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REAL OPTIONS IN PARTNERSHIPS

NICOS D SAVVA & STEFAN SCHOLTES

Abstract. We study partnership contracts under uncertainty but with
clauses that admit downstream flexibility. The focus is on effects of
flexibility on the synergy set, the core, of the contract. In a partner-
ship context the value of flexibility is captured by the partners who own
the right to exercise. On one side, there are cooperative options, which
are exercised jointly and in the interest of maximizing the total con-
tract value, on the other side, there are non-cooperative options, which
are exercised unilaterally, or by coalitions, in the interest of the option
holders’ payoffs. We provide a modelling framework that captures the
effects of optionality on partnership synergies. We study these effects
under a complete markets assumption, based on standard contingent
claims analysis, as well as under heterogenous risk-aversion, using a
dynamic programming model. The models shows the effect of several
strategies on the synergy set and the bargaining position of the part-
ners. It also shows that non-cooperative options, if agreed prior to the
negotiation, are powerful bargaining tools but that they can also destroy
the partners’ incentive to participate in the contract. Finally, the model
illustrates how risk sharing provides larger synergies for partners with
heterogeneous risk attitudes.

1. Introduction

Partnerships are a driving force of the modern economy. Joint ventures of
car manufacturers, alliances between airlines, co-development contracts be-
tween pharmaceutical and biotech companies, production sharing contracts
between oil majors and national oil companies, to name but a few industries
where partnerships are significant drivers of value.
Partnerships aim to create synergies by combining core competencies of the
partners to form a distinctive offering that neither partner could provide
alone. Synergies are traditionally thought of in terms of improved efficiency,
e.g. through economies of scale or scope. In an uncertain world, however,
there are at least two further important sources of synergies: risk sharing and
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2 NICOS D SAVVA & STEFAN SCHOLTES

flexibility. Risk sharing is particularly interesting if partners have different
risk attitudes, e.g. a pharmaceutical major and a small biotech company,
enabling win-win situations by trading off risks. Additional flexibility in a
partnership can have significant value by allowing partners to cut downside
risk or amplify upside potential as the uncertain future unfolds. In this
paper, we will explore such stochastic synergies.
The framework for most partnerships is provided by a legal contract. Two
key questions in contract negotiations are: How should the contract be
structured to generate significant total value at an acceptable level of risk?
How should this total value and the associated risks be shared amongst the
partners? These challenges are exacerbated when long-term partnerships
are negotiated in volatile commercial environments. Mitigating clauses tend
to be included in contracts to avoid lock-in and enable the partners to react,
either jointly or unilaterally, when uncertainties unfold, without the need
to breach the contract. The contract becomes a dynamic frame. What are
the implications of contingency clauses for the contract value as a whole?
How do contingency clauses change the bargaining position of the partners?
These are the core questions that we address in this paper.
In our practical experience, value effects of contingency clauses are often
underestimated or even completely discarded. The reply of a senior man-
ager to our question about the rationale for his suggested royalty rate is
representative in this regard: “We are contributing 50% of the R&D ex-
penditure. It seems only fair to set the royalties so that we receive 50%
of the projected value if the R&D is successful”. His argument neglected
that the decision to launch the successful product was the partner’s and
that the manager’s company would loose all royalty payment if the partner
decided, for whatever reason, not to launch the new product. Flexibility can
have significant value for its owner and can take away significant value from
the other partners. Only if this value-effect is understood and taken into
account in contract design and sharing negotiations can we hope to create
robust partnerships that do not go sour when companies exercise flexibilities
in ways their partners had not foreseen.
The academic discussion of fair distributions of benefits from cooperation
goes back to the seminal work of Nash (1950, 1953) and Shapley (1953),
which led to the advent of bargaining theory and cooperative game theory.
This literature is largely concerned with the allocation of value, not of risk.
The models are mainly deterministic and combinatorial. A first strand of
this literature relevant to our work is concerned with cooperative game the-
ory in the presence of stochastic payoffs, see e.g. Granot (1977), Suijs and
Borm (1999), Suijs et al. (1999). We build in particular on the work of Suijs
and co-workers, using the concept of a deterministic equivalent of a stochas-
tic cooperative game, which turns out to be very useful in our analysis. A
second relevant body of work focuses on efficient risk sharing and the for-
mation of syndicates, see e.g. Wilson (1968) and Pratt (2000). We integrate
these two strands of literature with elements of the real options literature



REAL OPTIONS IN PARTNERSHIPS 3

to study the effect of optionality in partnership contracts, an issue which,
to our best knowledge, has not been thoroughly investigated to date.
Two concepts play a crucial role in the study of the value effects of uncer-
tainty: Diversification and optionality. Diversification is essentially a passive
risk management tool and presumes no direct influence on the management
of individual projects. It is therefore particularly appealing to investors.
Optionality on the other hand, emphasizes the importance of pro-active
risk and opportunity management and is therefore particularly appealing
to managers. A right without obligation to a potential future action cre-
ates value in an uncertain environment. The concept of optionality and its
valuation in the context of financial derivatives, originated in the seminal
work of Merton (1973) and Black and Scholes (1973), has attracted consid-
erable academic attention and made a significant practical impact. Indeed,
the concepts and approaches of financial engineering have moved beyond
the design and valuation of financial instruments into the realm of capital
budgeting and project valuation.
Myers (1984) was amongst the first to advocate that significant optionality,
such as growth opportunities, ought to be included in the valuation of a
project or company and that appropriate use of the work of Black, Scholes
and Merton might make this possible. Myers saw this as an opportunity to
bridge the gap between strategy and finance and coined the term real options
for this line of thinking. Shortly afterwards, Brennan and Schwartz (1985)
illustrated how such real options could be valued with a Black-Scholes ap-
proach. These seminal papers, together with the monograph by Dixit and
Pindyck (1994) spurred a significant amount of academic work over the
past two decades and led to the establishment of real options as a distinct
area in finance with increasing uptake in the strategy literature, see e.g.
Kogut (1991), Rivoli and Salorio (1996), McGrath (1997, 1999), McGrath
and Nerkar (2004), Kulitilaka and Perotti (1998), Bowman and Moskowitz
(2001), Folta and Miller (2002), Cassiman and Ueda (forthcoming), Burne-
tas and Ritchken (2005). The advent of real options analysis in the strategy
literature has not been without controversy, though. We refer the interested
reader to Adner and Levinthal (2004b,a) and the response to their paper by
McGrath et al. (2004).
An emerging body of literature is concerned with the relationship between
optionality and competition, for example see Grenadier (2002). Little work
has been done to date to understand the effect of real options on the synergies
created by a partnership and the consequences for fair splits of risk and
return. Our aim in this paper is to fill this gap by presenting a framework
that allows the investigation of contract design issues with a real options
flavor. To this end, we combine concepts from cooperative game theory and
real options theory - a combination that has not received the attention in
the academic community that, we believe, it deserves. Our main emphasis
is on the impact of options on the core of a cooperative game. The core of
a contract conceptualizes a notion of a negotiation synergy set. It contains
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those payoff allocations for which no partner, or sub-coalition, can improve
upon by going alone.
The paper is structured as follows: We begin by discussing a simple model
of a cooperative real options game. In section 4 we determine its core under
three sets of assumptions: a) the existence of a complete market, b) risk
neutral agents, and c) risk averse agents. In section 4 we develop the model
and insights, using a more general multi-agent, continuous time framework.
Section 5 concludes with managerial implications. In order to reach a broad
readership, we have structured the paper in such a way that the key intu-
ition, illustrated by the simpler model of section 4 can be grasped without
a detailed understanding of section 4.

