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Abstract 

 
This paper presents a three-factor model of the term structure of interest rates, which 
is Markov and time-homogeneous. We provide a thorough analysis of the estimation 
procedure using the Kalman filter on EU swap yield data from 1997 to 2002. The 
model allows for a closed-form bond price formula and can capture the salient 
features of the whole term structure in forward simulations.  These features make it 
particularly useful for applications in long-term asset pricing, risk management and 
portfolio optimization. 
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1. Introduction 

 

The literature in the area of interest rate modelling is extensive. Traditional term 

structure models, such as Vasicek (1977) and Cox, Ingersoll and Ross (1985) take as 

given a short rate process and its market price of risk. Ho and Lee (1986) and Heath, 

Jarrow and Morton (1992) followed this work with a new approach to interest rate 

modelling in which they fit the initial term structure exactly. More recent studies are 

given by Duffie and Kan (1996), Jamshidian (1997) and the book by James and 

Webber (2000). Development of these models however has been driven primarily by 

the need for models to price and hedge relatively short-term derivatives. One of the 

most recent papers on this topic is by Andersen et al. (2004), who consider a three-

factor model with stochastic volatility, mean drift and jumps, but again their focus is 

on modelling the short-term interest rate (3-month U.S. T-bill). 

 

Until recently, little research has been conducted on the development of models that 

satisfy realistic dynamics in the long-term. With the move in recent years from 

defined benefit plans to defined contribution plans in the pension world, we now see a 

renewed interest in insurance products with long-term guarantees. However, unlike 

during the 1970s, when the option element introduced by guarantees was often 

ignored in the liability pricing, historically low interest rates in recent years have 

emphasized the importance of accurately valuing long-term guarantees (Wilkie et al., 

2004). Banks also face new pricing challenges due to the increased demand for long-

maturity derivatives (e.g. 60-year swaps) and therefore require good long-term 

interest rate models. Moreover, accounting practices are moving more and more 
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towards using the fair value of assets and liabilities in balance sheets which also 

requires long-term models. 

 

In Figure 1 we plot the development over time of short- and long-term interest rates in 

the Eurozone for the period 1997-2002. Figure 2 plots the weekly standard deviations 

of the yields over the same period.  As the short-term and long-term rates are not 

perfectly correlated, the data are clearly inconsistent with the use of a one-factor time-

homogeneous model. Chan et al. (1992) demonstrate the empirical difficulties of one-

factor continuous-time specifications within the Vasicek and Cox, Ingersoll and Ross 

class of models using the generalized methods of moments.  

 

Litterman and Scheinkman (1991) find that 96% of the variability of the excess 

returns of any zero-coupon bond can be explained by three factors: the level, 

steepness and curvature. They also point out that the ‘correct model’ of the term 

structure may involve unobservable factors. For instance, it is widely believed that 

changes in the Federal Reserve policy are a major source of changes in the shape of 

the US yield curve. Even though the Federal Reserve policy itself is observable, it is 

not clear how to measure its effect on the yield curve. In fact, Litterman and 

Scheinkman (1991) themselves used unobservable factors in their approach by 

applying principal component analysis.  

 

Most term structure models such as Ho and Lee (1986), Hull and White (1990) and 

Heath, Jarrow and Morton (1989) are specified using the risk-neutral measure. This 

makes them appropriate for relative-pricing applications, but inappropriate for 

forward simulations, which needs to take place under the real-world measure. An 
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exception is Rebonato et al. (2005) who focus on the yield curve evolution under the 

real-world measure and present a semi-parametric method to explain the yield curve 

evolution. 

 

In this paper we focus on a term structure model with the following characteristics:  

 

• The model is set in a continuous-time framework. This allows implementation 

in discrete time with any length of time step, Δt, without the need to construct 

a new model each time we change Δt. This is an important requirement for the 

flexibility of forward simulations. 

• Interest-rate dynamics are consistent with what we observe in historical data. 

• The model has a closed-form solution for bond pricing, permitting 

straightforward analytical calculation in simulation. 

• The short rate is mean-reverting. 

• The model permits a tractable method of estimation and calibration. 

• The model is flexible enough to give rise to a range of different yield curve 

shapes and dynamics (steepening, flattening, yield curve inversion, etc.). 

 

The remainder of the paper is structured as follows. In Section 2, a three-factor term 

structure model is introduced and a closed-form solution for the bond price derived. 

