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Abstract

We consider capacity management games between airlines who transport passengers over
a joint airline network. Passengers are likely to purchase alternative tickets of the same class
from competing airlines if they do not get tickets from their preferred airlines. We propose
a Nash and a generalized Nash game model for such a capacity competition problem over a
network. These two models are based on well-known deterministic linear programming and
probabilistic nonlinear programming approximations for the non-competitive network capacity
management problem. We prove the existence of a Nash equilibrium for both games and
provide conditions to ensure the uniqueness of the Nash game. Our numerical results indicate
that airlines can generate higher and more stable revenues from a booking scheme that is
based on the combination of the partitioned booking-limit policy and the generalized Nash
game model. The results also show that this booking scheme is robust irrespective of which
booking scheme the competitor takes.

Keywords: Revenue management, capacity control, generalized Nash games, existence, unique-
ness.

1 Introduction

Revenue management has become a prevailing concept in the airline and hospitality industries
which provide perishable services or products. While many important components such as
pricing, capacity management, overbooking, and choice modelling have been extensively studied
in the past, demand forecasting and competition have not received enough attention although
research on these topics is under way. For comprehensive treatments of revenue management
theory and practice, see two recent excellent books [32, 37].

Most airlines in the world operate and compete fiercely over networks. They react to changes
made by competing airlines in price, network structure and product design, among others.
Because of competition, most airlines operate with very small profit margins. If competition is
not carefully dealt with, small profit margins can diminish very quickly, as exemplified in the
well-known failure of People Express [7].

Competition between airlines is complicated and multi dimensional. Possible competition
elements are network settings, frequencies, timetabling, aircraft capacities, product offerings,
pricing and capacity management, among others. In this paper, we focus on capacity availability.
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It is well known [37] that the capacity management problem can be satisfactorily modeled by
dynamic programming. The resulting dynamic programs are computationally intractable due
to the curse of dimensionality and are often approximated by various simpler mathematical pro-
grams such as deterministic linear programs, probabilistic nonlinear programs, and randomized
linear programs, see for example [3, 6, 9, 36, 39].

Capacity management becomes even more complicated when several airlines compete over a
network. Conceptually, capacity management under competition can be formulated by dynamic
programming. But we are content to model it using simplified models such as deterministic linear
programs in order to avoid the curse of dimensionality. There is no doubt that approximate
models can only give airlines sub-optimal solutions. Nevertheless, Dockner et al [10] argue “in
regard to the assumption of payoff-maximizing behaviour, some researchers have suggested that
players are only bounded rational: they satisfice rather than maximize. Satisficing behaviour
means that a player is content with obtaining a certain level of payoff, not necessarily a maximal
one”.

Revenue management competition is only a recent addition to the vast game theory litera-
ture. Chapter 8 of the book [37] is devoted to revenue management competition. Cachon and
Netessine [4] present an excellent review on game theory in the area of supply chain manage-
ment. In particular, they review techniques for proving the existence and uniqueness of a Nash
equilibrium for static, dynamic and cooperative games.

There are two notable features of revenue management competition that are different from
traditional oligopolistic games. First, multiple products sold by the same airline share the same
capacity. Second, unsatisfied demand for a particular product from one airline can be satisfied
by other airlines; i.e., demand overflow is allowed because customers are willing to substitute
another airline.

The first oligopolistic competition model with demand overflow between two firms is pre-
sented in [30] in a supply chain management setting where each firm produces a single prod-
uct that can substitute similar products provided by competing firms. This work is extended
in [20, 23, 24, 27]. Either deterministic or probabilistic rules to account for demand overflow are
considered in [23, 27] while in [24], a choice model based on user’s utility maximization is used
for customers to decide from which firms they will purchase products.

Explicit duopoly capacity management competition in a single-leg setting is considered in [21,
28, 35] where multiple products sold by each firm share the same capacity. In all these papers,
the existence and uniqueness of a Nash equilibrium are investigated.

Revenue management competition in both inventory and pricing is also studied by other
researchers [1, 2, 8, 13, 14, 15, 16, 26, 31], where demand overflow is not considered. Rather
they assume that demand for each product for each firm can be determined by prices whether
demand is deterministic or stochastic.

We study capacity management games between several airlines in a network setting. To our
knowledge, this has not been considered in the literature. Each airline sells multiple products
as in traditional network revenue management problems [37]. Demand overflow is taken into
account in a deterministic way as in [4, 27], i.e., a proportion of the customers, who do not get
the tickets they want from their preferred airline, approach other airlines for similar products.
We develop one Nash and one generalized Nash game model to represent capacity management
games. It turns out that those games can be reformulated into either variational inequality
or generalized variational inequality problems. We prove the existence of a Nash equilibrium
for both games. We provide conditions to ensure the uniqueness of a Nash equilibrium for the
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Nash game. We use an iterative algorithm for finding Nash equilibria of both game models.
We conduct numerical experiments. Our numerical results indicate that airlines can generate
higher and more stable revenues from a booking scheme that is based on the combination of the
partitioned booking-limit policy and the generalized Nash game model. The results also show
that this booking scheme is robust irrespective of which booking scheme the competitor takes.

The rest of the paper is organized as follows. In the next section, we propose a deterministic
linear programming model and a probabilistic nonlinear programming model. In Section 3, we
study both models in a game-theoretic framework. In particular we discuss the existence and
uniqueness of Nash and generalized Nash equilibria. We conduct numerical experiments on
performance of several booking schemes derived from both models in conjunction with either
the partitioned booking-limit policy or the bid-price policy.

2 Game-Theoretic Models and Booking Policies

2.1 Basic notation and assumptions

I airlines, indexed by i = 1, · · · , I, compete to provide services transporting customers over a
joint airline network where each airline may provide services in part of the network. Suppose
I airlines sell K classes of products, indexed by k, over the network for a particular future
departure date. Each product is a combination of a fare class and an itinerary over the network.
Let ri be the unit price vector of dimension K for airline i. Since airlines do not necessarily
provide identical services, some products may not be provided by all airlines. Without loss of
generality, we may assume that ri

k > 0 if product k is provided by airline i, and ri
k = 0 otherwise.

Let Ci be the remaining capacity vector of dimension M for airline i, where M is the number
of legs over the network. Here each leg is a flight from one airport to another at a particular
departure time. That is, two flights between two directly-connected airports are treated as two
different legs. Let Ai be the leg-product incidence matrix for airline i, i.e., Ai

mk = 1 if and only
if airline i sells product k and product k covers leg m. Clearly Ai is a matrix with M rows and
K columns. If airline i does not sell product k, then column k of Ai contains all zero elements
and ri

k = 0. If airline i does not fly on leg m, then Ci
m = 0.

We make the following standard assumptions:

• The demand for one product is independent of that for another product over the network.
However, we allow the demand for one product from one airline to be stochastically corre-
lated to the demand for the same product from other airlines.

• Each customer is only interested in one particular product. Each customer makes a booking
request from their preferred airline and with a certain probability, makes another booking
request of the same product from another airline if their first booking request is rejected.
If their second booking request is also rejected, then they become a lost customer to all
airlines for this particular departure date.

• The prices of all products are fixed for all airlines.

