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Empirical Copulas for CDO Tranche Pricing
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�
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Abstract

We discuss the general optimization problem of choosing a copula

with minimum entropy relative to a specified copula and a computation-

ally intensive procedure to solve its dual. These techniques are applied to

constructing an empirical copula for CDO tranche pricing. The empirical

copula is chosen to be as close as possible to the industry standard Gaus-

sian copula while ensuring a close fit to market tranche quotes. We find

that the empirical copula performs noticeably better than the base correla-

tion approach in pricing non-standard tranches and that the market view

of default dependence is influenced by maturity.

1 Introduction

Copula methods in pricing collateral debt obligations (CDOs) in general assume

some parametric form for the copula of default times and try to obtain the val-

ues for model parameters which produce prices that most closely match those
�
Corresponding author; Centre for Financial Research, Judge Business School, University

of Cambridge, United Kingdom & Cambridge Systems Associates, mahd2@cam.ac.uk.�
Centre for Financial Research, Judge Business School, University of Cambridge, United

Kingdom & Cambridge Systems Associates, eam28@cam.ac.uk.�
Centre for Financial Research, Judge Business School, University of Cambridge, United

Kingdom, swy21@cam.ac.uk.

1



of the market. An unsatisfactory aspect of these methods is that they offer little

underlying rationale for copula choice. This paper shows how to choose the

copula empirically by optimizing its entropy. The strength of the entropic ap-

proach is that it provides an information-theoretic rationale for the choice of

the copula and also results in excellent fits to data. By minimizing the relative

entropy with respect to the industry standard Gaussian distribution, we choose

the copula that is closest to the standard while ensuring a close fit to market

prices.

Our method is similar in spirit to Hull & White (2006), where they imply from

market data an empirical copula in the standard one-factor framework using the

criterion of maximal smoothness. We essentially follow the same methodology

as theirs but in a more general framework and using the criterion of minimum

relative entropy. Hull and White’s method is limited to calibration to single-

maturity data, and is not easily extentable to non-constant hazard rates. The

entropic copula approach, however, can be used to calibrate to data across dif-

ferent maturities and naturally accommodates any stochastic hazard rate model.

Both these methods promise perfect to near-perfect fits to the data.

The remainder of this introduction discusses credit risk modelling and CDO

tranches. Section 2 describes the principle of minimum relative entropy and

how to solve it numerically and in Section 3 we discuss the maximum entropy

copula problem. This is extended to the minimum relative entropy copula prob-

lem for CDO tranche pricing in Section 4, where computational results based

on market data are presented. Section 5 concludes.

1.1 Correlated intensities in portfolio credit risk modelling

In single-name credit risk modelling, there are two main approaches: the struc-

tural approach and the reduced form approach. The latter has been more popular

in pricing applications because it generally offers better fits. A typical example

of the reduced form approach is to assume that default occurs when a doubly-
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stochastic Poisson process (also called a Cox process) first makes a jump.

Extending credit risk modelling to multiple names introduces an extra compli-

cation. The interdependence between firms in their probability of default is an

important aspect that must be taken into account. Some early reduced form

approaches attempted to model this dependence by allowing the stochastic in-

tensities of the Cox processes to be correlated and the default events condi-

tioned on the intensities to be independent. Several examples of these models

can achieve relatively close fits to market data, for example Mortensen (2006)

and Graziano & Rogers (2006). As Mortensen (2006) conceded, however, the

resulting model parameters can be unrealistic because an unnaturally high de-

gree of correlation between the intensities is needed to reproduce the observed

market prices. Moreover, Das, Duffie, Kapadia & Saita (2007) in their empirical

study concluded that the level of default dependence that can be realistically in-

troduced by this technique is not sufficient to capture the clustering of defaults

that are observed in the market. Why this is the case can be appreciated when

we remember that the probabilities of default we are dealing with are very low.

To achieve significant clustering of defaults, the default probabilities must be

wildly fluctuating at unrealistic levels, as well as being highly correlated.

1.2 Copulas

The most popular method for modelling portfolio credit risk has been to use

copulas. Copulas are used to introduce dependence between default times in a

direct way, not indirectly through default intensities. This allows us to repro-

duce the level of clustering of defaults that we observe in reality. However, as

mentioned previously, the choice of copula is rather arbitrary, motivated by two

main criteria: the quality of final fit to the data, and computational tractability.

As we shall see, choosing an empirical copula using the entropic approach gives

us an underlying rationale for this choice.
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1.3 CDO tranche pricing

A CDO is a derivative structure which provides protection against the loss on

a portfolio of defaultable assets. The seller of protection on a tranche of this

portfolio receives regular premium payments. In return, he must pay the buyer

of protection any losses on that tranche that are incurred through defaults. Each

tranche covers only a portion of the total potential losses of the portfolio.

