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Overview of main concepts 

Bayesian analysis offers a way of dealing with information conceptually different from all other 

statistical methods. It provides a method in which observations are used to update estimates of the 

unknown parameters of a statistical model. With the Bayesian approach we start with a 

parametric model that is adequate to describe the phenomenon we wish to analyze. Then we 

assume a prior distribution for the unknown parameters of the model θ which represent our 

previous knowledge or belief about the phenomenon before observing any data. After observing 

some data assumed to be generated by our model we update these assumptions or beliefs. This is 

done by applying Bayes’ theorem to obtain a posterior probability density for the unknown 

parameters given by 

 

( | ) ( )( | )
( | ) ( )
p x pp x

p x p d
θ θ

θ =
θ θ θ∫

, 

 

where θ is the vector of unknown parameters governing our model, ( )p θ  is the prior sampling 

density function of θ and x is a sample drawn from the “true” underlying distribution with 

sampling density p(x | θ) that we model. Thus the posterior distribution for θ takes into account 

both our prior distribution for θ and the observed data x. 
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A conjugate prior family is a class of densities { ( )ip θ } which has the feature that given the 

sampling density p(x |θ) the posterior density ( )ip xθ  also belongs to the class. The name arises 

because we say that the prior ( )ip θ  is conjugate to the sampling density considered as a 

likelihood function ( )p x θ for θ given x. The concept of conjugate prior as well as the term was 

introduced by Raiffa and Schlaifer [14]. 

 

After obtaining a posterior distribution for the parameters θ we can compute various quantities of 

interest such as integrals of the form 

 ( )( ) ( ; )f y g y p x dydθ θ θ∫ , (1) 

 

where f  is some arbitrary function and g is the probability density function describing a related 

parametric model. In general, because we are not assuming independence between the each of the 

individual parameters this integral is difficult to compute, especially if there are many parameters. 

This is the situation in which Markov chain Monte Carlo (MCMC) simulation is most 

commonly used. 

 

The distinguishing feature of MCMC is that the random samples of the integrand in (1) are 

correlated, whereas in conventional Monte Carlo methods such samples are statistically 

independent. The goal of MCMC methods is to construct an ergodic Markov chain that converges 

quickly to its stationary distribution which is the required posterior density or some functional 

thereof such as (1). 

 

One can broadly categorize the use of MCMC methods as Bayesian or non-Bayesian. Non-

Bayesian MCMC methods are used to compute quantities that depend on a distribution from a 

statistical model that is non-parametric. In a Bayesian application we consider a parametric 

model for the problem of interest. We assume some prior distribution on the parameters and try to 

compute quantities of interest that involve the posterior distributions. This approach remains 

suitable if the data is sparse, for example, in extreme value applications [10].  

 

There are many different types of MCMC algorithms. The two most basic and widely used are 

the Metropolis-Hastings algorithm and the Gibbs sampler which we will now review. 
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Metropolis-Hastings algorithm 

The Metropolis-Hastings algorithm [11, 8, 4] has been used extensively in physics but was little 

known to others until Müller [12] and Tierney [19] expounded the value of this algorithm to 

statisticians. The algorithm is extremely powerful and versatile and has been included in a list of 

‘top 10 algorithms’ [5] and even claimed to be most likely the most powerful algorithm of all 

time [1]. 
 

The Metropolis-Hastings algorithm can draw samples from any target probability density π for 

the uncertain parameters θ requiring only that this density can be calculated at θ . The algorithm 

makes use of a proposal density ,( )tq ζθ  which depends on the current state of the chain tθ  to 

generate each new proposed parameter sample ζ . The proposal ζ  is ‘accepted’ as the next state 

of the chain 1( )t :=θ ζ+  with acceptance probability ( ),tα θ ζ  and ‘rejected’ otherwise. It is the 

specification of this probability α that allows us to generate a Markov chain with the desired 

target stationary density π. The Metropolis-Hastings algorithm can thus be seen as a generalized 

form of acceptance/rejection sampling with values drawn from approximate distributions which 

are ‘corrected’ in order that they behave asymptotically as random observations from the target 

distribution. 

