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Abstract 

This paper investigates the valuation and hedging of spread options on two 

commodity prices which in the long run are cointegrated. For long term option pricing 

the spread between the two prices should therefore be modelled directly. This 

approach offers significant advantages relative to the traditional multi-factor spread 

option pricing model since the correlation between two asset returns is notoriously 

hard to model. In this paper, we propose one and two factor models for spot spread 

processes under both the risk-neutral and market measures. We develop pricing and 

hedging formulae for options on spot and futures spreads. Two examples of spread 

options in energy markets—the crack spread between heating oil and WTI crude oil 

and the location spread between Brent blend and WTI crude oil – are analyzed to 

illustrate the results.  
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1. Introduction 

A spread option is an option written on the difference (spread) of two underlying 

asset prices S1 and S2 respectively. We consider European options with payoff the 

greater or lesser of S2(T)-S1(T)-K and 0 at maturity T and strike price K and focus on 

spreads in the commodity (especially energy) markets (both for spot and futures). In 

these markets spread options are usually based on differences between prices of the 

same commodity at two different locations (location spreads) or times (calendar 

spreads), between the prices of inputs and outputs (production spreads) or between the 

prices of different grades of the same commodity (quality spreads). The New York 

Mercantile Exchange (NYMEX) also offers tradable options on the heating oil/ crude 

oil or gasoline/crude oil spreads (crack spreads).  

It is natural to model the spread by modelling each asset separately. Margrabe (1978) 

was the first to treat spread options and gave an analytical solution for strike price 

zero (the exchange option). Wilcox (1990) and Carmona and Durrleman (2003) use 

Bachelier’s (1900) formula to analytically price spread options assuming the 

underlying prices follow arithmetic Brownian motions. It is more difficult to value a 

spread option if the two underlying prices follow geometric Brownian motions. 

Various numerical techniques have been proposed to price such an option. Rubinstein 

(1991) values the spread option in terms of a double integral. Dempster and Hong 

(2000) use the fast Fourier transform to evaluate this integral numerically. Carmona 

and Durrleman (2003) offer a good review of spread option pricing. 
 
Many researchers have modelled a spread option by modelling the two underlying 

asset prices in the risk neutral measure as1 

1 1 1 1 1

2 2 2 2 2

1 2 .

d rS dt S d
d rS dt S d
Ed d dt

σ
σ
ρ

= +
= +

=

S W
S W

W W
     (1) 

The correlation ρ plays a substantial rôle in valuing a spread option; trading a spread 
                                                        
1 Boldface is used throughout to denote random entities – here conditional on S1 and S2 having realized values S1 
and S2 at time t which is suppressed for simplicity of notation. 
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option is equivalent to trading the correlation between the two asset returns. However, 

Kirk (1995), Mbanefo (1997) and Alexander (1999) have suggested that return 

correlation is very volatile in energy markets. 

Thus assuming a constant correlation between two assets as in (1) is inappropriate for 

modelling. But there is another longer term relationship between two asset prices 

termed cointegration which has been little studied by asset pricing researchers. If a 

cointegration relationship exists between two asset prices the spread should be 

modelled directly for long term option pricing. 

This is the topic of this paper which is organized as follows. Section 2 gives a brief 

review of price cointegration and the principal statistical tests for cointegration and 

for the mean reversion of spreads. Section 3 proposes one and two factor models of 

the underlying spread process in the risk-neutral and market measures and shows how 

to calibrate these models. Section 4 presents option pricing formulae for options on 

spot and futures spreads. Section 5 provides two examples in energy markets which 

illustrate the theoretical work and Section 6 concludes. 

 

2. Cointegrated prices and mean reversion of the spread 

The value of a spread option is determined by the dynamic relationship between two 

underlying asset prices and the correlation of the corresponding returns time series is 

commonly understood and widely used. Cointegration is a method for treating the 

long-run equilibrium relationships between two asset prices generated by market 

forces and behavioural rules. Engle and Granger (1987) formalized the idea of 

integrated variables sharing an equilibrium relation which turns out to be either 

stationary or to have a lower degree of integration than the original series. They used 

the term cointegration to signify co-movements among trending variables which could 

be exploited to test for the existence of equilibrium relationships within the 

framework of fully dynamic markets.  
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The parameters in equation (1) can be calibrated using returns data but the 

cointegration relationship must be investigated with price data (Hamilton, 1994). In 

general, the return correlation is important for short term price relationships and the 

price cointegration for their long run counterparts. If two asset prices are cointegrated 

(1) is only useful for short term valuation even when the correlation between their 

returns is known exactly. Since we wish to treat long term spread option pricing we 

shall investigate the cointegration (long term equilibrium) relationship between asset 

prices. First we briefly explain the economic reasons why such a long-run equilibrium 

exists between prices of the same commodity at two different locations, prices of 

inputs and outputs and prices of different grades of the same commodity2. 
 
The law of one price (or purchasing power parity) implies that cointegration exists for 

prices of the same commodity at different locations. Due to market frictions (trading 

costs, shipping costs, etc.) the same good may have different prices but the mispricing 

cannot go beyond a threshold without allowing market arbitrages (Samuelson, 1964). 

Input (raw material) and output (product) prices should also be cointegrated because 

they directly determine supply and demand for manufacturing firms. There also exists 

an equilibrium involving a threshold between the prices of a commodity of different 

grades since they are substitutes for each other. 
 
If such long-term equilibria hold for these three pairs of prices cointegration 

relationships should be detected in the empirical data. Duan and Pliska (2003) model 

the log-price—rather than the price—cointegration between two US market indices. 

In equity markets investors are concerned with index returns rather than levels so this 

may be a good choice. However from the economic arguments it follows that the 

spread between two spot commodity prices reflects deviations from a general 

(possibly growth) equilibrium, e.g. the profits of producing (production spread), 

shipping (location spread) or switching (quality spread). Consistent with Jurek and 

Yang (2006) we model here price cointegration. 

                                                        
2 Although the models of this paper are applicable to calendar spreads we will not treat them here. 
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In empirical analysis economists usually use equations (2) and (3) to describe the 

cointegration relationship: 

1t t 2t tc d= + +S S ε  (2) 

t t-1 t-1 t-  ε ωε= +ε u , (3) 

where S1 and S2 are the two asset prices and u is a Gaussian disturbance. Engle and 

Granger (1987) demonstrate that a cointegration model is the same as an error 

correction model, i.e. the error term εt in (2) must be mean-reverting (3). Thus a 

simple way to test the cointegration relationship is to test whether ω is a significantly 

negative number in equation (3), i.e. whether the spread process is mean-reverting 

(Dicky-Fuller, 1979). Equation (2) can be seen as the dynamic equilibrium of an 

economic system. When S1 and S2 deviate from the long-run equilibrium relationship 

they revert back to it in the future. 

For both location and quality spreads S1 and S2 should ideally follow the same trend, 

i.e. d should be equal to 1. However for production spreads such as the spark spread 

(the spread between the electricity price and the gas price) d may not be exactly 1. 

