if

U
vo > supEQB—T,
Q T

(68)
where the supremum is taken with respect to all equivalent consistent mea-
sures Q.

We write E9 for the expectation with respect to the equivalent consistent
measure Q(dw) = A(w)P (dw), where A(w) is the corresponding consistent
density.

Proof of Theorem 9.4. By virtue of Theorem 9.2, vy is sufficient to hedge
vr if and only if EAgvg > EAgvr for all pairs (Mg, A7), where A\g and Ar are the
initial and the final terms in a chain of consistent discount factors (X, ..., Ar).
Such pairs are, by virtue of Proposition 9.1, given by A\ = kEA/By = &,
Ar = kA/Br, where ) is a consistent density and k > 0. Thus v is sufficient
to hedge vr if and only if vo > E[(\vr)/Br] = E?(vr/Br). O

10 Portfolio constraints, no transaction costs

Models with portfolio constraints, in discrete and continuous time, have been
considered by many authors — see, in particular, Cvitani¢ and Karatzas [12],
Karatzas and Kou [44], Jouini and Kallal [44], Schiirger [44], Follmer and
Kramkov [25], Brannath [8], Pham and Touzi [49], Pham [50], Carassus,
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Pham and Touzi [10], F6llmer and Schied [24]|, Evstigneev, Schiirger and
Taksar [22] and Rokhlin [55].

We will examine a special case of the model analyzed in the previous
section in which there are no transaction costs (i.e., af = 3¢ = 0 for all i),
but not all portfolios are admissible. Suppose we are given a vector S;(w) =
(S} (w), ..., S*(w)) > 0 specifying the market prices of n assets i = 1,2,...,n
at date t. Initial endowments and contingent claims are measured in terms
of cash, so that mg = mg = 1. For each t =0,1,...,T — 1, a polyhedral cone
Y;(w) depending F;-measurably on w and satisfying condition (B) is given.
The set Y;(w) specifies the class of admissible portfolios at date ¢.

The cones Z;(w), t =1,...,T — 1, are defined by

Zy(w) :={(a,b) e R”* x R": Sy(w)(b—a) <0, beY(w)} (69)
Further, we have
Vo(w) == {(a,b) € R x R™ : a > Sy(w)b}, (70)

and the cone Vr(w) is defined by formula (14). These definitions correspond
to (51) — (53) in the special case where oi = 8 = 0 (then 7,(b) = b).

In the model at hand, chains of consistent discount factors are sequences
(Ao, -y A7) of strictly positive real-valued functions such that A, is Fy-measurable
and the process A\gSg, ..., ApSt is a Y*-martingale. This is so because the
inequalities in (54) turn into equalities as long as af = 8! = 0 for all 4 and
t. Thus we obtain, as a consequence of Theorems 9.1 and 9.2, the following
result.

Theorem 10.1. A sequence (qo, Po, ---, P, qr) 1S @ consistent valuation
system in the model given by (69), (70) and (14) if and only if there ezists
a sequence Ag, ..., Ay of strictly positive real-valued functions such that A\; is
Fi-measurable, the process M\gSg, ..., ArSt is a Y*-martingale, and we have

do = Ao, Po = oS0, -y D = ApST, Gr = Ap . (71)

An initial endowment vy allows the hedging of a contingent claim vy if and
only if EXgvg > EApvr for all such sequences Ag, ..., Ar.

Let us call a scalar function A(w) > 0 a Y*-martingale density if EX =1
and the sequence S;/B; (t = 0,...,T) of the discounted price vectors is a
Y*-martingale with respect to the probability measure P*(dw) = \(w)P(dw)
equivalent to P with density A(w) (equivalent Y*-martingale measure). If
assumption (IB) holds, then by virtue of Proposition 9.1 we obtain that a
sequence of strictly positive random variables A, ..., Ar is a chain of consistent
discount factors if there exists a constant x > 0 and a Y*-martingale density
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A such that equalities (65) are satisfied. By using this remark and Theorems
7.2 and 10.1, we obtain the following result.

Theorem 10.2. Let assumption (IB) be fulfilled. Then the ezistence of
an equivalent Y*-martingale measure is a necessary and sufficient condition
for the validity of hypothesis (NA).

Theorem 9.4 implies the following hedging criterion in terms of equivalent
Y*-martingale measures.

Theorem 10.3. Let the algebra Fy be trivial and let condition (IB) hold.
If hypothesis (NA) is valid, then an initial endowment vy is sufficient to
hedge a contingent claim vr if and only if

vo > sup EQ;_;—T, (72)
Q T

where the supremum is taken with respect to all equivalent Y*-martingale
measures ().