 

The algorithm in step-by-step form is as follows: 

a) Given the current position of our Markov chain tθ , generate a new value ζ  from the 

proposal density q (see below). 

b) Compute the acceptance probability 

( ) ( ) ( )
( ) ( )

: min 1, ,
t

t
t t

q
α

π q

π⎛ ⎞ζ ζ,θ
⎜ ⎟θ ,ζ =
⎜ ⎟θ θ ,ζ⎝ ⎠

 (2) 

 where π is the density of the target distribution. 

c) With probability ,( )tα θ ζ , set 1 :t+θ = ζ , else set 1t t+θ := θ . 

d) Return to step a). 

 

This algorithm generates a discrete time ergodic Markov chain ( )
0

t

t≥
θ with stationary distribution 

Π corresponding to π , i.e. as t → ∞ 
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( ) ( )tP B B∈ →Πθ  

for all suitably (Borel) measurable sets .nB∈\  

Some important points to note [4]: 

 

 We need to specify a starting point 0θ , which may be chosen at random (and often is). 

Preferably 0θ  should coincide with a mode of the density π . 

 

 We should also specify a burn-in period to allow the chain to reach equilibrium. By 

this we mean that we discard the first n  values of the chain in order to reduce the 

possibility of bias caused by the choice of the starting value 0θ  . 

 

 The proposal distribution should be a distribution that is easy to sample from. It is also 

desirable to choose its density q to be ‘close’ or ‘similar’ to the target density π , as this 

will increase the acceptance rate and increase the efficiency of the algorithm. 

 

 We only need to know the target density function π up to proportionality — that is, we 

do not need to know its normalizing constant, since this cancels in the calculation (2) of 

the acceptance function α .  

 

The choice of the burn-in period still remains somewhat of an art, but is currently an active area 

of research. One can simply use the ‘eyeballing technique’ which merely involves inspecting 

visual outputs of the chain to see whether or not it has reached equilibrium. 

 

When the proposal density is symmetric, i.e. ( , ) ( )ttq qθ ζ = ζ,θ  (the original Metropolis 

algorithm), the computation of the acceptance function α  is significantly faster. In this case from 

(2) a proposal ζ is accepted with probability α=π(ζ)/π(θ t), i.e. its likelihood π(ζ) relative to that 

of π(θ t) (as originally suggested by Ulam for acceptance/rejection sampling). 

 

Random walk Metropolis 

If ,( ) : (| |)tq fθ ζ = θ − ζ  for some density f  and norm |·| then this case is called a random walk 

chain because the proposed  states are drawn according to the process following t= θ +ζ ν , 
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where F∼ν , the distribution corresponding to f. Note that since this proposal density q is 

symmetric the acceptance function is of the simple Metropolis form described above. Common 

choices for q  are the multivariate normal, multivariate t  or the uniform distribution on the unit 

sphere. 

 

If ,( ) : ( )tq qθ ζ = ζ  then the candidate observation is drawn independently of the current state of 

the chain. Note however that the state of the chain 1t +θ  at 1t +  does depend on the previous state 
tθ  because the acceptance function ( , )tα θ ⋅  depends on tθ . 

 

In the random walk chain we only need to specify the spread of q , i.e. a maximum for |θ − ζ| at a 

single step. In the independence sampler we need to specify the spread and the location of q . 

 

Choosing the spread of q is also something of an art. If the spread is large, then many of the 

candidates will be far from the current value. They will therefore have a low probability of being 

accepted, and the chain may remain stuck at a particular value for many iterations. This can be 

especially problematic for multi-modal distributions; some of its modes may then not be explored 

properly by the chain. On the other hand, if the spread is small the chain will take longer to 

traverse the support of the density and low probability regions will be under-sampled. The 

research reported in [13] suggests an optimal acceptance rate of around 0.25 for the random walk 

chain. In the case of the independence sampler it is important [2] to ensure that the tails of q  

dominate those of π , otherwise the chain may get stuck in the tails of the target density. This 

requirement is similar to that in importance sampling. 
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Multiple-block updates 

