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Abstract

We analyze competition among newsvendors when the only information competitors pos-

sess about the nature of future demand realizations is the support of demand distributions.

In such a setting, traditional expectation-based optimization criteria may not be adequate.

In our analysis, we focus on several alternative criteria used in the robust optimization lit-

erature, such as relative and absolute regret, as well as worst-case performance. Using these

robust criteria, we establish the unique Nash equilibrium solution for a (symmetric) game

with an arbitrary number of players. In addition, we obtain closed-form, intuitive expres-

sions for the optimal order quantities which allow us to gain insight into the nature of robust

competition. We show that the ex-ante and ex-post versions of the competitive newsvendor

problem are equivalent under the worst-case or the absolute regret or the relative regret cri-

terion. Numerical analysis indicates that, among different robust approaches, absolute regret

minimization offers the most sensible alternative when demand distribution is unknown.
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1 Introduction

Classical operations management models often assume that a decision maker has complete knowl-

edge of the distributions of uncertain parameters (typically, consumer demand for products or

services). This is a sensible assumption for most mature products when historical demand infor-

mation is available and there is sufficient reason to believe that future demand distribution can

be forecasted using historical information. Even in cases when historical demand information is

unavailable and the product is new, expert judgments can be solicited to predict the distribution

of future demand. However, in many practical settings such an approach is either impractical or

unreliable. For example, expert predictions of demand uncertainty are known to be biased (see,

for example, Soll and Klayman [30]) and very little is known about experts’ ability to predict

the shape of the demand distribution. Realization of such limitations has led in recent years

to the rapid development of a new kind of stochastic optimization paradigm which is based on

the notion of “robustness.” A robust solution typically ensures a certain level of performance

irrespective of the underlying distributions of the involved random parameters.

The difficulty in forecasting demand for a single product is most extreme in multi-item prob-

lems, one example of which is stock-out-based demand substitution. In the classical incarnation

of this problem consumers arrive with a product preference in mind (we call this the primary

demand). If their primary product is out of stock, consumers may substitute it with one of

the alternatives (the secondary demand). Demand substitution is pervasive, for example, in

retail situations, and its importance is well-documented. A recent survey of retailers has found

that, of the customers who do not find what they want on the shelf, 40% either defer the pur-

chase or go to a competitor store to find the item (see Andraski and Haedicke [2]). Naturally,

demand substitution needs to be accounted for when optimizing inventory management. For

this purpose, extensive literature on demand substitution has been developed which relies on the

knowledge of the joint probability of the primary demand distribution as well as the substitution

behavior of consumers. Naturally, estimation of such joint multivariate demand distribution is

a non-trivial task even in the presence of historical demand information. The reason is that the

retailer is typically unable to observe whether the product has been purchased because it was

the first-choice product or because the customer substituted some other out-of-stock product.

These practical considerations drive our effort to apply a robust optimization approach to the

multi-item inventory model with demand substitution.

As a basis of our analysis, we use the demand substitution model pioneered by McGillivray

and Silver [18] and first studied in the competitive framework by Parlar [23]. In this model,

consumers arrive with a product preference in mind, and a fixed proportion of these consumers

wishing to purchase product i substitute product j for it if product i is out of stock. We focus on
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the competitive, single-period version of this problem, which is often referred to as “competitive

newsvendors.” Instead of assuming that the primary demand distribution is known, we base

our analysis only on the assumption that the support for the primary demand distribution is

known. We then use several robust optimization criteria to find the Nash equilibrium of this

game. Specifically, we use the maximin approach, the absolute (ex-post and ex-ante) regret

minimization, and the relative (ex-post and ex-ante) regret minimization. We show that the

maximin approach is unsatisfactory for analyzing this game because it results in the same solu-

tion with and without competition. On the other hand, both the absolute and the relative regret

minimizations produce closed-form solutions which are amenable to interpretations. Moreover,

we show that, although the absolute and the relative regret solutions differ, ex-ante and ex-post

solutions coincide for each of these two regret alternatives. These solutions can be interpreted

as intuitive modifications of the noncompetitive newsvendor solution. Numerical experiments

indicate that the absolute regret minimization approach is quite sensible in that, while produc-

ing robust outcomes, it also results in solutions that are not far off from the solution obtained

when demand distribution is known and the expected profit is maximized. Thus, we argue,

robust optimization approaches are instrumental in gaining deeper insights into the newsven-

dor competition problem. The key contribution of this paper is in that it not only develops a

methodology to study the newsvendor competition problem in settings where only the support

of the demand distribution is known but also shows that this seemingly more difficult problem

often possesses a solution more tractable than the solution of the problem with known demand

distribution.

2 Literature Survey

Two research streams that are closely related to our work study, respectively, demand substi-

tution under competition and robust stochastic optimization. Studies of demand substitution

in the context of single-period models with demand uncertainty were pioneered by McGillivray

and Silver [18]. A large number of papers followed this cornerstone work but we only survey

papers in this stream that focus on strategic interactions under demand substitution. Parlar [23]

is the first paper to study demand substitution under competition for two players. Wang and

Parlar [32] extend this analysis to three players while Netessine and Rudi [20] generalize it

to an arbitrary number of players. Kraiselburd et al. [14] study contracting in a supply chain

when retailers compete through demand spillovers. Netessine and Zhang [22] generalize this

analysis to complementary products, and Netessine and Shumsky [21] analyze competition with

spillovers between two airlines that segment customers into two classes. In addition to the
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widely studied basic model of McGillivray and Silver [18], other, more sophisticated models of

demand substitution have been proposed (e.g., Lippman and McCardle [16], Mahajan and van

Ryzin [17], and Bernstein and Federgruen [6]). However, in our analysis we focus on the most

basic model of demand substitution. Two papers, Anupindi et al. [3] and Kok and Fisher [13],

offer demand estimation procedures for substitution models but under centralized inventory

management. These papers indicate that accurate demand estimation is far from trivial even

for centralized inventory management of substitutable products.

The extant literature offers several robust optimization approaches. The earliest is probably

the maximin approach of Scarf [29], who investigates a firm’s decision to select an order quantity

to maximize its worst-case profit under demand uncertainty. Scarf assumes that only mean and

standard deviation of future demand is known. Scarf [29] and, later, Gallego and Moon [10]

demonstrate that the worst-case distribution is discrete with two mass points and obtain the

expressions for the optimal order quantity and for the resulting profit. To correct for the overly

conservative nature of such an approach to profit maximization, Ben-Tal and Nemirovski [5]

and, later, Bertsimas and Sim [8] employ the notion of “budget of uncertainty.”

An example of a less conservative robust optimization criterion is the so-called minimax-

regret introduced by Savage [28]. Under this criterion, a firm minimizes the maximum absolute

regret of making a suboptimal decision. In the stochastic inventory model the absolute regret

can be defined before or after the demand realization which results, respectively, in ex-ante or

ex-post versions of regret minimization. Morris and Yi [19], Kasugai and Kasegai [12], and

Vairaktarakis [31] study the notion of minimax absolute ex-post regret for the newsvendor

problem. Perakis and Roels [24] and Yue et al. [33] study the minimax absolute ex-ante regret

newsvendor problem and derive the optimal order quantities in the presence of limited demand

information, such as the moments (mean and variance) or the shape (support, symmetry and

unimodality) of the demand distribution. Perakis and Roels [25] point out that the minimax

absolute ex-ante regret approach parallels the entropy maximization studied by Jaynes [11] and

hence is intuitively appealing. Eren and Maglaras [9] use entropy maximization to update the

booking limits for a revenue management problem while obtaining demand information.

A third variety of the robust profit optimization deals with the notion of relative regret. Zhu

et al. [34] derive the optimal order quantities in the newsvendor model under the relative regret

criterion when support of the distribution and either mean or the standard deviation of demand

are known. Ball and Queyranne [4] use relative regret in the context of a single-leg revenue

management problem. This work is extended by Lan et al. [15] who consider both relative and

absolute regrets and propose new static and dynamic booking control policies for a single-leg,

multiple-fare class problem in cases when only upper/lower bounds on demand are available.
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As is evident from our survey, analysis of robust policies has been almost exclusively limited

to the monopolistic setting with a couple of exceptions. Aghassi and Bertsimas [1] introduce

the notion of robust games based on the worst-case analysis. They show the existence of mixed-

strategies Nash equilibria with or without private information, compute mixed-strategies Nash

equilibria, and provide comparisons between robust and Bayesian games. Another exception is

Perakis and Roels [26], who study a two-echelon supply chain under unknown demand distribu-

tion and price-only contract. This paper is, perhaps, the closest to ours, because in one instance

(section 6) Perakis and Roels study a supply chain with symmetric competing newsvendors. But

Perakis and Roels [26] assume that demand distribution possesses the increasing generalized fail-

ure rate property whereas we assume that the support of the distribution is known. Furthermore,

they do not model demand overflow/substitution and instead reallocate excess demand using

an approach similar to the one in Lippman and McCardle [16]. In another related paper, Lan

et al. [15] study the single-leg revenue management problem under both the absolute and the

relative regret minimization criteria and, similar to our work, assume that only the support of

the demand distribution is known.

3 The Model

Consider a market populated by N newsvendors, each selling a different product. For newsvendor

i = 1, ..., N , we denote the product selling price and procurement costs by pi and ci, respectively.

We assume that customers arrive with a product preference in mind so that each newsvendor

faces random primary demand denoted by Di with the support [Ai, Bi]. Moreover, if product

i is out of stock, a proportion oji of customers unsatisfied by newsvendor i “spills over” to

(substitutes) newsvendor j. We will assume throughout that
∑

j 6=i oji ≤ 1 for any i = 1, ..., N .

Given the set of product order quantities Q = (Q1, ..., QN ) selected by newsvendors at the

beginning of the period and the set of potential demand distributions F = (F1, ..., FN ), the total

expected profit for newsvendor i is given by

Πi(Q,F) = −ciQi + piEF

[
min(DE

i , Qi)
]
, (1)

where DE
i = Di +

∑
j 6=i oij(Dj −Qj)+ is the effective demand for newsvendor i, which accounts

for the demand spillover from other newsvendors. For convenience, we will denote by
[
Ai, B

E
i

]
support of demand distribution for DE

i where BE
i = Bi +

∑
j 6=i oij(Bj − Qj)+. We will use

D to denote the domain for the demand distributions F. Note that (1) reduces to the clas-

sical newsvendor profit functions when oij = 0 for all j 6= i. For the game-theoretic analysis

below, it is convenient to introduce the following commonly used “i−centered” notation for
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Q = (Q1, ..., QN ) and F = (F1, ..., FN ): Q = (Qi,Q−i) and F = (Fi,F−i). In traditional analy-

sis of the newsvendor game (see Netessine and Rudi [20]) newsvendor i selects Qi to maximize

her expected profit by solving the following maximization problem:

max
Qi≥0

Πi(Qi,Q−i,F), ∀i (2)

in which Q−i and F are assumed to be given. Here we revisit the solution of this problem:

Proposition 1 For the newsvendor game defined in (2):

(a) (Netessine and Rudi [20]) For any known continuous demand distribution F, there exists

a Nash equilibrium solution Q∗ satisfying the following optimality equations:

P (Di ≤ Q∗
i )− P

Di < Q∗
i < Di +

∑
j 6=i

oij(Dj −Q∗
j )

+

 = (pi − ci) /pi, ∀i. (3)

(b) Consider a symmetric two-player game with uniformly distributed demand: i.e., let Ai =

A, Bi = B, ci = c, pi = p, and oij = γ, i, j = 1, 2. Then the unique Nash equilibrium is

Q∗ =

 B + (B −A)
(
1−

√
1 + 2γc/p

)
/γ, if (2 + 3γ)p ≥ 2c(1 + γ)2,

A + (B −A)
√

2γ(p− c)/ ((1 + 2γ)p), otherwise.
(4)

In particular, when γ = 0, Q∗ = (c/p)A + (1− c/p)B.