Section 3 discusses the state-space formulation of the models and the estimation of the 

parameters using the Kalman filter. The data and empirical analysis, focusing on 

fitting the data as well as on the simulation potential of the model, are presented in 

Section 4. Finally Section 5 concludes.  
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2. Three-Factor Term Structure Model 

 

The term structure model presented in this paper is driven by three factors as proposed 

by Litterman and Scheinkman (1991) and can be viewed as an extension to the 

generalized Vasicek model presented by Langetieg (1980). The first two factors X and 

Y satisfy the standard Vasicek stochastic differential equations with mean reversion 

levels of X

X

μ
λ

 and  Y

Y

μ
λ

  respectively. The difference is in the way the short rate R is 

modelled. In this case the mean reversion level is stochastic rather than deterministic 

and depends on the level of the other two factors X and Y driving the model. 

 

Starting from the formulation of the model under the risk neutral measure, Q, we have 

the following three stochastic differential equations (SDEs): 

 

 ( ) X
t X X t X td X dt dμ λ σ= − +X W  (1) 

 ( ) Y
t Y Y t Y td Y dt dμ λ σ= − +Y W  (2) 

 ( ) ,R
t t t t R td k X Y R dt dσ= + − +R W  (3)  

 

where the dW  terms are correlated. Factoring the covariance matrix of the dW  terms 

using a Cholesky decomposition results in the following formulation: 

 
3

1
( )

i

i
t X X t X t

i
d X dt dμ λ σ

=

= − +∑X Z  (4) 

 
3

1
( )

i

i
t Y Y t Y t

i
d Y dt dμ λ σ

=

= − +∑Y Z  (5) 

 
3

1
( ) ,

i

i
t t t t R t

i
d k X Y R dt dσ

=

= + − +∑R Z  (6)  
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where the dZ  terms are uncorrelated. 

To obtain the zero-coupon bond price we first solve the SDE for X. Integrating 

)(∫ uXuXed λ  gives 

 
3

( ) ( )

1
.X X

i

s
t s u s iX X

s t X u
iX X t

X e e dλ λμ μ σ
λ λ

− −

=

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
∑ ∫X Z  (7) 

 

Solving for Y in the same manner gives 

  

 
3

( ) ( )

1

Y Y

i

s
t s u s iY Y

s t Y u
iY Y t

Y e e dλ λμ μ σ
λ λ

− −

=

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
∑ ∫Y Z  (8) 

 

Integrating ( )ku
ud e∫ R  and substituting the solution for X and Y above gives the 

following solution for R 

 

 

( )( ) ( ) ( )

3
( ) ( )

1

( )( ) ( )

3
( ) ( )

1

(1 ) ( )

( )

(1 ) ( )

( )

X

i X

Y

i Y

i

t sk t s k t s k t sX X
s t t

X X X

s
X u s k u s i

u
i X t

t sk t s k t sY Y
t

Y Y Y

s
Y u s k u s i

u
i Y t

R

ke R e X e e
k

k e e d
k

ke Y e e
k

k e e d
k

λ

λ

λ

λ

μ μ
λ λ λ

σ
λ

μ μ
λ λ λ

σ
λ

σ

−− − −

− −

=

−− −

− −

=

⎛ ⎞
= + − + − − +⎜ ⎟− ⎝ ⎠

− +
−

⎛ ⎞
− + − − +⎜ ⎟− ⎝ ⎠

− +
−

∑ ∫

∑ ∫

R

Z

Z

3
( )

1
.

s
k u s i

u
i t

e d−

=
∑ ∫ Z

 (9) 

                           

Let ( , )P t T  denote the price of a zero-coupon bond at time t paying 1 at time T, then 
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 ( ){ }( , ) exp ,
TQ

t st
P t T ds= −∫ RE  (10) 

 

where Q
tE  denotes the expectation under the risk neutral measure Q conditional on the 

information at time t. As sR  is normally distributed in our model we can use the 

moment generating function for the normal distribution to rewrite (10) as 

 

 1( , ) exp var ,
2

T T
Q Q
t s t s

t t

P t T ds ds
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + −⎜ ⎟ ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

∫ ∫R RE  (11) 

 

where varQ
t  denotes the conditional variance under Q.  Integrating the solution (9) for 

R and taking the expectation and variance of the result gives expressions for the two 

terms in (11) involving the parameters 

 

 

( )

( )