Consider the model which is defined exactly as the previous one with the
only difference being that in the definition of the cones Vp(w) and Z;(w),
t=1,....,T —1 (see (70) and (69)) inequalities are replaced by equalities:

Vo(w) == {(a,b) € R x R™ : a = Sy(w)b}, (73)

Zy(w) :={(a,b) e R* x R": Sy(w)(b—a) =0, b€ Yy(w)}. (74)

All the results obtained for the previous model remain valid for this modifica-
tion of it. The hypotheses of strict monotonicity (SM;), t =1,...,7 — 1, and
(SMr) follow from Proposition 8.3, (c¢) and Proposition 8.4, (c), respectively.
Condition (SMj) can be easily verified by using (73) and (B). The monotonic-
ity of the model and property (SHz) (following from (14)) imply the validity
of hypothesis (SH). Thus the no-arbitrage hypotheses (NA) and (NAy) are
equivalent to each other and to the existence of consistent valuation systems.
Furthermore, consistent valuation systems for the original model and for its
modification are the same. This follows from the fact that the cones V" (w)
and Z;(w) (¢t =1,...,T — 1) do not change if we define Vp(w) and Z;(w) by
(73) and (74) rather than by (70) and (69). Consequently, the hedging and
no-arbitrage criteria in both models are the same.

We summarize the above comments in the following theorem.

Theorem 10.4. All the assertions of Theorems 10.1 — 10.8 remain valid
for the model defined by (78), (74) and (14).
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11 Frictionless market: strict hedging and
superhedging

Suppose that, in the model discussed at the end of the previous section,
Yi(w) = R*, t =0,...,T — 1, i.e. portfolio constraints are absent. Then
we arrive at the version of the classical model of a frictionless market in
which the self-financing constraints for asset trading are described in terms
of the cones Z;(w) defined by (10) and possibilities of portfolio creation and
liquidation are characterized by the cones V;(w) and Vy(w) given by (12) and
(14). Alternatively, we can define Vr(w) by (13) instead of (14). This will lead
to another version of the classical model and to another notion of hedging.
We will refer to the former notion as superhedging and to the latter as strict
hedging. According to the former (see (12), (10) and (14)) a contingent claim
vr can be superhedged starting from an initial endowment v if there exists
a trading strategy vo,...,yr—1 (y: € Li(n)) such that vy = Soyo, Siys1 =
Sy, t =1,...,T — 1, and Sryr—1 > vr (a. s.). The latter notion—strict
hedging—has the analogous meaning (see (12), (10) and (13)), with the only
difference being that the last inequality is replaced by the equality Sryr—1 =
vp. Here, we recall, 0 < S; = (S1,...,97) € Ly(n) (t=0,...,T) are the given
vectors of asset prices. We write B; for S} and assume that By = 1.

Since the model defined by (12), (10) and (14) (let us call it the model of
superhedging) is a special case of the one considered at the end of the previous
section, we can directly apply Theorem10.4 (and hence Theorems 10.1 —10.3)
to it. We have only to observe that if Y;(w) = R™, then Y*-martingales are
simply martingales. This leads to the following results.

Theorem 11.1. In the model of superhedging, hypothesis (NA) is nec-
essary and sufficient for the existence of an equivalent martingale measure.
If the o-algebra Fy is trivial and hypothesis (NA) holds, then an initial en-
dowment vg allows the (super)hedging of a contingent claim vy if and only
if

QYT
Vg > sng B,
for all equivalent martingale measures Q).

The first assertion of this theorem is the classical ”Fundamental The-
orem of Asset Pricing”—see Harrison and Kreps [27], Harrison and Pliska
[28], Kreps [46], Dalang, Morton and Willinger [14], Schachermayer [57], Ka-
banov and Kramkov [41], Rogers [54], Jacod and Shiryaev [32], Kabanov and
Stricker [43]. The latter is the well-known superhedging criterion—e.g. El
Karoui and Quenez [19], Cvitani¢ and Karatzas [13], Pliska [51], and Follmer
and Schied [24].
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Let us now turn to the model defined by (12), (10) and (13); let us call it
the model of strict hedging. This model is regular and strictly monotone, but
it does not satisfy hypothesis (SH), in contrast with all the others considered
in this paper. Thus Theorem 7.3 which we used for deriving hedging criteria
is not applicable. However, all the cones involved in the description of the
model (12), (10) and (13) are linear spaces. Therefore we can apply Theorem
7.4. We also note that, for the models of superhedging and strict hedging,
the cones V,*(w) (t=0,T), Z(w) (t =1,2,...,T — 1) are the same, and so
both models have the same consistent valuation systems. Thus we arrive at
the following theorem.

Theorem 11.2. In the model of strict hedging, hypothesis (NA) is nec-
essary and sufficient for the existence of an equivalent martingale measure.
If the o-algebra Fy is trivial and hypothesis (NA) holds, then an initial en-
dowment vy allows the (strict) hedging of a contingent claim vr if and only

if

— gelr
Vo = E BT (75)
for all equivalent martingale measures Q).