We state Proposition 1 to illustrate two points. First, if demand distribution is known, the

equilibrium solution is quite complex and can be stated only implicitly: one must solve a system

of simultaneous equations (3) with each equation involving multidimensional integrals over the

regions that themselves depend on the values of decision variables. Likewise, any parametric

sensitivity analysis is quite complex in this case because it requires implicit differentiation of

the system of equations. The second part of Proposition 1 illustrates that, when the simplest

possible distributional form (the uniform distribution), as well as problem symmetry is assumed,

the problem becomes more tractable, although even in this case one has to worry about differ-

ent solutions in certain parameter ranges. This example with uniform demand distribution is

useful because, without the effect of competition through demand spillovers, absolute regret

minimization in the newsvendor problem coincides with the solution that uses uniform demand

distribution (see also Vairaktarakis [31]). As will be evident shortly, this is not the case in

competitive models.

The rest of the paper is organized as follows. Section 4 studies a newsvendor game under

the worst-case (or maximin) criterion. We prove that, under this criterion, the ex-ante maximin
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problem and the ex-post maximin problem are equivalent and then show that the solution with

and without competition is the same. In section 5.1, we introduce a newsvendor game in which

participants minimize the absolute ex-ante regret and find its solution. In section 5.2, we prove

the equivalence between the newsvendor games under the absolute ex-post and ex-ante regret

minimization criteria. In section 6.1 we analytically solve a minimax relative ex-post regret

problem, and in section 6.2 we show that a minimax relative ex-ante regret problem is equivalent

to a maximin relative ex-post regret problem. Computational comparisons between the robust

approaches and the traditional approach which maximizes expected profits are presented in

section 7. We conclude with a summary of our findings in section 8.

4 The Maximin (Worst-Case) Approach

We begin with the most conservative of all robust optimization approaches, the maximin crite-

rion. Under the ex-ante maximin approach, newsvendor i determines the optimal order quantity

by solving the following optimization problem:

max
Qi≥0

(
min
F∈D

(
−ciQi + piEF[min(DE

i , Qi)]
))

, (5)

hence the term “maximin.” Clearly, this approach is very conservative in that the newsvendor

seeks protection against the worst possible outcome. Likewise, under the ex-post maximin

approach, newsvendor i determines the optimal quantity by solving the following optimization

problem:

max
Qi≥0

(
min

D∈[A,B]

(
−ciQi + pi min(DE

i , Qi)
))

. (6)

The following proposition establishes equivalence of these two formulations and finds the

Nash equilibrium order quantities.

Proposition 2 (a) The optimal value for the ex-ante maximin problem (5) is attained at a

point in the interval [Ai, B
E
i ].

(b) The optimal value for the inner minimization problem of (5) is achieved at F such that

for newsvendor i, Fi has a discrete distribution with a unit impulse at Ai.

(c) Both ex-ante and ex-post maximin problems are equivalent in the sense that for newsvendor

i, both problems have the same objective function with respect to Qi and hence the same

unique Nash equilibrium solution, such that Q∗
i = Ai, ∀i.

We see that the Nash equilibrium solution under the maximin criterion is somewhat unap-

pealing: essentially, each firm’s stocking quantity is set at the point of lowest possible demand
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realization. This solution essentially ignores demand substitution and competition – indeed, it

is easy to demonstrate that a stand-alone newsvendor would stock inventory in a similar way.

Moreover, any N newsvendors under the centralized inventory management would stock inven-

tory in the exact same way. We conclude that the overly conservative nature of the maximin

criterion may limit its applicability when modeling competitive situations such as ours.

5 Absolute Regret Criterion

In this section we apply the absolute regret criterion to the newsvendor competition problem.

This robust optimization approach was studied in the context of the classical newsvendor prob-

lem by Vairaktarakis [31] and further developed by Perakis and Roels [24].

5.1 Absolute Ex-Ante Regret

We define the absolute ex-ante regret for newsvendor i as

∆ea
i (Q,F) = maxbQi≥0

(
Πi(Q̂i,Q−i,F)−Πi(Qi,Q−i,F)

)
. (7)

Given this definition, the minimax absolute ex-ante regret minimization problem for newsvendor

i can be stated as follows:

Rea (Q−i) = min
Qi≥0

(
max
F∈D

(∆ea
i (Q,F))

)
. (8)

Reverting the order of the two maximizations in (8), we obtain an equivalent formulation:

min
Qi≥0

(
maxbQi≥0

(
max
F∈D

(
Πi(Q̂i,Q−i,F)−Πi(Qi,Q−i,F)

)))

= min
Qi≥0

(
maxbQi≥0

(
ci(Qi − Q̂i) + pi max

F∈D

(
EF

[
min(DE

i , Q̂i)
]
− EF

[
min(DE

i , Qi)
])))

. (9)

The feasible regions for both Qi and Q̂i in the optimization problems (7) and (9) can be reduced

as shown in the following lemma:

Lemma 1 (a) The optimal value for the optimization problem with respect to Q̂i is attained at

a point in the interval [Ai, B
E
i ], ∀i.

(b) The optimal value for the optimization problem with respect to Qi is attained at a point

in the interval [Ai, B
E
i ], ∀i.
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In view of this result, we can simplify the problem, which now becomes

min
Ai≤Qi≤BE

i

(
max

Ai≤ bQi≤BE
i

(
ci(Qi − Q̂i) + pi max

F∈D

(
EF

[
min(DE

i , Q̂i)
]
− EF

[
min(DE

i , Qi)
])))

.

(10)

In the following proposition we solve the inner maximization problem in (10) analytically.

Proposition 3 Consider two sets of order quantities {Qi} and
{

Q̂i

}
such that Ai ≤ Qi ≤ BE

i

and Ai ≤ Q̂i ≤ BE
i for all i, and define the set of values

{
D̂i

}
such that

Q̂i = D̂i +
∑
j 6=i

oij(D̂j −Qj)+. (11)

Further, consider a particular joint probability distribution F̂ for the demand of all newsven-

dors such that F̂i is a unit impulse probability distribution with mass at D̂i for all i. Then F̂ is

the optimal solution to the inner maximization problem of the minimax absolute ex-ante regret

problem (10): maxF∈D

(
Πi(Q̂i,Q−i,F)−Πi(Qi,Q−i,F)

)
.

This finding is consistent with Perakis and Roels [24] and Bertsimas and Popescu [7], who

show that the inner maximization problem in (10) is equivalent to a moment-bound problem so

that the distribution achieving the maximum regret is discrete with a single mass point. If we

use this observation, the following proposition identifies the Nash equilibrium in this problem

and is the key result of this section.

Proposition 4 (a) The best response function of newsvendor i is uniquely determined by Q∗
i =

ci
pi

Ai + pi−ci

pi
BE

i .

(b) There exists a Nash equilibrium solution satisfying the following system of nonlinear and

non-smooth equations:

Q∗
i =

ci

pi
Ai +

pi − ci

pi

Bi +
∑
j 6=i

oij(Bj −Q∗
j )

+

 ,∀i. (12)

Note that (12) generalizes the solution to the classical newsvendor problem under the regret

minimization criterion, which can be obtained by letting oij ≡ 0, ∀i, j. In this case, QNV
i =

ci
pi

Ai + pi−ci

pi
Bi,∀i, a solution that coincides with that of Vairaktarakis [31]. This solution can be

thought of as the weighted average of the lower and the upper bounds on demand distribution.

As Vairaktarakis notes, this solution can also be obtained by assuming that demand distribution

is uniform on [Ai, Bi]. Note, however, that the competitive newsvendor solution differs from the

solution obtained in Proposition 1 that uses the uniform demand distribution. Instead, the
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upper bound Bi is increased to BE
i to account for substitution. It is easily verified that each

competing newsvendor stocks a higher quantity than QNV
i because of the higher upper bound

on demand distribution. As is evident from Proposition 4, absolute regret minimization allows

us to obtain a simple yet intuitive solution for the competitive newsvendor problem. However,

even this simple solution is implicit, since equilibrium decisions appear both on the left- and the

right-hand side of (12). In two special cases we are able to obtain closed-form solutions for this

game with an arbitrary number of players.

Proposition 5 (a) Suppose that∑
j 6=i

oijcj

pj
(Bj −Aj) ≤

ci

pi − ci
(Bi −Ai),∀i. (13)

Then Q∗
i ≤ Bi and the unique Nash equilibrium Q∗ can be obtained as follows. Define

A =

∣∣∣∣∣∣∣∣∣∣∣∣

1 o12(1− c1
p1

) ... o1N (1− c1
p1

)

o21(1− c2
p2

) 1 ... o2N (1− c2
p2

)

... ... ... ...

oN1(1− cN
pN

) oN2(1− cN
pN

) ... 1

∣∣∣∣∣∣∣∣∣∣∣∣
,

Bi =

∣∣∣∣∣∣∣∣∣∣∣∣

1 o12(1− c1
p1

) ... o1,i−1(1− c1
p1

) σi1 ... o1N (1− c1
p1

)

o21(1− c2
p2

) 1 ... o2,i−1(1− c2
p2

) σi2 ... o2N (1− c2
p2

)

... ... ... ... ... ... ...

oN1(1− cN
pN

) oN2(1− cN
pN

) ... oN,i−1(1− cN
pN

) σiN ... 1

∣∣∣∣∣∣∣∣∣∣∣∣
,

where σij = piBi−ci(Bi−Ai)
pi

+ (1− cN
pN

)
∑

j 6=i oijBj. Then the equilibrium solution is:

Q∗
i =

detBi

detA
,∀i. (14)

(b) There exists at least one newsvendor i0 such that Q∗
i0
≤ Bi0.

(c) Consider a symmetric game, such that Ai = A, Bi = B, ci = c, pi = p, and oij = o, ∀i, j,
and let p̂ = p + o(p− c) (N − 1) . Then, the unique Nash equilibrium is given by

Q∗
i =

c

p̂
A +

p̂− c

p̂
B, ∀i. (15)

In (a), we have a closed-form solution to the game in a case when each optimal stocking

quantity does not exceed the upper bound on the primary demand distribution. This assumption

is quite reasonable in settings where substitution proportions oij are relatively small. In these
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settings, the solution is obtained by solving a system of linear equations. In (b) we show

that at least one stocking quantity will not exceed the upper bound on the primary demand

distribution. This result is intuitive: all newsvendors together would not stock more than the

upper bound on the aggregate demand. Finally, in (c) we have a simple closed-form solution for

the symmetric game. Such a simple solution arises from considering cases (a) and (b) together:

when the problem is symmetric, it is easy to demonstrate that all equilibrium order quantities

will not exceed upper bounds on the primary demand and, therefore, the solution in (a) applies.

Furthermore, this solution takes a particularly intuitive form: it replicates the simple newsvendor

solution but with an adjusted price p̂ that accounts for demand substitution. This dependence

results in simple comparative statics: the equilibrium stocking quantity is clearly increasing in p̂

and hence it is also increasing in substituting fraction o and the number of newsvendors (N−1),

approaching the upper bound B on demand distribution. To conclude this section, we obtain

a closed-form solution for a problem with arbitrary cost/revenue parameters but with only two

newsvendors.