When the number of dimensions is large it can be difficult to choose the proposal density q so 

that the algorithm converges sufficiently rapidly. In such cases it is helpful to break up the space 

into smaller blocks and to construct a Markov chain for each of these smaller blocks [8]. Suppose 

that we split θ into two blocks 1 2( , )θ θ  and let ( ),1 1 2 1
t tq θ θ ζ  and ( ), 22 2 1

t tq θ θ ζ  be the proposal 

densities for each block. We then break each iteration of the Metropolis-Hastings algorithm into 2 

steps and at each step we update the corresponding block. To update block 1 we use the 

acceptance function given by 

 

 ( ) ( ) ( )
( ) ( )

1 2 1 1 2 1
1 2 1

1 2 1 1 2 1

, : min 1,
,

t t t
t t

t t t t

π q
α

π q

⎛ ⎞ζ θ ζ θ ,θ
⎜ ⎟θ θ ζ =
⎜ ⎟θ θ θ θ ζ⎝ ⎠

 (3) 

and to update block 2 we use 

 

 ( ) ( ) ( )
( ) ( )

2 1 2 2 1 2
2 1 2

2 1 2 2 1 2

,
, : min 1,

,

t t t
t t

t t t t

π q
α

π q

⎛ ⎞ζ θ ζ θ θ
⎜ ⎟θ θ ζ =
⎜ ⎟θ θ θ θ ζ⎝ ⎠

. (4) 

 

If the blocks each consist of just a single variable, then the resulting algorithm is commonly 

called the single-update Metropolis-Hastings algorithm. Suppose in the single-update algorithm it 

turns out that each of the marginals of the target distribution ( )~i iθ θπ  can be directly sampled 

from. Then we would naturally choose ( ) ( )~ ~:i i i iq θ θ θ θπ=  since all candidates ζ  will then be 

accepted with probability 1. This special case is the well-known Gibbs sampler [2].  

 

Gibbs sampler 

Gibbs sampling is applicable in general when the joint parameter distribution is not known 

explicitly but the conditional distribution of each parameter given the others is known. Let 

( ) ( )1,..., kP Pθ = θ θ  denote the joint parameter distribution and let ( )~i ip θ | θ  denote the 

conditional density for the i -th component iθ given the other 1k −  components, where 

{ }~ : :i j j iθ = θ ≠  for 1,...,i k= . Although we do not know how to sample directly from P we do 
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know how to sample directly from each ( )~i ip θ | θ . The algorithm begins by picking the 

arbitrary starting value ( )0 ,...,0 0
1 κθ = θ θ . It then samples randomly from the conditional densities 

( )~i ip θ | θ  for 1,...,i k=  successively as follows: 

 

Sample 1
1θ from ( )1

0 0
3, , ..., kp 0

2θ | θ θ θ  

Sample 1
2θ from ( )0 0

2 3, , ..., kp 1
1θ | θ θ θ  

… 

Sample 1
kθ from ( )1 1

2 1, ,...,k kp 1
1 −θ | θ θ θ . 

 

This completes a transition from 0θ to 1θ and eventually generates a sample path 0 1, , ..., ,tθ θ θ …  

of a Markov chain whose stationary distribution is P. 

 

In many cases we can use the Gibbs sampler which is significantly faster to compute than the 

more general Metropolis-Hastings algorithm. In order to use Gibbs however we me must know 

how to directly sample from the conditional posterior distributions for each parameter, 

i.e. ( )~ ,i ip xθ θ , where x represents the data to time t.  

 

Use of MCMC in capital allocation for operational risk 

Due to lack of reported data on operational losses Bayesian Markov chain Monte Carlo 

simulation is well suited for the quantification of operational risk and operational risk capital 

allocation.  In [9] a framework for evaluation of extreme operational losses has been developed 

which assumes that market and credit risks may be managed separately but jointly impose a value 

at risk limit VaRu on these risks. 