2. Options contracts: Cooperative vs. non-cooperative options

An options contract is a contract with significant future flexibility. Options
are rights but not obligations to future actions. In a partnership this raises
the question, who has the right to the action? There are two types of options
in partnerships, depending on who has this exercise right.
A contract clause may specify that an exercise decision on an option is taken
jointly. We call such flexibilities cooperative options and assume they will
be exercised in the interest of maximizing the total value of the contract. A
typical example is a decision to jointly market a product after a successful
R&D effort.
Flexibility may also be owned by a single partner or a sub-group of partners,
who have the right to exercise it and will, we assume, do so in the interest of
their own payoff, rather than the sum of payoffs resulting from the contract.
We call such flexibilities non-cooperative options. A generic non-cooperative
option on a contract is the option to breach the contract if circumstances
do not unfold as anticipated, accepting possible litigation costs as the price
of exercise.
The notion of a cooperative option emphasizes the collaborative nature of
partnerships, whilst non-cooperative options acknowledge the transient na-
ture of contracts and regard them as part of competitive strategies of firms
who will ultimately act in their own interest. Non-cooperative options can
be tacit, such as the option to breach the contract, or explicitly acknowl-
edged in a partnership contract. For example, a clause in a co-development
contract between a biotech and a pharmaceutical company may allow the
biotech company to opt out of further co-development and receive agreed
milestone and royalty payments instead. Formally, a non-cooperative op-
tion in a partnership can be thought of as a cooperative game followed by a
non-cooperative game. The cooperative game, i.e., the contract negotiation,
sets a framework for later non-cooperative behavior, which has to be taken
into account in the negotiation.
Our main focus in this paper is the effect of flexibility, cooperative or non-
cooperative, on the synergies created by the partnership. To this end we
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employ the notion of the core of a cooperative game, which is the set of all
allocations of payoffs to the partners that will make all partners better off
than without the contract. Following Sharpe (1995), we illustrate option
effects in the context of a very simple one time period model with simple
flip-of-the-coin uncertainty. The model extends to more complex lattice-
based and continuous-time models. A continuous time version is developed
in Section 4.

3. The core of an options contract: An illustrative model

Assume a biotech company has a drug under development, which has suc-
cessfully passed all clinical trials and is now awaiting final approval by the
regulator. The company estimates the present value of cash flows from the
drug to be CB for a launch investment of IB < CB. The biotech company
has limited production capabilities and its sales and distribution network
is rather inefficient compared to pharma majors. The company is therefore
negotiating a co-marketing contract with a large pharmaceutical company.
The cash flow projection for the co-marketed product is CB+P and the
launch investment will be IB+P . How should the value (CB+P − IB+P ) of
the contract be shared in a fair way?

3.1. The core of the deterministic game. The core of this cooperative
game is the set of payoff allocations that make both partners better off
than going alone. Denoting by φB and φP the share of the contract value
CB+P−IB+P for the biotech and pharmaceutical company, respectively, and
neglecting costs of capital considerations for simplicity, the core is defined
by

φB ≥ CB − IB

φP ≥ 0
φB + φP = CB+P − IB+P .

In other words, the biotech’s payoff share φB is in the core if

CB − IB ≤ φB ≤ CB+P − IB+P ,

with the residual payoff φP = CB+P − IB+P − φB being allocated to the
pharmaceutical company.

3.2. Uncertain payoffs. To introduce uncertainty we assume that a com-
petitor is developing a drug that will treat the same indication. If the
competitor is successful in developing this drug, the revenue potential of the
biotech’s drug will be reduced. We assume that p is the probability of failure
of the competing drug. In the upside scenario of a failure of the competitor’s
drug, the cash flow projection if the biotech company goes alone is assumed
to be uBCB, with uB > 1; in the downside scenario of competitor success,
this cash flow is projected to be dBCB, with dB < 1. In the partnership the
present values of the cash flows are projected as uB+PCB+P in the upside
and dB+PCB+P in the downside scenario.
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In section 3.3 we will determine the core of this game under the assumption
of complete markets. In section 3.4 we replace the assumption of complete
markets with risk neutral agents and we see that much of the results for
complete markets carry forward. Finally, we investigate the real options
cooperative game under the assumption of risk aversion in section 3.5.

3.3. Complete Markets. We will first examine the stochastic cooperative
game under a complete markets assumption. Complete markets imply the
existence of a portfolio of traded assets that replicates any contract payoffs.
Trading in these assets allows the partnership to hedge all risks: partners
can individually short sell the replicating portfolio corresponding to their
allocation of the contract payoff and thereby offset their payoffs in each state
of the market. Hence, the only valuation for the investment opportunity that
is consistent with the absence of arbitrage opportunities is the present value
of the replicating portfolio. The risk preferences of agents are irrelevant in
this situation, for details see Hull (2003).
To illustrate this effect, assume there is an asset which closely tracks the
success or failure of the competing R&D project. In the case of success
the price of the tracking asset will increase from P to Pu, if the competing
project fails, it will decrease to Pd.
If an asset has payoffs (Xu, Xd) in the two states of the market, then this
payoff can be replicated with a portfolio of the tracking asset and the risk free
asset, which we assume to have return r = 1 for simplicity. This replication
is done by solving ψBPd+θB = Xu, ψBPu+θB = Xd, where ψ is the number
of bought shares in the tracking asset and θ is the amount invested in the
risk free asset. Simple algebra shows that the value x of this replicating
portfolio has the form

(3.1) x = ψBP + θB = qxu + (1− q)xd,

where q is given by

(3.2) q =
Pu − P

Pu − Pd
.

Because 0 ≤ q ≤ 1 it is often interpreted as a probability, although its
correct economic interpretation is in terms of forward prices, see Sharpe
(1995). The reference to q as a probability is convenient because (3.1) allows
the interpretation of the non-arbitrage value as an expectation under this
measure. The measure q is typically referred to as the risk-neutral measure
or equivalent martingale measure in the finance literature.

3.3.1. The contract without options. Equation (3.1) allows us to calculate
the no-arbitrage value

(3.3) xB = quBCB + (1− q)dBCB − IB

of the contract for the biotech alone and the no-arbitrage value

(3.4) xB+P = quB+PCB+P + (1− q)dB+PCB+P − IB+P
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for the partnership. Since under the complete markets assumption both
agents would agree on these values (or allow for arbitrage opportunities),
the game is reduced to a deterministic cooperative game. The value share
φB of the biotech is in the core if

xB ≤ φB ≤ xB+P

with the residual φP = xB+P −φB going to the pharma company. The core
is similar to the cooperative game without uncertainty, with the difference
that the deterministic payoffs are now replaced by the no-arbitrage value of
the stochastic payoffs. Effectively, trading in complete markets reduces the
stochastic game to a deterministic game.
It is important at this point to make a distinction between payoff sharing and
value sharing. Payoff allocations, which we will denote by (ΦB(ω),ΦP (ω)),
are functions that allocate the ultimate payoffs, here uBCB+P − IB+P or
dBCB+P − IB+P to the biotech and the pharma in each state of the world
ω ∈ {u, d}. In each such state, the sum of the partners’ payoff allocations
equals the total payoff for the partnership. The value shares (φB, φP ), in
contrast, are the private values which the partners assign to their payoff
allocations. In our complete markets setting the payoff shares are related to
the value shares by

(3.5) φi = qΦi(u) + (1− q)Φi(d), i ∈ {B,P}.

Since each firm can hedge all risks through trading, the agents are indifferent
between two payoff sharing rules that have the same risk-neutral value φi.
In the complete markets case, the relationship φB + φP = xB+P holds.