Proposition 6 Let N = 2, and for i, j = 1, 2, i 6= j, define

oij =
(

ci/pi

1− ci/pi

)
(Bi −Ai)

(Bj −Aj) cj/pj
. (16)

Note that it is impossible to have both oij > oij and oji > oji.

(a) If oij ≤ oij and oji ≤ oji, the unique Nash equilibrium is

Q∗
i =

ci
pi

Ai +
(
1− ci

pi

)
Bi +

(
1− ci

pi

)
cj

pj
oij(Bj −Aj)−

(
1− ci

pi

)(
1− cj

pj

)
oijojiBi

1−
(
1− ci

pi

)(
1− cj

pj

)
oijoji

, i = 1, 2.

(17)

Furthermore, Q∗
i ≤ Bi and Q∗

j ≤ Bj.

(b) If oij ≤ oij and oji > oji, the unique Nash equilibrium is

Q∗
i =

ci

pi
Ai +

(
1− ci

pi

)
Bi,

Q∗
j =

cj

pj
Aj +

(
1− cj

pj

)
Bj +

(
1− cj

pj

)
oji

ci

pi
(Bi −Ai). (18)

Furthermore, Q∗
i ≤ Bi and Q∗

j > Bj.

The last proposition provides additional insights into the equilibrium solution for asymmet-

ric newsvendors. Threshold values for substitution fractions (16) play the same role as condi-

tion (13): when both substitution fractions are small enough, as in case (a), both competing

10



newsvendors select stocking quantities exceeding the newsvendor solution but lower than the

upper bound on the primary demand. The solution in this case is obtained by evaluating (14)

and the resulting expression is quite easy to interpret. The first two terms in the numerator
ci
pi

Ai +
(
1− ci

pi

)
Bi reflect the classical newsvendor solution that the newsvendor would follow

when faced with the primary demand only. The third term
(
1− ci

pi

)
cj

pj
oij(Bj − Aj) accounts

for demand overflow from retailer j to retailer i. Clearly, the stocking quantity is higher if more

customers are willing to substitute (higher oij), if support of demand distribution for retailer j

is bigger (higher Bj−Aj), if retailer i earns a higher margin or if retailer j earns a lower margin

(because in this case retailer j stocks less and there is a higher likelihood of overflow demand).

Finally, the fourth term
(
1− ci

pi

)(
1− cj

pj

)
oijojiBi indicates that the stocking quantity is re-

duced because of substitution from retailer i to retailer j resulting in a higher stocking quantity

for retailer j and, as a result of competitive interactions, lower demand and stocking quantity

for retailer i. In case (b), when substitution fractions are asymmetric (one higher and one lower

than the thresholds), one of the newsvendors elects to stock more than the upper bound on

its primary demand. Thus, the second newsvendor does not expect any demand spillovers and

elects to stock the classical newsvendor quantity QNV
i . Clearly, in this case the solution does

not depend on one of the substitution fractions, oij . This simple and intuitive reflection of com-

petitive interactions is not available in newsvendor competition models that assume knowledge

of demand distribution (Netessine and Rudi [20], Lippman and McCardle [16]).

5.2 Absolute Ex-Post Regret

As opposed to the ex-ante regret, the ex-post regret is determined after the demand realization is

known. In this subsection we demonstrate that the ex-post absolute regret minimization problem

results in the same solution as the ex-ante absolute regret minimization problem and hence the

same insights apply. In particular, it is easy to see that, given inventory levels Q−i for all other

newsvendors and demand realization D = (D1, · · · , DN ), the best policy for newsvendor i is to

order a product quantity DE
i = Di +

∑
j 6=i oij(Dj−Qj)+ in order to match supply with demand

exactly. This policy produces (pi− ci)DE
i in profits and any deviation from this amount will be

the ex-post regret. Thus, we can formally define the absolute ex-post regret for newsvendor i as

Ωi(Q̂i,Q−i,D)− Ωi(Qi,Q−i,D) = (pi − ci)DE
i − pi min(DE

i , Qi) + ciQi, (19)

where Ωi(Qi,Q−i,D) = pi min(DE
i , Qi) − ciQi and Q̂i = DE

i . We then define the minimax

absolute ex-post regret minimization problem for newsvendor i as

min
Qi≥0

(
max

D∈[A,B]

(
Ωi(Q̂i,Q−i,D)− Ωi(Qi,Q−i,D)

))
. (20)
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Proposition 7 concisely states the solution to (20):

Proposition 7 There exists a Nash equilibrium solution to the minimax absolute ex-post regret

problem satisfying Q∗
i = ci

pi
Ai + pi−ci

pi
BE

i , ∀i. Moreover, minimax absolute ex-post and ex-ante

regret problems (20) and (8) are equivalent.

As is evident from the last result, the solution to the absolute ex-post regret minimization

problem is equivalent to the solution to the absolute ex-ante regret minimization problem and

therefore all results (Propositions 4-6) remain valid in the absolute ex-post regret setting as well.

6 Relative Regret Criterion

In this section we apply the relative regret minimization criterion to the newsvendor competition

problem. This robust optimization approach was first applied to the newsvendor model by Zhu

et al. [34].

6.1 Relative Ex-Post Regret

The relative ex-post regret is defined after observing demand realization. In this case, given

inventory levels Q−i for all competitors and demand realization D = (D1, · · · , DN ), the best

policy for newsvendor i is to order a quantity of DE
i resulting in (pi − ci)DE

i in profits for

newsvendor i. We therefore define the relative ex-post regret for newsvendor i as

Ωi(Qi,Q−i,D)

Ωi(Q̂i,Q−i,D)
=

pi min(DE
i , Qi)− ciQi

(pi − ci)DE
i

, (21)

where Q̂i = DE
i and Ωi(Qi,Q−i,D) is the same as in Section 5.2. The relative ex-post regret

defined here is similar to the definition in Ball and Queyranne [4]. We further define the maximin

relative ex-post regret minimization problem for newsvendor i as follows:

max
Ai≤Qi≤BE

i

(
min
D∈D

(
Ωi(Qi,Q−i,D)

Ωi(Q̂i,Q−i,D)

))
. (22)

The analysis of this problem is presented below.

Proposition 8 For the newsvendor game defined by (22), the best response function of newsven-

dor i is uniquely determined by Q∗
i = piAiB

E
i

(pi−ci)Ai+ciBE
i
, and a Nash equilibrium solution satisfies

the following system of nonlinear and non-smooth equations:

Q∗
i =

piAi

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )
+
)

(pi − ci)Ai + ci

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )+
) ,∀i. (23)
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We note that the solution for the monopolist newsvendor problem under the relative regret

minimization criterion can be obtained by letting oij ≡ 0,∀i, j, resulting in QNV
i = piAiBi

(pi−ci)Ai+ciBi
.

Clearly, the Nash equilibrium solution preserves the basic form of this solution but expands the

support of demand distribution: instead of [Ai, Bi] we have
[
Ai, B

E
i

]
. This generalization is

similar to the outcome of the absolute regret minimization, and it is intuitively appealing. One

can easily verify that Q∗
i ≥ QNV

i , ∀i, so that competitive newsvendors stock more inventory

than in the monopoly case because they face demand distribution with the higher upper bound

(which now accounts for spillovers). Although the solution in (23) is intuitive, it is still given in

an implicit form because equilibrium stocking quantities appear both on the left- and right-hand

side of the optimality conditions. As in the absolute regret minimization problem, we can obtain

simpler solutions in two special cases.

Proposition 9 (a) If

piAi ≤ ciBi

1 +
Bi −Ai∑

j 6=i oij
cjBj(Bj−Aj)

(pj−cj)Aj+cjBj

 , ∀i, (24)

then Q∗
i ≤ Bi and the Nash equilibrium is defined by the following system of nonlinear

equations:

Q∗
i =

piAi

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )
)

(pi − ci)Ai + ci

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )
) ,∀i. (25)

Furthermore, the Nash equilibrium is unique.

(b) There exists at least one newsvendor i0 such that Q∗
i0 ≤ Bi0.

(c) Suppose the game is symmetric so that Ai = A, Bi = B, ci = c, pi = p, and oij =

γ/(N − 1), ∀i, j. Then, the unique Nash equilibrium is given by

Q∗
i =

(1 + γ) (pA + cB)− cA−
√

((1 + γ) (pA + cB)− cA)2 − 4γ(1 + γ)pcAB

2γc
. (26)

In (a), we provide simple conditions ensuring that the equilibrium stocking quantity does

not exceed the upper bound on the primary demand distribution. Similar to the absolute

regret minimization case, these conditions are easily satisfied if substitution proportions oij

are relatively small. The difference is that, when relative regret is minimized, this condition

may not even depend on the substitution fraction. To explain why, notice that, when pi/ci <

Bi/Ai, condition (24) trivially holds. Intuitively, when pi/ci < Bi/Ai, support of the demand

distribution is relatively wide (Bi/Ai is high) and the profit margin is relatively small (pi/ci is

small). Thus, no matter how big demand overflow due to competition may be, the newsvendor
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will never stock more than Bi. This is the unique feature of the relative regret minimization

problem because the regret in this case is measured relative to the baseline. However, unlike in

the absolute regret minimization case, this condition is not sufficient to obtain an equilibrium

solution in a closed form: it transforms only nonlinear and non-smooth optimality conditions

(23) into nonlinear but smooth optimality conditions (25) which can easily be solved numerically

and in some cases analytically. Moreover, in this case the Nash equilibrium is unique. In (b) we

see that condition (24) is always satisfied for at least one newsvendor because all newsvendors

taken together would not stock more than the upper bound on the aggregate demand. Finally,

when all newsvendors are symmetric, (a) and (b) together imply that (25) is the unique solution

which, because of the symmetry assumption, becomes a simple equation that we solve in closed

form. When there are two newsvendors in the game, we provide a closed-form solution for

arbitrary cost and revenue parameters as shown below.

For i, j = 1, 2, i 6= j, define

oij =


(

(pj − cj)Aj + cjBj

cjBj(Bj −Aj)

)(
ciBi(Bi −Ai)
piAi − ciBi

)
, if

pi

ci
>

Bi

Ai
,

∞, otherwise,

α+
i =

EiEj −Gioji + Gjoij +
√

(EiEj −Gioji + Gjoij)2 + 4EiojiGiEj

2Eioji
,

α−i =
EiEj −Gioji + Gjoij −

√
(EiEj −Gioji + Gjoij)2 + 4EiojiGiEj

2Eioji
,

where Ei = (pi/ci − 1) Ai + Bi + oij(Bj − pj/cjAj), and Gi = pi/ci(pi/ci − 1)A2
i . As it is easy

to see, since oij ≤ 1 and oji ≤ 1, oij > oij and oji > oji cannot both hold.

Further, for i, j = 1, 2, i 6= j, define

Qα+
m =

pmAm

cm
+ α+

m,m = 1, 2,

Qα−
m =

pmAm

cm
+ α−m,m = 1, 2,

QNV
i =

piAiBi

(pi − ci)Ai + Bi
,

Qβ
i =

piAi (Bi ((pj − cj)Aj + cjBj) + oijcjBj(Bj −Aj))
((pi − ci)Ai + ciBi) ((pj − cj)Aj + cjBj) + cicjoijBj(Bj −Aj)

.

Proposition 10 Let N = 2, i, j = 1, 2 and i 6= j.

(a) Suppose that oij > ōji and oji ≤ ōji. Then (Qβ
i , QNV

j ) is the unique Nash equilibrium.