 

It is assumed that losses beyond the VaRu  level belong to the operational risk category. In most 

cases, due to overlapping between risk types a detailed analysis of operational loss data is 

required to support the assumption that the VaRu  level approximately equals the unexpected loss 

threshold.  This approach to capital allocation for operational risk takes into account large but 

rare operational losses, is naturally based on extreme value theory (EVT) [6,7] and focusses on 
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tail events and modelling the worst-case losses as characterized by loss maxima over regular 

observation periods. 

 

According to regulatory requirements [20] operational risk capital calculation requires two 

distributions – a severity distribution of loss values and a frequency distribution of loss 

occurrences. In the approach described here a unified resulting asymptotic model known as the 

peaks over threshold (POT) model [15,16,18] is applied. It is based on an asymptotic theory of 

extremes and a point process representation of exceedances over a threshold given by the POT 

model. The following is assumed. 

 

Given an i.i.d. sequence of random losses X1,…, Xn drawn from some distribution we are 

interested in the distribution of the excess u:= −Y X  over the threshold u. The distribution of 

excesses is given by the conditional distribution function in terms of the tail of the underlying 

distribution function F as 

 
( ) ( )( ) ( )

1 ( )u
F u y F uF y P u y u

F u
+ −

:= − ≤ | > =
−

X X  for 0 y≤ ≤ ∞ . (5) 

 

The limiting distribution ( )G yξ,β  of excesses as u → ∞  is known as the generalized Pareto 

distribution (GPD) with shape parameter ξ  and scale parameter β  given by  

( )G yξ,β =    
1/

1 1 y
− ξ

⎛ ⎞
− + ξ⎜ ⎟β⎝ ⎠

 0ξ ≠  where [ ]0,y ∈ ξ  0ξ ≥  or [ ]0, /y ∈ −β ξ  ξ < 0  (6) 

 1 exp y⎛ ⎞
− −⎜ ⎟β⎝ ⎠

    0ξ = . 

The identification of an appropriate threshold u  is again somewhat of an art and requires a data 

analysis based on a knowledge of EVT [3, 6, 7]. 

 

The capital provision for operational risk over the unexpected loss threshold u  is given in [10] as 

 ( )
1
u

u u
uE u u β + ξ

λ − | > = λ
− ξ

X X , (7) 
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where ( )
1
u uE u u β + ξ

− | > =
− ξ

X X  is the expectation of excesses over the threshold u  (which is 

defined for 1ξ ≤  and must be replaced by the median for ξ>1), ( ):u uβ σ ξ μ= + −  and the 

exceedances form a Poisson point process with intensity 

 
( ) 1/

1u

u
− ξ

− μ⎛ ⎞
λ := + ξ⎜ ⎟σ⎝ ⎠

, (8) 

 

usually measured in days per annum. 

 

The accuracy of our model depends on accurate estimates of the , ,  and ξ μ σ β  parameters. To 

address this, hierarchical Bayesian Markov chain Monte Carlo simulation is used to determine the 

parameter estimates of interest through intensive computation. The empirical estimation 

efficiency of this method when back-tested on large data sets is surprisingly good. 

 

Hierarchical Bayesian parameter estimation considers the parameters to be random variables 

possessing a joint probability density function. The prior density fθ | ψ  of the random parameter 

vector θ  is parametric with a vector of random hyper-parameters ψ  and is conjugate prior to the 

sampling density |Xf θ  so that the calculated posterior density ,..., ,1X Xn
f fθ | ψ θ|ψ+:=  is of the same 

form with the new hyper-parameters ψ +  determined by ψ  and the observations 1,..., nX X . In 

the hierarchical Bayesian model the hyper-hyper parameters ϕ  are chosen to generate a vague 

prior due to the lack of a prior distribution for the hyper-parameters before excess loss data is 

seen. Hence, we can decompose the posterior parameter density ,Xfθ | ψ with the observations X 

and the initial hyper-hyper parameters ϕ as  

 

( ) ( ) ( ),X Xf f X f fθ | ψ | θ θ | ψ ψ∝ | θ θ | ψ ψ | ϕ  

                                                     ( ) ( )Xf X f| θ ψ | θ∝ | θ ψ | θ,ϕ  

                                                     ( ) ( )Xf X f| θ ψ∝ | θ ψ | ϕ + . 