Relation (75) is the classical formula for the no-arbitrage price of a strictly
hedgeable contingent claim (see, e.g. Pliska [51]). According to our defini-
tion, a contingent claim v is strictly hedgeable if there exists a feasible
trading strategy of the form (vo, yo, ..., yr—1, vr), allowing one to obtain at
date T exactly the payoff vr. In view of formula (75) (holding under the no-
arbitrage hypothesis) the initial endowment v of this strategy is determined
uniquely and can be computed by formula (75). Note that the right-hand side
of (75) does not depend on the particular choice of an equivalent martingale
measure Q).

If the market is complete, i.e. any contingent claim is strictly hedgeable,
then formula (75) gives a natural recipe for the ”fair” price of each contingent
claim. As is well-known, in the case of a complete market, the equivalent
martingale measure is unique. Indeed, if A and )\ are the densities of two
such measures, we have E(AB;'vr) = E(X By vr) for each vr, which implies
A= X (as.).

In an incomplete market, not every contingent claim is strictly hedge-
able. However, in our model, every contingent claim vy can be superhedged
(in particular, because (2 is finite). Therefore we can use formula (75) for
determining the price of vr. The supremum on the right-hand side of (75)
(denote it by 7(vr)) is called the superhedging price of the contingent claim
vr. This is the minimum initial level of wealth needed to superhedge vr.

Remark 11.1. It is important to note that the supremum in (75) is
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attained if and only if the contingent claim vt is strictly hedgeable. In this
case the set {E9(B;'vr) : Q € Q}, where Q is the set of all equivalent
martingale measures, consists of one point. Otherwise, this set is an open
interval®. Elements of this interval are no-arbitrage prices of the contingent
claim vy (see Follmer and Schied [24]). Thus, if a contingent claim is not
strictly hedgeable, then, by assigning the superhedging price m(vr) to it
and treating it as a new traded asset, we obtain a market with an arbitrage
opportunity. Arbitrage opportunities can be eliminated if we slightly increase
the price m(vr)—replace it by 7(vr) +¢, where € > 0 is any sufficiently small
number.

The phenomenon described in the above remark is essentially due to the
fact that, in the classical model we deal with, borrowing and short sales
of all assets are allowed. If borrowing and short sales are prohibited, then
arbitrage is excluded (starting from zero, one can get nothing but zero),
and then no-arbitrage considerations are not sufficient for determining the
price of an asset. In that case, however, the hedge pricing principle remains
applicable and consistent valuation systems can be used to price assets. A
typical model illustrating this situation will be discussed in Section 13.

12 A currency market model

The model we examine in this section develops that studied in a series of
papers by Kabanov and coauthors (see, e.g., [40], [42], [39], and [15]). Con-
sider a financial market where n currencies i = 1, 2, ..., n are traded. For each
t=0,1,...,T, we are given an n X n matrix (7{ (w)), where 7/ are strictly
positive Fj-measurable random variables. The numbers v, i # j, specify
the ezchange rates of the currencies (including transaction costs) at date :
for a unit of 4, one can get y;’ units of j. The number 7% > 1 determines the
interest rate v — 1 for currency i: one unit of 4 deposited with a bank ac-
count over the time period ¢ yields the amount . A portfolio of currencies
b= (b, ...,b") can be obtained from a portfolio a = (a',...,a™) at date t in
a random situation w if and only if there exists a nonnegative n X n matrix

5To verify this it is sufficient to observe the following: (a) the set of martingale den-
sitities A > 0 is a (relatively) open convex set in the linear manifold of all the functions
X for which the sequence \gSy, ..., A\rSt, where \; = E;(B; ')), is a martingale; (b) the
linear mapping A — EAvr maps the above open set either onto a point or onto an open
convex set in R!.
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(g") such that
F<a+) Awe - g9 i=1..,n (76)
Jj=1 Jj=1

Here, g“ stands for the amount of currency i exchanged into currency j and
g“ for the amount of currency 4 deposited with a bank account. Therefore the
sum Y j g¥ is subtracted from the ith position of the portfolio. As a result

of the exchange (plus interest), one gets the amount Zj 'y{igji of currency
i. Hence the sum > j 7ligit is added to the ith position of the portfolio.

Thus a portfolio of currencies b = (b, ..., ") can be obtained from a portfolio
a= (al,...,a") if and only if b — a € M;(w), where

Myw) :={f eR": f' < Z'ﬂz(w)gﬂ — Zgij for some matrix (g) > 0}
Jj=1 j=1
(77)
(t=0,..,T).