(b) Suppose that oij ≤ ōij and oji ≤ ōji. Then for m = 1, 2, α+
m ≤ 0 and pmAm

cm
+ α+

m ≤ Bm,

(Qα+
i , Qα+

j ) is a Nash equilibrium. Also, for m = 1, 2, α−m ≤ 0 and pmAm

cm
+ α−m ≤ Bm,

(Qα−
i , Qα−

j ) is a Nash equilibrium.

14



(c) Suppose that oij ≤ ōij and oji ≤ ōji. Then (Qα−
i , Qα−

j ) is the unique Nash equilibrium if

Bj ≥
pjAj

cj
and oij ≤

(pi

ci
− 1)Ai + Bi

pjAj

cj
−Bj

(27)

hold simultaneously when i = 1 and j = 2 and when i = 2 and j = 1.

Similar to the result of Proposition 6 for the absolute regret minimization, we derive condi-

tions for the existence of different equilibria using thresholds for substitution fractions. In the

case of relative regret we must define thresholds more complexly because, as we saw in the previ-

ous proposition, conditions for Q∗
i < Bi may not depend on the substitution fractions. To reflect

this observation, we let oij = ∞ (so that oij ≤ oij is trivially satisfied) when pi/ci ≤ Bi/Ai.

With the exception of this caveat, the equilibrium solution for the duopoly is similar to the

absolute regret minimization case. When both substitution fractions are small enough as in

Proposition 10 (b), competing newsvendors select stocking quantities that are higher than the

newsvendor solution QNV
i but lower than the upper bound on the primary demand. If, however,

substitution fractions are asymmetric as in Proposition 10 (a) (one higher and one lower than

the thresholds), then in a typical Nash equilibrium (Qβ
i , QNV

j ), one competitor to stocks more

than the upper bound on demand causing the other competitor stock at exactly the newsvendor

solution amount.

For asymmetric newsvendor competition with N = 2, unlike for the absolute regret criterion,

we are unable to prove the uniqueness of the Nash equilibrium for the relative regret criterion.

However, under the relative regret criterion, uniqueness can be guaranteed for some special

cases; see Proposition 10 (a) and (c). A particular observation from Proposition 10 (c) is that

(Qα−
i , Qα−

j ) is the unique Nash equilibrium when both oij and oji are sufficiently small. In

our computational experiments, we have not identified any examples that had multiple Nash

equilibria or any examples that had (Qα+
i , Qα+

j ) as a Nash equilibrium.

6.2 Relative Ex-Ante Regret

We define the relative ex-ante regret for newsvendor i as

δea
i (Q,F) =

maxbQi≥0

(
Πi(Q̂i,Q−i,F)

)
Πi(Qi,Q−i,F)

, (28)

where Πi(Qi,Q−i,F) is defined in Section 5.1. Using this definition, we further define the

minimax relative ex-ante regret problem for newsvendor i as

min
Qi≥0

(
max
F∈D

(δea
i (Q,F))

)
. (29)

Proposition 11 concisely states the solution to (29):
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Proposition 11 There exists a Nash equilibrium solution to the minimax relative ex-ante regret

problem satisfying Q∗
i = piAiB

E
i

(pi−ci)Ai+BE
i ci

. Moreover, the maximin relative ex-post problem (22)

and the minimax ex-ante regret problem (29) are equivalent.

As is evident from the last result, the relative ex-ante regret minimization problem is equiva-

lent to the relative ex-post regret minimization problem and therefore all results for the relative

ex-post regret minimization game (Propositions 8-10) will be valid for the relative ex-ante regret

minimization game.

7 Numerical Comparison of Different Approaches

In this section, we numerically compare all robust approaches analyzed in the previous

sections with the expected profit optimization approach. The goal is to identify the robust

approach that results in solutions that are close to the expected profit maximization approach

while using limited demand information. We begin by focusing on a symmetric game. The

values of problem parameters for both newsvendors for our basic example are: A = 20, B = 70,

p = 20, c = 10, and γ = 0.5. We assume that the demands for both newsvendors are uniform.

We used four different optimization criteria: maximizing the expected profit (Exp-Rev),

minimizing the maximum absolute regret (denoted Abs-Reg), minimizing the maximum relative

regret (Rel-Reg), and maximizing the worst-case profit (Maximin). For each of four criteria,

we calculated values for four performance measures: order quantities (Solution), the expected

profit (ExpRev), the absolute regret (AbsReg), and the relative regret (RelReg). Using the

parameters above as a base scenario, we then vary support of the demand distribution, retail

price, and the substitution parameter. To be concise, we summarize results of these numerical

experiments in the Appendix (Table 1 describes parameter changes and Table 2 describes results)

and only highlight the main observations here.

Naturally, the newsvendor can achieve the highest expected profit among all criteria if he/she

orders based on the Exp-Rev criterion. We observe that the Abs-Reg approach performs very

well, i.e., it leads to the Nash equilibrium order quantities and profits which are very close to

the Exp-Rev approach even though this method uses only demand support information. The

performance of the Rel-Reg approach is considerably worse but can still be called satisfactory.

In contrast, the Maximin approach performs poorly due to its overly conservative nature.

To obtain further insights into the performance of all four robust approaches, we conducted

a detailed sensitivity analysis of our results with respect to the changes in the values of the

price, the demand support and the overflow rate. In particular, in Figure 1 we display the
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computational results for the four performance measures obtained by systematically varying

the product price from 20 to 30 units while keeping all other parameters constant as in our

basic example. These four figures reflect that, no matter how problem parameters change, the

absolute regret minimization approach still performs remarkably close to the expected profit

maximization, while the relative regret minimization is a distant second (indeed, when it comes

to the optimal order quantity, the gap is quite large). The worst-case approach performs much

worse largely because the optimal order quantity for it does not change with price. It is

interesting to see that for methods other than Maximin, the (absolute or relative) regret is quite

insensitive to price increases since the order quantity depends on price.

Figure 1: Price sensitivity analysis for a symmetric game.

Figure 2 illustrates the sensitivity of our results with respect to changes in the upper bound

of demand support. Since the equilibrium for the Maximin approach is insensitive to the upper

bound of demand distribution, its performance quickly worsens as B increases. Likewise, the

equilibrium order quantity for the Rel-Reg case appears to be quite insensitive to changes in
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Figure 2: Demand support sensitivity analysis for a symmetric game.

the upper bound for parameters that we use, and therefore this approach performs considerably

worse relative to expected profit maximization. Thus, the increase in the upper value of the

demand support interval has a consistent positive impact on both the order quantities and the

expected profit for Exp-Rev and Abs-Reg, but not on Maximin or Rel-Reg. The absolute regret

minimization approach once again results in only a moderate decrease in profits and very small

deviation in order quantities.

Finally, Figure 3 shows the effects of changes in the overflow rate on our performance mea-

sures. It appears that, for very large overflow rates, the performance of the absolute regret

minimization approach worsens, but it is still quite good. On the other hand, the other two

approaches perform consistently poorly. Moreover, the impact of the overflow rate on all per-

formance measures is quite insignificant: all curves are nearly flat.

To ensure that these numerical results are robust, we conducted numerical experiments for

asymmetric games as well as for other demand distributions (triangular and truncated normal).
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Figure 3: Demand overflow rate sensitivity analysis for a symmetric game.

We report that our observations were consistent with the numerical experiments presented above:

the Abs-Reg approach provided consistently good performance even for other demand distrib-

ution and asymmetric problem parameters. In the Appendix, we illustrate these observations

using the truncated Normal demand distribution. We make only three observations about these

results here. First, both newsvendors have slightly higher order quantities under the Abs-Reg

approach and significantly lower order quantities under the Rel-Reg approach than under the

Exp-Rev approach. Second, as our theoretical results indicate, one newsvendor may stock more

than the upper bound of the support of his/her demand, which never occurs in a monopoly

or symmetric game setting. Third, in a monopoly setting, the absolute regret is always non-

negative because no method can perform better in terms of the expected profit than the method

of maximizing the expected profit. However, due to demand overflow and competition, one

newsvendor can generate higher-than-expected profits under the Rel-Reg approach than under

the Exp-Rev approach because the latter approach is known to result in inventory overstocking
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relative to the centralized solution (Netessine and Rudi [20]).

8 Conclusions

In this paper, we have studied the newsvendor competition model under several robust opti-

mization criteria: the absolute regret minimization, the relative regret minimization, and the

worst-case scenario. We have established the existence results for Nash equilibria for robust

newsvendor games and derived closed-form solutions for special cases, particularly for duopoly

games. The analytical results and computational experiments allow us to better understand the

consequences of robust solutions when limited information about demand is available. An inter-

esting result that we have obtained is that the ex-ante and ex-post versions of the competitive

newsvendor problem are equivalent under the worst-case or the absolute regret or the relative

regret criterion when the only available information is the demand support. Note that the

ex-ante and ex-post newsvendor problems are no longer necessarily equivalent when additional

information other than the demand support is available. For example, in Theorem 1 Yue et al.

[33] prove that the maximum regret is achieved at a two-point probability distribution. Our

results indicate that, from a practical standpoint, the absolute regret minimization approach

both is analytically tractable and results in solutions that are very close to the expected profit

maximization even though it uses only information about support of demand distribution.

This is the first attempt to analyze newsvendor competition through stock-out-based sub-

stitution. We anticipate a lot of new research in the area of robust optimization and robust

competition. One possible future research topic is to include more information about demand

such as its mean and standard deviation. Recently, Perakis and Roels [25, 24] and Zhu, Zhang

and Ye [34] have investigated robust newsvendor optimization with such additional demand

information in a monopolistic setting. Another interesting direction would be to extend our

analysis by investigating a centralized system that includes all newsvendors under robust per-

formance criteria. Our preliminary results indicate that this is a very hard problem that is

unlikely to result in any closed-form solutions.
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Appendix to “Robust Newsvendor Competition”

Proof of Proposition 1.

(a) Follows from Proposition 3 of Netessine and Rudi [20].

(b) Let f(x) be the probability distribution of the demand for both newsvendors. Then

P (D1 ≤ Q)− P (D1 < Q < D1 + γ(D2 −Q)+) =
p− c

p
(A1)

is equivalent to

P (D1 ≤ Q)− P ((D1 < Q < D1 + γ(D2 −Q)) ∩D2 > Q) =
p− c

p
. (A2)

We claim that Q ≤ B. Otherwise, P (D1 ≤ Q) = p−c
p , which implies that Q ≤ B, a contradiction.

The latest equation is in turn equivalent to one of the following two equations:∫ Q

A
f(s)ds−

∫ B

Q
f(v)

(∫ Q

Q−γ(v−Q)
f(s)ds

)
dv =

p− c

p
, (A3)

when Q + Q−A
γ ≥ B, and

∫ Q

A
f(s)ds−

∫ Q

A
f(s)

(∫ B

Q+Q−s
γ

f(v)dv

)
ds =

p− c

p
, (A4)

when Q + Q−A
γ < B.