3.3.2. A cooperative option. We will now introduce a cooperative option.
Suppose the companies can wait with the launch investment until they know
the result of the trials for the competing drug and therefore the cash flow
scenario. For simplicity we assume that there is a deterministic cost involved
in waiting. Such costs may involve actual costs, such as labour costs, as well
as opportunity costs, such as cost of lost sales or finite patent life etc. The
waiting cost is kB for the biotech alone and kB+P for the partnership.
The biotech alone as well as the partnership have two possible project de-
signs to choose from. The first is to pay kB or kB+P , respectively, and
postpone the decision to launch until uncertainty is resolved. This will pro-
vide the option to abandon the project if the competition is successful. The
alternative is not to pay the costs and as a result they will not have the
option.
The method developed in the previous section can be used to price the
project with the option to wait. If the biotech goes alone the no-arbitrage
value (3.1) is1

(3.6) xO
B = q(uBCB − IB)+ + (1− q)(dBCB − IB)+ − kB,

1We are using z+ as a shorthand for max{z, 0}.
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while the value for the partnership becomes
(3.7)
xO

B+P = q(uB+PCB+P − IB+P )+ + (1− q)(dB+PCB+P − IB+P )+ − kB+P ,

were q is the risk-neutral probability given by equation (3.2). If the biotech
alone or the partnership decides not to wait the values is given by (3.3) and
(3.4), respectively.
Knowing the values of the design alternatives, the agents choose the optimal
design. If xO

B > xB the Biotech would prefer to pay the costs involved with
waiting and set up the option. If that is the case, the company would exer-
cise the option in the states of the world where iBCB − IB > 0, i ∈ {u, d}.
Similarly for the partnership. Again, the stochastic game is reduced to a
deterministic game as in the previous section, with the additional complica-
tion that the agents need to also choose the optimal design and the optimal
exercise policies for their options. The agents will choose the design with
the highest risk-neutral value. Since this is the only value that is consistent
with no-arbitrage assumption, there will be no disagreement over the value
of the different designs or the optimal exercise policy. We shall see that this
is not the case in the absence of markets and the presence of risk-aversion.
The condition for the biotech’s value φB to be in the core is now

x∗B ≤ φB ≤ x∗B+P

where x∗B is the value of the optimal design for the biotech subject to optimal
options exercise:

(3.8) x∗ = max{xB, x
O
B}.

x∗B+P is similarly defined for the partnership.

3.3.3. A non-cooperative option. To illustrate the effect of non-cooperative
options, let us assume that, in addition to the setting so far, the contract
gives the biotech company unilateral flexibility to opt out of co-marketing of
the drug before committing to the launch cost, whilst the pharma company
is locked in the contract. Suppose the biotech would receive a fixed amount
Z, deducted from the contract value, if it exercised the opt-out option.
We treat Z as an exogenous parameter and we investigate its effect on the
synergy set of the contract.
The first question is how, if at all, the existence of this option changes the
total value of the contract? Suppose the agents have agreed a payoff sharing
rule (ΦB(ω),ΦP (ω)) if the drug is launched jointly. If the upside scenario
occurs then the payoff to the biotech will be max{ΦB(ω), Z}, taking the
option into account, whilst the residual payoff uB+PCB+P −max{ΦB(ω), Z}
goes to the pharma company. Whatever the sharing rule, the total payoff
in the upside is uB+PCB+P . Similarly, in the downside the total payoff
is dB+PCB+P , i.e., the total value of the contract is not affected by the
existence of the option. Since the preceeding cooperative option is exercised
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in the interest of the total deal value we are back in the former situation of
the cooperative option alone.
If the payout Z is larger than the total contract value without the unilateral
option, Z > x∗B+P , see (3.8) with q replaced by p, then the pharmaceutical
company, who will have to pay the amount Z if the option is exercised, will
have no incentive to participate in the deal and the core will be empty. So
let us assume that Z ≤ x∗B+P .
A first observation is that the biotech payoff will always be at least Z there-
fore the value-core will be of the form

max{Z, x∗B} ≤ φB ≤ x∗B+P .

If Z ≤ x∗B, then the value-core is unchanged by the non-cooperative option.
If x∗B < Z ≤ x∗B+P then the value core is reduced in favor of the option
owner, who gains increased bargaining power. If Z > x∗B+P then the core
is empty; the presence of the option makes it impossible for the pharma to
agree to the deal.
All the arguments can be made without reference to the payoff allocation Φ,
although the options exercise will actually depend on the payoff allocation.
It can be shown that any value allocation φ in the core can be realised with
a payoff allocation Φ for which the option is never exercised (see Proposi-
tion 4.4).

3.4. No traded assets and risk-neutral agents. The complete markets
assumption can be replaced without difficulty by a consistency argument
and the assumption of risk-neutral agents. This is done by replacing the
standard contingent claims analysis by an equally standard stochastic dy-
namic programming analysis. Much of the analysis of the previous section
remains valid under the risk-neutrality and consistency assumptions.
As before, we assume that the competitor will fail to bring the competing
drug to market with probability p. However, we will now make explicit use
of the failure probability p. An important, albeit often tacit, assumption in
this context is that both agents agree on the value of the probability p. As
before, the project value for the biotech and partnership is projected to be
dBCB if the competing project succeeds and uBCB if the competing project
fails.
We will require that the initial future cash flow projection CB is consistent
with the scenario assumptions in the sense that

CB = puBCB + (1− p)dBCB

were we assume zero returns on investment. This consistency assumption
plays the role of the existence of a suitable martingale measure in the previ-
ous section, which is equivalent to the assumption of a complete arbitrage-
free market. It links our analysis below to the contingent claims analysis
above. The consistency assumption hold if and only if there exists sB such
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that upwards and downwards rates are of the form

(3.9) uB = 1 + sB

√
1− p

p
, dB = 1− sB

√
p

1− p
,

where sB can be thought of as a measure of volatility2.
In the partnership contract the present values of the cash flows are as before
projected as uB+PCB+P in the upside and dB+PCB+P in the downside sce-
nario. Again, under risk-neutrality, this scenario assumption is consistent
with the foregoing valuation of CB+P if the upwards and downwards mul-
tipliers uB+P , dB+P have the form (3.9) with a possibly different volatility
sB+P .
In contrast to the deterministic and the complete markets case the core
is now a set in the two-dimensional (ΦB(u),ΦB(d))-space, as depicted in
Figure 1. The width (CB+P − IB+P ) − (CB − IB) can be regarded as a
metric for the size of the synergies involved.
Note that under the risk-neutrality assumption company i’s value share is
φi = pΦi(u) + (1− p)Φi(d), i.e., the partners are indifferent between payoff
allocations on a line pΦi(u)+ (1− p)Φi(d) and value them at their expected
value φi. Therefore we can reduce the two dimensional core of the stochastic
game again to a one dimensional value core defined by

CB − IB ≤ φB ≤ CB+P − IB+P .

The computation of the value core for cooperative and non cooperative
options is analogues to the complete markets.
Note that the option values x∗B and x∗B+P increase, in this model linearly,
with the volatilities sB and sB+P , respectively, while the synergy set in-
creases in size with the difference in volatility sB+P − sB, again linearly.
The same argument hold in complete markets.
It is interesting to look at the effect of non-cooperative options in the payoff
space ΦB,ΦP . We do this in the next section.

3.4.1. The non-cooperative option. The biotech payoff will be max{ΦB(ω), Z},
where ω ∈ {u, d} is the observed scenario and ΦB(ω) is the agreed payoff if
the drug is launched and the non-cooperative option option is not exercised.
The expected payoff for the biotech is

pmax{ΦB(u), Z}+ (1− p) max{ΦB(d), Z},

2A geometric Brownian motion with drift ν and volatility σ can be approximated
by a binomial lattice with upwards probability p, period length ∆t and upwards and

downwards multipliers u = exp
�
ν∆t + σ

√
∆t
q

1−p
p

�
and d = exp

�
ν∆t− σ

√
∆t
q

p
1−p

�
,

respectively. The simplified form (3.9) is a first order approximation of the latter formulas

for small sB = σ
√

∆t and ν = 0.
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Figure 1. The core of the cooperative game with the
Biotech having the Opt-out option

the pharmaceutical company receives the residual payoff. The core in the
scenario payoff space is given by3:

x∗B ≤ pmax{ΦB(u), Z}+ (1− p) max{ΦB(d), Z} ≤ x∗B+P .

Figure 1 illustrates the options effect on the core of the game. The core is
now the shaded area. Three distinct cases can arise:

(1) The opt-out payoff lines intercept below (southwest of) the core.
This is equivalent to Z ≤ x∗B. In the case the option does not
change the set of admissible sharing arrangements in expected values.
However, in contrast to the situation without opt-out option, not all
payoffs on iso-expectation lines are admissible.

(2) The opt-out lines intercept in the core (x∗B ≤ Z ≤ x∗B+P ) This is
depicted in the figure 1. For this to happen Z has to be above the
payoff in the downside but less than the payoff in the upside. The
change in the core is in favour of the option owner, i.e., the option
improves the option holders bargaining position.