To illustrate, consider a CDO portfolio of � names, each with unit nominal

amount and with maturity
�

. Then denoting ��� as the time of default of name �
the amount lost on the portfolio at time � is

�	� ��
���
�� ������� 
 �� ����� ��� �"!�#%$'& 
 (1)

where
�

is the constant recovery rate and �(� � ���)
+*+*+*,
�� � 
 is the vector of

default times.1 Now consider a tranche of this CDO with attachment point -
and detachment point . . Then the loss on this tranche at time � will be the

non-decreasing function

/0� ��
��1
2�
3445 446 7 if

�	� ��
���
189- ,�	� ��
��:
 � - if -<; �	� ��
��:
=8>. ,. � - if
�	� ��
���
1?@.�*�A. � - �9� . �B�	� ��
��:
C
CDFE � - �B�	� ��
��:
C
CDG


where
�IH 
 DKJ �MLONQPSR H 
 7

T
. Thus the loss on an

� -�
�.�
 tranche can be written

in terms of a put spread as shown in Figure 1 below. Then the default leg — the

present value of the (random) amount that the seller of protection needs to pay

— can be written as

UV� �W
 � 
�� �� �����YX[Z%\
�,! � � �,!)]_^`&�a /0� �b�Q
��:
 ��/0� � Z� 
��:
�c (2)

1We use boldface throughout to denote random entities.
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Figure 1: Loss on a
� -:
�.�
 tranche vs portfolio loss

and the premium leg — the present value of the (random) amount that the seller

of protection receives in return — can be written as

� � �W
 � 
����
��
� ��� X Z%\

$	� � - � . �B/0� � � 
��:
�
�
 (3)

where � is the premium rate, and where � � 8 � 
�
F� � 
+*+*+*,
 � , are the premium

payment dates.2

To price a CDO tranche, we wish to work out the fair premium rate �� . Like

any other swap, this is the value that makes the expected payoffs of the default

and premium legs equal. Therefore the fair premium rate is the value �� which

satisfies


�� UV� �W
 � 
�� � �� 
����O� �W
 � 
��S� 7 * (4)

It should be clear that it is the ‘tranching’ feature which makes the fair premium

rate �� depend on the default dependence. If we consider a ‘tranche’ that spans the

whole portfolio, i.e. a
�
7 
 � max 
 tranche, then we would have

/ � �
; since�

is linear in each of the default times, the expected payoffs

�� UV� �W
 � 
�� and
���� � �W
 � 
�� only depend on the mean of � and not its higher moments, and

hence the fair premium rate �� does not depend on the default dependence. This

2We ignore accrued payments here for notational simplicity but include them in our numer-
ical studies.

5



is not the case if the tranche only spans a subset of the overall portfolio loss.

2 Minimum Relative Entropy

The principle of minimum relative entropy is closely related to the principle of

maximum entropy and it is instructive to consider the latter first.

2.1 Principle of maximum entropy

The principle of maximum entropy (MaxEnt) is a method of obtaining a unique

probability distribution for a random variable from a given set of data assumed

to be generated by it. The principle was first formulated by Jaynes (1957) and is

used in a wide variety of applied sciences.

To illustrate a typical problem in finance, suppose we have a finite set of vanilla

European option prices on a stock. The price of each option is a function of the

risk-neutral density of the stock price at maturity. The aim of MaxEnt in this

example is to infer from the given set of option prices the risk-neutral density

of the stock price.

However, such a problem is generally highly under-determined because we have

many fewer option prices than possible stock prices. But a unique density

can be obtained if we optimize some objective function that depends on the

density, while satisfying the observed market prices. Various forms for the

objective function have been proposed, such as Fisher information (Frieden

1998, Hawkins & Frieden 2006), maximal smoothness (Jackwerth & Rubin-

stein 1996, Hull & White 2006) and entropy (Buchen & Kelly 1996).

Since entropy is a measure of uncertainty, inferring the probability distribution

of a random variable by maximizing entropy is optimal in the sense that we

only take into account information that is given and do not assume anything
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else about the distribution. We choose a distribution which is consistent with

the given information but otherwise has maximum uncertainty. MaxEnt ap-

plied to finance is thus related to the concept of market efficiency in the sense

that prices fully reflect all available information in the market.

The MaxEnt principle is a non-parametric method of estimating a probability

distribution. In parametric estimation the focus is on obtaining the best estima-

tor �� of a given parametric family � ����� � 
 of densities. This process involves two

steps: model specification and model estimation. In non-parametric estimation

the focus is on obtaining a good estimate of � directly, which eliminates the need

for model specification.

The MaxEnt principle is thus well-suited to the estimation of copulas in port-

folio credit risk modelling. As discussed earlier, the choice of copula for CDO

tranche pricing in much of the literature is rather arbitrary, motivated by qual-

ity of fit. These methods are parametric in nature. By using a non-parametric

approach such as MaxEnt the problem of arbitrarily choosing a copula is obvi-

ated.

To set notation, suppose we observe the data set R ���	 ��
 �	 ��
�
+*+*+* 
 ���	�
 
 �	�
 
 T with�	�
 
 �	�
���� for each �F� � 
+*+*+* 
�� . We know from the problem at hand that
�� 	�
 ��� 
 �	�
 
�� � �	�
 for each � , where
�

is a random vector taking values in some

domain
U�� � �

.

Letting � be the density for
�

(or probability mass function if discrete) we wish

to maximize its differential entropy, i.e. solve the problem

��������� "!$#&%(' �*) % � �IH 
,+.-�/0� � H 
�1 H 
 (5)
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subject to the data constraints

) % 	�
 �IH 
 �	�
 
�� �IH 
 1 H � �	�
 �G� � 
+*+*+* 
��V
 (6)

where 	�
 � � 
 �	�
 
 is a piecewise continuous function on
U

.

2.2 Solution to the MaxEnt problem

The Lagrangian for this problem can be easily maximized by elementary cal-

culus of variations.3 � 4 After normalizing � to make it a probability density the

solution is of the form

�� � H 
 � 
�� �� � � 
 � P � � 
� 
 ��� � 
 	�
 �IH 
 �	�
 
��V
 (7)

where
� � � � � 
+*"*+*,
 � 
 
 and

� � � 
 J �	� � P � R�
 
 � 
 	�
 �IH 
 �	�
 
 T 1 H is the normaliz-

ing constant. The optimal � can then found by solving for the unique values
� 


that satisfy the constraints (6).