We first solve (A3). If D1 has a uniform distribution, then f(x) = 1
B−A for x ∈ [A,B];

otherwise, f(x) = 0. The equilibrium equation (A3) becomes:

p− c

p
=

Q−A

B −A
−
∫ B

Q

1
B −A

(
Q− (Q− γ(s−Q))

B −A

)
ds

=
Q−A

B −A
− γ

(B −A)2

∫ B−Q

0
tdt

=
Q−A

B −A
− γ

2(B −A)2
(B −Q)2, (A5)

which is a quadratic equation: γ
2Y 2 − Y − c

p = 0, where Y = Q−B
B−A . Let

Ŷ =
1 +

√
1 + 2γc

p

γ
, Ỹ =

1−
√

1 + 2γc
p

γ
. (A6)

Then Ŷ and Ỹ are two solutions of the quadratic equation. Since Q ≤ B according to our earlier

claim, Q obtained from Ŷ is not a valid Nash equilibrium. Therefore, Q̃ = B+(B−A)
1−
q

1+ 2γc
p

γ

is the only possible Nash equilibrium when Q̃ +
eQ−A

γ ≥ B and Q̃ ≤ B.
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It is easy to prove that A ≤ Q̃ ≤ B. Let us show that Q̃ +
eQ−A

γ ≥ B if and only if

(2 + 3γ)p ≥ 2c(1 + γ)2 holds. Indeed,

(2 + 3γ)p ≥ 2c(1 + γ)2 ⇔ 2pγ + 3pγ2 ≥ 2cγ + 4cγ2 + 2γ3

⇔ p + 4pγ + 4pγ2 ≥ 2cγ + 4cγ2 + 2γ3 + p + 2pγ + pγ2

⇔ p(1 + 2γ)2 ≥ (1 + γ)2(p + 2cγ)

⇔ 1 + 2γ ≥ (1 + γ)
√

p + 2γc

p

⇔ 1−
√

1 +
2γc

p
+ 1 +

1−
√

1 + 2γc
p

γ
≥ 0

⇔ (B −A)
1−

√
1 + 2γc

p

γ
+ (B −A)

1 +
1−
q

1+ 2γc
p

γ

γ
≥ 0

⇔ Q̃ +
Q̃−A

γ
≥ B. (A7)

We next solve (A4).

p− c

p
=

Q−A

B −A
− 1

(B −A)2

∫ Q

A

(
B −Q− Q− s

γ

)
ds

=
Q−A

B −A
−

(
(B −Q− Q

γ )(Q−A) + Q2−A2

2γ

)
(B −A)2

=
(Q−A)2

(B −A)2
(1 +

1
2γ

). (A8)

The valid solution of the above equation is

Q̂ = A + (B −A)

√
2γ(p− c)
(1 + 2γ)p

. (A9)

We now check that Q̂ +
bQ−A

γ < B holds if and only if the condition (2 + 3γ)p < 2c(1 + γ)2

is satisfied.

(2 + 3γ)p < 2c(1 + γ)2 ⇔ 2p + 2pγ2 + 4pγ − 2c(1 + γ)2 < pγ + 2pγ2

⇔ 2(p− c)(1 + γ)2 < pγ(1 + 2γ)

⇔ 2γ(p− c)
(1 + 2γ)p

(1 + γ)2

γ2
< 1

⇔

√
2γ(p− c)
(1 + 2γ)p

(1 +
1
γ

) < 1

⇔ (B −A)

√
2γ(p− c)
(1 + 2γ)p

(1 +
1
γ

) < B −A
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⇔ A + (B −A)

√
2γ(p− c)
(1 + 2γ)p

+
1
γ

(B −A)

√
2γ(p− c)
(1 + 2γ)p

< B

⇔ Q̂ +
1
γ

(
A + (B −A)

√
2γ(p− c)
(1 + 2γ)p

−A

)
< B

⇔ Q̂ +
1
γ

(Q̂−A) < B. (A10)

Hence either (Q̃, Q̃) or (Q̂, Q̂) must be a symmetric Nash equilibrium, but both cannot be Nash

equilibria at the same time, thus proving that the newsvendor game has a unique symmetric

Nash equilibrium.

Proof of Proposition 2.

(a) For any fixed F, it is clear that Πi(Q,F) is an increasing and linear affine function

over the interval [0, Ai], a concave function over the interval [Ai, B
E
i ], and a decreasing and

linear affine function over the interval [BE
i ,+∞]. Let g(Qi,Q−i) = minF∈D Πi(Q,F). Then

g(Qi,Q−i) ≤ g(Ai,Q−i) for any Qi ≤ Ai and g(Qi,Q−i) ≤ g(BE
i ,Q−i) for any Qi ≥ BE

i . The

desired result follows.

(b) Note that the support for random variable Dj is [Aj , Bj ]. It follows that the support for

DE
i is [Ai, B

E
i ]. For any probability distribution F,

−ciQi + piEF

[
min(DE

i , Qi)
]
≥ −ciQi + piEF [min(Ai, Qi)] = −ciQi + pi min(Ai, Qi). (A11)

On the other hand, when the demand for newsvendor i is of a discrete probability distribution

with a unit impulse at Ai,

−ciQi + piEF

[
min(DE

i , Qi)
]

= −ciQi + pi min(Ai, Qi), (A12)

which shows that the optimal value for the inner minimization problem is achieved at F such

that for all i, Fi is of a discrete probability distribution with a unit impulse at Ai.

(c) From the result of part (a), the objective function for both (5) and (6) is −ciQi +

pi min(Ai, Qi). Obviously, Q∗
i = Ai is the unique optimal solution for both (5) and (6). There-

fore, the ex-ante maximin and ex-post maximin problems are equivalent. In particular, both

problems have the same Nash equilibrium solutions.

Proof of Lemma 1.

(a) Because the support of Di is [Ai, Bi], the support of DE
i is [Ai, B

E
i ]. Since pi > ci > 0,

it is easy to verify that with respect to Q̂i, Πi(Q̂i,Q−i,F) is an increasing and linear affine

function in the interval [0, Ai], concave in [Ai, B
E
i ], and a decreasing and linear affine function

in [BE
i ,+∞). Hence the optimal value of the relevant maximization problem can be attained

at a point in the interval [Ai, B
E
i ], and of course can be attained at a point in a larger interval

[Ai, B
E
i ].

3



(b) Let g(Qi,Q−i) = maxF∈D ∆ea
i (Q,F). We need to prove only that g(Qi,Q−i) ≥ g(Ai,Q−i)

if 0 ≤ Qi ≤ Ai, and g(Qi,Q−i) ≥ g(BE
i ,Q−i) if Qi ≥ BE

i . It follows from (a) that for any

0 ≤ Qi ≤ Ai, Πi(Qi,Q−i,F) ≤ Πi(Ai,Q−i,F), which shows that g(Qi,Q−i) ≥ g(Ai,Q−i).

Similarly we can prove that g(Qi,Q−i) ≥ g(BE
i ,Q−i) if Qi ≥ BE

i .

Proof of Proposition 3.

Let ∆ = min(DE
i , Q̂i)−min(DE

i , Qi) as a function of DE
i for any fixed Qi and Q̂i. Assume

Qi ≤ Q̂i. It is clear that ∆ = 0 if DE
i ≤ Qi ≤ Q̂i, ∆ = DE

i − Qi if Qi ≤ DE
i ≤ Q̂i, and

∆ = Q̂i−Qi if Qi ≤ Q̂i ≤ DE
i . It shows that ∆ ≤ Q̂i−Qi and ∆ attains the maximum Q̂i−Qi

when DE
i = Q̂i.

Assume Q̂i ≤ Qi. We have that ∆ = 0 if DE
i ≤ Q̂i ≤ Qi, ∆ = Q̂i −DE

i if Q̂i ≤ DE
i ≤ Qi,

and ∆ = Q̂i −Qi if Q̂i ≤ Qi ≤ DE
i . It follows that ∆ ≤ 0 and ∆ attains the maximum 0 when

DE
i = Q̂i.

Let F be any joint probability distribution for the demand of all newsvendors. Since Ai ≤
Q̂i ≤ BE

i and for all j, Aj ≤ Qj ≤ BE
j , it is easy to choose appropriate values for D̂i and

D̂j for j 6= i for the joint probability distribution F̂ such that Q̂i = D̂i +
∑

j 6=i oij(D̂j − Qj)+.

Clearly, DE
i generated from the joint probability distribution F̂ is of a unit impulse probability

distribution with mass at Q̂i.

By the above arguments on ∆, we show that

EF

[
min(DE

i , Q̂i)
]
− EF

[
min(DE

i , Qi)
]

= EbF [∆]

≤ EbF
[
Q̂i −min(Q̂i, Qi)

]
= EbF

[
Q̂i

]
− EbF

[
min(Q̂i, Qi)

]
= EbF

[
min(DE

i , Q̂i)
]
− EbF

[
min(DE

i , Qi)
]
.

This implies that F̂ is an optimal solution for the inner maximization problem of the minimax

absolute ex-ante regret problem (10). This completes the proof.

Proof of Proposition 4.

(a) Note that the objective function for the outer maximization problem becomes

ci(Qi − Q̂i) + pi(Q̂i −min(Q̂i, Qi)) =

 ci(Qi − Q̂i) Q̂i ≤ Qi,

ci(Qi − Q̂i) + pi(Q̂i −Qi), Q̂i > Qi,
(A13)

which is a piecewise and convex function with respect to Q̂i. Therefore either Ai or BE
i is an

optimal solution for the outer maximization problem, and the objective function for the outer

minimization problem is

max
(
ci(Qi −Ai), (ci − pi)(Qi −BE

i )
)
, (A14)
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which is a piecewise and convex function with respect to Qi. The optimal value of the mini-

mization problem can only be obtained at the intersection of two straight lines y = ci(Qi −Ai)

and y = (ci − pi)(Qi −BE
i ), and this intersection is Q∗

i = ci
pi

Ai + pi−ci

pi
BE

i . Clearly, this optimal

solution Q∗
i is unique. The result follows.

(b) According to the proof of part (a), newsvendor i solves the following minimization prob-

lem

min
Ai≤Qi≤BE

i

(
max

(
ci(Qi −Ai), (ci − pi)(Qi −BE

i )
))

, (A15)

which has a convex and piecewise linear objective function and a compact and convex strategy

space {Qi : Ai ≤ Qi ≤ BE
i }. By Theorem 1 of Rosen [27], the newsvendor game has a Nash

equilibrium. The result in (12) follows from part (a).

Proof of Proposition 5.

(a) We first prove by contradiction that for any i, Q∗
i ≤ Bi. Assume for some m, Q∗

m > Bm.

By (12), we have

Q∗
m =

cm

pm
Am +

(
1− cm

pm

)Bm +
∑
j 6=m

omj(Bj −Q∗
j )

+

 . (A16)

Consequently,

Bm <
cm

pm
Am + (1− cm

pm
)

Bm +
∑
j 6=m

omj(Bj −Q∗
j )

+

 , (A17)

which is equivalent to

cm

pm
(Bm −Am) <

(
1− cm

pm

)∑
j 6=m

omj(Bj −Q∗
j )

+

=
(

1− cm

pm

) ∑
j 6=m,Bj>Q∗

j

omj(Bj −Q∗
j ) +

∑
j 6=m,Bj≤Q∗

j

omj × 0

 . (A18)

Let QNV
i = (ci/pi)Ai + (1− ci/pi)Bi. It follows that

cm

pm
(Bm −Am) <

(
1− cm

pm

) ∑
j 6=m,Bj>Q∗

j

omj(Bj −QNV
j ) +

∑
j 6=m,Bj>Q∗

j

omj
cj

pj
(Bj −Aj)


=

(
1− cm

pm

) ∑
j 6=m,Bj>Q∗

j

omj
cj

pj
(Bj −Aj) +

∑
j 6=m,Bj>Q∗

j

omj
cj

pj
(Bj −Aj)


=

(
1− cm

pm

)∑
j 6=m

omj
cj

pj
(Bj −Aj)


≤ cm

pm
(Bm −Am), (A19)
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where the last inequality follows from the condition of this proposition. This is a contradiction.

Hence for any i, Q∗
i ≤ Bi. Moreover, the result in (14) is a direct consequence of (12).