(3) The opt-out lines intercept above (northeast of) the core (Z ≥
x∗B+P ). In this case the core is empty. This happens only if the
opt-out payoff Z exceeds the payoff in the upwards scenario.

3x∗B , x∗B+P are given by equation (3.8) with q replaced by p.
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The above relationships between Z and the payoff core translate to the
relationships developed in section 3.3 for the relationship between Z and
the value core in the complete markets case.

3.5. The effect of risk aversion. Having dealt with the situation of hedg-
ing in complete markets and of risk-neutral agents in the absence of markets,
we will now discuss an arguably more realistic situation where we assume
that the agents are risk averse with possibly different levels of risk aversion.
This is a sensible assumption for example in partnership negotiations be-
tween well-diversified and well endowed pharma majors and relatively small
biotech companies with serious cash constraints and few drug candidates
close enough to the market to raise additional equity capital. We assume
that there are no partial hedging opportunities. The presence of possibly
different levels of risk aversion introduces two interesting issues:

(1) If two players have different levels of risk aversion they should be
willing to trade off risk. This brings up the question how can risk
be shared in an efficient way?

(2) If two players have different levels of risk aversion, they may well
come to different conclusions about the most desirable contract de-
sign. A risk averse partner might be willing to pay the costs associ-
ated with waiting in order to have an option that will reduce her risk
- a less-risk averse partner might not agree. How can these differing
preferences be reconciled?

We address the first issue in section 3.6 where the agents have only one
possible project design available. We introduce the problem of design choice
in section 3.7 where agents can choose to set up cooperative options or not.
In section 3.8 we discuss the effect of non-cooperative options.

3.6. Cooperative games and risk aversion. We will illustrate the risk
sharing issues using our simple two agent partnership contract, without any
options. This section, which is largely based on Suijs and Borm (1999), sets
the scene for the analysis of options effects under risk-aversion.
We assume, as before, that the stochastic payoff X is modelled as a flip
of a possibly biased coin. The two agents have different attitudes towards
risk: the biotech is more risk averse than the pharma. We model their
payoff preferences via expected utility functions 4. Since we assume that
the agents’ perception of risk are fully captured by an expected utility, it is
possible to gauge how much a risky gamble would be worth to each player:
Given a gamble X, what deterministic payment mi would make agent i
indifferent to receiving mi for sure or taking the gamble? This value is the
certainty equivalent of the risky gamble; it satisfies ui(mi(X)) = E[ui(X)],
i.e.,mi(X) = u−1

i (E[ui(X)]). For illustrative purposes we choose exponential

utility functions: uB(X) = −e−
X

βB , uP (X) = −e−
X
βP , with βP > βB.

4Agent i prefers an uncertain payoff X over an uncertain payoff Y if E[ui(X)] >
E[ui(Y )], where ui is a suitable utility function.
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Figure 2. Efficient risk sharing

What is the optimal way for the companies to share the risk involved in a
joint project? We will focus on linear contracts, i.e., agreements involving
a deterministic payment Di and a share ri of an uncertain payoff X. The
total payoff of agent i from the joint project will be

(3.10) Φi(ω) = Di + riX(ω).

Such simple royalty contracts are commonplace in business, in particular in
licensing agreements in the pharmaceutical industry. This type of contract is
illustrated in figure 2; we wish to determine an allocation along the diagonal
in the space of state-payoffs. The closer the agreement point is to the origin,
the more risk is taken up by the biotech and the less risk by the pharma. In
the case of were risk-neutral companies, the utility indifference curves are
straight lines. If agents are risk averse then the indifference map is no longer
linear as can be seen in figure 2.
Both agents prefer to take up as little risk as possible. However, the risk
aversion induced by the concave utility function reduces the marginal benefit
of a decrease in risk taking. Furthermore, this rate of reduction of marginal
benefits will be different for both players, in view of their differing risk aver-
sion levels. The royalty rate r that maximises the perceived total value5 of
the game is achieved where the marginal value of taking up some infinitesi-
mal fraction of the risky project is the same for both agents. If the marginal
benefits were different, we would be able to add to the total value by taking
away an infinitesimal amount of risk from the player with the smaller mar-
ginal benefit and giving it to the player with the larger marginal benefit.
This can be seen in figure 2.
Formally, the agents solve the maximisation problem

5In the context of a partnership, players cooperate to maximise the total value of the
contract. We model this objective by assuming that the players wish to maximise the sum
of their certainty equivalents.
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(3.11)

XB+P = max mB(ΦB(ω)) +mP (ΦP (ω))
s.t. DB +DP = 0

rB + rP = 1
rB, rP ≥ 0,

where (ΦB,ΦP ) are given by equation (3.10) with

(3.12) X(ω) = ωCB+P − IB+P , ω ∈ {u, d}
This is a standard problem in the risk sharing literature Christensen and
Feltham (2002), Wilson (1968). Under our assumption of an exponential
utility function we have m(D+Y ) = D+m(Y ) for any deterministic payoff
D and stochastic payoff Y . The problem therefore reduces to

(3.13) XB+P = max
0≤rB≤1

(mB(rBX) +mP (1− rB)X))

with a first order optimality condition
dmB(rBX)

drB
=
dmP ((1− rB)X)

drB
.

For the exponential utility function the optimal share of risk for each player
is proportional to their risk tolerance

r∗i =
βi

βB + βP
.

Although this condition specifies how much risk each player will take, it
does not determine the total payoff, as the deterministic amount D that
agents exchange is not constrained and is determined in negotiation. The
stochastic cooperative game is again reduced to a deterministic game with
a value core in the standard sense.
The core of the game, subject to optimal risk sharing, is now specified by
the following conditions

mB(rBX(ω)) +DB ≥ XB

mP (rPX(ω)) +DP ≥ 0
DB +DP = 0

ri =
βi

βB + βP
, i ∈ {B,P}.

where XB = mB(ωCB − IB) with ω ∈ u, d. The first two conditions guar-
antee that each agent’s estimation of the value is at least as good as going
alone. The third condition is a conservation law: the total amount that
changes hands is zero and the forth condition will ensure efficient risk shar-
ing. The value core is again one-dimensional, involving only the determin-
istic amounts Di that the two companies will exchange:

(3.14) XB −mB(rBX(ω)) ≤ DB ≤ mP (rPX(ω)),
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and DP = −DB.
It is interesting to consider the special case when CB = CB+P , IB = IB+P

and sB = sB+P . In this case there are no synergies in the traditional
sense. It is not surprising that when the agents are risk-neutral the only
core allocation for the biotech is φB = CB − IB. Nothing is gained by a
partnership. However, if agents are risk averse, cooperation is valuable. It
can be seen from equation (3.14) that the core has non-empty interior. In
other words, there are gains to be made by cooperating, because of risk
sharing. The corresponding risk sharing set can be thought of as the pure
risk sharing core of the contract:

(3.15) XB −mB(rB[ωCB − IB]) ≤ DB ≤ mP (rP [ωCB − IB]).

An interesting observation can be made here. As the risk preferences of the
two companies diverge (βB << βP ), it is optimal for the pharma to take
a larger amount of risk (rB → 0, rP → 1). As can be seen from equation
(3.15), the risk sharing core of the deal is enlarged: Risk sharing synergies
become more valuable.
To summarize, the presence of risk aversion does still allow for the reduc-
tion of the stochastic cooperative game to a deterministic game, just as in
the previous section. Suitable linear sharing rules are Pareto-efficient, see
Pratt (2000), and allow an optimal risk sharing. Once the agents agree that
they wish to share risk optimally, the cooperative game is played on the
deterministic amount that the agents will exchange.

3.7. Cooperative options and risk aversion. To illustrate the issue of
disagreement on contract design, let us revisit the example of the cooperative
option. As before we suppose the agents have to decide whether or not to
pay amount kB, or kB+P in partnership, up front in order to postpone the
launch decision until uncertainty is resolved.
In this situation the value of the joint project with the option becomes

Xi = mi(ωCB+P − IB+P )+ − kB+P ).