( ).

i

i

i

i

i i i

i i

X
X

X X

Y
Y

Y Y

X Y R
i

X Y

i X Y i

k
m

k
k

m
k

n
k k k

p m m n

σ
λ λ

σ
λ λ

σ σ σ
λ λ

= −
−

= −
−

= + −
− −

= − + +

 (12) 

 

Hence 

 { }( , ) exp ( , ) ( , ) ( , ) ( , )t t tP t T A t T R B t T X C t T Y D t T= − − − −  (13) 

and  

 ,
( , ) ( , ) ( , ) ( , ) ,t t t

t T
A t T R B t T X C t T Y D t Ty

T t
+ + +

=
−

 (14) 
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where 

 

 ( )1( , ) (1 )k T tA t T e
k

− −= −  (15) 

 ( ) ( )1 1( , ) (1 ) (1 )X T t k T t

X X

kB t T e e
k k

λ

λ λ
− − − −⎧ ⎫

= − − −⎨ ⎬− ⎩ ⎭
 (16) 

 ( ) ( )1 1( , ) (1 ) (1 )Y T t k T t

Y Y

kC t T e e
k k

λ

λ λ
− − − −⎧ ⎫

= − − −⎨ ⎬− ⎩ ⎭
 (17) 

 

2 23
2 ( ) 2 ( )

1

2
( )( )2 ( ) 2

(

1( , ) (1 ) ( , ) ( , )

1 (1 ) (1 )
2 2 2

2
(1 ) ( ) (1 )

2
2

(1

i iX Y

i i X Y

i X

kT X Y X Y

X Y X Y

X YT t T t

i X Y

X Y T tk T ti
i

X Y

X i k

X

D t T T t e B t T C t T
k

m m
e e

m mn e p T t e
k
m n

e
k

λ λ

λ λ

λ

μ μ μ μ
λ λ λ λ

λ λ

λ λ

λ

−

− − − −

=

− + −− −

− +

⎛ ⎞⎛ ⎞= − − − + − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎧⎪ − + − +⎨
⎪⎩

− + − + − +
+

−
+

∑

)( ) ( )

( )( ) ( )

( )

2
) (1 )

2 2
(1 ) (1 )

2 (1 ) .

i X

i iY Y

X iT t T t

X

Y i Y ik T t T t

Y Y

k T ti i

m p
e

m n m p
e e

k
n p e
k

λ

λ λ

λ

λ λ

− − −

− + − − −

− −

+ − +

− + − +
+

⎫− ⎬
⎭

 (18) 

 

Bond pricing can be achieved under the risk-neutral measure Q. However, for the 

model to be used for forward simulations, we will have to adjust the set of stochastic 

differential equations so that we capture the model dynamics under the real-world 

measure P. We therefore have to model the market prices of risk which take us from 

the risk-neutral measure Q to the real-world measure P.  

 

Under the real-world measure P, we must adjust the drift term by adding the risk 

premium which is given by the market price of risk γ  times the quantity of risk. The 
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effect of this is a change in the long-term mean, i.e. for the factor X  the long-term 

mean becomes X X X

X

μ γ σ
λ
+ . It is generally assumed that in a Gaussian world the 

quantity of risk is given by the volatility of each factor. 

 

It can be shown that the market prices of risk will be independent of the time to 

maturity of the bond and of the factor being modelled.  However, time homogeneity is 

usually just assumed, as in (Vasicek, 1977).  The set of processes under the real world 

measure  are thus: 

 

 ( ) X
t X X t X X X td X dt dμ λ γ σ σ= − + +X W  (19) 

 ( ) Y
t Y Y t Y Y Y td Y dt dμ λ γ σ σ= − + +Y W  (20) 

 { ( ) } ,R
t t t t R R R td k X Y R dt dγ σ σ= + − + +R W  (21) 

 

where all three factors contain a market price of risk γ in volatility units. 

 

 

3. Kalman Filter 

 

There is always going to be a trade-off between the richness of the econometric 

representation of the state variables and the computational burden of estimation and 

pricing. Affine term structure models yield essentially closed-form expressions for 

zero-coupon bond prices (Duffie and Kan, 1996) which greatly facilitate pricing and 

econometric implementation.  
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The focus is on trying to fit the yields and think of the factors as unobserved input 

variables. To handle the unobservable state variables we formulate the model in state-

space form, a detailed description of which can be found in Harvey (1993), and use 

the Kalman filter recursively to estimate the model parameters.  