 



 10

Here the Bayesian update of the prior parameter density f f f∝ θ θ | ψ ψ  is performed in 2 stages. 

First by updating the hyper-hyper parameters ϕ  to ϕ +  conditional on θ  then evaluating the 

corresponding posterior density for this θ  given the observations X .  

   

Hierarchical Bayesian MCMC simulation for the parameters is based on the Metropolis-Hasting 

algorithm described briefly above and in detail in [17].  The idea is that the state of the chain for 

the parameter vector θ := {μj, log σj, ξj : j = 1, 2,…, J} converges to a stationary distribution 

which is the Bayesian posterior parameter distribution ,xfθ | ψ  given the loss data x and a vector 

ψ of hyperparameters{ mμ , s2
μ , mlogσ , s2

logσ , mξ , s2
ξ }. The hyperparameters are sampled from a 

conjugate prior gamma-normal (GM) distribution and are used to link the parameters {μj, σj, ξj : 

j = 1, 2,…, J} of each individual risk [10]. 

 

The aim of the model is to estimate the parameters of interest {μj, σj, ξj : j = 1, 2,…, J} 

conditional on both the data x and the hyperparameters { mμ , s2
μ , mlogσ , s2

logσ , mξ , s2
ξ }. The 

posterior distributions of the parameters are normally distributed:  

μj ∼ N(mμ , s2
μ), log σj ∼ N(mlogσ , s2

logσ) and ξj ∼ N(mξ , s2
ξ). 

 

A schematic summary of the loss data, parameters and hyperparameters is given in Table 1. 
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 Table 1:  Bayesian hierarchical model 

Data x Type 1 Type 2    Type J  

Business Unit 1   x11 x12 . . . x1J  

Business Unit 2  x21 x22 . . . x2J  

  . . . . . .  

  . . . . . .  

Business Unit n  xn,1 xn,2 . . . xn,J  

Parameters   θ      Hyperparameters ψ  

Mean (μ)  μ1 μ2 . . . μJ Mean –  mμ     Variance – s2
μ 

Scale (logσ)  Log σ1 log σ2 . . . log σJ Mean –  mlogσ  Variance – s2
logσ 

Shape (ξ)  ξ1 ξ2 . . . ξJ Mean –  mξ      Variance – s2
ξ 

 

Illustrative example 

The data is assumed to represent the operational losses of a bank attributable to three different 

business units. The data starts on 03.01.1980 and ends on 31.12.1990. The time span is calculated 

in years hence the parameters will also be measured on a yearly basis. The data has been 

generated from the Danish insurance claims data [3] by two independent random multiplicative 

factors to obtain the three sets of loss data summarized in Table 2. 

 

A typical analysis of such data includes time series plots, log histogram plots, sample mean 

excess plots, QQ plots for extreme value analysis against the GPD, Hill estimate plots of the 

shape parameter and plots of the empirical distribution functions. All these tests  have been 

performed for the three data sets to conclude that data are heavy tailed  and that the POT model is 

valid. 
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Table 2:  Summary statistics for data 

Data X1 (Danish) X2 X3 

Min: 1.000 0.8 1.200 

1st Qu. 1.321 1.057 1.585 

Mean 3.385 2.708 4.062 

Median 1.778 1.423 2.134 

3rd Qu 2.967 2.374 3.560 

Max 263.250 210.600 315.900 

N 2167 2167 2167 

StdDev 8.507 6.806 10.209 

 

Figure 1:  Time series of log ‘danish’ data X1 
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Figure 2:  Histogram of log ‘danish’ data 

 

 

Inputs for the MCMC model: 

Threshold u = 30 

Initial parameters: 

1μ  2μ  3μ  1logσ  2logσ  3logσ  1ξ  2ξ  3ξ  

20 21 22 3 3.2 2.8 0.5 0.4 0.7 

 

The tables below are a summary of the posterior mean estimates of the parameter values βi and λi 

based on the MCMC posterior distribution mean parameter values. 