Initial endowments of an investor trading on the market under consider-
ation are portfolios of my currencies and contingent claims are portfolios of
my currencies, where 1 < my < n (t = 0,T) are given numbers. For each
t =0,..,T — 1, a polyhedral cone Y;(w) C R" is given. Those and only
those currency portfolios are admissible which belong to Y;(w). To include
the currency market model into our general framework, we define

Vo(w) :={(a,b) e R™ xR": b— (a,0) € My(w)}, (78)

Zy(w) = {(a,b) e R"* X R™: b—a € My(w), b€ Yy(w)} (79)
(t=1,..,T—1), and
Vr(w) :={(a,b) e R* x R™ : a — (b,0) € Mr(w)}. (80)

The given cone Yp(w) specifies the set of admissible initial portfolios. In
(78), we write (a, 0) for the n-dimensional vector whose first my coordinates
coincide with the respective coordinates of the vector a € R™ and all the
other coordinates are equal to zero. The notation (b,0) in (80), where b €
R™7 has the analogous meaning. The inclusion (vg,yy) € Vo(w) describes
possibilities of constructing initial portfolios yo from initial endowments v
(which contain only the currencies i = 1,...,;my < n). Analogously, the
inclusion (yr_1,vr) € Vr(w) describes portfolio pairs (yr_1,vr) such that
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yr_1 can be converted into the contingent claim vy—a portfolio of currencies
7= 1, weey My

It is clear that the model under consideration is regular since all the cones
in (78) — (80) are polyhedral. We will assume that the cones Y;(w) satisfy
condition (B), i.e. contain the vector e; = (1,0, ...,0). Then the model under
consideration is strictly monotone, which follows from Lemma 12.1 below.

Define Y7(w) as the set of vectors {(b,0) € R": b € R™7}.

Lemma 12.1. For each w € Q and t = 0,...,T, if ¢ > b € Yi(w),
c—a € My(w), d > a and o' # a, then there is b’ € Y;(w) such that b/ > b,
V#band b —ad € My(w).

Proof. The non-negative non-zero portfolio d := a’ — a can be exchanged
into some portfolio ke; = (k,0,...,0) with £ > 0, i.e. kKey —d € My(w)
(formally, put in (76) ¢/ = d’ and ¢ = 0if 4 # 1). Set b = b+ xe;. Then
b >b,0 #bandV € Yi(w) because b € Y;(w) and e; € Y;(w). Finally, the
vector ' —a’ = ke; —d+b—a belongs to M(w) because b—a < c—a € My(w)
and ke; —d € M(w). O

It follows from the strict monotonicity of the model that hypotheses (NA)
and (NAy) are equivalent (see Proposition 7.2). Condition (SHy), which is a
consequence of (77) and (80), implies the validity of hypothesis (SH). Thus
the no-arbitrage criterion and the hedging criterion stated in Theorems 7.2
and 7.3 are valid. By applying these results to the model at hand, we arrive
at Theorem 12.1 formulated below.

For any vector a = (a, ...,a") € R", we write

a:=(a',...,a™), a:= (a',...,a™).

Theorem 12.1. In the currency market model (78) - (80), consistent
valuation systems are sequences (qo, Po, ---, PT, qr) Such that

9 = Po, qr = Pr, (81)

and pg,...,pr S a strictly positive Y*-martingale satisfying for each t =
0,1,...,T the following inequalities:

it <pl, i,j=1,..,n, (82)

where pt is the ith coordinate of the vector p,. The no-arbitrage hypothe-
sis (NA) is equivalent to the ezxistence of such a Y*-martingale. A contin-
gent claim vy € Lr(mg) can be hedged starting from an initial endowment
vo € Lr(myg) if and only if Epgvy > Eprur for any Y*-martingale py, ..., pr
satisfying (82).

Proof. By using Proposition 8.2, we obtain that a sequence (qo, po, ---, Pr, ¢)
is a consistent valuation system if and only if the following conditions hold:
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Lo(mg) > q > 0, Ly(mr) O gr > 0; po,...,pr iS a non-negative Y™*-
martingale;

goa > pob when b — (a,0) € My(w); (83)

pf <O0forall f < Afi(w)g” - g% (84)

where (¢%) is any nonnegative matrix and ¢t = 1,...,7 — 1; and
pra > qrb when a — (b,0) € Mr(w). (85)

Condition (84) is equivalent to

SO pindigt <> el (97 >0,

i=1 j=1 i=1 j=1

which, in turn, is equivalent to (82).

If property (83) holds, then by setting b := (a,0) with any a € R™, we
get goa = po(a,0), which means gy = pg. Further, by setting a = 0 in (83),
we find that —py € M{. This is equivalent to (82) with ¢ = 0. Conversely,
if go = Po and —po € M, then, assuming that b — (a,0) € My(w), we obtain
doa — pob = po(a,0) — pob > 0. Analogously, we establish the equivalence of
(85) and the relations gr = pr and —pr € My, where the latter holds if and
only if v7:p% < p7.