Usually 3/4 of a gas contract is equivalent to 1 electricity contract so that investors 

trade a 1 electricity / 3/4 gas spread which represents the profit of electricity plants 

(Carmona and Durrleman, 2003). Since gasoline and heating oil are cointegrated 

substitutes, the d value could be 1 for both the heating oil/crude oil spread and the 

heating oil/gasoline spread (Girma and Paulson, 1999). For our three spreads of 

interest — location, production and quality — d should be 1. 
 
Letting xt denote the spread between two cointegrated spot prices S1 and S2 it follows 

from (2) and (3) in this case that 

xt-xt-1=ct - ct-1-ω(ct-1-xt-1)+ ut , (4) 

i.e., the spread of the two underlying assets is mean-reverting. No matter what the 

nature of the underlying S1 and S2 processes the spread between them can behave 

quite differently from their individual behaviour. This suggests modelling the spread 
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directly using an Ornstein-Uhlenbeck process for long-term option evaluation because 

the cointegration relationship has substantial influence in the long run. Such an 

approach gives at least three advantages over alternatives as it: 1) avoids modelling 

the correlation between the two asset returns, 2) catches the long-run equilibrium 

relationship between the two asset prices and 3) yields an analytical solution for 

spread options. For example, Jurek and Yang (2006) employ an Ornstein-Uhlenbeck 

process to model the spread between Siamese twin equities3 and present an optimal 

asset-allocation strategy for spread holders.  
 
2.1 Cointegration tests 

To test the cointegration of two asset prices, we first need to test whether each 

generates a unit root time series. In an efficient market asset prices singly will usually 

generate unit root (independent increment) time series because the current price 

should not provide forecasting power for future prices. If two asset price processes are 

unit root but the spread process is not, there exists a cointegration relationship 

between the prices and the spread will not deviate outside economically determined 

bounds.  
 
The augmented Dickey-Fuller (ADF) test may be used to check for unit roots in asset 

price time series. The ADF statistic uses an ordinary least squares (OLS) auto 

regression 

1 0 1 1 1 1
1

( )
p

t t t i t i t i t
i

S S S Sδ δ δ− − + − − −
=

− = + ⋅ + − +∑ ηS  (5) 

to test for unit roots, where St is the asset price at time t, δi, i=0,…,p, are constants and 

ηt is a Gaussian disturbance. If the coefficient δ1 is negative and exceeds the critical 

value in Fuller (1976) then the null-hypothesis that the series has no unit root is 

rejected. 
 
We can use an extension of (4) corresponding to (5) to test the cointegration 

                                                        
3 For details on Siamese twins see Froot and Dabora (1999). 
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relationship: 

1t t 2t t

t t-1 0 1 t-1 1 1 t
1

c d

-  ( ) .
p

i t i t i
i

ε χ χ ε χ ε ε+ − − −
=

= + × +

= + × + − +∑

S S ε

ε u
 (6) 

When χ1 is significantly negative the hypothesis that cointegration exists between the 

two underlying asset price processes S1 and S2 is accepted (Hamilton, 1994).  
 
2.2 Market measure mean reversion test 

In Section 3 we will see that the mean-reverting property of the spot spread can be 

detected by examining the mean-reversion of futures spreads with a constant time to 

maturity. Empirically we estimate 

tεF ++⋅+=+−+Δ+Δ+ ),(),(),( τβαττ ttFttFtttt , (7) 

where F(t,t+τ) is the futures spread of maturity t+τ observed at t, Δt is the sampling 

time interval and εt is a random disturbance. If β is significantly negative then the spot 

spread is deemed to be mean-reverting and a cointegration relationship is taken to 

exist between the two underlying asset prices. This method examines the evidence for 

mean-reversion in the market measure using historical futures prices data. 
 
2.3 Risk-neutral measure mean-reversion test 

We can use (ex ante) market data analysis to test whether investors expect the future 

spread to revert in the risk-neutral measure. This methodology focusses on relations 

between spread levels and the spread term structure slope defined as the change 

across the maturities of futures spreads. A negative relationship between the spot 

spread level (or short-term futures spread level) and the futures spread term structure 

slope shows that risk neutral investors expect mean-reversion in the spot spread. 

Indeed, since each futures price equals the trading date expectation of the delivery 

date spot price in the risk-neutral measure the current term structure of the futures 

spread reveals where investors expect the spot spread to be in future. Detecting an 

inverse relationship between current spread level and future slope supports a negative 

relationship in the risk neutral measure between the current spread level and its future 



 8

movement. Bessembinder et al (1995) attempt to discover ex ante mean reversion in 

commodity spot prices. To discover the negative relationship in our case we estimate 

,L S Sx xς γ− = + +x ε  (8) 

where xL and xS are respectively long-end and short-end spread levels in the futures 

spread term structure and ε is a noise term. If γ is significantly negative there is 

evidence that the spot spread is ex ante mean-reverting in the risk-neutral measure.  
 
2.4 Continuous time consequences 

Regression models (7) and (8) allow the empirical examination of the mean-reverting 

properties of the spot spread in respectively the market and risk-neutral measures. 

Moreover by testing whether the spread process with d:=1 is mean-reverting we can 

examine whether this ideal cointegration relationship holds in (2). If testing indicates 

mean-reversion then a cointegration relationship may be supposed and the spread 

process can be modelled directly. The underlying continuous time spot spread process 

xt should then follow the continuous time version of equation (4) in the market 

measure: 

Wx ddtxtkd tt σψ +−= ))(( ,  (9) 

where k is the mean reversion speed, ψ(t) is a function of physical time t, σ is a 

constant volatility and W is a Wiener process. The solution of (9) has the property that 

the variance of the spread xt will not blow up asymptotically in time and its 

unconditional variance is stationary.  
 
The traditional two price spread process model does not possess these properties. By 

differencing the two equations in (1) we obtain the spread of the two contract prices 

as 

1 2 1 2( ) ( ) ( , , ) ,d r S S dt S S dσ ρ− = − +1 2S S W  (10) 

where  

  2 2 2 2
1 2 1 1 2 2 1 2 1 2( , , ) 2S S S S S Sσ ρ σ σ σ σ ρ= + +  

is the instantaneous volatility of the spread at time t. Thus the price spread process 



 9

does not mean-revert in the risk neutral measure and the standard deviation of the 

spread increases over time and blows up asymptotically. We do not see this for 

spreads between cointegrated commodity prices in historical market data (Villar and 

Joutz, 2006). 
 
Commodity and equity spread processes are different however. In the risk neutral 

measure any tradable equity portfolio without dividend payments - including spreads - 

should grow at the risk-free rate. Thus non-dividend paying stock spreads will not be 

mean-reverting in this measure. However in the case of physical commodities, 

especially those commodities which cannot be stored, the risk-neutral drift must 

encompass some form of stochastic convenience yield. We see this empirically in the 

mean-reverting properties of some commodity prices (Schwartz, 1997). Because of 

convenience yields spread processes for commodities can be quite different from 

those for equities. 

 

3. Modelling the Spread Process 

We have seen that we can model the spread process directly using an 

Ornstein-Uhlenbeck process if a cointegration relationship exists between the two 

underlying asset prices. If we wish to price contingent claims on the spread we must 

re-specify (9) in the risk neutral measure. We now present direct models of the spot 

and future spread processes with one and two factors. 