 

The state-space approach adopted in this paper simultaneously integrates time-series 

and cross-sectional aspects of the yield curve model. Moreover, it allows the 

identification of the market prices of interest rate risk. In the state-space model there 

is a transition equation for the latent factors and a measurement equation for the 

yields on an arbitrary number of maturities.  

 

Some examples of the growing literature that estimates term structure models using 

panel data is given by Babbs and Nowman (1999), Chen and Scott (1993), De Jong 

(2000), De Jong and Santa-Clara (1999) and Geyer and Pichler (1997). Most of these 

papers analyze multi-factor versions of the Cox-Ingersoll-Ross (CIR) model using 

mutually independent factors. De Jong (2000) extends this approach to the more 

general class of affine models proposed by Duffie and Kan (1996).  

 

State-space form (SSF) is a powerful tool which allows us to handle a wide range of 

time series models. The general state-space form applies to multivariate time series. 

The N observable variables at time t, ty , are related to a vector tα  known as the state 

vector via a measurement equation 

 

 t t t= + +y Zα d ε                           1,..., ,t T=  (22) 
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where Z is an N m×  matrix and d and tε  are 1N ×  vectors, where the error term is 

assumed to consist of serially uncorrelated disturbances with mean zero and 

covariance matrix H, i.e. 

 

 ( ) var( ) .t t= =ε 0 ε HE  (23) 

 

In general Z, d and H may depend on t. 

Even though the elements of tα  tend to be unobservable, they are known to follow the 

following first-order Markov process, which is known as the transition equation 

 

 1t t t−= + +α Tα c Sη                           1,..., ,t T=  (24) 

   

where T is an m m×  matrix, c an 1m×  vector, S an m g×  matrix and tη  a 1g ×  

vector of serially uncorrelated disturbances with mean zero and covariance matrix Q, 

that is 

 

 ( ) var( ) .t t= =η 0 η QE  (25) 

 

Again, in general T, c and S may depend on t, however we will be dealing with the 

time-homogeneous case. 

 

Two further assumptions will be required to complete the state-space formulation: 
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• The initial state vector 0α  has a mean of 0a and a covariance matrix 0P , that is 

 

 0 0 0 0( ) var( ) .= =α a α PE  (26) 

 

• The disturbance terms tε  and tη  are uncorrelated with each other in all time 

periods and uncorrelated with the initial state, that is 

 

 ( ) for all , 1,...,t s s t T′ = =ε η 0E  (27) 

and  

 

 0 0( ) ( ) 1,..., .t t t T′ ′= = =ε α 0 η α 0E E  (28) 

 

The important concept behind the state space formulation is the separation of the 

noise driving the system dynamics tη  and the observational noise tε . 

 

The Kalman filter is applied recursively in order to compute the optimal estimator of 

the state vector at time t given all the information currently available, which consists 

of the observations up to and including ty . Assuming a Gaussian state space, the 

disturbances and the initial state vector will be normally distributed, and hence the 

likelihood function can be calculated using prediction error decomposition. 

 

In a state-space model the system matrices will usually depend on a set of unknown 

parameters, in our case 14, referred to as hyper-parameters and defined in Table 1 

below. Using the Kalman filter to construct the likelihood function and then 
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maximizing it using a suitable numerical optimization procedure, we can carry out 

maximum likelihood estimation of the hyper-parameters. The joint probability of a set 

of T observations can be expressed in terms of conditional distributions. For a 

multivariate normal we have  

 

 1
1

( ; ) ( ),
T

t t
t

L p −
=

=∏y φ y Y  (29) 

 

where 1( | )t tp −y Y  is the distribution of ty  conditional on the information at time 1t − , 

i.e. 1 1 2 1( , ,..., )t t ty y y− − −
′=Y . Since we have a Gaussian model we can write the log-

likelihood function in prediction error decomposition form as 

 

 1

1 1

1 1log ( ) log 2 log ,
2 2 2

T T

t t t t
t t

NTL π −

= =

′= − − −∑ ∑φ F v F v  (30) 

 

where tF  is estimated by the covariance matrix obtained from the Kalman filter as 

 

 | 1t t t− ′= +F ZP Z H  (31) 

 

and tv  is the vector of prediction errors given by 

 

 | 1 | 1( ) .t t t t t t t t− −= − = − +v y y Z α α ε  (32) 