To prove the uniqueness of a solution for (12), we need to prove only that the coefficient

matrix of (12) is strictly diagonally column-dominant and hence non-singular. The strictly

diagonal column-dominance property follows from the fact that for all i, 1− ci
pi

< 1 and
∑

j 6=i oji ≤
1.

(b) Suppose Q∗
i > Bi holds for all i. Since (Q∗

1, · · · , Q∗
n) is a Nash equilibrium of the

newsvendor game, by (12), we have that for all i,

Q∗
i =

ci

pi
Ai +

(
1− ci

pi

)
(Bi +

∑
j 6=i

oij × 0) ≤ Bi, (A20)

where the last inequality follows from the fact that for all i, Ai ≤ Bi and ci ≤ pi. This is a

contradiction so that Q∗
i > Bi for all i does not hold.

(c) Due to the symmetry, the condition in (a) holds. Therefore, there exists a unique Nash

equilibrium satisfying (12) which can be easily found after symmetry is assumed.

Proof of Proposition 6.

(a) It follows from Proposition 5 that Q∗
1 ≤ B1 and Q∗

2 ≤ B2. By Proposition 5 (a), the

unique Nash equilibrium (Q∗
1, Q

∗
2) satisfies the equation (12), which leads to (17).

(b) Let us prove one case where i = 1 and j = 2. Since o12 ≤ ō12 holds, Q∗
1 ≤ B1. We now

prove that Q∗
2 > B2. Indeed, suppose that Q∗

2 ≤ B2. Then, we have

Q∗
2 =

c2
p2

A2 +
(
1− c2

p2

)
B2 +

(
1− c2

p2

)
c1
p1

o21(B1 −A1)−
(
1− c1

p1

)(
1− c2

p2

)
o12o21B2

1−
(
1− c1

p1

)(
1− c2

p2

)
o12o21

≤ B2,

(A21)

which is equivalent to

c2

p2
A2 +

(
1− c2

p2

)
B2 +

(
1− c2

p2

)
c1

p1
o21(B1 −A1)−

(
1− c1

p1

)(
1− c2

p2

)
o12o21B2

≤ B2 −
(

1− c1

p1

)(
1− c2

p2

)
o12o21B2. (A22)

The latter is, in turn, equivalent to o21 ≤ ō21, which contradicts the given condition that

o21 > ō21. Therefore, we have proved that Q∗
2 > B2. In view of the fact that Q∗

1 ≤ B1 and

Q∗
2 > B2, the system of non-smooth equations (12) becomes

Q∗
1 =

c1

p1
A1 +

p1 − c1

p1
B1,

Q∗
2 =

c2

p2
A2 +

p2 − c2

p2
(B2 + o21(B1 −Q∗

1)) , (A23)

which can be solved to establish (18).
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Proof of Proposition 7.

The feasible region for the outer minimizer problem of (20) is Qi ≥ 0 but, as in the argument

we made in Lemma 1 for the minimax absolute ex-ante regret problem, this feasible region can

be replaced by Ai ≤ Qi ≤ BE
i without loss of generality. Furthermore, it is straightforward to

show that

Ωi(Q̂i,Q−i,D)− Ωi(Qi,Q−i,D) =

 (pi − ci)(DE
i −Qi), DE

i ≥ Qi,

ci(Qi −DE
i ), DE

i < Qi.
(A24)

Hence, for any fixed Q, Ωi(Q̂i,Q−i,D)−Ωi(Qi,Q−i,D) is a piecewise linear and convex function

with respect to DE
i , so that the optimal value for the inner maximization problem is achieved

at either the minimum or the maximum possible value for DE
i , which is either Ai or BE

i ,

respectively. Given this result, the minimax absolute ex-post regret problem becomes:

min
Ai≤Qi≤BE

i

(
max

(
(pi − ci)(BE

i −Qi), ci(Qi −Ai)
))

. (A25)

It is easily verified that the minimization problem is a piecewise linear and convex function

with respect to Qi, and the optimal solution corresponds to the intersection of two lines y =

(pi − ci)(BE
i − Qi) and y = ci(Qi − Ai) provided that this intersection is within the interval[

Ai, B
E
i

]
. Solving these two equations simultaneously, we obtain the optimal solution.

The equivalence between absolute ex-post and ex-ante regret problems (20) and (8) follows

directly from (A14) and (A25).

Proof of Proposition 8.

It is straightforward to verify that the quantity of interest can be expressed as follows:

Ωi(Qi,Q−i,D)

Ωi(Q̂i,Q−i,D)
=


piD

E
i −ciQi

(pi−ci)DE
i

, DE
i ≤ Qi,

Qi

DE
i

, DE
i > Qi.

(A26)

From this expression we observe that Ωi(Qi,Q−i,D)/Ωi(Q̂i,Q−i,D) is an increasing function of

DE
i when DE

i ≤ Qi and a decreasing function when DE
i > Qi. Therefore, the optimal value for

the inner minimization problem is achieved by selecting a probability distribution with a single

mass-point Ai when DE
i ≤ Qi or a single mass-point BE

i when DE
i > Qi. Consequently, the

outer maximization problem simplifies to:

max
Ai≤Qi≤BE

i

(
min

(
piAi − ciQi

(pi − ci)Ai
,

Qi

BE
i

))
. (A27)

This is a piecewise linear and concave objective function with the optimal solution located at

the intersection of two straight lines y = piAi−ciQi

(pi−ci)Ai
and y = Qi

BE
i

subject to the intersection point

7



being within the interval [Ai, B
E
i ]. It is straightforward to verify that this optimal solution is

Q∗
i =

piAiB
E
i

(pi − ci)Ai + ciBE
i

, (A28)

which indeed lies in the interval [Ai, B
E
i ].

Now, according to Theorem 1 of [27], a Nash equilibrium exists if the objective function

for each player is concave with respect to her own strategy and continuous with respect to the

strategies of all newsvendors and the strategy space for each newsvendor is convex and compact.

According to (A27), each newsvendor’s problem is concave over a compact and convex strategy

space. The result follows.

Proof of Proposition 9.

(a) If piAi ≤ ciBi holds, then it follows from (23) that

Q∗
i ≤

ciBi

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )
+
)

(pi − ci)Ai + ci

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )+
) ≤ Bi. (A29)

If piAi ≤ ciBi does not hold, but (24) holds, then by (23), we have

Q∗
i =

piA
2
i (1−

pi

ci
)

(pi − ci)Ai + ci

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )+
) +

piAi

ci

≤
piA

2
i (1−

pi

ci
)

(pi − ci)Ai + ci

(
Bi +

∑
j 6=i oij(Bj −QNV

j )
) +

piAi

ci

=
piA

2
i (1−

pi

ci
)

(pi − ci)Ai + ci

(
Bi +

∑
j 6=i oij

cjBj(Bj−Aj)
(pj−cj)Aj+cjBj

) +
piAi

ci

≤
piA

2
i (1−

pi

ci
)

(pi − ci)Ai + ci

(
Bi + ciBi(Bi−Ai)

piAi−ciBi

) +
piAi

ci

= −piAi − ciBi

ci
+

piAi

ci
= Bi, (A30)

where the first inequality is implied by the fact that QNV
i ≤ Q∗

i and the second inequality follows

from (24). Therefore Q∗
i ≤ Bi. After combining the two conditions, we obtain the desired result.

To prove the uniqueness of a Nash equilibrium, we only need to prove that the Jacobian matrix

of (23) is strictly diagonally row-dominant and hence non-singular. Since for all i, Q∗
i ≤ Bi, the

+ operator can be removed from (23). Consequently, (23) is equivalent to the following system:(pi − ci)Ai + ciBi + ci

∑
j 6=i

oijBj

Q∗
i + piAi

∑
j 6=i

oijQ
∗
j − ci

∑
j 6=i

oijQ
∗
j

Q∗
i

= piAiBi + piAi

∑
j 6=i

oijBj ,∀i. (A31)
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Let J be the Jacobian matrix of the above system of nonlinear equations at the Nash equilibrium

point (Q∗
1, · · · , Q∗

N ). Then for any i and j 6= i,

Jii = piAi + ci(Bi −Ai) + ci

∑
j 6=i

oij(Bj −Q∗
j ),

Jij = piAioij − cioijQ
∗
i . (A32)

Obviously, Jii > 0 since Q∗
i ≤ Bi.

∑
j 6=i

Jij = piAi

∑
j 6=i

oij − ci

∑
j 6=i

oij

Q∗
i ≤ piAi < Jii, (A33)

where the first inequality follows from the assumption that
∑

j 6=i oij ≤ 1. Thus, J is strictly

diagonally row-dominant at Q∗.

(b) Suppose Q∗
i > Bi ∀i. By (23), we show that Q∗

i = QNV
i , which is less than or equal to

Bj because of the fact that QNV
i ≤ Q∗

i , which is a contradiction.

(c) It is easy to prove that Condition (24) is satisfied. If (Q∗
1, · · · , Q∗

N ) is a Nash equilibrium

for the newsvendor game, then Q∗
i ≤ Bi for all i by the result in (a).

Suppose there exists a symmetric solution (Q∗
1, · · · , Q∗

N ) such that Q∗
i = Q∗ for all i. Propo-

sition 8 shows that Q∗ is a solution of the following equation:

Q∗ =
pA(B + γ(B −Q∗))

(p− c)A + c (B + γ(B −Q∗))
, (A34)

which is equivalent to the quadratic equation below:

γc(Q∗)2 + (cA− (1 + γ)pA− (1 + γ)cB) Q∗ + (1 + γ)pAB = 0. (A35)

Let ∆ be the discriminant of the above equation. Then

∆ = (cA− (1 + γ)pA− (1 + γ)cB)2 − 4γ(1 + γ)pcAB

= ((1 + γ)pA + (1 + γ)cB − cA)2 − 4γ(1 + γ)pcAB

= (γpA + (1 + γ)cB + pA− cA)2 − 4γ(1 + γ)pcAB

≥ (γpA + (1 + γ)cB)2 − 4γ(1 + γ)pcAB

= (γpA− (1 + γ)cB)2 ≥ 0. (A36)

Therefore the above quadratic equation has a solution which is given by the quadratic formula:

Q∗ =
(1 + γ)pA + (1 + γ)cB − cA±

√
((1 + γ)pA + (1 + γ)cB − cA)2 − 4γ(1 + γ)pcAB

2γc
.

(A37)
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Because p > c and 0 ≤ γ ≤ 1, we have

(1 + γ)pA + (1 + γ)cB − cA

2γc
≥ (1 + γ)cB

2γc
≥ B. (A38)

This shows that in the above quadratic formula, the minus sign must be taken because Q∗ ≤ B.

The proof is complete.

Proof of Proposition 10.

First let us prove that oij > ōij and oji > ōji do not hold simultaneously. If we suppose that

they do not, then we have

p1A1 > c1B1,

p2A2 > c2B2,

o12
c2B2(B2 −A2)

(p2 − c2)A2 + c2B2
>

c1B1(B1 −A1)
p1A1 − c1B1

,

o21
c1B1(B1 −A1)

(p1 − c1)A1 + c1B1
>

c2B2(B2 −A2)
p2A2 − c2B2

. (A39)

Multiplying both sides of the last two inequalities and canceling some common terms, we obtain

o12o21(p1A1 − c1B1)(p2A2 − c2B2) > ((p1 − c1)A1 + c1B1) ((p2 − c2)A2 + c2B2) . (A40)

Since o12 ≤ 1 and o21 ≤ 1, the above inequality implies that

(p1A1 − c1B1)(p2A2 − c2B2) > (p1A1 + c1(B1 −A1)) (p2A2 + c2(B2 −A2)) , (A41)

which in turn shows that

p1A1p2A2 > p1A1p2A2, (A42)

because piAi > piAi − ciBi and ci(Bi − Ai) > 0 for i = 1, 2. This is a contradiction. Hence,

oij > ōij and oji > ōji cannot hold simultaneously.