3.1 One factor model 

First consider a one-factor model of the spot spread in the risk neutral measure 

specified by 

( )t td k x dt dθ σ= − +x W , (11) 

where θ is a constant which represents the long-run mean of the spread process. For 

simplicity we assume that θ does not depend on time. 
 
Solving (11) given the starting time v and spread position xv we obtain 
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( ) ( )[1 ]
s

k s v k s v ks kt
s v

v

x e e e e dθ σ− − − − −= + − + ∫x W  (12) 

which follows a normal distribution at time s with mean  

( ) ( )[1 ]k s v k s v
s va x e eθ− − − −= + −  (13) 

and standard deviation σ
k

eb
vsk

s 2
1 )(2 −−−

= . (14) 

Thus 
2sb

k
σ

→  as ∞→s  so that the spread standard deviation tends to a constant 

asymptotically. 

Define F(t,T,xt) as the futures spread ( the spread of two futures prices) of maturity T 

observed in the market at time t when the spot spread is xt. In the risk neutral measure 

the spot spread process x must satisfy the no arbitrage condition 

T t tE[ |x ] F(t,T,x ),=x  (15) 

i.e. in the absence of arbitrage the conditional expectation with respect to the spot 

spread xt of the out-turn spot spread at T in the risk-neutral measure is the futures 

spread observed at time t<T. This must hold because it is costless to enter a futures 

spread (long one future and short the other). 

From (12) and the no arbitrage constraint (15) we have 

( ) ( )( , ; ) [1 ]k T t k T t
t tF t T x x e eθ− − − −= + −  (16) 

From Ito’s lemma it follows that the futures spread F(t,T;xt) with fixed maturity date 

T satisfies 

( )
td (t,T;x ) k T t

t
F Fd dt e d
x t

σ− −∂ ∂
= + =
∂ ∂

F x W , (17) 

i.e. the futures spread is a martingale and its volatility decays exponentially in time to 

maturity (T-t). 

3.2 Two factor model 
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The mean reverting spot spread in (11) mainly reflects the short to medium term 

properties of the futures spread (Gabillon, 1995) with the volatility of the futures 

spread decaying exponentially with time to maturity. This is a term structure which is 

not flexible enough to match the volatility term structure observed in the market. The 

spot spread usually has an estimated strong mean-reversion speed so that the one 

factor model’s estimated volatilities of future spreads with maturities longer than 2 or 

3 years are quite close to zero while the observed spreads normally have quite 

noticeable volatility. Thus another factor y is needed to reflect the long-end movement 

of the futures spread term structure which relates to movements of fundamentals such 

as storage or shipping cost changes between the two commodities. For simplicity and 

consistent with market equilibrium we will assume that the long-run mean of the y 

process is zero in the risk neutral measure. 
 
In the risk neutral measure the underlying spot spread process x and the long-run 

factor y follow 

2 2

2

( )

,

t t t

t t

d k y x dt d
d k y dt d
Ed d dt

θ σ
σ

ρ

= + − +
= − +

=
2

x W
y W

W W
 (18) 

where the latent factor y is a 0 mean-reverting process (if k2 is positive) representing 

the long end of the spread term structure. We can interpret the dynamics of the spot 

spread specified by (18) as reverting to a stochastic long run mean θ+yt. Since the 

volatility of the long end spread is usually much smaller than that of the short end σ2 

should be quite small. Since fundamentals (e.g. storage costs) have slower speeds of 

adjustment, we can expect k2 to be much smaller than k. Obviously the long-end 

movement of the spread should not be a priori constrained to be mean-reverting and it 

could be Wiener process like in some circumstances. Given σ2, the smaller the k2 

value the closer the y process is to a Wiener process. Gabillon (1995) considered a 

similar model to (17) for oil futures contract prices. 
 
Appendix 1 shows that the solution of (18) in the risk neutral measure is 
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2

2

( )( ) ( ) ( )

2

( ) ( ) ( )2
2

2

[1 ] [ ]

[ ] ( ) ( ).

k s vk s v k s v k s vv
v

s s
k s u k s u k s t

v v

y kx e e e e
k k

k e e d u e d t
k k

θ

σ σ

− −− − − − − −

− − − − − −

= + − + −
−

+ − +
− ∫ ∫

sx

WW
 (19) 

Define: 

2 2

2

2
2 ( )

1

2 2
2 ( ) ( )( )2 ( ) 2

2 2
2 2 2

( )( ) 2 ( )2
3

2 2

: [1 ]
2

1 1 2: ( [1 ] [1 ] [1 ])
2 2 ( ) ( )

1 1: ( [1 ] [1 ]).
2

k s v

k s v k k s vk s v

k k s v k s v

A e
k

kA e e e
k k k k k k

kA e e
k k k k k

σ

σ

σ σ

− −

− − − + −− −

− + − − −

= −

= − + − − − ⋅
+ −

= − − −
− +

 (20) 

 
Then the standard deviation of x at time s is  

1 2 32sb A A Aρ= + +  (21) 

and var(x) is 

22
2 2

2 2 22 2 (1 / ) 2( )k k k k k k
σ ρσσσ

+ +
+ +

  (22) 

asymptotically if k2 is not zero. This is again because both the x and y processes are 

mean-reverting. If k2 is zero, A2 becomes 

' 2 ( ) ( ) 2
2 2

1 2{( ) [1 ] [1 ]}
2

k s v k s vA s v e e
k k

σ− − − −= − + − − − . (23) 

In this case the standard deviation of the spread will grow with time s and blows up 

asymptotically. However, since σ2 is usually quite small, the speed of growth of the 

standard deviation is also quite small whether or not k2 is zero. This is consistent with 

the notion mentioned in Mbanefo (1997) that the spread standard deviation grows 

much more slowly than its underlying two legs. In summary the mean-reverting two 

factor model covers two cases of long-end movements: 1) a stationary y factor and 2) 

a Brownian motion y factor. 
 
From the no arbitrage constraint (15) and (19), we have 

2 ( )( ) ( ) ( )

2

( , ; ) [1 ] [ ]k T tk T t k T t k T tt
t t

y kF t T x x e e e e
k k

θ − −− − − − − −= + − + −
−

. (24) 

From Ito’s lemma it follows that the risk neutral futures spread F(t,T) process with 
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fixed maturity date T satisfies 

2 ( )( ) ( )
2 2

2

( , ) [ ]k T tk T t k T tkd t T e d e e d
k k

σ σ− −− − − −= + −
−

W WF  (25) 

and is thus a martingale. Its volatility is composed of two parts: the first relating to the 

one factor model and the second to the long run factor y. As a result, if k2 is much 

smaller than k the volatility of the long-term futures spread will tend to decay only 

slowly to zero over time. 
 
3.3 Spread process in the market measure 

We will need a risk-adjusted version in order to calibrate the model presented above 

to market data. If we specify a risk premium process for x and y then the drift parts of 

our models can incorporate these risk premia in the market measure (Duffie, 1988). 