Note that this is agent i’s personal valuation of the joint project. For dif-
ferent levels of risk aversion, it is possible that the agents will order the two
designs differently and disagree which design to choose in a partnership.
In the presence of complete markets the partnership would choose the design
with the highest no-arbitrage value. In the present situation it would seem
sensible to assume that the coalition will choose the project design that
maximizes the total certainty equivalent for the coalition, provided they
share the risks optimally.
If the biotech develops the project alone it has to choose between not in-
vesting in the option, which has value XB = mB(ωCB − IB), or investing
in the option, which has value XO

B = mB((ωCB − IB)+− kB). Similarly the
partnership has a choice between XB+P given in (3.11) and
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X
O
B+P = max

rB ,rP

mB(ΦB(ω)) +mP (ΦP (ω))

s.t. DB +DP = 0
rB + rP = 1
rB, rP ≥ 0,

where (ΦB,ΦP ) are given by equation (3.10) with X(ω) = (ωCP+B −
IB+P )+ − kB+P , ω ∈ {u, d} and the probability of event u is p.
Assuming that it is optimal for the partnership to set up the option, i.e.
X

O
B+P > XB+P , the core of the game becomes a negotiation over the pay-

ments DB, DB
6

mB(ΦB(ω)) +DB ≥ max{XB, X
O
B}

mP (ΦP (ω)) +DP ≥ 0
DB +DP = 0

ri =
βi∑
j βj

.

Φi(ω) = ri((ωCB+P − IB+P )+ − kB+P )

As before, the core of the cooperative options game can be expressed in
terms of the fixed amounts DB that is exchanged:

max{XB, X
O
B} −mB(ΦB(ω)) ≤ DB ≤ mP (ΦP (ω)).

Similarly to the risk-neutral case, the asset value of the contract is the core
of the contract in the absence of flexibility and the option value is the added
value from flexibility. Each of these values has a risk sharing component in
the sense that if the partnership has no synergies other than risk sharing,
both the asset and the option cores are non-empty.

3.8. Non-cooperative Options. Let us now revisit our example of uni-
lateral flexibility in the context of risk-aversion. To simplify the exposition
we assume that there are no cooperative options. As before, we assume that
the biotech has the right to opt out of co-marketing. However, here we will
consider a more general opt-out agreement where the biotech receives a fixed
amount Z (milestone payment) and royalties rRCB+P on the revenue CB+P

if the option is exercised. The biotech company can exercise this option
after uncertainty is resolved and, assuming a linear risk-sharing agrement as
before, would do so if and only if rB(ωCB+P −IB+P )+DB ≤ Z+rRωCB+P

6For our example of exponential utility functions, the risk sharing rule only depends
on the risk tolerance βi of each player and not on the distribution of the gamble payoffs.
Therefore we do not need to solve the optimal risk sharing problem again; it is the same
as before with solution ri = βiP

j βj
. For other forms of HARA utility functions, such as

logarithmic or power law utilities, the optimal share of risk for each agent depends on the
payoff at each state and therefore would be different in the presence of flexibility.
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where rB is the biotech’s share of the revenues from co-marketing and
ω ∈ {u, d} is the state of the world at exercise. The problem of finding
an optimal risk sharing arrangement now becomes:

max
rB ,rP ,DB ,DP

mB(max{rBX(ω) +DB, Z + rRωCP+B})

+mP (min{rPX(ω) +DP , X(ω)− rRωCP+B − Z})
s.t. rB + rP = 1

rB, rP ≥ 0
DB +DP = 0.

In this case the computation of the optimal royalty value and he determinis-
tic payoff are not decoupled. The optimization is a non-smooth non-convex
problem, due to the max and min terms in the objective function. Further-
more, we are no longer guaranteed to find an optimal linear risk sharing
rule.
One way to avoid these complications is to require rR = rB, i.e. the royalty
rate is independent of options exercise and set at the optimal level for the
game without the unilateral option, as explained in the previous section. In
this way, we allow the biotech to opt-out unilaterally but we do not affect
the efficient risk allocation. In this case, the non-cooperative option will be
exercised only if the amount Z, the milestone, is higher than the amount
DB the biotech receives from the pharma if it does not opt out. The core
now satisfies the following conditions

mB(rBX(ω)) + max(DB, Z) ≥ mB(ωCB − IB)
mP (rPX(ω)) + min(DP ,−Z) ≥ 0

DP +DB = 0

ri =
βi

βB + βP
, i ∈ {B,P}.

Solving for DB gives the reduced representation

max{Z,mB(X(ω))−mB(rB(ωCB+P − IB+P ))} ≤ DB ≤ mP (rP (X(ω)))

Similarly to section 3.3.3, we can distinguish three cases depending on the
value of Z and the associated exercise decisions.

4. Cooperative real options games in continuous time

In this section, we will show how the model developed in section can be
generalized to games with continuous time dynamics and multiple agents.
We will focus on cooperative real options games with the following schedule
of events:

(1) At time t = 0 the agents decide which coalition to form and the
coalition decides which contract design to choose.

(2) At time t = T the coalition observes uncertainty and decides on the
exercise of any available cooperative options.
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(3) Payoff is instantly realized and shared.
Non-cooperative options, if they exist, are exercised immediately after the
exercise of the cooperative options. Our goal is to provide guidance on fair
and sensible sharing arrangements.
Our setting assumes a European options framework, where optimal timing
of options exercise is not an issue. Extending the formulation of a stochas-
tic cooperative game, see Suijs and Borm (1999) , we formally specify a
European cooperative options game as a probability space (Ω,F ,P) with a
filtration {Ft}t≥0 and a tuple (N,AS , BS , XS), where

• N is a finite set of agents,
• AS are the sets of contract design choices available to the coalitions
S ⊆ N at time t = 0, before uncertainty is resolved,

• BS(a, ω) are the sets of actions available to the coalitions S ⊆ N at
time t = T , provided S has chosen design a ∈ AS at time t = 0
and the event ω ∈ Ω occurs; these are the options available to the
coalition,

• XS(a, b, ω) are the payoffs to the coalitions S at time t = T , pro-
vided the coalition has chosen to implement design a ∈ AS and has
exercised the option b ∈ BS(a, ω) after the event ω ∈ Ω occurred.

4.1. Cooperative options in complete markets. We begin with a dis-
cussion under a complete markets assumption, which will allow us to use
standard arbitrage pricing arguments, see e.g. Hull (2003) for details. We
assume that there is a complete arbitrage-free market of traded assets. This
is equivalent to the existence and uniqueness of a martingale measure Q for
the market such that any claim X(T ) has a no-arbitrage price of

x = EQ[e−ρTX(T )],

where ρ is the risk-free rate, see Harrison and Pliska (1981). In particular
the coalition payoffs XS(a), following optimal options exercise at t = T , can
be priced in this way as

xS(a) = EQ[e−ρT max
b∈BS(a,ω)

XS(a, b, ω)].

The value xS(a) is called the risk-neutral valuation of the payoff to coalition
S. Given design a ∈ AS and state ω ∈ Ω, a coalition S will choose the
action b∗S(a, ω) ∈ BS(a, ω) that maximizes its payoff XS(a, b, ω). Since all
uncertainty has been resolved this is a deterministic optimization decision,
resulting in a contingency plan b∗S for coalition S.
Under our assumptions, the risk-neutral value xS is the only value that is
consistent with the observed asset prices in the sense that it does not allow
for arbitrage profits through trading. The coalition can sign the contract a
and at the same time short-sell the associated replicating portfolio. This will
result in an immediate payoff of xS(a) and no future payoff when uncertainty
is resolved because the replicating portfolio, suitably re-balanced during the
trading period [0, T ], will hedge all future payoffs from the contract. The
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coalition then uses the risk-neutral valuation to choose the design a∗S ∈ AS

that maximizes the total risk neutral payoff

xS = max
a∈AS

xS(a).

Given the optimal design choices a∗S and contingency plans b∗S(a∗S , .), the
real options game reduces to a deterministic cooperative game

Γ = (N, {xS}S⊆N ).