However, instead of solving the � simultaneous equations (6) with � J � �� to

determine the lambdas, we can more elegantly solve the dual problem. Consider

the dual function�
�
� � 
�� � ) % �� � H 
,+ -�/ �� � H 
�1 H E ) % ��� ��� � H 
 � �	 
 �� �IH 
 � 
�1 H (8)

� + - / � � � 
 � ��� �	 
 (9)

where
� � H 
 J � � 	 � � H 
 �	 ��
 
+*"*+*,
 	�
 �IH 
 �	�
 
�
 � and

�	 � ���	 ��
+*+*+*,
 �	�
 
 � and the prime

symbol denotes transpose. The dual problem of the MaxEnt problem given by

3 To apply the Euler-Lagrange equation, i.e. equate the first variation to zero, we need to
assume that there exists a feasible � with finite entropy and that ����� almost everywhere.

4Note that the Lagrangian is concave in � .
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(5) and (6) is � ���� �����
�
�

� � 
 *
This is a much easier optimization problem because it is finite dimensional and

unconstrained, and we know that the dual function is always convex. More-

over, we can easily show that it is strictly convex if the functions 	 
 are linearly

independent.

Proposition 1. The dual function (8) is convex, and it is strictly convex if and only

if the functions 	�
 are linearly independent.

Proof. Take �� and
��

in � 
 and set
� J � � �� E � � � ��
 �� 
�� � �

7 
 � � . Then by

Hölder’s inequality� �
� � 
�� +.-�/ ) � P �
	 � �� � � � H 
 E ����� ��
 �� � � �IH 
�� 1 H � � �� � �	 �>����� ��
 �� � �	

8 ��
�+ -�/ ) X������� #�� ' 1 H � �� � �	�� E � ��� �Q
�
,+ - / ) X������� #�� ' 1 H � �� � �	�� *
If the 	�
 ’s are not linearly independent then we can find a �� and

��
with ����� ��

such that �� � � � �� � �
, whence Hölder’s inequality becomes equality. But if the	�
 ’s are linearly independent, then seeing Hölder’s inequality as an application

of Jensen’s inequality for the strictly concave function given by � �IH 
 J � H��
for

� � �
7 
 � 
 , the result follows.

Alternatively we could show that the Hessian is the covariance matrix of the	�
 ’s, and thus the dual function is strictly convex if the 	"
 ’s are linearly indepen-

dent.

The minimization can be solved numerically using any gradient-based optimiza-

tion method such as the BFGS quasi-Newton algorithm.5 We just need the

5The BFGS algorithm was independently developed by Broyden (1970), Fletcher (1970),
Goldfarb (1970) and Shanno (1970).
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gradient vector of the dual, whose � th element is given by�
� �

� � 
� � 
 � ) % 	�
 � H 
 �	�
 
 �� �IH 
 � 
�1 HO� �	�
 *
We can differentiate the dual (8) under the integral sign since the integrand is in� � � U 
 for each fixed

�
, and is differentiable with respect to

�
for almost all

H
with bounded derivative for all bounded

�
.

Notice that the gradient corresponds to the constraints (6) and that the con-

straints will be satisfied when the gradient vector is zero.

In addition to the assumption that the feasible set is not empty, we also impose

the assumption mentioned previously in footnote 3 that there must exist a fea-

sible � with �V? 7 almost everywhere which has finite entropy.

2.3 Regularization

The Slater constraint qualification that we have just mentioned is difficult to

check in general. In particular, it is difficult to determine whether the observed

data set R ���	 �)
 �	 �C
 
+*"*+*"
 � �	�
 
 �	�
 
 T is consistent.6 A related problem is that in real

applications there may be measurement errors in the observed data — not only

are these errors a problem in themselves, but they may also cause inconsisten-

cies in the data which render the feasible set empty.

Both these problems can be overcome if we consider a penalized version of the

MaxEnt problem

� ���� �� "!$#&%(' � ) % � � H 
,+ -�/0� � H 
�1 HO� �� � 
� 
 ��� ���

� ) % 	�
 �IH 
 �	�
 
�� �IH 
 1 HO� �	�
�� � (10)

6Borwein, Choski & Maréchal (2003) have however developed an easy-to-check test for this
constraint qualification in the standard MaxEnt problem for call options.

10



for some positive
�

and � 
 . Here
�

plays the role of ‘temperature’ — the lower

we set
�
, the smaller the errors will be. The � 
 act as weights to emphasize the

importance of a particular constraint — the higher we set � 
 , the smaller the

error for the � t � constraint will be. Although this problem is unconstrained, as

discussed in Decarreau, Hilhorst, Lemaréchal & Navaza (1992), we can refor-

mulate (10) in the form of the original problem as

��������� "!$#&%(' � � � � � � ) % � �IH 
,+.-�/0� �IH 
 1 H � �� � ����� �
subject to ) % 	�
 �IH 
 �	�
 
 � � H 
�1 H � �	�
 � � 
� 
 
 ��� � 
+*+*+*,
��V

where

� � �
denotes the Euclidean norm on � 
 . Then one can easily show that

the dual function is given by� �
� � 
:� + -�/ � � � 
 � ��� �	 E �� � � �� � � 


where
�� � � � ��� � ��
+*+*+*,
 � 
 � � 
 
 � , and the � th element of its gradient vector is

given by �
� �

� � 
� � 
 � ) % 	�
 � H 
 �	�
 
 �� �IH 
 � 
�1 HO� �	�
 E � � 
� �
 *
Thus we can still use the dual approach as discussed above to solve this problem.