• For modelling purposes, airline capacity C as well as capacity allocation is treated as a vector
of non-negative real numbers.
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2.2 The deterministic linear programming formulation

Assume that the primary demand for airline i is Di. A rejected customer from airline i makes
another booking request for the same product from other airlines. Suppose oij

k ≥ 0 denotes the
overflow rate of product k from airline i to airline j. That is, if a customer, who prefers airline
i, is rejected for a booking request for product k, by airline i, then they would make a booking
request of product k from airline j with a probability oij

k . Clearly,
∑

j 6=i o
ij
k ≤ 1 for any i and k.

We further assume that each customer has a unique airline for their initial preference.
Let xi ∈ IRK , denoting the partitioned booking limits, be decision variables for airline i.

The total potential demand for airline i is Di +
∑

j 6=i o
ji[Dj − xj ]+, where z+ = max{0, z} and

max is taken componentwise for a vector z. This demand overflow approach has been used
in [20, 23, 27, 30], where only a single product is offered by each of all players/airlines, and
in [28], where two products are offered by each of two airlines. The total potential demand
for airline i is made up from its own primary demand Di and the overflow demand from other
airlines, which is equal to

∑
j 6=i o

ji[Dj − xj ]+. Assuming that partitioned booking limits x−i

for all other airlines other than i are given, airline i aims to determine its optimal partitioned
booking limits by solving the following deterministic linear program (DLP):

DLPi
♦ max

xi
(ri)T xi

s.t. Aixi ≤ Ci,

xi ≤ Di +
∑
j 6=i

oji[Dj − xj ]+,

xi ≥ 0.

Here subscript ♦ indicates that each airline first satisfies its primary demand and then accepts
the overflow demand that cannot be satisfied by rival airlines. In DLPi

♦, the objective is that
airline i maximizes its total revenue. The first constraint states that the capacity on each leg
must not be violated. The second constraint specifies that the total allocation to all airlines for
each product must not exceed the demand for this product. The last constraint simply shows
that the booking limits are nonnegative. One simple observation is that the sizes of DLPs for
all airlines can be reduced by suitably removing the products/columns/variables that are not
sold by a particular airline and the legs/rows that have zero remaining capacities or that are
not covered by a particular airline. This is particularly useful in reducing computational time
when solving DLPs. However, to keep notation simple, we shall not remove those columns or
rows for the purpose of analysis because they do not affect our future analysis.

We can reformulate DLPi
♦ into an equivalent nonlinear and nonsmooth program, whose

feasible set depends only on the partitioned booking limit xi of airline i:

max
xi

(ri)T min(xi, Di +
∑
j 6=i

oji[Dj − xj ]+)

s.t. Aixi ≤ Ci,

xi ≥ 0.

(1)
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We can define another variation of (1). Let ρi > ri be a constant vector for each i.

max
xi

(ri)T xi + (ρi)T min(0, Di +
∑
j 6=i

oji[Dj − xj ]+ − xi)

s.t. Aixi ≤ Ci,

xi ≥ 0.

(2)

The statement below shows that DLPi
♦, (1) and (2) are equivalent.

Proposition 2.1 Let x−i ≥ 0 be partitioned booking limits for all other airlines except for
airline i.

(a) If xi is an optimal solution to DLPi
♦, then xi is also an optimal solution to (1). Conversely,

if xi is an optimal solution to (1), then min(xi, Di +
∑

j 6=i o
ji[Dj − xj ]+) is an optimal

solution to both DLPi
♦ and (1).

(b) xi is an optimal solution to DLPi
♦ if and only if xi is an optimal solution to (2).

Proof. (a) Suppose xi is an optimal solution to DLPi
♦. Then xi is a feasible solution to

(1). Therefore the optimal objective function value of DLPi
♦ is not greater than that of (1).

Conversely, suppose xi is an optimal solution to (1). Then min(xi, Di +
∑

j 6=i o
ji[Dj −xj ]+) is a

feasible solution to both DLPi
♦ and (1), and min(xi, Di +

∑
j 6=i o

ji[Dj −xj ]+) is still an optimal
solution to (1). Hence the optimal objective function value of (1) is not greater than that of
DLPi

♦.
Collectively, we have shown that DLPi

♦ and (1) have the same optimal objective function
value. Then it is obvious that any optimal solution to DLPi

♦ is also an optimal solution to
(1). Moreover, if xi is an optimal solution to (1), then min(xi, Di +

∑
j 6=i o

ji[Dj − xj ]+) is
an optimal solution to (1) because both xi and min(xi, Di +

∑
j 6=i o

ji[Dj − xj ]+) are feasible
to (1) and the objective function of (1) has the same value at both feasible solutions, and
min(xi, Di +

∑
j 6=i o

ji[Dj − xj ]+) is an optimal solution to DLPi
♦.

(b) We only need to prove that any optimal solution to (2) must satisfy Di +
∑

j 6=i o
ji[Dj −

xj ]+ − xi ≥ 0, i.e., any optimal solution to (2) must be a feasible solution to DLPi
♦. By

contradiction, assume that for an optimal solution x̄i of (2), it holds that for some k, ∆k ≡
Di

k +
∑

j 6=i o
ji
k [Dj

k − xj
k]

+− x̄i
k < 0. Define yi such that yi

k = x̄i
k + ∆k and yi

` = x̄i
` for any ` 6= k.

Then xi ≥ yi ≥ 0 because Di +
∑

j 6=i o
ji[Dj − xj ]+ ≥ 0. This shows that yi is still a feasible

solution to (2). By simple calculations, we can prove that yi is a better solution for (2) than x̄i,
which is a contradiction.

The feasible sets of both (1) and (2) are simpler than that of DLPi
♦ because (1) and (2)

only involve the strategy variable xi of airline i. Therefore, in the context of game theory,
a generalized Nash game is converted into traditional Nash games. See the definitions of the
Nash and generalized Nash games in the next section. However these equivalent formulations
have a nonlinear (piecewise linear) and nonsmooth objective function (or payoff function in the
context of game theory). The nonsmooth property of the payoff functions is undesirable from a
computational point of view. However, these equivalent formulations are useful from an analysis
point of view as we shall see in Section 3.2.

DLPi
♦ is a linear program with respect to xi for any given value for x−i. However the

constraint xi ≤ Di +
∑

j 6=i o
ji[Dj−xj ]+ is nonsmooth with respect to x−i and hence nonsmooth

5



with respect to the joint variable x. This nonsmooth property may pose difficulties for proposing
computational methods for solving generalized Nash games. To address this potential drawback,
we propose another reformulation for DLPi

♦. Let yi, zi ∈ IRK be two auxiliary variables, and
ρ ∈ IRK is a fixed parameter such that ρk > maxi=1,···,I{ri

k} for all k. We propose another linear
programming formulation to DLPi

♦.

DLPi
⊕ max

xi,zi
(ri)T xi − ρT zi

s.t. Aixi ≤ Ci,

xi ≤ Di + yi,

yi = zi +
∑
j 6=i

oji(Dj − xj),

xi, yi, zi ≥ 0,

where ⊕ indicates that nonsmooth functions used in DLPi
♦ are replaced by smooth functions

in DLPi
⊕. The penalty term introduced in the objective function ensures that zi are as small

as possible in an optimal solution for DLPi
⊕ and hence no additional demand will be induced

artificially from the new formulation.
The proposition below shows that DLPi

♦ and DLPi
⊕ are indeed equivalent as far as optimal

solutions are concerned when there are only two airlines in competition. For ease of exposition,
we let I and II denote indices for two airlines.