Cooperative game theory is primarily concerned with payoff sharing rules
Φ(ω) = (Φi(ω), i ∈ N), where Φi(ω) specifies the payoff for agent i if state
ω ∈ Ω has occurred. The sharing rule has to satisfy∑

i∈N

Φi(ω) = XN (a∗, b∗N (ω), ω),∀ω ∈ Ω.

The reduced deterministic game Γ, however, is specified in terms of risk-
neutral values xS , not in terms of final coalition payoffs. The focus shifts
from payoff allocations Φ(ω), specified for each future state ω ∈ Ω to value
allocations φ = (φi, i ∈ N), where φi is agent i’s share of the total value xN .
A payoff sharing rule Φi(ω) for agent i is compatible with a value allocation
φi if

φi = EQ[e−ρT Φi(ω)].

In view of the complete markets assumption, agent i can always achieve the
value φi associated with a payoff sharing rule Φi by shorting the replicating
portfolio for Φi, which will result in an immediate payoff φi and no future
payoffs. The discussion of sensible sharing arrangements has moved from
the space of functions Φ : Ω → RN to the space of vectors φ ∈ RN .
The complete markets assumption is frequently made in the literature, see
e.g. Burnetas and Ritchken (2005), Dixit and Pindyck (1994), although it
is rather restrictive. The above analysis remains conceptually correct in a
situation without hedging opportunities, provided the agents are risk-neutral
and the following conditions apply:

• The martingale measure Q is replaced by the, possibly subjective,
probability measure P of the underlying probability space and agents
have homogenous beliefs about this measure7.

• The agents agree on a suitable discount rate ρ.
Notice that in the absence of a complete market, the payoff sharing rule
Φ(ω), ω ∈ Ω, needs to be specified in the contract, because agents cannot
hedge their risks through shorting a replicating portfolio. However, if all
agents are risk neutral then they will be indifferent between payoff alloca-
tions that result in the same value φ. For example one agent may receive
the stochastic payoff XN (a∗, b∗(ω), ω), taking all the risk, and pay all other

7If agents have heterogenous beliefs efficient side betting may be employed, see Feltham
and Christensen (2002) page 125-6.
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agents their deterministic value share φi. We will deal with the more inter-
esting risk-averse case in the absence of a market later.
Since the cooperative real options game in a complete market reduces to
the deterministic cooperative game Γ we can apply the standard solution
concepts of cooperative game theory to the value sharing agreements φ, see
e.g. Young (1994).
The value-core of the game consists of all allocations φ = (φi, i ∈ N)
such that no sub-coalition S can receive more value from going alone, i.e.,

(4.1) xS ≤ φS =
∑
i∈S

φi, ∀S ⊆ N.

All payoffs are allocated to the agents in the grand coalition N , i.e.,

(4.2) xN = φN .

The Shapley value φi of agent i is calculated as the Shapley value of the
deterministic reduction Γ:

φi =
∑
S⊆N

|S|!(N − |S| − 1)!
N !

(xS∪i − xS)

We close this section with two illustrative examples of what one may call
the Black-Scholes-Shapley value, which results if the standard Black-Scholes
assumptions apply.
Example 1. Consider a game with three agents.

(1) The first agent owns a project with stochastic payoffs with present
value X0. The value follows a geometric Brownian motion with
volatility σ2. The agent will have to sell the project at time T for
the then market price XT .

(2) The second agent can offer an expansion option to the project. This
call-like option will cost kC to set up, has an exercise cost (strike
price) of KC and can only be exercised at time T . The Black-Scholes
value of this European call option is

C = X0Φ(b1)−KCe
−ρT Φ(b2),

where Φ(x) is the standard normal cumulative distribution function,

d1 =
log(

X0
KC

)+(ρ+ 1
2
σ2)T

σ
√

T
, and d2 = d1 − σT .

(3) The third agent can offer an abandonment option to the first agent.
This put-like option will cost kP to set up, offers a sure payment
KP < KC if exercised, and can again only be exercised at time T .
The Black-Scholes value of this put option is

P = KP e
−ρT Φ(−d2)−X0Φ(−d1).

The design set A{1,2,3} for the grand coalition contains four designs: No op-
tion, include the call option, include the put option, or include both options.
Set A{1} has only one design: no option, sets A{2},A{3},A{2,3} are empty and
sets A{1,2} and A{1,3} have two obvious elements of no option or including
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the option that the respective partner brings to agent 1. The optimal design
for this problem is to include an option if its risk-neutral value exceeds its
set up cost, i.e., C ≥ kC or P ≥ kP , respectively.
The optimal exercise strategy for the options is to exercise the call option
if the price XT ≥ KC and to exercise the put option if XT ≤ KP . The
Shapley-value allocation is

φ = (X0 +
1
2
(C − kC)+ +

1
2
(P − kP )+,

1
2
(C − kC)+,

1
2
(P − kP )+).

This allocation is very intuitive; the first agent receives the whole value of
his project and half the option value added by each of the other two agents.
The other two agents receive half the value of the option they bring to the
deal. The following example is less intuitive.

Example 2. Again we consider three agents.
(1) The first agent owns the same project as in Example 1.
(2) The second agent can offer both an expansion and an abandonment

option to the project at costs kC and kP , strike prices KC and KP

and values C and P respectively. The Black-Scholes values C and
P are given by the respective formulas in the above example.

(3) The third agent can lower the strike price for the call option to
K ′

C < KC and can increase the strike price of the put option to
K ′

P > KP (with K ′
C > K ′

P ), without any additional costs, therefore
increasing the value of the two options to C ′ and P ′.

Now the design sets A{1,2,3} and A{1,2} contain four designs: No options,
the call alone, the put alone, and both options. Sets A{1} and A{1,3} only
contain the no-option design, sets A{2},A{3},A{2,3} are empty. As before,
the optimal design is to include an option if its risk-neutral value exceeds
its set up cost, i.e., C ≥ kC or P ≥ kP or C ′ ≥ kC or P ′ ≥ kP . Assuming it
is optimal to include all options, the Shapley-value allocation is

φ1 = X0 +
1
6
(C + P ) +

1
3
(C ′ + P ′)− 1

2
(kC + kP )

φ2 =
1
6
(C + P ) +

1
3
(C ′ + P ′)− 1

2
(kC + kP )

φ3 =
1
3
(C ′ + P ′)− 1

3
(C + P ).

There is no straight-forward intuition for this Shapley-value allocation.

4.2. Unilateral options in complete markets. We will now add the
possibility that one agent, say agent i, owns a unilateral option. The timing
is now as follows:

(1) At time t = 0 the agents decide which coalition to form and which
contract design to choose.

(2) At time t = T the coalition observes uncertainty and decides on the
exercise of any available options.
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(3) Agent i decides on the exercise of her option unilaterally, immedi-
ately after the exercise decision for the cooperative options.

(4) Payoff is instantly realized and shared.
To simplify notation we will ignore discounting for the remainder of this
section.
Suppose agent i has the option to leave the partnership for an agreed de-
terministic payoff Z once uncertainty is resolved. Such an option will only
be exercised in states ω where Z exceeds the payoff Φi(ω) the agent would
receive in the partnership after the resolution of uncertainty and the exercise
of the cooperative options.
We will make a few observations, which we state in the form of propositions.

Proposition 4.1. The unilateral option does not change the total value of
the contract for any coalition.

Proof. Assume that Φi is the option owner’s agreed share of the payoff
before the unilateral option is exercised. The value of the contract to the
option owner is then φi = EQ[max{Φi(ω), Z}] while the sum of the value
to everyone else in a coalition S with agent i is the residual value φS−i =
EQ[XS(ω)−max{Φi(ω), Z}]. Here we have used the fact that Φ(ω) satisfies∑

i∈S Φi(ω) = XS(ω). The total value to the coalition S is therefore

φS = φi + φS−i = EQ(XS(ω)) = xS ,

which is independent of the option. Q.E.D.

Proposition 4.2. The value share of the option owner satisfies φi ≥ Z,
independently of the payoff sharing arrangement.