The above technique is known as penalization. Another approach, called relax-

ation, is to solve the problem

� ���� �� ! #&%(' � ) % � � H 
,+ -�/0� � H 
�1 H
subject to ���� ) % 	�
 �IH 
 �	�
 
�� �IH 
 1 H � �	�
 ���� 8 � 
 �G� � 
+*+*+* 
��
for some

� ? 7 . The problem with relaxation, as opposed to penalization, is
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that the issue of consistency remains — the feasible set may still be empty if
�

is

too small. We will use penalization for our applications.

2.4 Principle of Minimum Relative Entropy

Since the distribution with the greatest entropy is the uniform distribution,7

when we apply the principle of maximum entropy we are effectively choosing

the distribution that is ‘closest’ to the uniform distribution while satisfying the

data constraints. But we could, if we wish, choose a distribution other than the

uniform distribution. To do this we use the concept of relative entropy.

Relative entropy is a measure of ‘distance’ of one probabilility distribution to an-

other. For absolutely continuous probability distributions � and � it is defined

by8 �	� � � � 
�� ) % � � H 
,+ -�/ � � H 

� �IH 
 1 H 


where � and � are the densities of � and � respectively. Minimizing relative

entropy will be useful if we have a prior belief about what the empirical distri-

bution might or should be.

The form of the optimum solution to the minimum relative entropy (MinRe-

lEnt) problem is almost identical to that of the MaxEnt problem and is given

by

�� �IH 
 � 
2� �� � � 
 � � H 
 � P � � 
� 
 ��� � 
 	�
 �IH 
 �	�
 
 � 
 (11)

where
� � � 
 J � � � �IH 
 � P � R�
 
 � 
 	�
 �IH 
 �	�
 
 T 1 H . The optimal � can then be found

by solving for the unique values
� 
 that satisfy the constraints (6), possibly using

the dual approach as discussed above.

We need to note the regularity conditions needed on the prior � . To apply

7Among distributions with bounded support.
8Relative entropy is always non-negative and is equal to zero if and only if ����� .
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the Euler-Lagrange equation, we must (corresponding to footnote 3) make the

assumption that there is a feasible � with finite relative entropy which is equiv-

alent to � (i.e. their supports agree almost everywhere). The latter is difficult to

check but we can ensure that an optimal solution has finite relative entropy by

requiring � % � �� � H 
,+ -�/ �� � H 
 � � �IH 
 � 1 H ;�� . The actual conditions on � therefore

depend on the functions 	�
 and the domain
U

.

3 The MaxEnt Copula Problem

If we wish to apply the MaxEnt principle to a problem involving a copula, then

in addition to the data constraints (6) above we must also require constraints on

the marginals of � .

A copula is a joint distribution function on the unit hypercube
�
7 
 � � � with

marginals that are uniformly distributed. So in addition to the data constraints,

we need the marginal constraints

) �
�
)
� � � �����
	 ! � �IH 
 1 H�� � 1 H �W��
 ��
 � �

7 
 � � � � � 
+*+*"*"
���* (12)

We therefore have an infinite dimensional constraint space, unlike the finite

dimensional case defined by (6).

3.1 Discrete approximation

One technique to deal with the infinite dimensional constraints is to take only

a finite number 
 ��
+*+*+*,
�
�� � �
7 
 � � of discrete points and require that the above

marginal constraints hold only for this set of points, not for all 
 � �
7 
 � � . Thus

we would have instead of (12)

) � �
� � 	 !

)
� � � ��� �
	 ! � �IH 
 1 H�� � 1 H �W����
 � � � � 
"*+*+*"
��G
 
F� � 
+*+*+*,
�� 
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where � 
 � � 
 � � 
 � Z � . This method may be satisfactory for many applica-

tions. For example in pricing CDO tranches, if we take each 
 � to correspond

to quarterly time steps or even annual time steps and the longest maturity of the

tranches is 10 years, then we need only take � � 40 or 10, respectively, because

there is no need to go beyond the longest maturity in the data set. Furthermore,

if we assume a homogeneous portfolio where each firm has the same marginal

default time distribution, then we know that the Lagrange multipliers for the


 � ’s for each dimension will be the same. There will thus only be an additional

10 to 40 more constraints since we do not need a separate set of Lagrange mul-

tipliers for each dimension.

3.2 The MaxEnt copula problem

There are two alternative ways of formulating the MaxEnt copula problem.

For a copula with density � the MaxEnt problem is to maximize its entropy� � � � � ����� � ��� 
,+ -�/ � ��� 
�1 � , subject to the data constraints being satisfied and the

marginals of � being uniformly distributed. By a simple change of variables, we

can show that this problem is equivalent to minimizing

) % � � H 
,+ -�/ � �IH 
� � �IH �C
�� � �IH � 
 1 H 

where � is the joint density function with support

U
, and � � and � � are the

marginal density functions of the relevant problem (assuming here just two di-

mensions for simplicity). Thus we can see that maximizing the entropy of a

copula is equivalent to mimizing the entropy of the corresponding joint distri-

bution to be as close as possible to the independent case, i.e. � �IH 
�� � � �IH �C
�� � � H � 
 .
The other way to formulate the MaxEnt copula problem is to start from the

joint distribution. Thus we maximize
� � % � �IH 
,+ - / � �IH 
�1 H subject to the data

constraints being satisfied and � having marginals �%� and � � . Expressing this in
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terms of the copula, the problem becomes equivalent to maximizing

�*)
� � � ��� � � ��� 
,+ -�/=R � ��� 
 � � �IH ��
 � � � H � 
 T 1 � 


where
H 
 � � Z �
 ��� 
 
 for �G� � 
 � and the � 
 are the marginal cdfs.