(a) Suppose (Q∗
i , Q

∗
j ) is a Nash equilibrium. We first prove that Q∗

i > Bi and Q∗
j ≤ Bj . The

statement that Q∗
j ≤ Bj follows from Proposition 9 (a). Suppose Q∗

i ≤ Bi. Note that oij > ōij

10



implies that piAi > Bici. Then it follows from (23) and the fact that Q∗
j ≤ Bj that

Q∗
i =

piA
2
i (1−

pi

ci
)

(pi − ci)Ai + ci

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )
) +

piAi

ci
≤ Bi,

piA
2
i (1−

pi

ci
)

(pi − ci)Ai + ci

(
Bi +

∑
j 6=i oij(Bj −Q∗

j )
) ≤ −piAi + ciBi

ci
,

piA
2
i (pi − ci)

piAi − ciBi
≥ (pi − ci)Ai + ciBi + oijci(Bj −Qj),

ciBici(Bi −Ai)
piAi − ciBi

≥ oijci(Bj −Qj),

ciBi(Bi −Ai)
piAi − ciBi

≥ oij(Bj −QNV
j ),

ciBici(Bi −Ai)
piAi − ciBi

≥ oij
cjBj(Bj −Aj)

(pj − cj)Aj + cjBj
,

ōij ≥ oij ,

which is a contradiction.

Because Q∗
i > Bi, equation (23) shows that Q∗

j = QNV
j and Q∗

i = Qβ
i . That is, (Qβ

i , Q∗
j ) is

the unique Nash equilibrium.

(b) Suppose (Q∗
i , Q

∗
j ) is a Nash equilibrium. Proposition 9 (a) proves that Q∗

i ≤ Bi and

Q∗
j ≤ Bj . Rearranging (23), we obtain:

Q∗
i −

piAi

ci
= −

pi

ci
(pi

ci
− 1)A2

i

(pi

ci
− 1)Ai + Bi + oijBj − oij(

pjAj

cj
)− oij(Q∗

j −
pjAj

cj
)
, (A43)

Q∗
j −

pjAj

cj
= −

pj

cj
(pj

cj
− 1)A2

j

(pj

cj
− 1)Aj + Bj + ojiB1 − oij(piAi

ci
)− oji(Q∗

i −
piAi

ci
)
. (A44)

Using the definitions of Ei and Gi, we transform (A43) into

Eioji

(
Q∗

i −
piAi

ci

)2

+ (Gioji −Gjoij − EiEj)
(

Q∗
i −

piAi

ci

)
−GiEj = 0. (A45)

The roots of (A45) are given by

Q∗
i =

piAi

ci
+

EiEj −Gioji + Gjoij ±
√

(EiEj −Gioji + Gjoij)2 + 4EiojiGiEj

2Eioji
. (A46)

Therefore, (Qα+
1 , Qα+

2 ) and (Qα−
1 , Qα−

2 ) are two candidates for (Q∗
i , Q

∗
j ). For i = 1, 2, both

Qα+
i ≤ Bi and Qα+

i ≤ piAi/ci must hold in order for (Qα+
1 , Qα+

2 ) to be a valid Nash equilibrium,

and the same applies for (Qα−
1 , Qα−

2 ). The results follow.

(c) Suppose (27) holds simultaneously when both i = 1 and j = 2 and i = 2 and j = 1. Then

direct algebraic calculations show that Ei ≥ 0 and Ej ≥ 0, which imply that 4EiojiGiEj ≥ 0.

11



Evidently, we conclude that α+
i > 0 and α+

j > 0. Consequently, Qα+
i > Ajpi/ci and Qα+

j >

Ajpj/cj . Hence (Qα+
i , Qα+

j ) is not a Nash equilibrium and (Qα−
i , Qα−

j ) is the unique Nash

equilibrium.

Proof of Proposition 11.

First we will show that the optimal solution to the minimax ex-ante regret problem (29) can

be attained at a point in the interval [Ai, B
E
i ]. Indeed, Lemma 1 proves that the inner maximiza-

tion problem of (29) is equivalent to the same optimization problem with a smaller feasible region

Q̂i ∈ [Ai, B
E
i ]. Let g(Qi,Q−i) = maxF∈D (δea

i (Q,F)). It is easy to prove that g(Qi,Q−i) ≥
g(Ai,Q−i) for any Qi ∈ [0, Ai]. It is also easy to prove that g(Qi,Q−i) ≥ g(BE

i ,Q−i) for any

Qi ∈ [BE
i ,+∞].

To simplify our analysis, we can further narrow down the feasible region of Q in the minimax

relative ex-ante regret problem. For convenience, we are presenting the following result in the

form of a lemma:

Lemma A1 Consider the problem:

min
Ai≤Qi≤min

�
BE

i ,
piAi

ci

�

max
F∈D


max

Ai≤ bQi≤BE
i

Πi(Q̂i,Q−i,F)

Πi(Qi,Q−i,F)


 . (A47)

Then, problems (29) and (A47) are equivalent.

Proof. Let Qi = Ai. Then for any F, we have Πi(Qi,Q−i,F) ≥ (pi − ci)Ai, and

max
Ai≤ bQi≤BE

i

(
Πi(Q̂i,Q−i,F)

)
= max

Ai≤ bQi≤BE
i

(
−ciQ̂i + piEF

[
min(DE

i , Q̂i)
])

≤ max
Ai≤ bQi≤BE

i

(
−ciQ̂i + piEF

[
min(BE

i , Q̂i)
])

= max
Ai≤ bQi≤BE

i

(
−ciQ̂i + piQ̂i

)
≤ (pi − ci)BE

i . (A48)

This shows that when Qi = Ai,

max
F∈D

(δea
i (Q,F)) ≤ BE

i

Ai
. (A49)

Hence BE
i

Ai
is a positive upper bound for the optimal objective function value of the minimax

relative ex-ante regret problem.

Suppose that Qi satisfies piAi

ci
≤ Qi ≤ BE

i . Choose a probability distribution F from D such

that the effect demand for newsvendor i has a unit impulse probability distribution with mass

at DE
i = ci

pi
Qi + ε, where ε is a sufficiently small and positive constant. Obviously Ai ≤ DE

i ≤
Qi ≤ BE

i . Then

12



Πi(Qi,Q−i,F) = −ciQi + piD
E
i = −ciQi + pi(

ci

pi
Qi + ε) = piε, (A50)

and

max
Ai≤ bQi≤BE

i

(
Πi(Q̂i,Q−i,F)

)
= (pi − ci)DE

i . (A51)

This shows that
max

Ai≤ bQi≤BE
i

(
Πi(Q̂i,Q−i,F)

)
Πi(Qi,Q−i,F)

>
BE

i

Ai
, (A52)

and

max
F∈D


max

Ai≤ bQi≤BE
i

(
Πi(Q̂i,Q−i,F)

)
Πi(Qi,Q−i,F)

 >
BE

i

Ai
. (A53)

Since BE
i

Ai
is an upper bound for the minimax relative ex-ante regret problem, any Qi satisfying

Qi ≥ piAi

ci
cannot be its optimal solution. That is, the feasible set of solutions to the minimax

relative ex-ante regret problem can be reduced to Ai ≤ Qi ≤ min(BE
i , piAi

ci
). This completes the

proof of lemma A1.

Now, since Πi(Qi,Q−i,F) ≥ −ciQi + piAi > 0 for any Qi ∈ [Ai,
piAi

ci
), we can also rewrite

(A47) into another equivalent problem

min
Ai≤Qi≤min

�
BE

i ,
piAi

ci

�
(

max
F∈D

(
max

Ai≤ bQi≤BE
i

(
Πi(Q̂i,Q−i,F)
Πi(Qi,Q−i,F)

)))
. (A54)

Swapping the order of two inner maximization problems in the above formulation, we obtain

yet another equivalent optimization problem:

min
Ai≤Qi≤min

�
BE

i ,
piAi

ci

�
(

max
Ai≤ bQi≤BE

i

(
max
F∈D

(
Πi(Q̂i,Q−i,F)
Πi(Qi,Q−i,F)

)))
. (A55)

To simplify the minimax relative ex-ante regret problem, we need an additional result:

Lemma A2 Suppose Ai ≤ Qi ≤ min(BE
i , piAi

ci
). Then

max
Ai≤ bQi≤BE

i

(
max
F∈D

(
Πi(Q̂i,Q−i,F)

))
= max

(
(pi − ci)Ai

−ciQi + piAi
,
BE

i

Qi

)
. (A56)

Proof. Let δ = ci
bQi−pi min(DE

i , bQi)

ciQi−pi min(DE
i ,Qi)

as a function of DE
i for any fixed Qi and Q̂i.

Assume Qi ≤ Q̂i. We have that

δ =


bQi

Qi
, if DE

i ≥ Q̂i,
−ci

bQi+piD
E
i

−ciQi+piQi
, if Qi ≤ DE

i < Q̂i,
−ci

bQi+piD
E
i

−ciQi+piDE
i

, if DE
i < Qi.

(A57)
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δ attains the maximum at DE
i = Q̂i. Similarly when Q̂i ≤ Qi, we have that

δ =


bQi

Qi
, if DE

i ≥ Qi,

−ci
bQi+pi

bQi

−ciQi+piDE
i

, if Q̂i ≤ DE
i < Qi,

−ci
bQi+piD

E
i

−ciQi+piDE
i

, if DE
i < Q̂i.

(A58)

δ attains the maximum at DE
i = Ai.

Let F be any joint probability distribution for the demand of all newsvendors.

We now assume that Q ≤ Q̂i. Let F̂ be a particular joint probability distribution for the

demand of all newsvendors such that F̂i is a unit impulse probability distribution with mass at

D̂i and for any j 6= i, F̂j is a unit impulse probability distribution with mass at D̂j such that

Q̂i = D̂i +
∑

j 6=i oij(D̂j −Qj)+. Since Ai ≤ Q̂i ≤ BE
i and for all j, Aj ≤ Q̂j ≤ BE

j , it is easy to

choose appropriate values for D̂i and D̂j for j 6= i for the joint probability distribution F̂ such

that Q̂i = D̂i +
∑

j 6=i oij(D̂j −Qj)+. By the above arguments on δ, we have,

−ciQ̂i + piEF

[
min(DE

i , Q̂i)
]

−ciQi + piEF

[
min(DE

i , Qi)
] =

EF

[
−ciQ̂i + pi min(DE

i , Q̂i)
]

EF

[
−ciQi + pi min(DE

i , Qi)
]

=
EF

[
δ(−ciQi + pi min(DE

i , Qi))
]

EF

[
−ciQi + pi min(DE

i , Qi)
]

≤ Q̂i

Qi

EF

[
−ciQi + pi min(DE

i , Qi)
]

EF

[
(−ciQi + pi min(DE

i , Qi))
]

=
Q̂i

Qi

=
Q̂i(pi − ci)
Qi(pi − ci)

=
−ciQ̂i + piEbF

[
min(DE

i , Q̂i)
]

−ciQi + piEbF
[
min(DE

i , Qi)
] .

This shows that F̂ is an optimal solution for the inner maximization problem of (A55) if Q ≤ Q̂i.