 

Together with the following two equations, (31) and (32) form the measurement 

update equations 
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 1
| 1 | 1t t t t t t t

−
− − ′= +a a P Z F v  (33) 

 

 1
| 1 | 1 | 1.t t t t t t t t

−
− − −′= −P P P Z F P  (34) 

 

So first we specify starting values for the parameters. With these starting values we 

run the Kalman filter to obtain estimated yields and a time series for the unobserved 

state variables. Next, the parameters are estimated by maximizing the log-likelihood 

using the variable path estimates as observations. The optimized parameter values are 

then used as the starting values for the next iteration of the Kalman filter. This loop 

continues until we obtain the optimal parameter estimates (cf. Dempster et al., 1977). 

The calibration code is implemented in C++ and the optimization is performed using a 

combination of global (Direct, see Jones et al., 1993) and local (approximate) 

conjugate direction (Powell, 1964) numerical algorithms. 

The starting values for the Kalman filter are given by the mean and the covariance of 

the unconditional distribution of the stationary state vector.  The state vector is 

stationary if c and T  are time invariant and ( ) 1λ <T , where ( )λ T is the leading 

eigenvalue of T . In this case the mean 0a  is given by the unique solution to 

 

 1
0 0 0 ( )−= + ⇒ = −a Ta c a I T c  (35) 

 

and the covariance matrix 0P will be given by the unique solution to the Riccati 

equation 

 

 1
0 0 0( ) ( ) ( ).vec vec−′ ′ ′= + ⇒ = − ⊗P TP T SQS P I T T SQS  (36) 
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In our case the observable variables are given by swap yields of different maturities, 

and are related to the vector of unobservable state variables ( ), ,X Y R  via the 

measurement equation. The measurement equation is obtained by using (14) and 

adding serially and cross-sectionally uncorrelated disturbances with mean zero to take 

into account non-simultaneity of the observations, errors in the data, etc. The 

unobservable state variables are generated via the transition equations, which in our 

case are given by the discretized versions of (1), (2) and (3), using Euler’s first order 

approximation, i.e. 

 

 ,( )t t t X X t X X X t XX X t tμ λ γ σ σ+Δ = + − + Δ + ΔX η  (37) 

 

 ,( )t t t Y Y t Y Y Y t YY Y t tμ λ γ σ σ+Δ = + − + Δ + ΔY η  (38) 

 

 ,( ( ) ) .t t t t t t R R R t RR k X Y R t tγ σ σ+Δ = + + − + Δ + ΔR η  (39) 

 

In matrix form the transition equations can now be written as 

 

 ,
t t t

t t t t

t t t

X
Y
R

−Δ

−Δ

−Δ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

X
Y T c Sη
R

 (40) 

where  

 

 
1 0 0

0 1 0
1

X

Y

t
t

k t k t k t

λ
λ

− Δ⎛ ⎞
⎜ ⎟= − Δ⎜ ⎟
⎜ ⎟Δ Δ − Δ⎝ ⎠

T  (41) 
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( )
( )

X X X

Y Y Y

R R

t
t

t

μ γ σ
μ γ σ
γ σ

+ Δ⎛ ⎞
⎜ ⎟= + Δ⎜ ⎟
⎜ ⎟Δ⎝ ⎠

c  (42) 

 

 

0 0

0 0

0 0

X

Y

R

t

t

t

σ

σ

σ

⎛ ⎞Δ
⎜ ⎟

= Δ⎜ ⎟
⎜ ⎟⎜ ⎟Δ⎝ ⎠

S  (43) 

 

and tη  is a vector with serially uncorrelated disturbances satisfying 

 

 
1

( ) var( ) 1 .
1

XY XR

t t XY YR

XR YR

ρ ρ
ρ ρ
ρ ρ

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

η 0 ηE   (44) 

 

In the current literature, several approaches have been adopted to estimate the 

covariance matrix of the measurement errors. For example, De Jong and Santa Clara 

(1999) used a spherical covariance matrix, h=H I , whereas Babbs and Nowman 

(1999) use a diagonal matrix. De Jong (2000) uses a full covariance matrix. 