It would seem that both ways of formulating the problem are equally valid,

although the former allows for an easier interpretation.

4 Application to CDO Tranche Pricing

We now apply the principle of minimum relative entropy to CDO tranche

pricing. There are several things to consider in specifying this problem.

4.1 The empirical copula problem for CDO pricing

We choose to work with the copula of default times rather than with the joint

distribution. Writing the CDO tranche pricing equation (4) in integral form we

have )
� � � � ' � UV��� 
 � 
 � ��� 
 1 � � �� ) � � � � ' � �O��� 
 � 
�� ��� 
�1 � � 7 * (13)

Rewriting (13) using Sklar’s lemma ( � ��� 
:� � ��� 
 � � 
 ��� 
 
 ) yields

)
� � � ����� U a � Z � ��� 
�
 � c � ��� 
 1 �O� �� ) � � � ����� � a � Z � ��� 
�
 � c � ��� 
 1 � � 7 
 (14)

where � is the cdf of default times (thus � Z � ��� 
1� � � Z �� ��� �C
�
+*+*+*,
 � Z �� ��� � 
�
 J ���� � 
+*+*+*,
 � � 
 � �
) and � ��� 
 is the density of the copula of default times (noting

that there is cancellation of the Jacobian factor).

Next we must determine the form of the functions 	 
 in terms of the argument
�

of the copula density � . Referring back the equations for the default and
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premium payoffs (2), (3) and using (14) we obtain9

	�
 ��� 
 �� 
 
2� �� �C��� X[Z%\
�,! ��� �"!)]_^ & a /0� �b� 
��:
 � /0� � Z� 
��:
Cc

� �� 

��
� ��� X[Z%\

$	� � - � . �B/0� � � 
��:
�
�
 (15)

where � � � � Z �� ��� �"
 . As for the observed data values
�� 
 (4) implies that they

are always zero except for the equity tranche.10

We can now specify the empirical copula CDO pricing problem. For computa-

tional efficiency we assume a homogenous portfolio. To account for bid-ask

spreads and also for inaccuracy from Monte Carlo integration (discussed be-

low) we solve the penalized minimum relative entropy problem as outlined in

Section 2.3. Thus the problem is

�����
� �� ! � � � ��� � � � ��� ����� � )

� � � ��� � � ��� 
,+.-�/ � ��� 

� ��� 
 1 �O� �� � � � � �

subject to the data constraints given by

)
� � � ��� � 	�
 ��� 
 �� 
 
 � ��� 
�1 � � �� 
 � � 
� 
 ��� � 
+*+*+*,
��

and the marginal constraints given by

) � �
� � 	 !

)
� � � ��� �
	 ! � ��� 
�1 ��� � 1 � � � ��
 � � � �� � 
 � � 
"*+*+*"
 � 


for each � � � 
+*+*+*,
�� , where 7 ��
 � ; *+*+*b; 
 � ; �
and ��
 � ��
 � � 
 � Z � .11

9We have not mentioned accrued payments for notational simplicity, but they have been
included in the numerical studies.

10The quote for the equity tranche on the iTraxx and CDX indices represents the upfront
payment that must be made, where the running premium is set at �	�

� 500 bps.

11Note that we do not need to partition all of
� ������� , as mentioned previously in Section 3.1.

We can take ��� corresponding to the longest maturity in the data set.
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Here � represents some prior copula for the specified marginal default time

distributions. This problem has a unique solution given by

�� ��� 
�� �� � � 
 � ��� 
 � P � � 
� 
 ��� � 
 	�
 ��� 
 �� 
 
 E � ��
� ��� � � ��� � � ]���# � � � ! & � 
 (16)

where
� � � 
 D � with normalizing constant� � � 
�� )

� � � ��� � � ��� 
 � P � � 
� 
 ��� � 
 	�
 ��� 
 �� 
 
 EB� ��
� ��� � � ��� � � ]�� # � � � ! & � 1 � *

The dual function

� �
of this problem is given by� �

� � 
2� +.-�/ � � � 
 � �� 
 � � � 
 �� 
 � � ��
� ��� � � � 
 � E �� � � �� � � 


where
�� � � � � � � ��
+*+*"*"
 � 
 D � � � 
 D �1
 , and again is strictly convex with gradi-

ent �
� �

� � 
� � 
 � )
� � � ��� � 	�
 ��� 
 �� 
 
 �� ��� 
�1 �O� �� 
 E � � 
� �
�

� �
� � 
� � � � � ) � �

� � 	 !
)
� � � ����� 	 ! �� ����� ��
 � � 
 1 ��� � � � ��
 � E � � �� �� *

We must impose the regularity condition on the prior copula � . As stated in

Section 2.4 we require � � �� ��� 
,+ -�/ �� ��� 
�� � ��� 
 � 1 � ; � . If we set �� J � �� � � , then

we need ) � � ��� 
 �� ��� 
,+ - / �� ��� 
 � 1 � ; � * (17)

Notice from (15) the functions 	�
 have bounded range. As each
� � � 7 we have	�
 � � ��� � � � � 
 . This corresponds to extreme the case where every firm has

defaulted instantaneously at time �2� 7 . In the opposite extreme as each
� � � �

we have 	�
 � � �� 
 � �
max which corresponds to the case when no firms default.