The strict positivity of the Y*-martingale py, ..., p7 follows from condition
(B) (which implies that the sequence q§ = pg, pi,..., Pr_1, P =g >0 is a
supermartingale) and the inequality pl >~ pi, which is a consequence of
(82). O

Consider the special case where mq = mr = 1, so that initial endowments
and contingent claims are measured in terms of currency 1. Further, assume
that the structure of the exchange rates is as follows:

i i
=SB i =1,
Si(1+aq)
and we have 7%(w) = 1 for all 4,¢ and w. For one unit of currency i, one can
get S¥(1 — /%) units of currency 1, playing the role of a numeraire, and then
convert the amount obtained into Si(1 — )/ [S7(1 + of)] units of currency
j. Here, Si/S! may be regarded as the ”interbank exchange rate” (without
transaction costs) of i into j. The numbers £ and o} (i = 2,...,n) are

35



the transaction cost rates for exchanging currency 4 into the numeraire and
backwards, respectively. We assume that S} = 1 and 8} = of = 0, which
corresponds to the role of currency 1 as a numeraire. The random variables
S¢ > 0,0l >0and 0 < 3} < 1 are supposed to be F;-measurable. Under
the assumptions imposed, conditions (81) and (82), describing consistent
valuation systems in the model at hand, take on the following form: gy = p,
gr = pr, and

S8 _

i Mt t . .

., < < ) Z )
which can equivalently be written as
piSi(1—=B;) <, <pSi(1+a}), i=1,..,m,

because S} =1 and ﬁtl = a; = 0. Thus, in the case we consider, consistent
valuation systems in the present model and in that examined in Section 9
coincide (see Theorem 9.1), and in this sense, these two models are equivalent.

13 Currency exchange without borrowing and
short sales

We consider another currency market model—a version of that proposed in
[23]. There are n currencies traded on the market at dates t = 0,1...,T. As
in the previous model (see Section 12), we are given a matrix (v7(w)) (i,j =
1,...,m) whose elements are strictly positive F;-measurable random variables,
specifying the exchange rates and the interest rates of the currencies traded.
Initial endowments at date 0 and contingent claims at date T" are portfolios
of mgy and mr currencies, respectively (1 < mg, my < n).

A portfolio a = (a!,...,a*) € R* of k currencies i = 1,...,k can be ex-
changed into portfolio b = (b, ...,b') € R! of [ currencies j = 1, ..., at date
t=0,...,T if and only if there exists a nonnegative matrix (¢¥) (i = 1, ..., k,
j=1,..,1) such that

l k
a’ > Zgij, i=1,..k V< nyij(w)gij, ji=1,..,1. (86)

j=1 i=1

Here, g% (i # j) stands for the amount of currency 4 converted into currency
j. The amount g% of currency ¢ < min{k,(}is left unexchanged. It is de-
posited with a bank account, yielding 7%¢%, where 7% — 1 is the interest rate.
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We will assume that 4% > 1. The first inequality in (86) is a balance con-
straint for currency : one cannot exchange more of it than is available at the
beginning of date ¢ (no borrowing is allowed). The second inequality in (86)
says that, at the end of date ¢ after the currency exchange, the jth position
of the portfolio cannot be greater than the sum Zle 78 (w)g¥ obtained as a
result of the exchange (plus interest).

The set of all portfolio pairs (a,b) satisfying (86) for some (g9) > 0
will be denoted by Z;(w, k,l), t = 0,...,T. The analogous set of (a,b) with
the additional requirement b > 0 will be denoted by Z;" (w,k,1). Clearly,
Zy(w, k,1) and Z;" (w, k, 1) are polyhedral cones depending F;-measurably on
w. To include the model outlined above into our general framework, we define

Vo(w) := Zp(w,n,myp), Yo(w) :=R%, (87)

Zy(w) :== Z} (w,n,n), t =1,...T — 1, Vp(w) := Zp(w,n, mr). (88)

It is clear that if a portfolio a can be exchanged into a portfolio b, i.e.
(a,b) € Zy(w,k,l), then any @’ > a, a # a can be exchanged into some
b > b, V' # b. This implies that the model defined by (87) and (88) is strictly
monotone. Hypothesis (SH) is valid because of the monotonicity of the model
and the property (SHr) of the cone Vir(w) (see (88)). Consequently, the hedg-
ing criterion established in Theorem 7.3 is applicable. It is easily seen that the
model at hand does not have arbitrage opportunities: if (vo, 3o, ..., Yyr—1, V1)
is a hedging strategy with vy < 0, then vy = yg = ... = yr—1 = vr = 0. This
guarantees, by virtue of Theorem 7.2, the existence of consistent valuation
systems.