 

We adopted a diagonal covariance matrix approach, optimizing the measurement 

errors using group one-at-a-time search with two groups: in the first group the model 

parameters were optimized followed by the optimization of the measurement errors in 

the second group. This process is repeated until convergence. This method is 

preferred over the full optimization with 14 model parameters and 16 measurement 

errors due to the scale of the optimization problem in the latter. Even though the full 



 17

covariance matrix is to be highly preferred, it is avoided in our case since using yields 

of 16 different maturities would result in 136 noise parameters to be estimated.  

 

  

4. Estimation and Simulation Results 

 

For our empirical analysis yields on ordinary, fixed-for-floating rate Euro swap 

contracts are used. Dai and Singleton (2000) point out that these yields are preferable 

for analysis for the following reasons. The swap markets provide ‘constant maturity’ 

yield data, whereas in the Treasury market the maturities of ‘constant maturity’ yields 

are only approximately constant or the data represent interpolated series. Additionally, 

the on-the-run treasuries that are often used in empirical studies are typically on 

‘special’ in the repo market. So, strictly speaking, the Treasury data should be 

adjusted for repo specials prior to any empirical analysis. Unfortunately, the requisite 

data for making these adjustments are not readily available, and, consequently, such 

adjustments are rarely made. 

 

For estimation and calibration purposes, we used weekly Euro swap data for the 

period June 1997 to December 2002 (a total of 292 time points) of 16 different yields 

with maturities equal to 1, 3 and 6 months and 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 and 

30 years. The length of the sample period was determined in part by the unavailability 

of reliable long-term swap data for years prior to 1997.  

 

The estimation results are presented in Table 1. All parameter estimates have 

plausible values and all are statistically significant, unlike the estimates found by 
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Babbs and Nowman (1999), who looked at Kalman filtering generalized Vasicek 

models. However they only used yields of eight different maturities and Geyer and 

Pichler (1999) show that a large number of maturities is important to improve the 

precision of the parameter estimates. 

 

 Table 2 provides the estimated standard deviations ih  of the measurement errors, 

where ih  is the ith diagonal element of the covariance matrix H. In particular, these 

standard deviations range from less than 1 basis point for the seven-year yield to 24 

basis points for the thirty-year rate. These measurement errors compare in magnitude 

to those in Babbs and Nowman (1999) and compare very favourably to studies by, for 

example Chen and Scott (1993) and Geyer and Pichler (1996), who both estimate the 

multifactor Cox-Ingersoll-Ross model on U.S. data. 

Similar to Geyer and Pichler (1996), the error standard deviations exhibit a distinct U-

shaped pattern as depicted in Figure 4. A possible explanation for this might be that 

the observed data for the medium range are highly correlated and therefore easier to 

fit. It also indicates that using the one-month yield as a proxy for the short rate is 

likely to give rise to serious problems. 

 

Like the Babbs and Nowman (1999) paper, we also look at the factor loadings of this 

three-factor model as a function of maturity to determine the nature of the factors 

calculated by the Kalman filter. As factor loadings correspond to orthogonal 

Brownian motions, rather than correlated innovations, we use a Cholesky 

decomposition as described in Section 2 to transform the stochastic differential 

equations. The curve for each factor represents the change in yield caused by a shock 

from that factor of one standard deviation ( ,t T idy dZ ).  For comparison with Babbs 
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and Nowman (1999), we also impose the following three additional restrictions: the 

second factor has approximately zero impact on the term structure at the five-year 

maturity and the third factor loading disappears at around two and twelve years. This 

gives a set of nine equations in nine unknowns. 

 

Figure 5 plots the factor loadings for the three-factor model. Whereas Babbs and 

Nowman found that their third factor loading had a negligible effect, we find all three 

factors have a significant impact on the yields of all maturities.  We also find that the 

range of the impact of the three factors on the yields is similar to that found by 

Litterman and Scheinkman (1991).   

 

 

4.1 Simulation Results 

 

One of the objectives of this paper is to propose a term structure model that is 

tractable in forward simulations but can still capture the salient features of the yield 

curve. To test our model, we performed a backtest over 2003. Using the historical 52 

weekly data points for the yields over 2003, we calculated the mean level and the 

weekly standard deviation for each of the sixteen maturities. We then simulated 

forward from January 2003 to January 2004 using the parameter estimates given in 

Table 1. In total 500 scenarios were generated and for each the mean and standard 

deviation for each of the sixteen maturities was calculated. Averaging over all 

scenarios finally gives an average mean and standard deviation for the simulated 

yields.  
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Figure 6 plots the mean level of the yields for both the historical and the simulated 

data and Figure 7 plots the standard deviation. As can be observed from Figure 6 the 

two sets of means closely match each other.  Figure 7 shows that the simulated 

standard deviations slightly over-estimate the historical ones.  However, as Figure 8 

shows, yields were more stable in 2003 relative to 1997-2002, which would explain 

this discrepancy.   