Proof. Let Φi(ω) be the payoff sharing rule for the agent who owns the
non-cooperative option. Then her value will satisfy

φi = EQ[max{Φ(ω), Z}] ≥ EQ[Z] = Z.

Q.E.D.

Proposition 4.3. The opt-out option changes the value-core to

max{xi, Z} ≤ φi

xS ≤ φj =
∑
j∈S

φj ∀S ⊆ N, S 6= {i}

xN = φN ,

where i is the owner of the non-cooperative option.

Proof. Recall the conditions (4.1) of the value core of the game without the
unilateral option. The first inequality in the proposition follows immediately
from Proposition 4.2 and the inequality (4.1) for S = {i}. The constraint
in (4.1) for coalitions S : i /∈ S, S ⊆ N are not affected by the presence of
the non-cooperative option since the owner of the option is not a member
of these coalitions. Due to Proposition 4.1, the core conditions (4.1) for
coalitions S : i ∈ S, S 6= {i}, S ⊆ N are also not affected. Q.E.D.
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Proposition 4.3 has some interesting consequences. At first glance it seems
difficult to assess what the added bargaining value of the opt-out option is
for its owner. The option adds value for its owner, provided there exists
states ω ∈ Ω with positive probability such that the payoff Φ(ω) < Z which,
however, requires an agreed payoff sharing rule in the first place. Proposition
4.3 shows that the value core remains independent of the payoff sharing rule.
A comparison with the value core without the unilateral option (4.1) shows
that the option adds bargaining value to its owner agent i only if Z > xi.
Traditional real options wisdom has it that an option always has a non-
negative value for its owner. Proposition 4.3, however, shows that this is
not necessarily the case for non-cooperative options in a partnership. If the
value of the option is more than the agent’s contribution to the coalition
(Z > xN − xN−i) then the core becomes empty. The option destroys the
partners’ incentive to forge a deal and consequently, the unilateral opt-out
option will not be realized.
The foregoing results for unilateral options can be extended to opt-out op-
tions owned by coalitions S ⊆ N . If O is the collection of coalitions S that
have non-cooperative opt-out options with payoff ZS then the conditions for
the value core are

max{xS , ZS} ≤ φS =
∑
i∈S

φi, ∀S ∈ O(4.3)

xS ≤ φS =
∑
i∈S

φi, ∀S ⊆ N,S /∈ O.(4.4)

Proposition 4.4. For every value allocation in the core there is a payoff
allocation such that the unilateral option is never exercised.

Proof. Let φ = (φj , j ∈ N) be an allocation in the value core and Φ =
(Φj , j ∈ N) be an associated payoff allocation. Then ε = φi − Z ≥ 0 in
view of Proposition 4.3. If agent i owns the option and we define the new
payoff allocation

Φ̃i(ω) = Z + ε

Φ̃j(ω) = Φj(ω) +
Φi(ω)− Z − ε

|N | − 1
, j 6= i,

then the corresponding value allocation satisfies

φ̃i = EQ[Φ̃i(ω)] = φi

φ̃j = EQ[Φ̃j(ω)]
= EQ[Φj(ω) + Φi(ω)−Z−ε

|N |−1 ]

= EQ[Φj(ω)] + EQ[Φi(ω)]−Z−ε
|N |−1

= EQ[Φj(ω)] + φi−Z−ε
|N |−1

= φj .
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Finally, ∑
k∈N

Φ̃k(ω) = Φ̃i +
∑
j 6=i

Φ̃j =
∑
k∈N

Φ(ω) = XN (ω).

Hence the allocation Φ̃ is in the payoff core and corresponds to a value
allocation φ. The unilateral option will not be exercised because Φ̃i(ω) ≥ Z
for all ω. Q.E.D.
The condition φi ≥ max{xi, Z} in Proposition 4.3 shows that the non-
cooperative option provides a second participation benchmark, in addition
to the go-alone value xi, for its owner. The threat of exercising the option is
just as credible as the threat of breaking away from a coalition because the
go-alone value is larger. Proposition 4.4 is interesting in this regard because
it shows that non-cooperative options are powerful bargaining tools, even
though the agents may be able to avoid their exercise through a suitable
payoff sharing arrangement. This is reminiscent to the fact that the threat
of leaving the coalition is a powerful tool that is not exercised, provided the
agent’s share is in the value core.
An interesting case, not covered by the discussion above, occurs if a unilat-
eral option depends on an exogenous uncertainty, i.e., an uncertainty that
adds value to the option owner but is not part of the contract. In such
cases the options owner may well exercise the non-cooperative option sub-
optimally with regard to the deal but optimally with regard to her overall
objective. For example a biotech company may opt out of a co-development
contract because some other project in their portfolio, not covered by the
contract, is very promising and it makes sense for them to redirect the
funds Z from the contract to the external project. In such circumstances it
is possible that the non-cooperative option will add value to a coalition as
a whole and not only to its owner. A study of such options effects would be
interesting but is beyond the scope of this paper.

4.3. Risk aversion in the absence of hedging opportunities. We will
next consider a situation where risk averse agents negotiate a partnership
contract without hedging opportunities through traded assets. We model
risk aversion through utility functions ui, which we assume to have hyper-
bolic absolute risk aversion (HARA) in order to be able to use the fact
that linear contracts are efficient, see Pratt (2000). Prominent examples of
HARA utility functions are exponential utilities ui(x) = ai exp(bix), bi, ai <
0 (constant absolute risk aversion), power law utilities ui(x) = aix

bi , ai >
0, 0 < bi < 1 (constant relative risk aversion) and, the limiting case as
bi → 0, logarithmic utilities ui(x) = ai log(x).
Agent i’s certainty equivalent of a stochastic payoff X at time T is the
amount mi(X) that would make the agent indifferent between receiving
mi(X) for sure at time t = 0 or receiving the stochastic payoff X at time
t = T . Formally,

mi(X) = u−1
i (E[ui(e−ρTX)]),

where ρ is the risk-free discount rate.
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We assume the timing of the cooperative game is as before: Agents agree
on the coalition and an options design at t = 0. Then, after uncertainty is
resolved, they decide on options exercise at t = T and receive an instant
payoff.
There are two complications compared to the complete markets case:

• In the complete markets case the final payoff sharing rule Φ(ω) is
irrelevant because of the presence of the replicating portfolio and
associated hedging of risks. Sharing happens at the level of risk-
neutral values. In the present case, the coalition needs to specify
an explicit payoff sharing rule, taking account of the agents’ risk-
aversion.

• Due to possibly differing risk preferences, the agents in a coalition
S might not agree which design a ∈ AS they prefer. To overcome
this problem, we will assume that a coalition S makes decisions in
the interest of maximizing the sum of the certainty equivalents mi

of the agents i ∈ S.

We will make use of the theory of linear contracts and efficient risk sharing
Pratt (2000), Wilson (1968) in the development of the model. In a lin-
ear contract, each agent i in a coalition S receives a deterministic payoff
Di before uncertainty is resolved and a proportion ri of the risky payoff
XS(a, b, ω), i.e., its payoff allocation is of the form

Φi(ω) = Di + riXS(a, b, ω).

To achieve complete sharing, we assume that the deterministic payoffs Di

and royalties ri satisfy

(4.5)
∑
i∈S

Di = 0,
∑
i∈S

ri = 1, ri ≥ 0 ∀i ∈ S.

As mentioned above, we will also assume that coalitions act in the interest
of maximising the sum of the certainty equivalents of their members. Ap-
plying this principle to the admissible contracts (Di, ri) will ensure Pareto-
efficiency. The corresponding total value for a given design a ∈ AS is given
by

(4.6) XS(a) = max
(D,r)

∑
i∈S

mi( max
b∈BS(a,ω)

[Di + riXS(a, b, ω)])

subject to the constraints (4.5).
Note that the risk averse agents will always agree which of the options
b∗ ∈ BS(a, ω) to choose because all uncertainty is resolved at the time of
exercise. Also, this exercise policy is independent of the royalty rate ri.
The optimization problem (4.6) decouples if

(4.7) m(a+X) = a+m(X),
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which is the case for exponential utilities. Under this assumption the opti-
mization problem becomes

(4.8) XS(a) = maxP
i∈S Di=0

∑
i∈S

Di + max
r≥0P

i∈S ri=1

∑
i∈S

mi(riXS(a, b∗(ω), ω)).