Previous studies assume constant risk premia when modelling Ornstein-Uhlenbeck 

processes (see, e.g. Hull & White (1990) and Schwartz (1997)) and so will we. Thus, 

the single-factor model for the spot spread process in the market measure follows 

[ ( ) ]t td k x dt dθ λ σ= − + +x W , (26) 

where λ is the risk premium. The two-factor model in the market measure follows 

2 2 2

2

[ ( ) ]
( )

,

t t t

t t

d k y x dt d
d k y dt d
Ed d dt

θ λ σ
λ σ

ρ

= + − + +
= − + +

=
2

x W
y W

W W
 (27) 

where λ and λ2 are the risk premia of the x and y processes respectively. 
  
Again using Ito’s lemma on the risk adjusted versions of (16) and (24) with (26) and 

(27) we obtain the futures spread process in the market measure for both models. For 

the one factor model the futures spread with a fixed maturity date T follows 

( ) ( )( , ) k T t k T td t T e dt e dλ σ− − − −= +F W . (28) 

For the two factor model (28) becomes 
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2

2

( )( ) ( ) ( )2

2

( ) ( )
2 2

2

( ) [ ]

[ ] .

k T tk T t k T t k T t

k T t k T t

kd t, T e dt e e dt e d
k k

k e e d
k k

λλ σ

σ

− −− − − − − −

− − − −

= + − +
−

+ −
−

F W

W
 (29) 

From (28) and (29) the futures spreads with fixed maturity date are not 

mean-reverting in the market measure.  

Although the models presented above are for spot spreads, it is not easy to observe 

directly the spot prices of a commodity and investors typically use the nearest 

maturity futures price to represent the spot price (Clewlow and Strickland, 1999). But 

since the futures spread with fixed maturity date is not mean-reverting for our models 

this makes it difficult to estimate the mean-reversion parameter of the spot spread. 

However we will now show that the futures spread with constant time to maturity 

: T tτ = −  is mean-reverting in our models which can be used to determine the 

mean-reversion speed of the spot spread.  
 
Using Ito’s Lemma we find (see Appendix 2) that the process for the futures spread 

with a constant time to maturity can be specified in the market measure as follows. 

One factor model: 

( , ) [ ( , )]
k

ked t t k F t t dt e d
k

τ
τλτ θ τ σ

−
−+ = + − + +F W . (30) 

Two factor model: 

2 3( , ) [ ( , )]
k

k
t

ed t t k y e F t t dt d
k

τ
τ λτ θ φλ τ σ

−
−+ = + + + − + +F W , (31) 

where 
2

2

:
k ke e
k k

τ τ

φ
− −−

=
−

 and 2 2 2 2 2
3 2 2: 2k ke k k eτ τσ σ θ σ ρ θ σσ− −= + +  are constants. 

From (30) and (31) a future spread with constant time to maturity is mean-reverting in 

both the one and two factor models with the same mean-reversion speeds as the spot 

process. Note that when τ→0, (30) and (31) converge to (28) and (29) respectively. 
 
3.4 Calibration 
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In energy markets contract maturities are usually ordered by monthly date. For 

example, crude oil futures contracts traded on the NYMEX are ordered by 30 

consecutive future months and then by quarter up to 7 years. In order to check the 

mean-reverting property of the spot spread we can use the 1month (time to maturity) 

future spread with a monthly observation interval for data. 
 
We use maximum-likelihood estimation (MLE) on the panel data of futures spread 

curves in the spirit of Chen and Scott (1993) and Pearson and Sun (1994).  This 

method is commonly used in fixed income yield curve modelling (e.g. Duffie and 

Singleton, 1997; Dai, Singleton and Yang, 2006). Recently this technique has also 

been used in the estimation of convenience yield curve models (Casassus and 

Collin-Dufresne, 2005). Since the state variables are not directly observed in our data 

set, the Chen and Scott approach specifies these latent variables by solving 

expressions for some securities which are arbitrarily assumed to be priced without 

error in the market. The remaining securities are assumed to be priced with 

measurement errors. To illustrate the method let F(t,T1) to F(t,T5) represent 5 futures 

spreads available to determine the model parameters. For the one factor model we 

suppose the first futures spread at time t is observed without pricing error but F(t,T2) 

to F(t,T5) are priced with errors. Thus the model estimation equations are 
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 (32) 

where Ci := ( )[1 ]ik T teθ − −− , Di := ( )ik T te− −  and u2t to u5t are joint normally distributed 

pricing errors. The log-likelihood function for all futures spreads at time t is given by 

1: ln ln lns e
t t tL D L L= − + + ,  (33) 

where ln s
tL  is the log likelihood of the state variable x (taken as the one month 

future spread F(t,T1)) at time t and ln e
tL  is the log likelihood of the other securities 

F(t,T2) to F(t,T5) with 
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and ∆t denotes the (1 month) observation interval. In (33) D1 is the coefficient 

( )k Ti te− −  in the affine transformation (16) from xt to F(t,Ti) and thus the Jacobian of 

this transformation is 1/D1. Since the first one month futures spread is priced without 

error its log-likelihood is determined by the log-likelihood of the state variable ln s
tL  

adjusted by the Jacobian multiplier 1/D1. In (34) Vs is the variance of the state 

variable conditional on xt-1, xm is the mean of xt conditional on xt-1 and Ω is the 

covariance matrix for ut. The total log likelihood is t
t

L∑ , which is maximized to 

determine the parameters of the one factor model. 

For the two factor model the corresponding expressions are  
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where Ci := ( )[1 ]ik T teθ − −− , Di := ( )ik T te− −  and Ei := 2 ( ) ( )

2

[ ]i ik T t k T tk e e
k k

− − − −−
−

. 

Defining 1 1

2 2

:
D E

J
D E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 the log-likelihood for the two factor model is 

: ln | | ln lns e
t t tL J L L= − + + ,  (36) 

where 
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In preliminary study we found that the estimated correlation ρ between the long end 

and the short end was insignificant.  This makes economic sense in that the long end 

movements are slow and driven by fundamentals while the short-term movements 

which are random, fast and driven by market trading activities. That innovations in 

the long and short runs should be uncorrelated has been used to analyze the long-run 

and short-run components of stock prices (Fama and French, 1988). Routledge, Seppi 

and Spatt (2000) assert that the long run movements of commodity futures prices 

should have zero correlation with the short-run movements because the physical 

inventory can regenerate or renew in ‘stock out’ periods (Corollary 1.2, p.1304). Thus 

if the times to maturity of the futures data are long enough these correlation estimates 

should be zero. But due to data availability these estimates may not be estimated as 

insignificantly different from zero and then the first risk factor does not absorb 

enough of the short-term price movements (Schwartz and Smith, 2000). In our two 

factor model we will assume the correlation ρ to be zero. 

 

4. Spread option pricing and hedging 

If the underlying asset price follows a Gaussian process the European call and put 
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prices with maturity T on this asset can be calculated respectively as 
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where B is the price of a discount bond, as and bs are respectively the mean and 

standard deviation of the underlying at maturity, and K is the strike price of the option 

(see Appendix 3). We have seen that the spread distribution at time T follows a normal 

distribution in both one factor and two factor models so that equations (38) and (39) 

can be used to price the spread option.  

