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Stochastic Approximation Approaches to the Stochastic

Variational Inequality Problem

Houyuan Jiang∗and Huifu Xu†

February 2007, revised September 2007

Abstract. Stochastic approximation methods have been extensively studied in the literature
for solving systems of stochastic equations and stochastic optimization problems where function
values and first order derivatives are not observable but can be approximated through simulation.
In this paper, we investigate stochastic approximation methods for solving stochastic variational
inequality problems (SVIP) where the underlying functions are the expected value of stochastic
functions. Two types of methods are proposed: stochastic approximation methods based on
projections and stochastic approximation methods based on reformulations of SVIP. Global
convergence results of the proposed methods are obtained under appropriate conditions.

Keywords: Stochastic variational inequalities, stochastic complementarity problems, stochastic
approximation, projection method, simulation.

1 Introduction

Consider the stochastic variational inequality problem (SVIP): Finding x ∈ IRn satisfying

(y − x)T E [f(x, ξ(θ))] ≥ 0, ∀y ∈ Y, (1.1)

where ξ(θ) is a random variate defined on a probability space (Υ,Λ, P ), f(·, ξ) : IRn → IRn is
continuous for every realization of ξ(θ), E [f(x, ξ(θ))] is the expected value of f(x, ξ(θ)) over
ξ(θ), and Y ⊆ IRn is a closed convex set.

SVIP has been investigated in [15, 16, 33, 35] and it is a natural extension of deterministic
VIP (VIP for short). Over the past several decades, VIP has been effectively applied to modeling
a range of equilibrium problems in engineering, economics, game theory, and networks; see books
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[8, 22]. While many practical problems only involve deterministic data, there are some important
instances where problem data contain some uncertain factors and consequently SVIP models
are needed to reflect uncertainties. For example, in an oligopoly competition of a future market,
market demand is uncertain and firms have to choose their strategies to maximize their expected
profits. In structural engineering, design of a structure or an object may involve random factors
such as temperature and extraneous forces. Applications of SVIP can also be found in inventory
or pricing competition among several firms that provide substitutable goods or services [4, 23].
Some stochastic dynamic games [1, 9] can be formulated as examples of SVIP. In Section 6, we
present several detailed examples of these applications.

SVIP is closely related to some other interesting stochastic problems studied in the literature.
When Y = IRn

+, SVIP reduces to the following stochastic nonlinear complementarity problem
(SNCP): Finding x ∈ IRn satisfying

0 ≤ x ⊥ E [f(x, ξ(θ))] ≥ 0, (1.2)

where x ⊥ y means that xT y = 0 for x, y ∈ IRn. When Y = IRn, SVIP further reduces to a
system of stochastic equations (SSE): Finding x ∈ IRn satisfying

E [f(x, ξ)] = 0. (1.3)

Note that SVIP is also related to the following smooth stochastic optimization problem:

min G(x) ≡ E[g(x, ξ(θ))],
s.t. x ∈ Y,

(1.4)

where g(·, ξ) : IRn → IR is continuously differentiable for every realization of ξ(θ). The first order
necessary conditions of the stochastic optimization problem gives rise to a symmetric SVIP in
the sense that the Jacobian of G is symmetric.

Many numerical methods have been proposed for VIP but few can be applied directly to
solving SVIP because of the complexity of E[f(x, ξ(θ))]. To explain this, let F (x) = E [f(x, ξ)].
Then SVIP (1.1) can be rewritten as

(y − x)TF (x) ≥ 0, ∀y ∈ Y. (1.5)

If F (x) can be evaluated either analytically or numerically, then (1.5) can be regarded as a
VIP and consequently it can be solved by existing numerical methods, which are documented
in [8]. However, it might not be easy to evaluate E [f(x, ξ)] in the following situations: (a) ξ is
a random vector with a known probability distribution, but calculations of the expected value
involve multi-dimensional integration, which is computationally expensive if not impossible; (b)
the function f(x, ξ) is known, but the distribution of ξ is unknown and the information on ξ

can only be obtained using past data or sampling; (c) E [f(x, ξ)] is not observable and it must
be approximately evaluated through simulation. Under these circumstances, existing numerical
methods for VIP are not applicable to SVIP and new methods are needed.
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In this paper, we study the stochastic approximation (SA) method for solving SVIP and
SNCP. Since its introduction by Robbins and Monro [31], SA has been extensively studied and
applied to solving various practical stochastic problems arising in engineering and economics
despite its slow convergence; see books [2, 7, 20, 27, 31, 37], sample references [18, 30, 36, 39],
and an excellent survey paper by Fu [11] for motivations, justifications and applications. SA
is based on a recursive procedure. For SSE (1.3), SA generates the next iterate xk+1 from the
current iterate xk by

xk+1 = xk − akf(xk, ξk),

where ak ≥ 0 is a pre-fixed step-length and ξk is drawn from ξ stochastically and independently.
Under suitable conditions on f , samples of ξ and step-length ak, SA is proved to converge almost
surely to the solution of SSE (1.3); see [27].