The deterministic shares Di are inconsequential to this optimization prob-
lem. Optimal royalty rates r∗i are chosen from the simplex and hence exist if
the functions fi(r) = mi(rXS(a, b∗(ω), ω)) are continuous and are unique if
these functions are strictly concave, e.g. in the case of exponential utilities.
If the functions fi are differentiable, the optimal rates are characterized by
the KKT conditions

∂fi(ri)
∂ri

= ∂fj(rj)
∂rj

if ri > 0, rj > 0
∂fi(ri)

∂ri
≥ ∂fj(rj)

∂rj
if ri > 0, rj = 0∑

i∈S

ri = 1

ri ≥ 0 ∀i.
If (4.7) does not hold then the optimal allocations (ri, Di) have to be com-
puted simultaneously. With gi(Di, ri) = mi(Di +riXS(a, b∗(ω), ω) the KKT
conditions become

∂gi(Di,ri)
∂ri

= ∂gj(Dj ,rj)
∂rj

if ri > 0, rj > 0
∂gi(Di,ri)

∂ri
≥ ∂gj(Dj ,rj)

∂rj
if ri > 0, rj = 0∑

i∈S

ri = 1

ri ≥ 0 ∀i
∂gi(Di,ri)

∂Di
= ∂gj(Dj ,rj)

∂Dj
∀i, j∑

i∈S

Di = 0.

Given the optimal allocation (ri, Di) for coalitions S and option designs
a ∈ AS , the coalition can now decide on the best design a∗ ∈ AS . This
results in the value XS = max

a∈AS

[XS(a)].

The stochastic game with real options is therefore again reduced to a deter-
ministic cooperative game

ΓCE = (N,
{
XS

}
S⊆N

),

assuming that the agents choose the design a∗, exercise the options b∗(a∗, ω)
and each agent takes a proportion r∗i (a

∗) in the risky payoffs. As in the
complete markets case, the standard solutions concepts of cooperative game
theory apply.
A key assumption for the model is that the agents in a coalition S agree
on a measure of total contract value associated with a given payoff sharing
rule (Di, ri) and a design a ∈ AS . We have here assumed that this total
value is measured by the sum of the certainty equivalents. Similar models
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can be developed if total contract value is measured by a, possibly suitably
weighted, sum of expected utilities.

4.4. Non-cooperative options and risk aversion. Let us finally turn
to non-cooperative options. We assume that non-cooperative options are
exercised instantly after the exercise of the cooperative options, if there are
any. Whilst the general principles of the former section are transferable,
it now becomes considerably more difficult to analyse options effects. The
chief reason is that the unilateral options exercise will typically turn the
certainty equivalents of the players into nonsmooth and possibly nonconcave
functions. As a consequence, it might no longer be possible to split the risk
efficiently in a linear way amongst the agents.
Assume, for example, that agent i can opt out and receive a fixed amount Z
after uncertainty is resolved. Her payoff from the project if design a ∈ AS

is chosen is
Φi(ω) = max(Di + riXS(a, b∗(ω), ω), Z),

where b∗(ω) captures the contingency plan for the exercise of the cooperative
option, prior to the exercise of the non-cooperative opt-out option. The
certainty equivalent mi(Φi(ω)) is now a nonsmooth function of ri at the
points ri = Z−Di

XS(a,b∗,ω) where it becomes optimal to opt-out. As a result the
certainty equivalent of all other players is nonsmooth at these points. The
optimal risk-sharing is non-linear because it is contingent on opt-out. The
players j ∈ S\{i} will have to agree on risk sharing rules for both cases,
that player i stays in or opts.
There is a possible way out of this dilemma - instead of paying a fixed
deterministic payments on opt-out, we pay agreed royalties and milestones,
i.e., an agreed royalty rate rO

i on the uncertain payoff plus a fixed payment Z.
Deals of this type are commonplace, e.g., in drug licensing. The royalties
force the option owner to retain some of the risk, even if she exercised
the opt-out option. If we choose rO

i to be the optimal rate for the case
without the non-cooperative option, then optimal risk sharing between the
agents is maintained. The payoff to the option owner is now max(Di, Z) +
riXS(a, b∗, ω). The option will only be exercised if Z > Di. The core is
shifted in favour of the option holder, similarly to the complete markets
case.

5. Managerial Implications and Conclusions

We have drawn attention to sources for partnership synergies beyond the
traditional economies of scale and scope. Our focus is on synergies in the
presence of uncertainty, in particular risk sharing opportunities when part-
ners have different attitudes to risk and the value of flexibility in a partner-
ship.
Our models provide three main managerial insights. First, partners with
divergent risk attitudes gain more synergies from risk sharing in uncertain
environments. Teaming up with a partner with a different risk attitude can
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be very beneficial in this regard. Risk sharing opportunities increase both
the asset core, i.e. the synergy set from traditional economies of scale and
scope, as well as the options core, the set of synergies gained from flexi-
bility. A prominent example where risk sharing synergies are particularly
relevant are co-development contracts between pharma majors and smaller
biotechnology companies.
Second, what can a company do to improve its bargaining position? Im-
proving the bargaining position is equivalent to shifting the synergy set to
a region of higher individual payoff or, in the risk-averse case, higher indi-
vidual utility. This can be accomplished in several ways. Companies can
aim to improve their go-alone capability, in a traditional way by improving
the efficiency of operations, or by increasing out-of-the-deal opportunities.
Alternatively, a company could increase the volatility that underlies its flex-
ibilities, e.g. by improving its pipeline of innovative but high-risk projects.
Finally, non-cooperative options, negotiated prior to a deal, can shift the
synergy set in favor of the option holder.
Third, non-cooperative options are a double-edged sword. On the one hand
they are valuable for individual partners because they cut off lower util-
ity parts of the core. However, if partners are too greedy in setting non-
cooperative options clauses then this can make the core empty. Partnerships
that still go ahead are more likely to fail when the locked-in partner realizes
the pitfalls of giving away flexibility.
From an academic point of view, this paper provides a framework for the
investigation of partnership deals in the presence of uncertainty and flex-
ibility. The models are illustrative and stylized but provide the basis for
interesting insights. There is much scope for future work. We only mention
four areas:

(1) We have focused on European options in this paper. It would be
interesting to see how the models extend to American options, where
the partners have to agree on optimal exercise on the fly rather than
at pre-determined decision points.

(2) We have focused on two extreme situations - complete markets on
one side and no markets but risk aversion on the other. What if
there are partial hedging opportunities? The work of Smith and
Nau (1995) on the integration of decision analysis and real options
valuation would be an interesting starting point for investigations in
this direction.

(3) We have focused on a closed contract world. Most companies have
investment opportunities outside of the contract and will therefore
exercise their contractual options not necessarily in the interest of
the underlying contract project. This can lead to interesting ef-
fects, when unilateral options are exercised optimally within a com-
pany’s portfolio of opportunities but sub-optimally within the con-
tract frame.
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(4) We have focused on sequential decisions by the partners. If we allow
for simultaneous decisions, then we are in the context of a coopera-
tive game followed by a non-cooperative game - cooperate to compete
is the sequencing. Work along these lines should provide an interest-
ing angle to the study of the relationship between cooperation and
competition in the strategy field, see Brandenburger and Nalebuff
(1996), and would complement recent work by Brandenburger and
Stuart (Forthcoming) on biform games.

Last but not least, we believe that there is ample scope for impactful practi-
cal work along the lines described in this paper. A cooperative real options
framework can be useful in helping companies understand the value effects
of contingency clauses and thereby structure more efficient and more robust
contracts. We have had some experience with the developed concepts during
the negotiations of a complex co-development contract between Cambridge
Antibody Technology Plc., a UK-based biotech company, and Astra Zeneca,
which involved substantial flexibility8. Whilst this experience was encourag-
ing, it also revealed that much work remains to be done to make cooperative
real options models widely useful in business practice.
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