As 	�
 ’s are decreasing functions they are bounded. It follows that the range of ��
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is
��� 
�� � for some

� ? 7 and � ; � . Therefore

)
� � � ��� � � � ��� 
 �� ��� 
,+ -�/ �� ��� 
 � 1 � 8 )

� � � ��� � � � ��� 
 � 1 ��� ess sup
� � �� ��� 
,+.-�/ �� ��� 
 � ;�� 


so we can see that (17) is satisfied for any prior copula � .

We have assumed that the portfolio is homogeneous, so that each firm has the

same marginal default time distribution. Our experiments and also those of

Hull & White (2006) show that the value of a CDO tranche is not particularly

sensitive to whether the portfolio is homogenous or heterogenous — it is the

average of the default probabilities of all firms that principally determines the

value of a CDO tranche.

4.2 Numerical issues

An important issue to consider is how to use the resulting empirical copula to

compute CDO tranche prices. A typical CDO application would be to calibrate

the copula to the iTraxx or CDX tranche quotes. The iTraxx and CDX indices

both refer to a portfolio of 125 names. Therefore to compute the fair premium

�� using equation (14) requires computing �B� 125 dimensional integrals. This

forces us to use Monte Carlo methods.

With just simple Monte Carlo integration computing CDO prices with the

MinRelEnt copula is very slow to converge. Markov Chain Monte Carlo meth-

ods have been tried and converge much faster in some cases but are not robust

in general.12 However, the presence of the factor � �IH 
 in (16) allows us to use

importance sampling if the prior is chosen to be a copula from which we can

easily simulate. This is effective in speeding up convergence.

We also used an additional importance sampling technique proposed by Joshi

12Specifically, the Metropolis random walk algorithm (Metropolis, Rosenbluth, Rosenbluth
& Teller 1953).
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(2005). We choose the prior � to be the Gaussian copula and generate random

variates from it using the well-known one factor method. We then shift the

mean of the common factor by some amount � to simulate more default times

that will affect the payoffs of the tranches and multiply the resulting integrand

by the likelihood ratio � P � R �
7 * � � � E���� T

, where � is the realization of the

common factor.

4.3 Calibration to simulated CDO prices

We conducted two sets of tests. The first set of tests involved generating a set

of simulated market CDO quotes from a given copula. After calibrating the

minimum relative entropy copula to a subset of these quotes — which we call

the training set — we priced the remaining out-of-sample tranches with it and

compared them to the known true prices to see how well the minimum relative

entropy copula can learn about the true underying copula.

The following assumptions were used.

Number of firms 125

Risk-free rate 0.05

Hazard rate for each firm 0.005

Recovery rate 0.4

Premium payments per year 4

The prior for the minimum entropy copula was chosen to be the Gaussian cop-

ula with correlation 0.4.

We simulate the market CDO tranche quotes from the stochastic correlation cop-

ula. This copula is simply the Gaussian copula with random correlation values

and is a good candidate because it is one of the copulas that fits market prices

relatively well, as well as being easy to simulate from (Burtschell, Gregory &

Laurent 2005). We will use the discrete distribution � � (0.066, 0.2, 0.8) with
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probabilities 
 � (0.66, 0.1, 0.24) for the random correlation parameter.13

The training set contains tranches of different maturities and all maturities are

calibrated simultaneously. The training set values and the calibration results

are given in Table 1. Note that the equity (0,3) tranche premia are not in basis

points but are expressed as a percentage of the nominal to be paid upfront. As

Thresholds
(%)

Maturity
(yrs)

True premium
(bps)

MinRel premium
(bps)

Absolute error
(bps)

0–3 5 14.7 14.7 0.0
3–6 5 99.2 99.6 0.4
6–9 5 32.9 33.3 0.5
9–12 5 21.8 22.1 0.3
12–22 5 14.0 13.9 0.1
0–3 7 18.2 18.3 0.1
3–6 7 136.2 136.3 0.1
6–9 7 39.7 39.9 0.2
9–12 7 23.3 23.5 0.2
12–22 7 14.6 14.6 0.0
0–3 10 21.3 21.4 0.1
3–6 10 185.1 185.6 0.5
6–9 10 53.9 54.0 0.1
9–12 10 26.7 26.7 0.0
12–22 10 15.4 15.3 0.1

Total error 2.7

Table 1: Calibration to simulated data.

we can see, the ‘calibration’ is very good.

The next step is to see how well the empirical copula can ‘interpolate’ across

tranche threshold levels. The out-of-sample tranche pricing results are shown

in Table 2. Although it has some trouble pricing the (1.5, 4.5) tranche accu-

rately, overall we can see that the empirical copula performs well out-of-sample.

For comparison, we also price these non-standard tranches using the industry

standard base correlation approach (Bear Stearns 2004). The results are shown

in Table 3. We can see that although the base correlation method is relatively

13These are the values used in Burtschell et al (2005). There is nothing inherently special
about these values other than that they produce reasonable prices.
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Thresholds
(%)

Maturity
(yrs)

True premium
(bps)

MinRel premium
(bps)

Absolute error
(bps)

1.5–4.5 5 271.1 276.7 5.6
4.5–7.5 5 49.6 50.3 0.7
7.5–10.5 5 25.9 26.2 0.3
10.5–17.0 5 17.2 17.0 0.2
1.5–4.5 7 331.6 336.9 5.3
4.5–7.5 7 65.8 66.1 0.3
7.5–10.5 7 28.7 29.5 0.8
10.5–17.0 7 17.8 18.2 0.4
1.5–4.5 10 389.5 396.9 7.4
4.5–7.5 10 94.1 92.9 1.2
7.5–10.5 10 35.4 34.8 0.6
10.5–17.0 10 19.0 19.0 0.0

Total error 22.8

Table 2: Prices of non-standard tranches using the empirical copula.

accurate for the senior mezzanine and super senior tranches, it performs much

worse than the MinRelEnt copula for the (1.5, 4.5) tranche. This is likely be-

cause the loss distribution associated with the true copula has a high peak in

this region (see the discussion below). Overall, the MinRelEnt copula performs

significantly better than the base correlation approach.