Recently SA has been used to solve SVIP and SNCP which are reformulated from competitive
revenue management problems (Mahajan and van Ryzin [23]) and stochastic game theoretic
problems (Flam [10]). SA is also a key computational tool for solving other revenue management
models in [3, 38]. Given SA’s historical popularity and its emerging applications in engineering
and economics, we feel it is necessary to systematically present a theoretical treatment of SA
for SVIP and SNCP.

The main contributions of this paper can be summarized as follows: (a) we propose two
SA methods based on projection for solving SVIP and prove global convergence results with
probability one under fairly standard conditions (Theorems 3.1 and 3.2); (b) we reformulate
SVIP as optimization problems using gap and D-gap functions and apply the existing SA meth-
ods for the stochastic optimization problem to the reformulated problems; convergence results
(Theorem 4.1) are obtained for the case when the underlying function in SVIP is affine with
respect to deterministic variables; furthermore we show how derivative-free iterative schemes
for VIP can be extended to solve SVIP (Theorem 4.2); (c) we propose a derivative-free SA
method based on the Fischer-Burmeister function for solving general SNCP and obtain the
global convergence result without the uniform strong monotonicity condition on the underlying
function (Theorem 5.1); we also present a counter example to show that the underlying function
of nonsmooth equations reformulated from strongly monotone SNCP with Fischer-Burmeister
function may not necessarily retain strong monotonicity, which is a key condition required to
ensure convergence of the SA method for solving the nonsmooth equation based reformulation
of SNCP.

In the literature, several other numerical approaches have been proposed for solving SVIP
and SNCP. Among others, the sample path optimization (SPO) method and the sample average
approach (SAA) have been well recognized. SPO is a simulation based approach considered by
Plambeck, Fu, Robinson and Suri [29] and analyzed rigorously by Robinson [33]. The basic idea
of the SPO method is to construct a sequence of computable functions {Fk} which converges
almost surely to an uncomputable original function F as k increases. Gürkan, Özge and Robin-
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son [15, 16] consider an SVIP model where the expectation or limit function F is dynamically
estimated by Fk by simulation. At each iteration k, an instance of VIP is obtained based on
averaging effects through observing a large number of instances of the random parameters. In-
stances of VIP are solved by the PATH solver in which the automatic differentiation solver is
used to estimate gradients of Fk. They discuss conditions under which the approximating prob-
lems can be shown to have solutions with probability 1 and provide bounds for the closeness of
those solutions to solutions of the limit problem.

Note that SPO is closely related to SAA in which Fk(x) is constructed by the sample average
of f(x, ξ) as follows

Fk(x) =
1
N

N∑
i=1

f(x, ξi),

where ξi, i = 1, · · · , N , is independently identically distributed samples of random variate ξ.
Over the past few years, SAA has been increasingly studied for the stochastic optimization
problem; see Shapiro in [35] for a comprehensive review of SAA. Note that the exponential
convergence of SAA for SVIP and SNCP can be obtained under some mild conditions.

SA is an alternative to SPO, SAA and other existing stochastic methods. On the one hand,
SPO and SAA are powerful computational tools typically when the underlying function f(x, ξ)
has a smooth and closed form. On the other hand, SA is more suitable for solving problems
where the underlying function f(x, ξ) is nonsmooth and/or has no closed form, that is, there is
no off-the-shelf solver for the deterministic subproblem.

Note that the SNCP model (1.2) is different from the stochastic complementarity models
recently considered in [5, 17, 21]. In the latter, a deterministic decision vector is sought to
satisfy NCPs parameterized by all possible realizations of a random variate. This results in a
deterministic overdetermined system of NCPs which usually do not have a solution. Chen and
Fukushima [5] use NCP functions to reformulate NCPs into systems of nonsmooth equations and
consider least-squared minimization of the residual of the reformulated equations. Consequently
it can be proved that solutions for such a reformulated problem exist under suitable conditions.

The rest of the paper is organized as follows. In the next section, we present some results
related to the projection operator after introducing some basic definitions. In Section 3, two
classical projection based methods for the deterministic VIP are extended for solving SVIP.
Under appropriate conditions, global convergence of those iterative schemes are established. In
Section 4, we propose more SA methods that are based on reformulations of SVIP into the
stochastic optimization problem or SSE. Global convergence of some of those iterative schemes
are established too. In Section 5, we develop numerical methods specifically for solving SNCP.
In Section 6, we collect several practical problems to illustrate how SVIP and SNCP can be used
as appropriate mathematical models. We make some concluding remarks in Section 7.
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2 Definitions and preliminaries

In this section we introduce some necessary definitions related to VIP and present some prelim-
inary results about the projection operator on a convex set in the context of VIP.