Proposition 2.2

(a) For any optimal solution (xI, yI, zI) for DLPI
⊕, it must hold that yI = oII,I[DII − xII]+, and

zI = oII,I[xII −DI]+, which are irrelevant to xI.

(b) If xI is feasible to DLPI
♦, then (xI, yI, zI) is feasible to DLPI

⊕, where yI = oII,I[DII − xI]+,
zI = oII,I[xII − DI]+. Conversely if (xI, yI, zI) is feasible to DLPI

⊕, then xI is feasible to
DLPI

♦.

(c) xI is an optimal solution for DLPI
♦ if and only if (xI, yI, zI) is an optimal solution for

DLPI
⊕, where yI = oII,I[DII − xII]+, and zI = oII,I[xII −DII]+.

Proof. (a) Suppose (xI, yI, zI) is an optimal solution for DLPI
⊕. Then yI ≥ oII,I[DII− xII]+ and

zI ≥ oII,I[xII−DII]+ because yI = zI +oII,I(DII−xII), yI ≥ 0, and zI ≥ 0. We only need to prove
that it does not happen that yI > oII,I[DII − xII]+ or equivalently zI > oII,I[xII −DII]+. Let us
prove the result by contraction in two cases for a particular product k: either DII

k − xII
k ≥ 0 or

DII
k − xII

k < 0. We now assume zI
k > oII,I[xII

k −DII
k ]+.

When DII
j − xII

k ≥ 0, construct a new vector (x̄I, ȳI, z̄I) from (xI, yI, zI) by changing the k-th
element of xI, yI, and zI such that z̄I

k = 0, ȳI
k = yI

k − zI
k, and x̄I

k = [xI
k − zI

k]
+. (x̄I, ȳI, z̄I) is also

feasible to DLPI
⊕. Furthermore,

rI
kx̄

I
k − ρkz̄

I
k = rI

k[x
I
k − zI

k]
+ − ρk0

≥ rI
k(x

I
k − zI

k)
> rI

kx
I
k − ρkz

I
k.

This shows that (x̄I, ȳI, z̄I) is a better solution than (xI, yI, zI) for DLPI
⊕, which is a contradiction.

When DII
k − xII

k < 0, construct a new vector (x̄I, ȳI, z̄I) from (xI, yI, zI) by changing the
k-th element of xI, yI, and zI such that z̄I

k = oII,I(xII
k − DII

k ), ȳI
k = yI

k − zI
k + z̄I

k ≡ 0, and
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x̄I
k = [xI

k− zI
k + z̄I

k]
+. By the assumption that zI

k > oII,I[xII
k −DII

k ]+, zI
k > z̄I

k. Hence yI
k > ȳI

k ≥ 0,
xI

k ≥ x̄I
k ≥ 0. Moreover, (x̄I, ȳI, z̄I) is also feasible to DLPI

⊕. We now compare the objective
function values of DLPI

⊕ at two feasible solutions.

rI
kx̄

I
k − ρkz̄

I
k = rI

k[x
I
k − zI

k + z̄I
k]

+ − ρkz̄
I
k

≥ rI
k(x

I
k − zI

k + z̄I
k)− ρkz̄

I
k

= rI
kx

I
k − rI

k(z
I
k − z̄I

k)− ρkz
I
k + ρk(zI

k − z̄I
k)

= rI
kx

I
k − ρkz

I
k + (ρk − rI

k)(z
I
k − z̄I

k)
> rI

kx
I
k − ρkz

I
k.

This shows that (x̄I, ȳI, z̄I) is a better solution than (xI, yI, zI) for DLPI
⊕, which is a contradiction.

(b) This can be proved easily.
(c) Let xI be an optimal solution for DLPI

♦. Suppose (xI, yI, zI) is not an optimal solution
for DLPI

⊕, where yI = oII,I[DII − xII]+ and zI = oII,I[xII − DII]+. Let (x̄I, ȳI, z̄I) be optimal
to DLPI

⊕. By (a) ȳI = oII,I[DII − xII]+ = yI and z̄I = oII,I[xII − DII]+ = zI. It follows that
(rI)T xI − ρT zI < (r)I)T x̄I − ρT z̄I = (r)I)T x̄I − ρT zI, which implies that (rI)T xI < (r)I)T x̄I. By
(b), x̄I is a feasible for DLPI

♦, which is better than xI. We arrive at a contradiction.
Let (xI, yI, zI) be an optimal solution for DLPI

⊕. Suppose xI is not an optimal solution for
DLPI

♦. and x̄I is optimal to DLPI
♦. Then (rI)T xI < (r)I)T x̄I. By (b), (x̄I, yI, zI) is feasible

to DLPI
⊕, and also it is a better solution than (xI, yI, zI) for DLPI

⊕, which is a contradiction.
Therefore xI must be an optimal solution for DLPI

♦.

The following example shows that the statement in Proposition 2.2 cannot be extended to
the case where there are more than two airlines in the game.

Example 2.1 Suppose there are three airlines in the game and each airline provides exactly
one product that covers a single leg shared by all three airlines. Assume r1 = r2 = r3 = 1,
C1 = C2 = C3 = 30, D1 = 20, D2 = 10, D3 = 30, and ρ = 2, which is greater than the
maximum of r1, r2 and r3. Consider (x1, x2, x3) = (20, 20, 20). It can be verified that given
(x2, x3) = (20, 20), the optimal solution for DLP1

♦ is x1 = 30 while the optimal solution for
DLP1

⊕ is (x1, y1, z1) = (20, 0, 0).

2.3 The probabilistic nonlinear programming formulation

In DLP♦, the stochastic nature of demand is entirely ignored. In the literature, several methods
have been proposed to take the stochastic demand into account during the modelling process.
One of those methods is based on so-called probabilistic nonlinear programming (PNLP). Let
di represent the demand random variable for airline i. Recall the definitions of xi and oji. An
optimization problem for airline i is the following PNLP.

PNLPi
♦ max

xi
IE[(ri)T min(xi, di +

∑
j 6=i

oji[dj − xj ]+)]

s.t. Aixi ≤ Ci,

xi ≥ 0.

Here
∑

j 6=i o
ji[dj − xj ]+ is the overflow demand to airline i from other airlines. We remark that

the expectation is taken over the joint demand probability space of all airlines for each product.
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There is a certain level of flexibility to model demand di. For example, we can either assume
that di and dj are stochastically independent for any i 6= j or that di is a fixed proportion of
the overall random demand d. In the latter, demand for the same product between two airlines
is correlated. This does not contradict the demand independence assumption between different
products made in Section 2.1.

When the demand dk is a singleton for every product k for all airlines, then PNLPi
♦ reduces

to an equivalent reformulation (1) of DLPi
♦.

2.4 Booking policies

Both booking limits and the dual prices or Lagrangian multipliers can be obtained from solving
either DLP♦ or PNLP♦. These solutions are used to form booking policies such as partitioned
booking-limit and bid-price controls [37].