4.1 Pricing within futures price maturities 

Options on the spot spread 

Since the future spread is the expectation of the future spot spread in the risk-neutral 

measure the mean of the underlying asset at option maturity T can be obtained at 

current time t as 

),( TtFas = . (40) 

Equations (14) and (21) show bs for the one and two factor models respectively as 

constants given an initial time t and a fixed maturity date T. As spread option values 

with maturity T depend on F(t,T) through (40) investors can utilize futures of the 

same maturity date to hedge.  

The deltas of calls and puts on the spread are given respectively by 
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Since a spread can be seen as long one asset and short the other simultaneously the 

delta hedge yields an equal volume hedge, i.e. long and short the same value of 
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commodity futures contracts. No matter how many factors are deemed to drive the 

futures price, only the corresponding maturity futures contracts are utilized to hedge 

the spread option providing they are available in the market. 

Option on the futures spread 

Define the option maturity as R, the futures maturity as T>R and the current time as t. 

The futures spread is a martingale so that its mean in the risk neutral measure is 

[ ( , )] ( , )s Qa E R T F t T= =F . (43) 

Its standard deviation in the one factor model is 

σ
k

eeb
tTkRTk

s 2

)(2)(2 −−−− −
=  (44) 

and in the two factor model is 
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Since R and T are known using (38) and (39) bs is a constant in both models and (38) 

and (39) can be used to price call and put options on the spread at t. Again investors 

can use futures contacts with maturity T to hedge these options positions with equal 

volume hedges given by (41) and (42) respectively. The hedge-ratio difference 

between hedging a spot and a futures spread option arises from the difference in the bs 
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values (compare (14) and (21) with (44) and (45)). 

If an option (on the spot spread) has a maturity longer than the corresponding futures 

traded in the markets (which is common for many real options), investors cannot use 

these methods to price and hedge the option. We study this situation next. 

4.2 Pricing beyond futures price maturities 

Suppose at time t we know the value of the state variable xt in the one factor model or 

xt and yt in the two factor model, then we can forecast the mean spread at time T>t 

using these state variables. 

For the one factor model 

( ) ( )[1 ]k T t k T t
s ta x e eθ− − − −= + −  (47) 

and for the two factor model 
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−
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The standard deviations bs will be the same as those in previous section.  

If no futures contracts of long enough maturity are available, investors must use 

several short term futures to hedge the long term option, i.e. they need to hedge the 

individual factors underlying the futures contracts. There is quite a large literature on 

how to use short-term futures to hedge long-term ones, e.g. Brennan and Crew (1997), 

Neuberger (1998) and Hilliard (1999).  

For the one factor model the call delta on the latent spot spread is 

( )k T ts
x c

s

ac e
a x

− −∂∂
Δ = = Δ

∂ ∂
, (49) 

where c is the price of a call option, Δc is given by (41) and T is the option maturity. If 

the futures spread F(t,T1) is utilized to hedge this option position the hedge ratio is 

1 1( ) ( )( ) k T t k T Tk T t
F c c

c x e e e
x F

− − −− −∂ ∂
Δ = = Δ = Δ

∂ ∂
. (50) 
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Similarly the delta for puts on the spot spread is 

1 1( ) ( )( ) k T t k T Tk T t
F p p
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∂ ∂
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where Δp is given by (42). 

Applying the two factor model, investors must use two shorter term futures − F(t,T1) 

and F(t,T2) − to hedge long term options. Ideally T1 should be short (e.g. 1 month) and 

T2 the longest futures maturity available in the market. The call deltas on the latent 

two factors x and y are respectively 
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Suppose the futures spreads F(t,T1) and F(t,T2) are utilized to hedge the option 

position. Then to obtain the delta neutral hedge ratios n1 and n2 one must solve 
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 (54) 

Since this paper focusses on ‘long’ term option valuation and hedging we should 

discuss the option maturities appropriate for the use of our valuation models. The 

answer is related to the mean-reversion speed k. The decay half life ln2/k of the 

mean-reverting spread process can be used to represent its mean-reversion strength. 

We propose that if an option time to maturity is longer than this half decay time, our 

methodology (both one factor and two factor models) is appropriate to evaluate the 

spread option. Also, we expect that the traditional spread option model (1) will 

over-value these longer term options because of the variance blow-up phenomenon 

previously discussed. Mbanefo (1997) noted that long-term spread options (longer 
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than 90 days) will be overvalued if mean-reversion of the spreads is not considered.  

We note that jumps and stochastic volatility are not important in determining 

theoretical or empirical long term spread option prices (Bates, 1996; Pan, 2003) which 

allows models of this paper to remain parsimonious. 

 

5. Examples 

5.1 Crack spread: Heating oil/ WTI crude oil (CSHC)4 

The crack spread between heating oil and WTI crude oil (heating oil crack spread) 

represents the profit from refining heating oil from crude oil, i.e. the price of heating 

oil minus the price of crude oil. We have seen in Section 2 that a relative deviation 

between the (equilibrium) input and output price relationship could exist for short 

periods of time, but a prolonged large deviation will lead to the production of more 

end products until the output and input prices are nearer the long-term equilibrium 

relationship. Thus we expect the heating oil crack spread to be mean-reverting. 

Data 

The data for modelling crack spreads consist of NYMEX daily futures prices of WTI 

crude oil (CL) and heating oil (HO) from January 1984 to January 2005. The time to 

maturity of these futures ranges from 1 month to more than 2 years. In order to test for 

unit roots, a single monthly data point is collected on the first day of each month by 

taking the price of the futures contract with one month time to maturity. For example, 

if the trading day is 1 February 2000 then the futures contract taken for the time series 

is the 1 March 2000 contract. 

We also create a long-end crack spread with time to maturity 1 year. The methodology 

is exactly the same as with the 1 month time series, but due to data unavailability we 

only use data from January 1989 to January 2005 to construct the long-end crack 

spread. 

                                                        
4 Abbreviations used in this section are NYMEX trading codes. 
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To calibrate the one-factor and two-factor spread models using (32) and (35), we 

calculate the monthly futures spreads with 5 futures contracts from January 1989 to 

January 2005. The time step Δt is chosen to be 1 month and the contracts chosen are 1 

month, 6 month, 9 month, 12 month and 15 month time to maturity futures spreads. 

Unit root and cointegration tests 

First, we conduct the ADF test on the heating oil and crude oil prices using the longer 

time series. As noted in Section 3.4 we can test the mean-reversion of the spot spread 

by examining the 1 month futures spreads. Figure 1 shows the 1 month futures prices 

of crude oil and heating oil. 

Insert Figure 1 about here 

Table 1 shows the results of the ADF test of Section 2.1 on 1 month futures of crude 

oil and heating oil arising from estimating (5). In order to reject the hypothesis that a 

time series has a unit root the coefficient δ1 must be significantly negative. 

Insert Table 1 about here 

From Table 1, we cannot reject the hypothesis that both crude oil and heating oil are 

unit-root time series (cf. Girma and Paulson (1999) and Alexander (1999)).  