Theorem 13.1. In the model defined by (87) and (88), consistent val-
uation systems are sequences (qo, Po, ---, PT,qr) Such that po,...,pr (Pt € Py)
is a strictly positive supermartingale, 0 < g, € Li(my), t = 0,T, and we have

@& >V, i=1,...,mo, j=1,..,n, (89)
P> pl, t=1,2,..,T—1,4,j=1,...n, (90)
P> i=1,...n, j=1,...,mp, (91)

where P, = Epl, . The no-arbitrage hypothesis holds always. A contingent
claim vr € Lr(mr) can be hedged starting from an initial endowment vy €
Lo(myg) if and only if Eqyve > Eqrvur for all consistent valuation systems
(9o, Po, ---» T, q) described above.
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Proof. Observe that the set Z;(w, k,1)*, as well as the set [Z;" (w, k,1)]*,
consists of those (¢,d) € R¥ x RY for which

l k k l
PILDIEHAED I DUEL (92)
Jj=1 i=1 i=1 j=1
where (¢¥) > 0. This inequality holds if and only if

AN <=1,k j=1,..,1 (93)

By applying (93) in the cases t = 0,1 <t < T — 1, and t = T, we obtain
(89), (90) and (91), respectively.

Since Yp(w) = R?%, condition (22) involved in the definition of a consistent
price system, becomes pg > p;. From (90) it follows that p; > piy1 because
7% > 1. Thus a consistent price system py, ..., pr is a supermartingale. Its
strict positivity follows from (91), as long as gr > 0. O

Observe that the cone Z;" (w, k, 1) can be represented in the form

ZH (w, k1) = {(a,b) € RE x R :

a> Ag, 0 < b < By(w)g for some g € Rk}, (94)

Here A : R¥*! — R* and B;(w) : R¥*! — R! are non-negative linear operators
transforming a matrix g = (¢%/) € R**! into the vectors Ag and B;(w)g whose
coordinates are defined by

(Ag)t = Z g" and (B,(w)g)’ = Z 7Y (w)g".

Thus the model under consideration is a direct stochastic analogue of the von
Neumann [63] model of economic growth (A and B;(w) being the counterparts
of the ”technology matrices”).

14 On the von Neumann—Gale model. Con-
cluding remarks

In this section, we briefly discuss links between the theory developed above
and the von Neumann-Gale model [63], [26]. The latter describes an economy
in which, at time t = 0,1, ..., there are n commodities ¢ = 1,2,...,n. The
state of the economy at time ¢ is characterized by a commodity vector y; =
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(Y4, -, yp) € R%. Possible transitions from one state to another are specified
by a sequence of cones Z; C R} x R%, t = 1,2,.... A path (trajectory) of
the economic system is a finite or infinite sequence yo, y1, 2, ... such that
(Y4-1,y:) € 2, t = 1,2,.... Elements (z,y) € Z; are called input-output
pairs or technological processes. The sets Z, are termed technology sets.
In the original [63] model, the cones Z; were supposed to be polyhedral;
they had a special structure motivated by economic considerations (cf. (94)
above). Gale [26] generalized von Neumann’s framework allowing general,
not necessarily polyhedral, cones.

The main focus in the von Neumann-Gale model is on the analysis of
paths that grow faster than others—e.g. maximize growth rates over each
time period (¢t —1,t]. Such paths are called efficient or rapid (see Evstigneev
and Schenk-Hoppé [21]). A precise definition is as follows. A path yo, y1, ¥, ...
is called efficient if there exists a sequence of price vectors po, p1, ... (p; € R7})
such that p;y; = 1 and

py < pyz for all (z,y) € Z,. (95)

By virtue of this definition, the growth rate pyy;/pi—1y:—1 over the time period
(t—1, t] attains its maximum on the path yo, 31, .... Since pyy; = 1, the growth
rate on Yo, yi, ... is constant and equal to one. (In fact, what matters here is
that psy; is a strictly positive constant.)

Sequences of price vectors pg, p1, ... satisfying (95) are called dual paths.
They may be regarded as paths in the dual model defined by the sequence
of cross-dual cones Z;* (see (27)). Thus a trajectory yo, y1, Ya, -.- s efficient
if there exists a dual trajectory po,pi1,ps, ... such that pyxy = 1. Clearly, if
Do, P1, P2, --- 18 a dual path, then pyyo > p1y1 > pays > ... for each path
Yo, Y1, Yo, ... of the original system.