In a partitioned booking-limit policy, a fixed amount of capacity of each resource is allocated
to every product offered. The demand for each product has access only to its allocated capacity
and no other product may use this capacity. In both DLP♦ and PNLP♦, these booking limits
are set to be the respective optimal solutions x.

A bid-price control policy sets a threshold price or bid price for each resource in the network.
Roughly this bid price is an estimate of the marginal cost of consuming the next incremental unit
of the resource’s capacity. When a booking request for a product arrives, the revenue from the
request is compared to the sum of the bid prices of all the resources required by the product. If
the revenue exceeds the sum of the bid prices, the request is accepted, provided all the resources
associated with the requested product are still available; if not, the request is rejected.

In DLP♦, the optimal solution of dual variables associated with the capacity constraints,
which are of the format Ax ≤ C, are used as bid prices. Similarly the bid prices for PNLP♦ are
the Lagrangian multipliers associated with the capacity constraints at their optimal solution.

3 Analysis of Game-Theoretic Models

In this section, we first formally define Nash and generalized Nash games based on the optimiza-
tion models defined in the last section. We then define Nash and generalized Nash equilibrium
points. In the end, we study the existence and uniqueness of (generalized) Nash equilibrium
points.

We follow [29] to define generalized Nash games and generalized Nash equilibrium points.
Since generalized Nash games have found many other applications in addition to revenue man-
agement competition considered in this paper, we shall use players and airlines interchangeably
in a general context.

Let xi be the strategy variable for player i, x−i the joint strategy variable for all other
players, and x = (xi, x−i) the joint strategy variable for all players. Let πi(xi, x−i) be the payoff
function for player i when the joint strategy is x. Assume that for any given strategies x−i for
all other players, player i must choose their strategy from their feasible set

Ki(x−i) = {xi : hi(xi) ≤ 0, gi(xi, x−i) ≤ 0},

where hi : IRK → IRN i
and gi : IRK×I → IRM i

. Here hi(xi) ≤ 0 is a set of constraints that do
not involve x−i, and gi(x) ≤ 0 is a set of constraints that involve all strategy variables, which
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are usually called the joint/coupled constraints in the literature [33]. For any given strategy
x−i for other players, player i finds their best strategy x̄i by solving the following maximization
problem:

max
xi

πi(xi, x−i)

s.t. xi ∈ Ki(x−i).
(3)

Definition 3.1 A generalized Nash game defined by (3) for player i is to find x̄, called a gen-
eralized Nash equilibrium, such that x̄i ∈ Ki(x̄−i) is an optimal solution for player i when the
strategies for all other players are fixed to be x̄−i.

If there is no joint constraint in the game, i.e., gi(x) ≤ 0 diminishes for all i, then the
generalized Nash game and a generalized Nash equilibrium reduce to a traditional Nash game
and a Nash equilibrium respectively. The key difference between generalized Nash games and
traditional Nash games is that the strategy space for a player may depend on other players’
strategies in the former, but not in the latter, although the payoff functions in both types of
games are allowed to be functions of other players’ strategies.

The best response function is an important concept in game theory. For any given x−i,
the set of optimal solutions for (3) is called the response function for player i and is denoted
by BRi(x−i). To have a meaningful game, we often assume that BRi(x−i) is singleton for
any given x−i and for all i. Consequently, x̄ is a generalized Nash equilibrium if and only if
x̄i = BRi(x̄−i) for all i. Intuitively, this optimality condition says that a player is not better off
if they unilaterally change their strategy.

One can observe that the game based on DLPi
♦ for all airlines results in a generalized Nash

game, while the game based on PNLPi
♦ results in a Nash game. The resulting two games are

called DLP♦ game and PNLP♦ game. By Propositions 2.1, the DLP♦ game is equivalent to a
traditional Nash game with nonsmooth and nonlinear payoff functions.

Generalized Nash games have been used for modelling competitive pricing in [31] where
there is no network and demand does not overflow between players once prices are fixed. In [14],
traditional Nash games have been used for proposing a unified game model combining pricing,
capacity management, overbooking in a stochastic and dynamic framework for network revenue
management. However, demand is not shared among competitors but the demand for individual
airlines is determined by the prices of the same products offered by all airlines. Therefore, the
game model in [14] is not an example of generalized Nash games. For other applications of
generalized Nash games, see [11, 18, 29, 34].

3.1 Generalized Nash games and quasi variational inequalities

It is well known [12] that traditional Nash games are equivalent to variational inequality problems
when the concerned payoff function for each player is continuously differentiable and concave
with respect to its own strategies. Similarly, generalized Nash games are equivalent to quasi-
variational inequality problems.

Given a point-to-point map Φ from IRm to itself and a point-to-set map K from IRm into
subsets of IRm, the quasi-variational inequality (QVI) problem is to find a vector x̄ ∈ K(x̄) such
that

(y − x̄)T Φ(x̄) ≥ 0, ∀y ∈ K(x̄).

9



When K(x) ≡ K for all x with K independent of x, the QVI reduces to the standard variational
inequality (VI) problem.

The following results can be found from page 24 of [12].

Lemma 3.1 Suppose the payoff function for player i in a generalized Nash game is continuously
differentiable and concave with respect to xi for all i. Let K(x) = ΠI

i=1Ki(x−i) and

Φ(x) = −(∇x1π1(x), · · · ,∇xiπi(x), · · · ,∇xI πI(x))T

be a column vector.

(a) x̄ is a generalized Nash equilibrium if and only if x̄ is a solution of the QVI defined by K(x)
and Φ.

(b) Assume that K(x) ≡ K. Then x̄ is a Nash equilibrium if and only if x̄ is a solution of the
VI defined by K and Φ.

3.2 Existence of equilibrium

The existence of a Nash equilibrium (or generalized Nash equilibrium) for Nash games (or
generalized Nash games) is an important topic in game theory. Without an equilibrium in a
game, players do not know what strategy they should take. In many occasions, an equilibrium
does exist. In this subsection, we provide conditions to ensure the existence of a Nash or a
generalized Nash equilibrium for the two games proposed in Section 2.

The following results are well known in the literature by noting that concavity is preserved
under the min-operator, limits, addition and hence under expectation and integration signs; see
for example [4], and that the integral is continuously differentiable if the integrand is globally
Lipschize continuous and continuously differentiable almost everywhere; see for example [17, 19].

Lemma 3.2

(a) For each airline i, the objective functions of DLP♦, (1) and (2) are all concave with respect
to xi.

(b) For each airline i, the objective function for PNLPi
♦ is concave with respect to xi.

(c) Suppose di
k is a continuous random variable for all k and i. Then for any i, the objective

function for PNLPi
♦ is continuously differentiable with respect to x.

Proposition 2.1 proves that an equivalence between DLP♦, (1) and (2). The lemma below
shows equivalences between different generalized Nash and Nash games defined by those opti-
mization problems. All results can be easily proved by the definitions of the generalized Nash
equilibrium and the Nash equilibrium, and Proposition 2.1.

Lemma 3.3

(a) If x̄ is a generalized Nash equilibrium for the DLP♦ game, then x̄ is a Nash equilibrium for
the Nash game defined by (1).

(b) x̄ is a generalized Nash equilibrium for the DLP♦ game if and only if x̄ is a Nash equilibrium
for the Nash game defined by (2).