Next we test the spread time series directly by estimating (5) to find a very strong 

mean-reverting speed significant at the 1% level which suggests that cointegration 

does exist in the data. In other words, the mean-reversion of the spread does not 

appear to be caused by the separate mean-reversion of the heating and crude oil prices 

but by the long-run equilibrium (cointegration) between them which must be 

considered in long-run derivatives pricing of the crack spread. This agrees with Girma 

and Paulson (1999). 

Historical spreads only offer us their market-measure characteristics but a regression 

relating the short term and long term spreads can give us the risk neutral spreads. We 

estimate the regression equation (8) using the 1 year crack spread as the long-end 
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futures spread and the 1 month crack spread as the short-end futures spread.  

The results are given in Table 2 and the 1 year and 1 month crack spreads depicted in 

Figure 2. 

Insert Table 2 about here 

In Table 2 the estimate of γ is significantly less than zero. Since this test investigates 

the mean-reverting property of spreads in the risk-neutral measure, we conclude that 

an Ornstein-Uhlenbeck process is appropriate to model the spot process. Thus both 

the ex ante and ex post tests give evidence that the spot crack spread is mean-reverting 

in both the market and risk neutral measures.  

Insert Figure 2 about here 

Model calibration 

In order to calibrate the (one-factor and two-factor) models we use the full data set 

and employ equations (32) and (35). From preliminary study we noticed that the 

heating oil price shows a seasonal pattern which is inherited in the crack spread. To 

eliminate the influence of seasonality, we used an equally weighted portfolio of 1 

month and 6 month futures (opposite seasons) to determine the x factor and a similar 

portfolio of 9 month and 15 month futures to determine the y factor.  

We then performed a MLE optimization to calibrate the one factor model. Table 3 lists 

the results. One can see that the standard deviations of the θ, σ and k estimates are 

quite small, i.e. θ, k and σ can be determined quite precisely, unlike the λ estimate. 

However we do not need the market prices of risk λ as input to option pricing. The 

asymptotic estimate of the standard deviation of the spread (when s goes to infinity in 

(14) is $2.03. Figure 3 shows the one month spread and the latent spot spread, which 

are very close to each other. 

Insert Table 3 about here 

Insert Figure 3 about here 
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Insert Table 4 about here 

Similar to the situation in the one factor model, the market prices of risk λ and λ2 

cannot be precisely estimated in the two factor model, but estimates of all the other 

parameters (σ, σ2, k, k2 and θ) can. The asymptotic estimate of the standard deviation 

of the spread is $2.65, which is higher than that for the one factor model. This is easy 

to understand, since the one factor model only counts the short-term variance of the 

spread, while the two factor model takes account of both the long end (fundamentals) 

and the short end (trading activities). Also, assuming zero correlation between the two 

factors, we can examine the ratio of the long-end and the short-end variance − A1:A2 

in (20) − as time goes to infinity, which is about 1:1 in this example. Thus the 

asymptotic variance of the crack spread is nearly equally contributed by short-end 

(first factor) and long-end (second factor) movements. Since this ratio is quite high 

the second factor is obviously important in derivatives pricing and should not be 

omitted. Since the one factor model is nested in the two factor model by taking σ2, λ2 

and yv (the starting value of the y factor) to be zero, we can compare the differences in 

log-likelihood scores for each data set to see whether the additional parameters of the 

two-factor model provide a statistically significant improvement in that model’s 

ability to explain the observed data. The relevant test statistic for this comparison is 

the chi-squared likelihood ratio test (Hamilton, 1994) with 3 degrees of freedom and 

the 99th percentile of this distribution is 11.34. Given that the log-likelihood scores 

increase by about 21, the improvements provided by the two factor model are quite 

significant.  

Insert Figure 4 about here 

Figure 4 shows the time evolution of the long and short factors with correlation 

coefficient 0.0056, which is not significant and thus consistent with the assumption 

that the correlation between the two factors is zero. 

Option valuation on the spot spread 
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The decay half life is about half a year for the one factor model so that when valuing 

an option longer than half a year the methodology (using one factor or two factor 

models) in this paper is appropriate. 

On 3 January 2005 the HO06N (heating oil future with maturity July 2006) contract 

had a value 44.2 ($/Barrel); on the same day the CL06N (crude oil future with 

maturity July 2006) traded at 39.78 ($/Barrel). By using the parameters in Tables 3 

and 4, Table 5 gives the European option values on the spot crack spread with 

maturity July 2006 on this date. For comparison we also calculate option values from 

a model which ignores the cointegration effect. We can use the Black (1976) driftless 

GBM model to simulate both crude and heating oil futures price paths, and thus 

calculate the spread option value5. The average correlation coefficient (over a 20 year 

period) is 0.89 between heating and crude oil. We use call option values to compare 

the different models; it is then easy to obtain the put values by put-call parity.  

Insert Table 5 about here 

Insert Table 6 about here 

From Table 5 we can see that the option value from the one factor model is typically 

smaller than that from the two-factor model and the latter is much smaller than that 

from the Black model. Since the Black model does not consider mean-reversion (the 

cointegration) of the spread, its spread distribution at maturity is wider than that of a 

cointegrated model and thus yields a larger option value. Put simply, a 

non-cointegrated model ignores the long-run equilibrium between crude and heating 

oil prices and thus over-prices the option. Since the two factor model accounts for 

long-term spread movement, it should yield a wider spread distribution at maturity 

and thus has a larger option value than the one factor model. In Table 6, both the one 

factor and two factor models yield an equal volume hedge but the Black model does 

not. As is well known, the less disperse the underlying terminal distribution, the more 

                                                        
5 Since there is no analytical solution when the strike is not zero one convenient way to calculate the option value 
is by Monte Carlo path simulation. 
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sensitive the option deltas are to the strike prices6. Thus the one-factor model yields 

the most sensitive deltas and the Black model has the least sensitive deltas among the 

three models. 

 

5.2 Location spread: Brent / WTI crude oil (LSBW) 

We define the LSBW location spread as the price of WTI crude oil (CL) minus the 

price of the Brent blend crude oil (ITCO). WTI is delivered in the USA and Brent in 

the UK.  

Data 

NYMEX daily futures prices of WTI crude oil were described in the previous 

example. The daily Brent futures prices are from January 1993 to January 2005. The 

time to maturity of the Brent futures contracts range from 1 month to about 3 years. 

As in the previous example, monthly data is used to test for the unit root in Brent oil 

prices. We also create a monthly long-end LSBW spread with time to maturity of 1 

year ranging from January 1993 to January 2005. In order to calibrate the one-factor 

and two-factor models, we calculate the monthly futures spread with 5 maturities 

from January 1993 to January 2005 at monthly intervals, i.e. the time step Δt in (30) 

and (31) is 1 month. The 5 contracts involved are 1 month, 3 month, 6 month, 9 

month and 12 month futures spreads. 

Unit root and cointegration tests 

As from the previous example we know that the WTI crude oil price follows a unit 

root process, in this example we need only conduct the ADF test on Brent crude oil 

prices. Figure 5 shows the 1 month futures prices of WTI crude oil and Brent blend. 

We again take the 1 month futures prices as representative of the spot price.  