We next assume that Q > Q̂i. Let F̂ be a particular joint probability distribution for the

demand of all newsvendors such that F̂i is a unit impulse probability distribution with mass at

Ai and for any j 6= i, and F̂j a unit impulse probability distribution with mass at Aj . Similarly,

we can prove that F̂ is an optimal solution for the inner maximization problem of (A55) if

Q > Q̂i.

14



Combining the above results and fixing any Qi, we have

max
Ai≤ bQi≤BE

i

(
max
F∈D

(
Πi(Q̂i,Q−i,F)
Πi(Qi,Q−i,F)

))

= max

(
max

Ai≤ bQi≤BE
i , bQi≥Qi

(
Q̂i

Qi

)
, max
Ai≤ bQi≤BE

i , bQi<Qi

(
−ciQ̂i + piAi

−ciQi + piAi

))
= max

(
BE

i

Qi
,

(pi − ci)Ai

−ciQi + piAi

)
.

This completes the proof of Lemma A2.

By Lemma A2, the minimax relative ex-ante regret problem is converted into a simpler

minimization problem:

min
Ai≤Qi≤min

�
BE

i ,
piAi

ci

�
(

max
(

(pi − ci)Ai

−ciQi + piAi
,
BE

i

Qi

))
. (A59)

The objective function of (A59) takes the minimum of two pieces. The first piece is an increasing

function and the second piece is a decreasing function. Therefore, the optimal solution of (A59)

lies at the intersection of two curves y = (pi−ci)Ai

−ciQi+piAi
and y = BE

i
Qi

if this intersection is within

the interval [Ai,min(BE
i , piAi

ci
)], and at either Ai or min(BE

i , piAi

ci
) if this intersection is outside

of this interval. The intersection is

piAiB
E
i

(pi − ci)Ai + BE
i ci

, (A60)

which lies within the interval [Ai,min(BE
i , piAi

ci
)] following some simple calculations.

Similar to Proposition 7, we can prove that the maximin relative ex-post problem (22) and

the minimax ex-ante regret problem (29) are equivalent in the sense that the optimal solution

sets of both problems coincide. This follows from (A27), (A56), and the fact that the maximin

relative ex-post problem (22) can be equivalently formulated as the following minimax problem:

min
Ai≤Qi≤BE

i

max
(

(pi − ci)Ai

−ciQi + piAi
,
BE

i

Qi

)
.

Additional numerical results.

By varying values for problem parameters in our base example (Example 1), we first gener-

ated five additional test examples as shown in Table 1. The price and demand support are chosen

to vary in Examples 2 and 3 respectively. In Examples 4 and 5, the overflow rate is made either

very small or very large. Example 6 was selected to verify the result in Proposition 1, which

states that there are two possible types of Nash equilibria when maximizing the expected profit

for a known probability distribution of demand. Differences in problem parameters between

Example 1 and Examples 2-6 are highlighted in bold in Table 1.
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Example A B p c γ

1 20 70 20 10 0.5

2 20 70 40 10 0.5

3 20 120 20 10 0.5

4 20 70 20 10 0.1

5 20 70 20 10 1.0

6 20 70 15 10 0.95

Table 1: Data for test examples.

Computational results for Examples 1-6 are shown in Table 2, where each mini-table cor-

responds to one of the examples 1-6. In Table 2, for each of four criteria, we also report

three additional performance measures: the worst possible profit from all possible demand re-

alizations (WorstRev), the worst possible absolute regret from all possible demand realizations

(WorstAbsReg), and the worst possible relative regret from all possible demand realizations

(WorstRelReg).

We make several observations about the results in Table 2. It is not surprising to see that

the newsvendor can achieve the highest expected profit among all criteria if he/she orders based

on Exp-Rev. We observe that the Abs-Reg approach performs exceptionally well given that

the Nash equilibrium order quantities for this method are obtained using only demand support

information. The performance of the Rel-Reg approach drops below the level of Abs-Reg,

but can still be called satisfactory. In contrast, Maximin performed poorly due to its overly

conservative nature. Nevertheless, this conservative attitude allows a newsvendor to avoid the

worst results as can be seen from column WorstRev. Similarly, in terms of the worst absolute

(relative) regret, the Abs-Reg (Rel-Reg) approach is the best as shown in column WorstAbsReg

(WorstRelReg).

Results for Examples 2 and 3 demonstrate that the effects of the width of the demand support

and the change of the price are quite significant. On the other hand, the changes in the overflow

rate have a smaller impact as shown in the results for examples 4 and 5. The limited influence

of the overflow rate is due to the fact that the total number of “overflow” customers is not very

large, since each newsvendor sets his/her order quantity so as to ensure that most of his primary

customers get served by this very newsvendor. Example 6 differs from the first five examples in

that the Nash equilibrium order quantities are obtained using the second formula rather than

the first formula of (4), as defined in Proposition 1. We also note that in all examples, there is

a unique Nash equilibrium based on the criterion of maximizing the expected profits.

For asymmetric games, we generated three sets of 9 examples each that are variations of our

basic example. Here we chose to report the results based on the truncated normal distribution
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Method Solution ExpRev AbsReg RelReg WorstRev WorstAbsReg WorstRelReg

Exp-Rev 47.53 347.75 0.00 1.00 -75.26 337.12 -0.38

Abs-Reg 50.00 341.33 6.41 0.98 -100.00 300.00 -0.50

Rel-Reg 32.64 312.93 34.82 0.90 73.61 560.42 0.37

Maximin 20.00 200.00 147.75 0.58 200.00 750.00 0.21

Exp-Rev 58.20 1182.50 0.00 1.00 218.03 531.15 0.36

Abs-Reg 60.91 1170.87 11.62 0.99 190.91 409.09 0.32

Rel-Reg 46.18 1161.62 20.87 0.98 338.24 1072.07 0.56

Maximin 20.00 600.00 582.50 0.51 600.00 2250.00 0.21

Exp-Rev 75.05 495.49 0.00 1.00 -350.51 674.23 -1.75

Abs-Reg 80.00 482.67 12.83 0.97 -400.00 600.00 -2.00

Rel-Reg 35.61 349.75 145.74 0.71 43.91 1265.86 0.22

Maximin 20.00 200.00 295.49 0.40 200.00 1500.00 0.12

Exp-Rev 45.60 330.83 0.00 1.00 -55.96 268.45 -0.28

Abs-Reg 46.19 330.48 0.36 1.00 -61.90 261.90 -0.31

Rel-Reg 31.48 294.47 36.36 0.89 85.24 423.76 0.43

Maximin 20.00 200.00 130.83 0.60 200.00 550.00 0.27

Exp-Rev 49.29 359.73 0.00 1.00 -92.89 414.21 -0.46

Abs-Reg 53.33 341.98 17.75 0.95 -133.33 333.33 -0.67

Rel-Reg 33.67 323.06 36.67 0.90 63.32 726.65 0.32

Maximin 20.00 200.00 159.73 0.56 200.00 1000.00 0.17

Exp-Rev 43.37 165.13 0.00 1.00 -133.66 259.68 -1.34

Abs-Reg 44.68 162.47 2.66 0.98 -146.84 246.84 -1.47

Rel-Reg 27.51 135.82 29.31 0.82 24.92 414.30 0.25

Maximin 20.00 100.00 65.13 0.61 100.00 487.50 0.17

Table 2: Computational results for six test examples.

because similar results were obtained based for either the uniform or the triangular distributions.

In each of our tested examples, the mean of the demand distribution was set to be equal to

the middle value of the demand support, and the standard deviation was equal to the mean

multiplied by 0.4. In the first set of experiments we used parameters identical to Example 1

above but varied the product price for newsvendor 2 from 12 to 28. In the second set of

experiments we varied the upper bound of the demand support for newsvendor 2 from 30 to

110. In the third set of experiments we varied the overflow rate from newsvendor 2 to newsvendor

1 from 0.1 to 0.9.

Numerical results for the three sets of experiments are shown in Figures 4, 5, and 6, respec-

tively. In each of these 12 charts, three solid lines describe the performance measures of the three
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methods Exp-Rev, Abs-Reg, and Rel-Reg for newsvendor 1, and three dotted lines depict the

performance measures of the three methods Exp-Rev, Abs-Reg, and Rel-Reg for newsvendor 2.

To simplify presentation, we do not include numerical results for the Maximin approach because

of its inferior performance.

Figure 4: Price sensitivity analysis for an asymmetric game.

A close look at the top-left chart in Figure 4, where the Nash equilibria (or optimal order

quantities for both players) based on the three methods Exp-Rev, Abs-Reg, and Rel-Reg are

displayed as functions of the product price for the newsvendor 2, yields several observations.

First, as expected, newsvendor 2 exhibits lower order quantities than newsvendor 1 when p2 <

p1 = 20, and higher order quantities than newsvendor 1 when p2 > p1 = 20. Second, both

newsvendors have slightly higher order quantities under the Abs-Reg approach and significantly

lower order quantities under the Rel-Reg approach than under the Exp-Rev approach. Third,

newsvendor 1, as expected, changes his/her order quantity at a slower rate than newsvendor

2, when the price of newsvendor 2 is changed. Fourth, the Nash equilibrium based on the
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Figure 5: Demand support sensitivity analysis for an asymmetric game.

Abs-Reg approach provides a very good approximation for the Nash equilibrium under the

ExpRev approach, while the Nash equilibria under Rel-Reg are very different from those under

ExpRev. The observations made in the previous paragraph are further supported by the other

three charts in Figure 4. That is, in terms of either ExpRev or AbsReg or RelReg, the performance

of the Rel-Reg approach is very poor, and the performance of the Abs-Reg approach is excellent.

Most observations that we can make from Figures 5 and 6 are similar to those from Figure 4.

Here we reiterate two important facts. First, in terms of either ExpRev or AbsReg or RelReg,

method Abs-Reg performs very well and Rel-Reg performs badly compared with Exp-Rev. Sec-

ond, Abs-Reg results in slightly higher stocking quantities than the levels under Exp-Rev, and

Rel-Reg results in significantly lower stocking quantities than the levels under Exp-Rev. A fur-

ther interesting observation can be drawn from Figure 5 at B2 = 30. In this case, under the

Exp-Rev approach, newsvendors 1 and 2 stock approximately 45.42 and 27.65 units, respectively;

under the Abs-Reg approach, newsvendors 1 and 2 stock 45.00 and 31.25 units, respectively;
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Figure 6: Demand overflow rate sensitivity analysis for an asymmetric game.

and under the Rel-Reg approach, newsvendors 1 and 2 stock 31.19 and 28.47 units, respectively.

It is interesting to note that newsvendor 2 stocks more than the upper bound of the support of

his/her demand, which never occurs in a monopoly setting. It is even more interesting to see

that the absolute regrets for newsvendors 1 and 2 under Rel-Reg are 39.25 and -19.78, respec-

tively. In a monopoly setting, the absolute regret is always non-negative because no method

can perform better in terms of maximizing the expected profit than ExpRev. However, due to

the demand overflow and competition, newsvendor 2 can generate higher expected profits using

the equilibrium order quantity under the Rel-Reg approach than under the Exp-Rev approach.

The reason is that, as previous literature indicates, under competition newsvendors are likely

to overstock inventory. Since the Rel-Reg method results in lower stocking quantities, it may

lead to higher expected profits. This counterintuitive phenomenon is also reflected in the chart

of relative regret in Figure 5, where the relative regret for method Rel-Reg is 1.08 at B2 = 30.

On the other hand, it is well known that the relative regret is always less than or equal to 1 in
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a monopoly setting. In conclusion, unlike in a monopoly setting, in competition some newsven-

dors may achieve higher profits under a robust optimization criterion than under the criterion

of maximizing the expected profit.
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