10



We are now ready to present existence results of a (generalized) Nash equilibrium for all four
games.

Theorem 3.1

(a) There exists a generalized Nash equilibrium for the DLP♦ game.

(b) There exists a Nash equilibrium for the PNLP♦ game.

Proof. The results follow from Theorem 1 of [33], which states that a Nash equilibrium exists
for a Nash game if the objective function for each player is concave with respect to their own
strategy and continuous with respect to the strategies of all players and the strategy space for
each player is convex and compact.

In light of Lemma 3.2 (b) and (c), the result in (b) follows from Theorem 1 of [33] directly.
It is easy to verify that the conditions in Theorem 1 of [33] are satisfied for the Nash games
defined by (2). Therefore the existence of a generalized Nash equilibrium of the DLP♦ game
follows from Lemma 3.3(b).

3.3 Uniqueness of equilibrium

The uniqueness of the Nash equilibrium is another important topic in game theory. If there is
a unique equilibrium, players can choose their strategies without vagueness. The importance of
a unique equilibrium is highlighted in a statement by Cachon and Netessine [4]: “The obvious
problem with multiple equilibria is that the players may not know which equilibrium will pre-
vail. Hence, it is entirely possible that a non-equilibrium outcome results because one player
plays one equilibrium strategy while a second player chooses a strategy associated with another
equilibrium.”

Let us recall a unique equilibrium result for the traditional Nash game [12].

Lemma 3.4 Consider a Nash game in which the strategy space for every player is closed and
convex. Assume that the negative Jacobian of Φ at any feasible solution x is positive definite.
Then the Nash game has at most one Nash equilibrium.

However, the result in Lemma 3.4 is not true in general for generalized Nash games although
in [33] a uniqueness result of a normalized Nash equilibrium is proved for a generalized game in
which all coupled constraints must be shared by all players.

In order to obtain the uniqueness of a Nash equilibrium for the Nash game based on
Lemma 3.4, the payoff function must be twice continuously differentiable with respect to all
strategy variables. Since the payoff functions in (1) and (2) for the DLP♦ game are nonsmooth,
we are not able to establish the uniqueness of the Nash equilibrium for the DLP♦ game. There-
fore we shall focus on the uniqueness of a Nash equilibrium for the PNLP game.

We now evaluate the Jacobian of the payoff functions of the PNLP♦ game. Netessine and
Rudi [27] state that since the function under the expectation is integrable and has a bounded
derivative, it satisfies the Lipschitz condition of order one, and hence the expectation and the
derivative can be interchanged. This argument follows from a result in [17]. The payoff function
for airline i is

πi(xi, x−i) = E[
K∑

k=1

ri
k min(xi

k, d
i
k +

∑
j 6=i

oji
k [dj

k − xj
k]

+].
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The first order derivatives of the payoff functions are

∂πi(xi, x−i)
∂xi

k

= ri
k(1− F

di
k+
P

j 6=i oji
k [dj

k−xj
k]+

(xi
k)), i = 1, · · · , I, k = 1, · · · ,K,

where F
di

k+
P

j 6=i oji
k [dj

k−xj
k]+

is the cumulative probability distribution of random variable di
k +∑

j 6=i o
ji
k [dj

k − xj
k]

+. The second order derivatives of the payoff functions are

∂2πi(xi, x−i)
(∂xi

k)
2

= −ri
kfdi

k+
P

j 6=i oji
k [dj

k−xj
k]+

(xi
k),

i = 1, · · · , I, k = 1, · · · ,K,
∂2πi(xi, x−i)

∂xi
k∂xi

`

= 0,

i = 1, · · · , I, k = 1, · · · ,K, ` = 1, · · · ,K, ` 6= k,
∂2πi(xi, x−i)

∂xi
k∂xj

k

= −ri
ko

ji
k f

di
k+
P

m6=i omi
k [dm

k −xm
k ]+|dj

k>xj
k
(xi

k) Pr(dj
k > xj

k),

i = 1, · · · , I, j = 1, · · · , I, k = 1, · · · ,K, j 6= i,
∂2πi(xi, x−i)

∂xi
k∂xj

`

= 0,

i = 1, · · · , I, j = 1, · · · , I, k = 1, · · · ,K, ` = 1, · · · ,K, j 6= i, ` 6= k.

The calculation of ∂2πi(xi,x−i)

∂xi
k∂xj

k

is slightly involved, but it can be done through the derivative

definition. The Jacobian ∇Φ(x) is a sparse matrix of I ×K columns and I ×K rows. We can
rewrite ∇Φ(x) as  N11 · · · N1I

...
...

...
N I1 · · · N II


where N ij is a diagonal matrix in IRK×K whose diagonal elements are(

∂2πi(xi, x−i)

∂xi
1∂xj

1

, · · · , ∂2πi(xi, x−i)

∂xi
K∂xj

K

)
.

The sparseness of the Jacobian is due to the assumption that the demands between different
products are statistically independent.

Under certain conditions, we are able to prove the uniqueness of the Nash equilibrium for
the PNLP♦ game.

Theorem 3.2 Suppose di
k is a continuous random variable for any k and i. Then a sufficient

condition for the PNLP♦ game to have a unique Nash equilibrium is the following: (a) for any
k and i, di

k has a large enough support interval which contains the projection of the feasible
strategy space {xi

k : Aixi ≤ Ci, xi ≥ 0} of airline i; (b) for any i and k, there exist two positive
constants αi

k and βi
k such that fdi

k
(x) satisfies αi

k ≤ fdi
k
(x) ≤ βi

k for x in its support interval;

(c) for any i, j and k, oji
k is sufficiently small; (d) for any j and k,

∑
i6=j oji

k < 1.

Proof. By Lemma 3.4, it suffices to prove that Jacobian ∇Φ(x) is positive definite for any x in
the feasible set K. In turn it is sufficient to prove that ∇Φ(x) is both row and column diagonally
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dominant for any x ∈ K. More precisely we need to prove the followings:

ri
kfdi

k+
P

j 6=i oji
k [dj

k−xj
k]+

(xi
k) >

∑
j 6=i

ri
ko

ji
k f

di
k+
P

m6=i omi
k [dm

k −xm
k ]+|dj

k>xj
k
(xi

k) Pr(dj
k > xj

k), (4)

ri
kfdi

k+
P

j 6=i oji
k [dj

k−xj
k]+

(xi
k) >∑

j 6=i

rj
ko

ij
k f

dj
k+
P

m6=j omj
k [dm

k −xm
k ]+|di

k>xi
k
(xj

k) Pr(dj
k > xj

k). (5)

Note that for any i and k,

f
di

k+
P

m6=i omi
k [dm

k −xm
k ]+|dj

k>xj
k
(xi

k) Pr(dj
k > xj

k) ≤ fdi
k+
P

m6=i omi
k [dm

k −xm
k ]+(xi

k).