Insert Figure 5 about here 

                                                        
6 The sensitivity is defined as the ratio of the change of the deltas in the change of the strike 
prices. 
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Table 7 shows the results of ADF test estimating (5) on the 1 month futures of Brent 

blend. Similar to WTI crude oil, the Brent blend price is also a unit root process (since 

δ1 is positive), but the LSBW location spread appears to be a mean-reverting process. 

This again suggests the existence of a long-run equilibrium in the data. To estimate 

future expectations of the spread, we estimate the regression equation (8). As in the 

previous example, we use the 1 year and 1 month LSBW futures spreads. The results 

are listed in Table 8. The 1 year and 1 month LSBW spread evolution is depicted in 

Figure 6. 

Insert Table 7 about here 

Insert Figure 6 about here  

Insert Table 8 about here 

From Table 8 we see that the estimate of γ is strongly negative, so that the market 

appears to expect the spot LSBW spread to be mean-reverting in the risk-neutral 

measure. Hence both the ex ante and ex post analyses support that the spot LSBW 

spread is mean-reverting so that mean-reversion should be accounted for in option 

pricing. 

Model Calibration  

We did not find evidence of seasonality in the LSBW spread. Hence we use the 1 

month futures spread to back out the latent spot spread factor for the one factor model. 

For the two factor model we use the 1 month futures spread to estimate the short term 

x factor and an equally weighted portfolio consisting of the 9 month and 12 month 

futures spreads to estimate the long term y factor. 

Tables 9 and 10 list the calibration results for the one factor and two factor models. 

We see that the asymptotic standard deviation of the spread are estimated to be $1.60 

and $3.90 respectively for the one and two factor models. The ratio of long-end to the 

short-end variance (A1:A2 in (9)) is 5:1 in the two factor model, i.e. the long end 

(second factor) movement of the spread accounts for much more variance than (first 
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factor) short end variation. Similar to the previous example the estimate of the 

asymptotic standard deviation from the two factor model is higher than that from the 

one factor model. From the Chi-squared (likelihood ratio) test the two factor model is 

very significantly better than the one factor model in explaining the observed LSBW 

spread data. The latent spot spread factor and the two factors (x and y) are shown in 

Figures 7 and 8 respectively. The correlation between the two factors is 0.04 which is 

again consistent with our zero correlation assumption. 

Insert Table 9 about here  

Insert Table 10 about here 

Insert Figure 7 about here 

Insert Figure 8 about here 

Option valuation on the spot spread 

The decay half life is about six months from the one factor model. Thus to model an 

option longer than six months the methods (one factor or two factor models) in this 

paper should be used. 

On the day of 1 December 2003 the ITCO06Z (Brent blend crude oil future with 

maturity December 2006) contract had a value 24.62 ($/Barrel); on the same day the 

CL06Z (WTI crude oil future with maturity December 2006) traded at 25.69 

($/Barrel). By using the estimated parameters in Tables 9 and 10, Table 11 shows the 

European option value on the spot spread with maturity December 2006. Since the 

option is on the spot spread the hedging futures maturities should be the same as the 

option maturity − December 2006. The Brent and WTI crude oil contract prices both 

follow unit root processes so we may simulate both prices to calculate the 

non-cointegrated Black model’s spread option value. Note that the average correlation 

between the Brent blend and WTI crude oils is 0.96. 

Insert Table 11 about here 
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Table 11 shows that, similar to the previous example, the option value of the one 

factor model is typically smaller than that of the two-factor model and the latter is 

much smaller than the Black model. As before by ignoring cointegration the Black 

model tends to over-value the long term option. We obtain a similar pattern of deltas 

as in the previous example (see Table 12) and the explanation for this remains the 

same.  

Insert Table 12 about here 

 

6. Conclusion 

In this paper we have developed spread option pricing models in which the two price 

legs of the spread are cointegrated. Since the cointegration relationship is important 

for the long-run relationship between the two prices spread option evaluation should 

take account of this relationship if the option maturity is long. Assuming a 

cointegration relationship between the two underlying assets, we model the spread 

process directly using the Ornstein-Uhlenbeck process, i.e. we model directly the 

dynamic deviation from the long-run equilibrium which cannot be specified correctly 

by modelling the two underlying assets separately. We first specify risk-neutral 

processes for the spread and then determine the market processes by assuming 

constant risk-premia. We also propose two methods (ex ante and ex post) to test for 

mean-reversion of the spread process. Finally we give analytical solutions for the 

spread option price and deltas. In order to illustrate the theory, we study two examples 

— options on crack and location spreads respectively. Both market spread processes 

are found to be mean-reverting, which implies that their two price legs are 

cointegrated. From likelihood ratio tests the two factor model is found to be 

significantly better than the one factor model in explaining the crack and location 

spread data. The option values and Greeks from our cointegration models are quite 

different from those of standard models but are consistent with the practical 

observations of Mbanefo (1997). We are currently working on Lévy process versions 

of our models which may be more appropriate to commodity markets such as gas or 
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electricity and for shorter term option maturities generally. 
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 APPENDIX 1 Solution of the Two Factor Model 

Let 1 : kt
t tz e x= . Then 

1

( )

( ) .

kt kt
t t

kt kt kt
t t t

kt kt
t

d e d ke x dt

e k y x dt e d ke x dt

y e kdt e d

θ σ

θ σ

= +

= + − + +

= + +

x

W

W

z

  (1.1) 

Thus, given the starting time v and starting position xv, at time s 

( ) ( )
s s

ks kv kt kt
v

v v

e e x y e kdt e d tθ σ− = + +∫ ∫sx W  (1.2) 

( ) ( )[1 ] ( )
s s

k s v k s v ks kt ks kt
v

v v

x e e e ye kdt e e d tθ σ− − − − − −= + − + +∫ ∫sx W . (1.3) 

Let 2 2: exp( )tz k t y= . Then 

2 2

2 2 2

2

2 2

2 2 2 2

2 2

( )

.

k t k t

k t k t k t

k t

d e k e ydt

e k y dt e k e ydt

e d

σ

σ

= +

= − + +

=

dy

dW

W

z

 (1.4) 

Thus, given the starting time v and starting position xv, at time t 
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By changing the integration order of the double integral in (1.7) we obtain  



 36

2

2

( )( ) ( ) ( )

2

( ) ( ) ( )2

2

[1 ] [ ]

[ ] ( ) ( ).

k s vk s v k s v k s vv
v

s s
k s u k s u k s t

v v

y kx e e e e
k k

k e e d u e d t
k k

θ

σ σ

− −− − − − − −

− − − − − −

= + − + −
−

+ − +
− ∫ ∫

s

2

x

W W
 (1.8) 

Define: 

2 2

2

2
2 ( )

1

2 2
2 ( ) ( )( )2 ( ) 2

2 2
2 2 2

( )( ) 2 ( )2
3

2 2

: [1 ]
2

1 1 2: ( [1 ] [1 ] [1 ])
2 2 ( ) ( )

1 1: ( [1 ] [1 ]).
2

k s v

k s v k k s vk s v

k k s v k s v

A e
k

kA e e e
k k k k k k

kA e e
k k k k k

σ

σ

σ σ

− −

− − − + −− −

− + − − −

= −

= − + − − − ⋅
+ −

= − − −
− +

 (1.9) 

Then the variance of xs at time s is 1 2 32A A Aρ+ + and asymptotically var(xs) 

becomes
22
2 2

2 2 22 2 (1 / ) 2( )k k k k k k
σ ρσσσ

+ +
+ +

,  (1.10) 

a constant for k2 ≠ 0. This is because x and y are both mean-reverting processes. 