In this work, we have used stochastic analogues of dual paths (consistent
valuation systems) to characterize the set of those pairs yo, yr of states of the
dynamical model at hand such that y7 can be reached from yy. The main idea
lies in that, under certain general assumptions, yr is reachable from g, if and
only if poyo > ... > pryr for all dual paths py, ..., pr. (In the stochastic case,
these inequalities are supposed to hold in the sense of expectations.) Hedging
problems considered in this paper are fully analogous to this reachability
problem. The analogues of commodity vectors are contingent portfolios of
assets, and the counterparts of paths in the von Neumann—Gale model are
hedging strategies. The transition cones specifying self-financing and other
portfolio constraints correspond in the financial context to the technology
cones in the economic dynamics context.

In the conventional theory of the von Neumann—Gale model, the main
theme is the modeling of economic growth. Dual paths play an important,
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but not the primary role; they are, rather, a key tool in the analysis. In this
work, we did not consider questions of financial growth at all. However, the
methodology of the von Neumann—Gale model can be applied in this field as
well. Some steps in analyzing financial growth from this angle were made in
[16] and [21, Section 6]. This is an interesting direction for further research,
closely related to capital growth theory (Kelly [45], Breiman [9], Algoet and
Cover [1], Hakansson and Ziemba [29], Iyengar and Cover [31]) and evolu-
tionary finance (Blume and Easley [7], Evstigneev, Hens and Schenk-Hoppé
20]).

The study of stochastic versions of the von Neumann—Gale model was
pioneered by Dynkin, Radner and their collaborators in the early 1970s.
Radner [52] focused primarily on the issues of growth, typical for the von
Neumann—Gale theory. Dynkin [17], [18, Chapter 9] analyzed stochastic
analogues of dual paths and considered in the economics context what we
call here consistent price systems.

There are some conceptual differences in the ways of ”stochastization”
of the von Neumann—Gale model in Dynkin’s and Radner’s approaches. In
Dynkin’s model, technology sets contain input-output pairs of contingent
commodity vectors (x:,y;) associated with the same date ¢ and influenced
by the same random factors (mathematically, z; and y, are supposed to be
measurable with respect to the same c-algebra F;). In Radner’s approach,
inputs z;_; and outputs y; correspond to the beginning and the end of the
production period (¢t —1,t] and therefore they are influenced by different ran-
dom factors (z;—; is measurable with respect to the o-algebra F;_; smaller
than F3;). These distinctions in the frameworks—which might seem not very
essential—lead in fact to substantial distinctions in the structure of the du-
ality results underlying the construction of consistent price systems.

Radner’s approach appeared to be more natural from the economic point
of view and it became prevailing in the economic dynamics literature—see
the survey in Arkin and Evstigneev [3]. However, it turned out that Dynkin’s
setting fits the financial context better. First of all, it is quite natural to as-
sume that portfolio rebalancing is performed with full information about the
current asset prices and transaction costs (and so both contingent portfolios
x; and y; are measurable with respect to the o-algebra F;). Moreover, the
duality results, such as Theorem 7.1 in this paper, obtained along Dynkin’s
lines (cf. [18, Section 9.5]) fit exactly the objectives of the present work.
They allow one to obtain general hedging criteria that unify the whole range
of available examples and applications.

To conclude, we would like to list several directions of further research,
which, in our opinion, are of interest. These are: (i) as already mentioned
above—the analysis of questions of financial growth within the framework
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proposed; (ii) portfolio optimization within this framework; (iii) developing
numerical algorithms based on duality considerations (involving consistent
valuation systems) for computing approximate solutions to hedging and opti-
mization problems; (iv) finding explicit analytical solutions to these problems
in specialized models®; and (v) mathematical generalizations of the results
obtained (in particular, their extension of to the case of a general, not nec-
essarily finite, probability space).

Appendix

For a cone K in R", we denote by K* the dual to the cone K, i.e. the
set of all those linear functionals ¢ on R™ for which gz > 0, z € K. We write
K™ for the set of those ¢ in K* that satisfy gz > 0 for each non-zero element
z € K. A cone K is called proper if K N (—K) = {0}.

Theorem A.1. Let H and M be closed cones in R™ such that H N
(—M)={0}. Then H+ M is a closed cone. If, additionally, H and M are
proper, then H + M is proper.

Theorem A.1 is a consequence of [53, Corollary 9.1.3].

Let H and K be a closed cones in R", K being proper. These cones
will be fixed throughout the rest of the Appendix. The next result can be
deduced from [53, Corollary 11.4.2].

Theorem A.2. The following two assertions are equivalent:

(a) HN K = {0}.

(b) There exists | € K+ such that th <0 for all h € H.

Define

N={le K": In<0, he H}.
Theorem A.2 says that
HNK={0} < N #0.
When H is a linear space, we have
N={le K":lh=0, he H}. (96)

Thus, by using Theorem A.2, we obtain the following result.

6In this connection, see Stettner [61] and Sass [56].
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Theorem A.3. Let H be a linear space. Then the following assertions
are equivalent.