 

For j = 1 (Unit 1) 

Code Mean(μ1) Mean(logσ1) Mean(ξ1) β1 λ1 Expected Excess 

1000 loops 37.34 3.14 0.77 18.46 1.41 180.70 

2000 loops 36.89 3.13 0.80 18.35 1.39 211.75 

The number of exceedances above threshold is 15. 
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For j = 2 (Unit 2) 

Code Mean (μ2) Mean(logσ2) Mean(ξ2) β2 λ2 Expected Excess 

1000 loops 36.41 3.16 0.77 19.04 1.34 186.22 

2000 loops 35.76 3.13 0.8 18.5 1.30 218.40 

The number of exceedances above threshold is 11. 

 

For j = 3 (Unit 3) 

Code Mean (μ3) Mean(logσ3) Mean(ξ3) β3 λ3 Expected Excess 

1000 loops 39.55 3.05 0.79 14.21 1.71 180.52 

2000 loops 39.23 3.03 0.82 13.83 1.70 213.50 

The number of exceedances above threshold is 24. 

 

The plots in Figure 3 below for the results of 2000 simulation loops show that convergence has 

been reached for the marginal posterior distributions of all parameters for Unit 1 and that the 

estimates of these parameters are distributed approximately normally. (Those of σ are thus 

approximately lognormal.) Similar results hold for the other two units. 

 

The capital provision for operational losses is calculated using expression (7). The probability of 

such losses is given by the choice of threshold u for extreme operational losses. This threshold 

must be obtained from an analysis of the historical operational loss data and should agree or 

exceed the threshold level VaRu  of unexpected losses due to market and credit risk. The 

probability of crossing the combined market and credit risk threshold VaRu  is chosen according to 

the usual value at risk (VAR) risk management procedures. The level of losses u due to 

operational risks is exceeded with probability ρ π≤ , so that ≥ VaRu u . The probability of 

exceeding u depends on the shape of the tail of the loss distribution but is in general very much 

smaller than π. 

 

Assuming that three types of losses are the bank business unit losses from operational risk over a 

period of 11 years the bank should hedge its operational risk for these units by putting aside 

944.60 units of capital (1.39 x 211.75 + 1.30 x 218.40 + 1.70 x 213.50) for any one year period. 
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Although in this illustrative example unexpected losses above the combined VaR level (30 units 

of capital) occur with probability 2.5% per annum, unexpected operational risk losses will exceed 

this capital sum with probability less than 0.5%.  In practice lower tail probabilities might be 

chosen, but similar or higher probability ratios would obtain.  

 

Note that in this example the loss data for each business unit was generated as independent and 

the total capital figure takes the resulting diversification effect into account. On actual loss data 

the dependencies in the realized data are taken into account by the method and the diversification 

effect of the result can be analyzed by estimating each unit separately and adding the individual 

capital figures (which conservatively treats losses across units as perfectly correlated) [10]. 

Although the results presented here are based on very large (2167) original sample sizes, the 

simulation experiments on actual banking data reported in [10] verify the high accuracy of 

MCMC Bayesian hierarchical methods for exceedance sample sizes as low as 10 and 25, as in 

this example. 
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Figure 3:  Simulation results of MCMC for 200k iterations 
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Conclusion 

In this chapter we have introduced Markov chain Monte Carlo (MCMC) concepts and techniques 

and shown how to apply them to the estimation of a Bayesian hierarchical model of 

interdependent extreme operational risks.  This model employs the peaks over threshold (POT) 

model of extreme value theory (EVT) to generate both frequency and severity statistics for the 

extreme operational losses of interdependent business units which are of interest at the board 

level of a financial institution.  These are obtained respectively in terms of Poisson exceedences 

of an unexpected loss level for other risks and the generalized Pareto distribution (GPD). 

 

The model leads to annual business unit capital allocations for unexpected extreme risks which 

take account of the statistical interdependencies of individual business unit losses. 

 

The concepts discussed in this chapter are illustrated by an artificially created example involving 

three business units but actual banking studies are described in [10] and in forthcoming work 

relating to internally collected operational loss data. 
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