Inequality (4) is implied by condition (d). The right hand side of (5) is bounded above by∑
j 6=i

rj
ko

ij
k f

dj
k+
P

m6=j omj
k [dm

k −xm
k ]+

(xj
k),

which in turn is bounded above by ∑
j 6=i

rj
ko

ij
k β̂j

k,

for any x ∈ K. Here β̂j
k is an upper bound of the probability distribution function of random

variable dj
k +

∑
m6=j omj

k [dm
k − xm

k ]+. By condition (b) and the convolution operation for the
joint probability distribution of independent random variables, such a finite bound β̂j

k exists.
Following the convolution operation again, f

di
k+
P

j 6=i oji
k [dj

k−xj
k]+

is bounded below by a positive

constant α̂i
k. We have for any i, j and k,

ri
kα̂

i
k >

∑
j 6=i

rj
ko

ij
k β̂j

k,

if oji
k is sufficiently small. Hence (5) holds.

A particular case of Theorem 3.2 is when oij
k = 0 for all i, j and k. In this case, there is

no demand overflow and the existence of a unique Nash equilibrium is equivalent to a unique
optimal solution for airline i’s maximization problem. It is obvious that if the payoff function of
airline i is strictly concave (equivalently matrix −N ii is positive definite) over its feasible region,
then its optimal solution is unique. Furthermore, matrix N ii is positive definite over its feasible
region if probability distribution fdi

k
(x) > 0 for any x ∈ [0, dmax], where dmax is an appropriate

large positive number.
Unlike PNLP games, the following counter-example shows that the DLP♦ game can have

multiple Nash equilibrium points.
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Example 3.1 Consider the DLP♦ game with two players I and II:

max
xI
1,xI

2

rIxI
1 + rIxI

2 max
xII
1 ,xII

2

rIIxII
1 + rIIxII

2

s.t. xI
1 + xI

2 ≤ ε s.t. xII
1 + xII

2 ≤ ε,

0 ≤ xI
1 ≤ DI

1 + oII,I[DII
1 − xII

1 ]+, 0 ≤ xII
1 ≤ DII

1 + oI,II[DI
1 − xI

1]
+,

0 ≤ xI
2 ≤ DI

2 + oII,I[DII
2 − xII

2 ]+, 0 ≤ xII
2 ≤ DII

2 + oI,II[DI
2 − xI

2]
+.

Assume that ε is a small positive real number and DI
1, D

I
2, D

II
1 , and DII

2 are much larger than
ε. Then the optimal solution set of player I is {(xI

1, x
I
2) : xI

1 + xI
2 = ε, xI

1 ≥ 0, xI
2 ≥ 0} because

the unit prices for two products offered by player I are the same and the last two inequality
constraints for player I are inactive no matter which strategies that player II takes. Likewise,
the optimal solution set of player II is {(xII

1 , xII
2 ) : xII

1 + xII
2 = ε, xII

1 ≥ 0, xII
2 ≥ 0}. This shows

that the generalized Nash game has multiple solutions (xI
1, x

I
2, x

II
1 , xII

2 ), which satisfy the following
conditions: xI

1 + xI
2 = xII

1 + xII
2 = ε, xI ≥ 0, xII ≥ 0.

The next example demonstrates that the DLP♦ game may have a unique Nash game.

Example 3.2 Suppose both CI and CII are large positive numbers and demand DI and DII are
small positive numbers. For simplicity, let us assume that there is exactly one product from each
airline.

Note that the capacity constraints AIxI ≤ CI and AIxII ≤ CII are inactive at any (generalized)
Nash equilibrium for DLPI

♦ and DLPII
♦ . On the other hand, the demand constraints are active

at any (generalized) Nash equilibrium for DLPI
♦ and DLPII

♦ . Then the response functions for
player I and II are:

BRI(xII) =

{
DI + DII − xII if xII ≤ DII

DI otherwise,

BRII(xI) =

{
DI + DII − xI if xI ≤ DI

DII otherwise.

It is easy to see that (DI, DII) is the unique generalized Nash equilibrium for the DLP♦ game.

4 Computational experiments

In this section, we report our numerical experience for both game theoretical models proposed in
this paper. We carried out our experiments based on two particular test examples drawn from [5]
and their variations. All the computational experiments were conducted using MATLAB [25].

4.1 Test examples and booking schemes

In the first two examples, we assume that two airlines compete on capacity availability and
both airlines are identical in terms of the product offerings, product prices, product demand
parameters such as mean and standard deviation, and overflow rates. In Example 1, each airline
operates over a hub-spoke network with one hub, 5 spoke cities and 10 legs. It has two fare
classes for each of 30 itineraries (and hence 60 products). In Example 2, each airline operates
over a hub-spoke network with two hubs, 4 spoke cities and 10 legs. It has two fare classes for
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each of 30 itineraries (and hence 60 products). For additional information on revenue, mean
demand, leg capacities, and detailed network structures, see [5].

We also generated several more test examples which are variations of Example 1. In Example
3, we only changed product prices for the first airline. In particular, we assumed that the price
for each product offered by the first airline is 3% more expensive than its original price while
the second airline still uses its original prices in Example 1. In Example 4, we only changed
the capacities of both airlines in Example 1. The capacity on each leg for the first airline was
reduced by 10 seats and the capacity on each leg for the second airline was increased by 10
seats. Example 5 was generated from Example 1 by changing the demand parameter values.
More precisely, the mean demand for each product offered by the first airline was reduced by
two while the mean demand for each product offered by the second airline was increased by two.
In Example 6, we made changes with regards to demand overflow rates. We assumed that the
demand overflow rate from the first airline to the second is 0.75 and the demand overflow rate
in the opposite direction is 0.25.

The simulation procedure that we followed is described in Talluri and van Ryzin [36]. For
each test example, we simulated the booking process 500 times. In each simulation run, booking
requests are randomly generated in two steps. In step 1, the number of requests for each product
is randomly generated while in step 2, booking arrival times for each product are randomly
generated. The booking process is modelled as a non-homogeneous Poisson process, where the
arrival intensity at time t has a beta distribution and the total number of arrivals has a gamma
distribution. The booking horizon is divided into 1000 units. Higher fare customers arrive more
often close to the end of the booking horizon while lower fare customers arrive more often early
in the booking horizon. A detailed description of the booking process can be found in [5].

In each of 500 simulation runs, all booking requests for each test example are processed
(acceptance or rejection) based on a booking scheme. We implemented the following twelve
booking schemes: BLDLP, BPDLP, BLDLPSim, BPDLPSim, BLDLPMix, BPDLPMix, BLPNLP, BPPNLP,
BLPNLPSim, BPPNLPSim, BLPNLPMix, and BPPNLPMix. The meaning of each booking scheme
based on DLP is given below and all booking schemes based on PNLP can be defined similarly.

• BLDLP: Partitioned booking-limit policy based on the partitioned booking limits obtained
from DLP♦.

• BPDLP: Bid price policy based on the bid prices obtained from DLP♦.

• BLDLPSim: Partitioned booking-limit policy in which both airlines use the partitioned book-
ing limits obtained from modified DLPs which ignore overflow demand (i.e., assuming
o21
k = o21

k = 0 for all k).

• BPDLPSim: Bid-price policy in which both airlines use the bid prices obtained from modified
DLPs which ignore overflow demand.

• BLDLPMix: Partitioned booking-limit policy in which the first airline uses the partitioned
booking limits obtained from DLP♦ and the second airline uses the partitioned booking
limits obtained from a modified DLP which ignores overflow demand.

• BPDLPMix: Bid-price policy in which the first airline uses the bid prices obtained from
DLP♦ and the second airline uses the bid prices obtained from a modified DLP which
ignores overflow demand.