 

Another objective was to have a model that was able to simulate the various yield 

curve dynamics encountered in practice, e.g. steepening, flattening and inversion.  

Figures 9 and 10 show historical yields up to 2002 followed by simulated yields for 

two years.  Figure 9 demonstrates the model can simulate steepening and flattening, 

while Figure 10 demonstrates that the model can simulate inversion.  

 

 

5. Conclusions 

 

The objective of this paper is to identify a model that captures the salient features of 

the whole term structure, rather than one that just focuses on the short-term interest 

rate. It also has to be tractable in order to form a basis for asset pricing applications 

and forward simulations. To this end, we consider a three-factor continuous-time 

model within the affine class with a closed-form solution for the bond prices.  

 

For our empirical analysis, the model is expressed in a state-space formulation which 

allows us to take into account both the cross-sectional and time-series information 
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contained in the term structure data and we use the Kalman filter to estimate the 

parameters. 

 

The model explains the cross-section of interest rates well with reasonably small yield 

errors. We also show that in forward simulations this model gives rise to a wide and 

realistic range of future interest rate scenarios, as shown by both the backtest and the 

simulations involving flattening / steepening / inversion of the yield curve. 
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Figure 1: 3-Month and 30-Year EU Yields for the Period June 1997 – Dec 2002 
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Figure 2: Weekly Standard Deviation of Yields for the period June 1997 – Dec 2002 
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Figure 3: Historical Swap Yields of Varying Maturities over the Period 

 June 1997- December 2002 
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Euro Data Estimated Value 
Standard 

Error 

Long term risk neutral mean X X Xμ λ  0.199 1.69E-04 

Long term risk neutral mean Y Y Yμ λ  -0.134 1.69E-04 

Speed of mean reversion X Xλ  0.161 1.03E-03 

Speed of mean reversion Y Yλ  1.332 6.87E-03 

Speed of mean reversion R k  0.117 1.64E-03 

Volatility X Xσ  0.030 1.89E-04 

Volatility Y Yσ  0.186 9.80E-04 

Volatility R Rσ  0.006 2.26E-04 

Correlation X and Y XYρ  -0.642 6.94E-03 

Correlation X and R XRρ  0.177 1.82E-02 

Correlation Y and R YRρ  -0.540 1.81E-02 

Market price of risk for X Xγ  0.556 3.91E-03 

Market price of risk for Y Yγ  -1.017 5.50E-03 

Market price of risk for R Rγ  0.096 1.65E-02 

 

Table 1: Estimated Parameters Using Kalman Filter 
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 Maturity Estimated Value Standard Error 

1h  1 month 1.57E-03 6.63E-05 

2h  3 months 8.64E-04 3.81E-05 

3h  6 months 1.55E-04 3.19E-05 

4h  1 year 6.71E-04 2.96E-05 

5h  2 years  5.08E-04 2.15E-05 

6h  3 years  2.85E-04 1.21E-05 

7h  4 years 1.49E-04 7.03E-06 

8h  5 years 4.96E-05 4.59E-06 

9h  6 years 6.58E-05 2.89E-06 

10h  7 years 1.00E-05 3.83E-06 

11h  8 years 9.44E-05 4.1E-06 

12h  9 years 1.75E-04 7.63E-06 

13h  10 years 2.94E-04 1.28E-05 

14h  15 years 7.45E-04 3.14E-05 

15h  20 years 1.23E-03 5.32E-05 

16h  30 years 2.37E-03 1.03E-04 

 

Table 2: Measurement Errors 
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Figure 4:  Measurement Error of the Fitted Yields 
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Figure 5: Factor Loading of the Three-Factor Model 
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Figure 6: Mean Level of Yields over 2003 for Historical and Simulated Data 
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Figure 7: Standard Deviation of Yields over 2003 for Historical and Simulated Data 
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Figure 8: Historical Yields for June 1997 – Dec 2003 
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Figure 9: Forward Simulation Showing Steepening and Flattening of the Yield 

Curve 
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Figure 10: Forward Simulation Showing Inversion of the Yield Curve 