(a) HN K = {0}.

(b) There exists | € K+ such that lh =0 for all h € H.

Theorem A.4 below characterizes elements u in the cone H — K in terms
of dual variables—linear functionals [ in V.

Theorem A.4. Let HN K = {0}. Then, for any u € R", the following
assertions are equivalent.

(i) ue H-K.

(ii) We have lu < 0for alll € N.

Proof. Clearly (ii) is a consequence of (i). Let (ii) hold. Suppose u ¢
H - K. Put U= {)Mu:A>0}. Since u ¢ (—K), the cone U + K is proper
and closed—see Theorem A.1. Furthermore (U + K) N H = {0} because
u ¢ H — K. By virtue of Theorem A.2, there exists [ € (U + K)* such that
I[h<O0forallhe H. Then!l € N because [ € (U+ K)* C K*. At the same
time lu > 0 since [ € (U + K)* CU™*. A contradiction. O

If H is a linear space, then we can characterize not only H — K, but also
H, in terms of dual variables [ in N.

Theorem A.5. Let HN K = {0}. If H is a linear space, then the
following assertions are equivalent.

(i) v e H.

(ii) We have lu =0 for alll € N.

Proof. We can see that (i) implies (ii) by virtue of (96). Suppose (ii)
holds. Then u € H — K by virtue of Theorem A.4. Let us apply Theorem
A.4 to the cone —K and the linear space H. This is possible since —K is
proper and closed, and (—K) N H = (—K) N (—H) = {0}. Define N = {l €
(—K)*: lh=0, h € H}. Clearly N = —N, and so lu =0 for all [ € N in
view of (ii). By virtue of Theorem A.4 applied to —K and H, we find that
u € H+ K. On the other hand v € H — K, which implies u € H because
HNnK=Kn(-K) = {0}. O

Let X be a convex subset in R” and f(z), z € X, a concave real-valued
function defined on X. Let C be a cone in R*¥ and G(z) a vector function on
X with values in R*. Assume that G is concave in the following sense

GOx1 + (1 — Nz2) — AG(z1) — (1 = NG(zs) € C (97)

for all 1,20 € X and A € [0,1]. (Clearly (97) holds if G is affine, i.e.,
the expression in (97) is equal to zero.) Consider the following optimization
problem.

(M) Maximize f(x) on the set X subject to the constraint

G(z) e C. (98)
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Suppose that one of the conditions (SL) or (LP) below holds.

(SL) (Slater’s constraint qualification.) There is a vector z € X such that
G(z) €int C.

(LP) The sets X and C are polyhedral and f, G are affine.

If (LP) holds, then (M) is a linear programming problem.

Theorem A.6. Let T be an element of X satisfying constraint (98).
Then the following assertions are equivalent.

(i) The vector T is a solution to optimization problem (M).

(ii) There ezists a linear functional p € C* such that

f(z) +p(G(z)) < f(2) +p(G(2)), € X, (99)
and
p(G(z)) = 0. (100)

Condition (99) states that Z maximizes the Lagrangian L(p,z) = f(x) +
p(G(z)) over all z € X (not necessarily satisfying (98)). In this sense, p is said
to relaz the constraint (98). Equality (100) is the complementary slackness
condition. If p € C*, then two relations (99) and (100) are equivalent to
one: f(z)+ pG(z) < f(Z), x € X. For a proof of Theorem A.6 see, e.g., [47,
Theorem 8.3.1].

Let (2, F, P) be a finite probability space. For each w € 2, let A(w) C R"™
be a set, possibly empty for some w. Let G C F be an algebra of subsets
of Q. We say that the set A(w) depends G-measurably on w if there exists
a partition 2 = )y U ... U Qg of Q into disjoint sets §2; € G, ..., Qi € G such
that A(w) is constant on each ;, i = 1, ..., k. The proof of the following fact
is straightforward.

Theorem A.7. If a set A(w) depends G-measurably on w, then there is
a G-measurable mapping a : Q — R™ such that a(w) € A(w) for all those w
for which A(w) # 0.

The mapping a described in the above theorem is called a G-measurable
selector of the set-valued mapping w — A(w). By using Theorem A.7, one
can easily obtain the following result.

Theorem A.8. Let A(w) C R™ be a non-empty set depending G-measurably
onw and let F(w,z) (w € Q, x € R") be a real valued function G-measurable
in w for each x € R™ and continuous in = for each w. Let a(w) be a G-
measurable selector of A(w). Then the following two assertions are equiva-
lent:

(a) The inequality EF(w,a(w)) < EF(w,a&(w)) is valid for each G-
measurable selector a of the set-valued mapping A(w).

(b) With probability one, F(w,a) < F(w,a(w)) for all a € A(w).
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