Booking schemes BLDLPSim, BPDLPSim, BLPNLPSim and BPPNLPSim were tested in order to obtain
insights when both airlines ignore demand overflow in the modified DLP and PNLP. Booking
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schemes BLDLPMix, BPDLPMix, BLPNLPMix and BPPNLPMix were tested in order to obtain insights
when the first airline ignores demand overflow in the modified DLP and PNLP while the second
airline takes the demand overflow into account when this airline solves DLP♦ and PNLP♦.

4.2 A computational algorithm

In all the booking schemes proposed in the previous subsection, each airline needs to use either
partitioned booking limits or bid prices for processing booking requests. Both booking limits
and bid prices are obtained by solving either the Nash game based on PNLP or the generalized
Nash game based on DLP. As stated in Lemma 3.3, solving Nash games is equivalent to solving
variational inequality problems and solving generalized Nash games is equivalent to solving
quasi-variational inequality problems.

Many numerical algorithms have been developed for solving deterministic variational inequal-
ity problems and are well documented in [12]. Typically those algorithms require evaluations of
the payoff functions of players and their high-order derivatives. However, evaluating the objec-
tive function of each airline as well as its high-order derivatives for PNLP is computationally
expensive because it requires multi-dimensional integration. This motivates us to use a method
that combines sample average approximation (SAA) and a Gauss-Seidel approach for solving
the PNLP game.

Algorithms for solving quasi-varitional inequality problems are sporadic in the literature.
When all players in the generalized Nash game share all coupled constraints, the so-called
relaxation algorithm can be used to find a generalized Nash equilibrium under suitable condi-
tions [38]. For a general quasi-variational inequality problem, a sequential penalty method is
proposed in [29] and a Newton method is studied in [11]. The Newton method in [11] requires
high-order derivatives which are not available for the DLP♦ game as nonsmooth terms with
respect to strategies of competitors exist in the constraint of DLPi

♦. The method proposed
below is close to the method of [29]. However, we do not apply a penalty approach to coupled
constraints, rather we solve a linear program at each iteration.

We now present an outline of our algorithm for solving DLP♦ and PNLP♦ games.

Algorithm 1.

Step 1 Choose a starting point x(n) = (x1(n), x2(n), . . . , xI(n)). Let n = 1.

Step 2 For each player i at iteration n+1, finding xi(n+1) by solving an optimization problem
(either DLP or PNLP) assuming x−i(n+1) = (x1(n+1), . . . , xi−1(n+1), xi+1(n), . . . , xI(n))
is given.

Step 3 Check the convergence criterion. If ‖x(n+1)−x(n)‖ is sufficiently small, then terminate
the algorithm and x(n) is an approximate (generalized) Nash equilibrium. Otherwise, set
n := n + 1 and go to Step 2.

The above algorithm is proved to converge for Nash games with two players under suitable
conditions [22]. To our knowledge, no one has studied convergence of the above algorithm for
generalized Nash games. We shall leave convergence for a future investigation.

When solving the DLP game, the optimization problem defined in Step 2 is the linear program
DLPi

♦, for which an optimal solution can be found easily in Matlab. When solving the PNLP
game, the optimization problem defined in Step 2 is PNLPi

♦, which is a nonlinear program with
the objective function being defined by a multi-dimensional integral. It is very computationally
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expensive to solve such an nonlinear program using an off-shelf software package. Therefore we
employed SAA for PNLPi

♦. The SAA method we used is briefly described below.
First, randomly generate S samples of demand for all airlines. For sample s, demand is di(s).

Second, approximate the objective function of the PNLPi
♦ by a new function

f(xi, x−i) =

∑S
s=1(r

i)T min(xi, di(s) +
∑

j 6=i o
ji[dj(s)− xj ]+)

S
.

Hence we obtain another optimization problem that approximates PNLPi
♦. Third, solve the new

optimization problem. An optimal solution to the new optimization problem is an approximate
solution to PNLPi

♦.
Introduce another variable yi(s) for each sample s. It turns out that the new optimization

problem is equivalent to a linear program defined below:

max
xi,yi(s)

S∑
s=1

(ri)T yi(s)

s.t. Aixi ≤ Ci,

yi(s) ≤ xi,∀s,
yi(s) ≤ di(s) +

∑
j 6=i o

ji[dj − xj ]+,∀s,
xi ≥ 0, yi(s) ≥ 0,∀s.

We experimented with sample size S = 50 or S = 80. With different sample sizes, it is likely
that different approximate solutions for PNLPi

♦ will result. However, our experiments showed
that the sample size does not significantly alter the average total revenue for each player in the
game.

4.3 Main computational results

Example 1 Example 2

0.25 0.50 1.0 0.25 0.50 1.0

BLDLP 408,735 409,764 413,192 502,528 505,094 508,348

408,654 419,347 412,745 501,696 504,253 507,725

BPDLP 356,793 357,261 357,684 489,001 489,001 489,001

356,237 356,678 357,169 487,627 487,627 487,627

BLPNLP 303,955 319,633 343,610 364,234 377,948 407,965

303,650 319,403 343,836 363,342 377,155 407,370

BPPNLP 356,760 361,064 361,613 407,463 408,600 410,080

356,217 360,534 361,015 407,449 408,628 410,271

BLDLPSim 408,653 410,704 412,962 502,607 505,121 508,119

408,463 410,553 412,867 501,694 504,195 507,342

BPDLPSim 356,797 357,316 357,684 489,001 489,001 489,001

356,282 356,775 357,169 487,627 487,627 487,627

BLPNLPSim 273,571 274,235 275,113 352,571 348,333 348,678

273,398 274,100 274,985 351,745 347,583 347,963

BPPNLPSim 356,764 357,233 357,684 407,425 408,504 410,080

356,139 356,667 357,169 407,463 408,609 410,271

BLDLPMix 408,662 409,858 412,965 502,621 505,049 508,073

408,634 419,365 412,772 501,785 504,291 507,762

BPDLPMix 356,725 357,246 357,684 489,001 489,001 489,001

356,260 356,751 357,169 487,627 487,627 487,627

BLPNLPMix 273,072 273,572 274,095 352,327 348,061 348,400

305,214 324,144 354,679 363,712 377,698 411,144

BPPNLPMix 356,759 354,061 352,003 407,479 408,474 410,080

356,256 362,528 363,523 407,445 408,601 410,271

Table 1: Revenue comparisons between two airlines under different booking schemes.
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Computational results for Examples 1 and 2 are shown in Table 1, where we report the
average total revenue for each of two airlines under 12 different booking schemes. The results
for each booking scheme are shown in two consecutive rows, in which the top row is for the
first airline and the bottom row for the second airline. The results for Examples 1 and 2 are
shown in the middle column and the right column respectively. For each example, we tested
three different values for the overflow rate: oij

k = 0.25, 0.5 and 1.0 for all i, j(i 6= j), and k. The
same results are also depicted in Figure 1.

From both Table 1 and Figure 1, we can make the following observations.

(i) the partitioned booking-limit policy based on DLP performs better than the bid-price policy
based on the same DLP for both airlines in both examples.