 

Since E [xs| xv]=F(v,s) holds in the risk neutral measure we have 
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The risk neutral process for the futures spread F(t,T) follows 
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APPENDIX 2 Futures Spread with Constant Time to Maturity 

Define τ as the constant time to maturity and consider the futures spread process in 

the market measure. First, we treat the one factor model and express the spread as a 

function of t and τ.  

From (16), it follows easily that 
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Applying Ito’s lemma yields 
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Substituting for the integral from (2.1) we obtain 
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When τ→0, (2.3) yields the corresponding expression for the spot spread process 

(26). 

For the two-factor model, similarly we have  
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Substituting for the integral from (2.4) we obtain 
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Defining 2 2 2 2 2
3 2 2: 2k ke k k eτ τσ σ φ σ ρ φ σσ− −= + +  equation (2.6) can be rewritten as 
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Since φ  is a constant so is σ3. 

Since 0φ = , when τ=0 equation (2.7) becomes the spot spread process equation (28).  

Thus, from equations (2.3) and (2.7) one can see that if the spot spread is 

mean-reverting, both one factor and two factor models for futures spreads with 

constant time to maturity τ will be mean-reverting.  
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APPENDIX 3 Option Pricing When Underlying Terminal Prices Follow a 

Normal Distribution 

 

Suppose at option maturity T an asset (or portfolio) price follows a normal 

distribution with mean as and standard deviation bs.  

Thus, any European call option struck at K can be priced as 

∫
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where B is the discount bond price over the time remaining to exercise and the 

expectation subscript Q denotes the risk-neutral measure. Letting y:=x-as we obtain 
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where )(vΦ  denotes the value of the standard normal cumulative distribution 

function from ∞−  to v. Brennan (1979) obtains a similar option pricing formula for 

a normally distributed underlying asset. 

By using put call parity, we can obtain the corresponding European put option price 

as 
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If the strike price K is 0, which corresponds to ‘better to buy’ options (Margrabe, 

1978), the call and put prices are given respectively by 
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Thus the deltas of the call and put options respectively are 
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and the gamma of both options is 
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Other Greeks are easily obtained from (3.2) and (3.3). 
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Tables and Figures 

Table 1. ADF test for crude oil, heating oil and the spread between them 

 No. of observations Lag (p) δ1 or χ1 t value 

Crude Oil 257 6 0.0201 1.03 

Heating Oil 257 6 0.0188 1.13 

Crack spread 257 6 -0.31 -3.97* 

* significant at the 1% level 

 

Table 2. Regression (8) parameter estimates for the crack spread 

 ς Γ 

Value 2.1644 -0.5505 

t-stat 15.6970* -16.3852* 

No. of observations 154 

R2 57.37% 

* significant at the 1% level 

 

Table 3. Parameter estimates for the one factor model 

 σ k Λ θ 

Value 3.4525 1.4397 -0.7016 3.7167 

Standard deviation 0.074219 0.104345 1.5417 0.0448 

Log likelihood -489 

 

Table 4. Parameter estimates for the two factor model 

 σ k λ θ σ2 k2 λ2 

Value 5.023 3.0167 -0.0414 3.3021 1.6131 0.4045 0.9362

Standard 

deviation 
0.0817 0.103 1.4102 0.0776 0.2386 0.2018 0.5487

Log likelihood -468 

Note: We assume the correlation ρ between the two factors is zero 
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Table 5. Comparison of crack option values 

Strike ($) 2 3 4 5 6 

One factor spread model 2.4140 1.6251 0.9826 0.5214 0.2377 

Two factor spread model 2.4933 1.7425 1.1242 0.6604 0.3488 

Black model 4.3930 3.8137 3.3162 2.9674 2.5197 

 

Table 6. Comparison of crack option deltas 

Strike ($) 2 3 4 5 6 

Underlying HO  CL HO  CL HO  CL HO  CL HO  CL 

One factor 
spread model 

0.84 -0.84 0.72 -0.72 0.55 -0.55 0.37 -0.37 0.21 -0.21 

Two factor 
spread model 

0.81 -0.81 0.69 -0.69 0.54 -0.54 0.39 -0.39 0.24 -0.24 

Black Model 0.64 -0.56 0.57 -0.53 0.55 -0.43 0.43 -0.42 0.41 -0.36 

 

Table 7. ADF test for Brent and WTI crude oil and the location spread 

 No. of 
observations 

Lag (p) δ1 or χ1 t stat 

Brent blend 152 6 0.04 2.48 

WTI 257  6  0.0201  1.03  

Location spread 152 6 -0.28 -3.45* 

* significant at the 1% level 
 

Table 8. Regression (7) parameter estimates for the location spread 

 ς Γ 

Value 0.9188 -0.7022 

t-stat 11.5721* -15.5476* 

No. of observations 152 

R2 63.65% 

* significant at the 1% level 
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Table 9. Parameter estimates for the one factor model 

 σ k Λ θ 

Value 2.5724 1.2928 0.6497 1.1902

Standard deviation 0.1811 0.0987 0.8779 0.028

Log likelihood 64.9 

 

Table 10. Parameter estimates for the two factor model 

 σ k Λ θ σ2 k2 λ2 

Value 2.588 1.3088 0.6031 1.0282 1.3975 0.0728 0.0178 
Standard 
deviation 0.1629 0.0745 0.7886 0.0318 0.1161 0.0321 0.1791 

Log 
likelihood 124.6 

Note: We assume the correlation ρ between the two factors is zero 
 

Table 11. Comparison of spread option values 

Strike ($) -1 0 1 2 3 

One factor spread model 1.9592 1.1980 0.6157 0.2541 0.0809 

Two factor spread model 2.1191 1.4383 0.8949 0.5034 0.2527 

Black Model 2.5616 1.9821 1.5362 1.1041 0.8548 

 

Table 12. Comparison of spread option deltas 

Strike ($) -1 0 1 2 3 

Underlying CL ITCO CL ITCO CL ITCO CL ITCO CL ITCO 

One factor 
spread model 

0.82 -0.82 0.68 -0.68 0.47 -0.47 0.26 -0.26 0.10 -0.10 

Two factor 
spread model 

0.74 -0.74 0.62 -0.62 0.47 -0.47 0.32 -0.32 0.19 -0.19 

Black model 0.69 -0.63 0.55 -0.53 0.48 -0.43 0.42 -0.34 0.34 -0.30 
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Figure 1. The 1 month futures prices of crude oil and heating oil 
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Figure 2. The 1 month and 1 year crack spreads 
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Figure 3. The 1 month crack spread versus the latent spot spread 
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Figure 4. The two factors of the crack spread 
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Figure 5. The 1 month futures prices of WTI and Brent crude oil 
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Figure 6. The 1 month and 1 year location spreads 
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Figure 7. The 1 month location spread versus the latent spot spread  
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Figure 8. The two factors of crude oil location spread 