Thresholds
(%)

Maturity
(yrs)

True premium
(bps)

BaseCorr pre-
mium (bps)

Absolute error
(bps)

1.5–4.5 5 271.1 255.8 15.3
4.5–7.5 5 49.6 51.1 1.5
7.5–10.5 5 25.9 23.6 2.3
10.5–17.0 5 17.2 18.2 1.0
1.5–4.5 7 331.6 307.2 24.4
4.5–7.5 7 65.8 70.4 4.6
7.5–10.5 7 28.7 28.1 0.6
10.5–17.0 7 17.8 19.1 1.3
1.5–4.5 10 389.5 363.6 25.9
4.5–7.5 10 94.1 99.3 4.8
7.5–10.5 10 35.4 37.2 1.8
10.5–17.0 10 19.0 20.5 1.5

Total error 85.0

Table 3: Prices of non-standard tranches using base correlation.
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We also tested to see how well the empirical copula can ‘interpolate’/‘extrapolate’

across maturities. The results are shown in Table 4. Again we can see excellent

Thresholds
(%)

Maturity
(yrs)

True premium
(bps)

MinRel premium
(bps)

Absolute error
(bps)

0–3 3 9.7 9.2 0.5
3–6 3 64.8 70.0 5.2
6–9 3 28.7 34.4 5.7
9–12 3 20.6 25.5 4.9
12–22 3 13.2 18.5 5.3
0–3 4 12.4 12.2 0.2
3–6 4 81.2 82.0 0.8
6–9 4 30.6 32.2 1.6
9–12 4 21.3 22.4 1.1
12–22 4 13.7 15.1 1.4
0–3 6 16.6 16.6 0.0
3–6 6 117.5 117.1 0.4
6–9 6 35.8 35.8 0.0
9–12 6 22.3 22.0 0.3
12–22 6 14.1 14.1 0.0
0–3 8 19.5 19.4 0.1
3–6 8 153.5 151.8 1.7
6–9 8 43.8 43.6 0.2
9–12 8 24.1 24.7 0.6
12–22 8 14.8 14.6 0.2
0–3 9 20.5 20.5 0.0
3–6 9 169.8 170.0 0.2
6–9 9 48.4 49.0 0.6
9–12 9 25.2 26.1 0.9
12–22 9 15.0 15.2 0.2

Table 4: Prices of tranches with non-standard maturities using the empirical
copula.

performance of the empirical copula in interpolating across non-standard matu-

rities. It even performs reasonably well extrapolating to maturities less than 5

years, although we can see the accuracy does start to deteriorate.

4.4 Calibration to market CDO prices

In the second set of tests, we examine whether or not the MinRelEnt copula

can be accurately calibrated to market data. We first attempt to calibrate to each

maturity separately and then to all maturities simulaneously to see how much

22



accuracy is lost. If the calibration across all maturities is much poorer than

the calibration for a single maturity, then this would suggest that the market

does not price the dependency as static. We also calibrate to the 5 and 10 year

maturities, and see how well these calibrations can match the 7 year prices out-

of-sample.

The recovery rate is assumed to be the same as before, but the default rate curve

is now determined from the market index quotes and is assumed to be piecewise

constant between maturities. We also replace the constant risk-free rate used in

the simulation experiment by the market swap curve.

The following are calibration results for the iTraxx tranche quotes for 4 April

2006.14 Although not quite as good as the results for the simulated data, we can

see that the calibration errors lie mainly within the bid-ask spreads. Interest-

ingly, it is again for the junior mezzanine (3,6) tranche where the MinRelEnt

copula is least accurate. Similar performance was achieved for CDX data.

Next we attempted to calibrate to all maturities simultaneously, the results of

which are shown in Table 6. The accuracy is noticeably worse than calibra-

tion to single maturity data, which suggests that each maturity has a different

underying copula associated with the market tranche quotes. If this is the case

then the MinRelEnt copula is in a sense an ‘average’ of the different underlying

copulas.

Notwithstanding the poor fit, we also calibrated the MinRelEnt copula to the

5 and 10 year quotes only and priced 7 year tranches out-of-sample to see how

well it matched market prices. The results are shown in Table 7. Apart from

the super senior tranche — whose predicted premium is double the true value

— we can see that the MinRelEnt copula has the ability to interpolate across

maturities to within reasonable accuracy, even though overall the calibration

14Data was kindly supplied by Credit Suisse.
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Thresholds
(%)

Maturity
(yrs)

Bid-ask
(bps)

Market pre-
mium (bps)

MinRel premium
(bps)

Absolute error
(bps)

0–3 5 0.5 23.3 24.5 1.2
3–6 5 2.0 68.0 69.6 1.6
6–9 5 2.0 19.0 18.8 0.2
9–12 5 3.0 9.5 8.9 0.6
12–22 5 0.5 4.3 4.1 0.2

Thresholds
(%)

Maturity
(yrs)