(ii) the partitioned booking-limit policy based on PNLP performs worse than the bid-price
policy based on the same PNLP for both airlines in both examples.

(iii) for Example 1, the performance of the bid-price policy based on DLP is comparable to
that of the bid-price policy based on PNLP, but for Example 2, the the bid-price policy
based on DLP over-performs the same policy based on PNLP.

(iv) both airlines share revenue fairly evenly for all booking schemes except for BLPNLPMix and
BLPNLPMix. This symmetric property indicates a symmetric equilibrium, which is indeed
the case. Exceptions of BLPNLPMix and BLPNLPMix are logical since distortions are expected
when two airlines use different booking schemes for processing booking requests.

(v) as the overflow rate increases, the average total revenues increase correspondingly for most
booking schemes, which is intuitively correct because demand increases when the overflow
rate increases. However, there are several exceptions such as BLDLPMix and BPPNLPMix in
Example 1, which is once again not surprising because distortions are expected when two
airlines use different equilibrium points to process booking requests.

(vi) in this symmetric case, it seems that the average total revenues for BLDLP, BLDLPSim and
BLDLPMix are similar. The same can be observed for BPDLP, BPDLPSim and BPDLPMix, and
for BPPNLP, BPPNLPSim and BPPNLPMix.

(vii) the booking schemes based on the partitioned booking-limit policy and DLP are the best
among all booking schemes. The booking schemes based on PNLP are not competitive.
This seems to confirm the existing observations in the literature, which states that the
booking policies based on PNLP are not as competitive as the booking policies based on
DLP in the monopoly setting.

Examples 3, 4 and 5 are variations of Example 1. These examples were designed to test how
a change in product prices, capacities and demand affects the performance of different booking
schemes. Numerical results for Examples 3 and 4 are shown in Figure 2 and for Example 5 on
the left hand side of Figure 3. We make some additional observations.

(viii) Booking schemes based on the partitioned booking-limit policy and DLP still over-
perform any booking scheme based on PNLP in Examples 3, 4 and 5.

(ix) Distortions are revealed on BPDLPSim and BPDLPMix in Examples 3 and 4, and on BPDLP
in Example 5.

(x) Booking schemes BLDLP, BLDLPSim and BLDLPMix are stable and perform the best. The
performance difference between those booking schemes is not significant and it cannot be
said whether or not the difference is due to sampling errors.
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Figure 1: Comparison of average total revenues between two airlines under different booking
schemes. The left hand side is for Example 1, where the three charts are for cases when the
overflow rate is 0.25 (top), 0.5 (middle) and 1.0 (bottom) respectively. The right hand side is for
Example 2, where the three charts are for cases when the overflow rate is 0.25 (top), 0.5 (middle)
and 1.0 (bottom) respectively. In each chart, the average total revenues for the first airline are
shown in the 12 bars on the left and for the second airlines in the 12 bars on the right. The order
of booking schemes for each airline shown in all charts is: BLDLP, BPDLP, BLDLPSim, BPDLPSim,
BLDLPMix, BPDLPmix, BLPNLP, BPPNLP, BLPNLPSim, BPPNLPSim, BLPNLPMix, and BPPNLPMix.
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Figure 2: Comparison of average total revenues between two airlines under different booking
schemes. The left hand side is for Example 3, and the right hand side for Example 4. See
Figure 1 for the meanings of charts.
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(xi) The revenue differences between two airlines correctly reflect the settings. In Example 3,
the first airline charges higher than the second airline for each product. As expected, the
first airline achieves a higher average total revenue than the second. In Example 4, the
second airline has more capacity on each leg and hence has a higher average total revenue,
which is confirmed by the numerical results. In Example 5, the second airline has more
demand than the first and hence has a higher average total revenue, which is confirmed
once again. Also, as a general trend in Examples 3, 4 and 5, the average total revenue
increases slightly for both airlines when the overflow rate increases.

Example 6 is another variation of Example 1, in which we tested how asymmetric overflow
rates affect the performance of different booking schemes. Numerical results for Example 6 are
shown on the right top corner of Figure 3. We make a single observation for this example.

(xii) The booking schemes based on the partitioned booking-limit policy and DLP are the best.
On the right hand side of Figure 3, we also plotted two diagrams on how overflow rates
affect the average total revenue for the first airline in Examples 1 and 2 respectively. It
can be seen that the overflow rate does not significantly improve the revenue for the first
airline. We think this is due to the fact that the average demand matches the capacity
fairly well, which indicates that many overflow booking requests are rejected at the second
request. We expect that the revenue should improve significantly when the overflow rate
is high and when the demand is small relative to the capacity.

Based on our limited numerical experiments and analysis, we conclude that the best ap-
proach among all 12 booking schemes proposed in this paper for network capacity management
competition is the partitioned booking-limit policy based on DLP.

4.4 Additional computational results

In the previous subsection, we compared revenue performances of various booking schemes
assuming both airlines employ the same booking scheme. In reality, different airlines may use
different booking schemes. A natural question is how robust a booking scheme is with respect
to different booking schemes employed by competing airlines. To answer this question, we
conducted one more set of experiments in Examples 7 and 8, which are variations of Examples
1 and 2 respectively. The parameter values in Example 7 (or 8) are exactly as the same as those
in Example 1 (or 2). In both Examples 7 and 8, we assumed that the first airline always used
booking scheme BLDLP, which was numerically demonstrated to be the best booking scheme
in the previous subsection, and the second airline used other different booking schemes. In
particular, the second airline used the following 8 booking schemes: BLDLP, BPDLP, BLDLPSim,
BPDLPSim, BLPNLP, BPPNLP, BLPNLPSim, and BPPNLPSim. Evidently, when the second airline uses
booking scheme BLDLP, Example 7 is completely identical to Example 1.

The numerical results for Examples 7 and 8 are shown in Figure 4. The results show that the
first airline receives a stable and similar average total revenue no matter what booking scheme
the second airline takes. This observation is true for both Examples 7 and 8. On the other hand,
the average total revenues for the second airline depend on booking schemes and are sometimes
significantly lower than those obtained by the first airline even though both airlines compete in
a symmetric game. We have also conducted experiments with variations of Examples 3, 4, 5 and
6, where the first airline always used booking scheme BLDLP and the second airline used other
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Figure 3: Comparison of the average total revenue between two airlines under different booking
schemes in Examples 5 and 6 and impact of overflow rates on the average total revenue in
Example 1. The left hand side is for Example 5. The bar chart at the right top corner is for
Example 6. The two line charts on the right hand side are for Example 1. See Figure 1 for the
meanings of charts.
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Figure 4: Comparison of the average total revenue between two airlines under different booking
schemes in Examples 7 and 8. The three charts on the left hand side are for Example 7, and the
three charts on the right hand side are for Example 8. The order of booking schemes for each
airline shown in all charts is: BLDLP, BPDLP, BLDLPSim, BPDLPSim, BLPNLP, BPPNLP, BLPNLPSim,
and BPPNLPSim. See Figure 1 for the meanings of charts.

booking schemes. The results are extremely similar to those of Examples 7 and 8, and hence
are not reported here.

The conclusion we can make from the above additional numerical experiments is that booking
scheme BLDLP is robust in the sense that the airline can still receive a stable and good average
total revenue no matter which booking scheme is taken by competing airlines.
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