Bid-ask
(bps)

Market pre-
mium (bps)

MinRel premium
(bps)

Absolute error
(bps)

0–3 7 0.5 43.1 43.9 0.8
3–6 7 4.0 202.0 203.4 1.4
6–9 7 3.0 46.5 45.5 1.0
9–12 7 2.0 24.0 22.9 1.1
12–22 7 2.0 9.0 7.9 1.1

Thresholds
(%)

Maturity
(yrs)

Bid-ask
(bps)

Market pre-
mium (bps)

MinRel premium
(bps)

Absolute error
(bps)

0–3 10 0.5 54.3 54.3 0.0
3–6 10 10.0 580.0 580.4 0.4
6–9 10 6.0 117.0 117.1 0.1
9–12 10 3.0 51.5 51.6 0.1
12–22 10 2.0 20.0 20.1 0.1

Table 5: Calibration to iTraxx, each maturity separately.

results were poor.

In order to investigate further the issue of stationarity of the copula, we gener-

ated loss distributions from each of the MinRelEnt copulas calibrated to single

maturity data and compared them visually. The loss distribution is just the prob-

ability distribution of the number of defaults in the portfolio for for a fixed

time horizon.15 Figure 2 shows the 10 year loss distribution generated from the

10 year MinRelEnt copula. We include the loss distribution generated from the

prior Gaussian copula for comparison.

The implied loss distribution on the left is multi-modal whereas the loss distri-

15That is to say it is the plot of the density function for the random variable given by equation
(1) for a fixed time horizon � ��� and � � � .
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Thresholds
(%)

Maturity
(yrs)

Market pre-
mium (bps)

MinRel premium
(bps)

Absolute error
(bps)

0–3 5 23.3 21.0 2.3
3–6 5 68.0 71.9 3.9
6–9 5 19.0 25.7 6.7
9–12 5 9.5 14.5 5.0
12–22 5 4.3 7.7 3.4
0–3 7 43.1 43.7 0.6
3–6 7 202.0 208.1 6.1
6–9 7 46.5 53.6 7.1
9–12 7 24.0 27.5 3.5
12–22 7 9.0 12.2 3.2
0–3 10 54.3 56.0 1.7
3–6 10 580.0 590.7 10.3
6–9 10 117.0 127.7 10.7
9–12 10 51.5 54.9 3.4
12–22 10 20.0 22.8 2.8

Table 6: Calibration to iTraxx, all maturities simultaneously.

Thresholds
(%)

Maturity
(yrs)

Market pre-
mium (bps)

MinRel premium
(bps)

Absolute error
(bps)

0–3 5 23.3 21.6 2.7
3–6 5 68.0 71.8 3.8
6–9 5 19.0 24.3 5.3
9–12 5 9.5 13.0 3.5
12–22 5 4.3 6.7 2.4
0–3 7 43.1 42.8 0.3
3–6 7 202.0 216.8 14.8
6–9 7 46.5 53.2 6.7
9–12 7 24.0 25.8 1.8
12–22 7 9.0 18.1 9.1
0–3 10 54.3 55.3 1.0
3–6 10 580.0 597.9 17.9
6–9 10 117.0 132.5 15.4
9–12 10 51.5 52.3 0.8
12–22 10 20.0 19.2 0.8

Table 7: Calibration to 5 and 10 year, and pricing 7 year.

bution from the prior Gaussian copula is unimodal. We can see that the market

is pricing the risk of a ‘catastrophic’ event corresponding to the mode in the

50–60 defaults region.
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Figure 2: Loss distributions for the 10 year horizon.

We also generate the 5 and 7 year loss distributions from the 10 year MinRelEnt

copula, and compare them to the 5 year loss distribution generated from the 5

year MinRelEnt copula and to the 7 year loss distribution generated from the 7

year MinRelEnt copula. This is shown in Figures 3 and 4.
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Figure 3: Implied loss distributions for the 7 year horizon.

We can see some difference between the 7 loss distribution implied from the

10 year MinRelEnt copula and the 7 year loss distribution implied from the 7
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Figure 4: Implied loss distributions for the 5 year horizon.

year MinRelEnt copula, especially in the tail region. The difference is more

pronounced in the implied 5 year loss distributions. This suggests that the mar-

ket view on default dependence changes according to maturity, but in what way

over time requires further research.

5 Conclusion

In this paper we have introduced a method to determine the minimum relative

entropy copula and applied it to the pricing of CDO tranches. We calibrated

the copula to market data, first by using tranches of only one maturity, and

then to tranches across different maturities. Although we achieved excellent fits

to single maturity data, the fit was noticeably worse for calibration across all

maturites. However, when the same exercise was repeated using ‘market data’

simulated from a known copula, we achieved a near-perfect fit across all matu-

rities. Furthermore, we generated loss distributions from the empirical copulas

implied from single maturity data and found that, for the same fixed time hori-

zon, they were quite different from each other. These two observations suggest

that the market view on default dependence may not be stationary across time.

The advantages of the entropic method are that it provides some justification
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for the choice of the copula, provides excellent fits to data and performs well

out-of-sample. The entropic approach also allows us to empirically investigate

whether or not default time dependency remains stationary across time.

There are two main disadvantages however. One is that like most copula meth-

ods it is assumed that when used for pricing, the dependence structure between

default times remains static over time. As we have seen this may not be the case

in reality. The other disadvantage is that both calibration and pricing involves

computationally intensive procedures.

The entropic copula method is of course not limited in application to CDO

tranche pricing but can be used wherever dependence is involved, e.g. for basket

options.
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