Definition 2.1 ([8]) Let Y be a convex subset of IRn and D ∈ IRn×n a symmetric positive
definite matrix. The projection operator ΠY,D : IRn → Y is called the skewed projection mapping
onto Y if for every fixed x ∈ IRn, ΠY,D(x) is the solution of the following convex optimization
problem:

miny
1
2‖y − x‖2

D ≡ 1
2(y − x)TD(y − x),

s.t. y ∈ Y,

where ‖s‖D =
√
sTDs is the D-norm of s ∈ IRn.

It is known [8] that for any s ∈ IRn and any symmetric positive definite matrix D ∈ IRn×n,

λmin(D)‖s‖2 ≤ ‖s‖2
D ≤ λmax(D)‖s‖2, (2.6)

where λmin(D) > 0 and λmax(D) > 0 are the smallest and the largest eigenvalues of D respec-
tively. Here ‖ · ‖ denotes the standard 2-norm.

Definition 2.2 ([2, 8, 14]) Let the function F be a mapping from IRn to IRn and Y a subset
of IRn. F is said to be strongly monotone on Y with modulus σ > 0 if (F (x)−F (y))T (x− y) ≥
σ‖x− y‖2 for all x, y ∈ Y; F is said to be strictly monotone on Y if (F (x)−F (y))T (x− y) > 0,
for all x 6= y ∈ Y; F is said to be monotone on Y if (F (x)−F (y))T (x− y) ≥ 0, for all x, y ∈ Y;
F is said to be inversely strongly monotone (ISM) on Y under the D-norm with modulus µ > 0
if (F (x)−F (y))T (x− y) ≥ µ‖F (x)−F (y)‖2

D, for all x, y ∈ Y, where D is a symmetric positive
definite matrix in IRn×n. When D is the identity matrix, ISM is also called co-coercive in [8].
F is said to be Lipschitz continuous on Y with modulus L > 0 if ‖F (x)−F (y)‖ ≤ L‖x− y‖, for
all x, y ∈ Y.

Remark 2.1 (a) If F is ISM on Y, then F is both Lipschitz and monotone on Y (not necessarily
strongly monotone; see [14] for a counter example). If F is both strongly monotone and Lipschitz
continuous on Y, then F is ISM on Y; see [8, Page 164]. (b) The properties of F described in
the definition may be obtained by the corresponding properties of f(x, ξ) with respect to x for
almost all ξ. For instance, if f(x, ξ) is uniformly strongly monotone with respect to x, that is,
there exists σ > 0 such that for almost every realization ξ of ξ(θ), and

(f(y, ξ)− f(x, ξ))T (y − x) ≥ σ‖y − x‖2,∀ξ, x, y ∈ Y,

then E[f(x, ξ)] is strongly monotone.
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Proposition 2.1 below summarizes some main properties of the projection mapping, which
will be used in the proofs of our main convergence results in 3 and 4. A proof for Proposition 2.1
can be found in the appendix.

Proposition 2.1 Let D be a symmetric positive definite matrix in IRn×n, Y a closed convex
subset of IRn and ΠY,D : IRn → Y the skewed projection mapping as defined in Definition 2.1 .
Then

(a) ΠY,D is nonexpansive under the D-norm, i.e.,

‖ΠY,D(x)−ΠY,D(y)‖D ≤ ‖x− y‖D, ∀x, y ∈ Y.

(b) The projection mapping ΠY,D is ISM under the D-norm with modulus 1.

(c) x∗ is a solution of the (1.1) if and only if the following holds

ΠY,D[x∗ − aD−1F (x∗)] = x∗,

where a is a positive constant.

(d) For 0 ≤ a ≤ 4µλmax(D), the mapping x−ΠY,D(x−aD−1F (x)) is ISM on Y with modulus
1− a

4µλmin(D) if F is ISM on Y with modulus µ.

Remark 2.2 When D is the identity matrix, (b) and (d) of Proposition 2.1 are proved in [14].

3 Stochastic Approximation Methods Based on Projections

We consider the following Robbins-Monro type stochastic approximation (iterative) scheme [31]
for solving the SVIP (1.5):

xk+1 = ΠY,D[xk − ak(F (xk) + ωk +Rk)], (3.7)

where F (xk) is the true value of F at xk and F (xk) + ωk + Rk is an ”approximation” of F at
xk, ωk is a stochastic error and Rk is a deterministic system error. For ease of exposition, we
assume throughout the rest of this section that Rk ≡ 0 which means there is no deterministic
error in calculation.

To explain how iterative scheme (3.7) works, let us consider a special case when F (xk)+ωk =
f(xk, ξk) where ξk is a particular sample of random variate ξ(θ). In other words, at iteration
k we simply use a sample ξk of ξ to calculate f(xk, ξ) and regard it as an approximation of
E[f(xk, ξ)] ≡ F (xk). Obviously in this case, we do not need to know the probability distribution
of ξ for approximating F (xk).

6



In what follows, we analyze convergence of the sequence generated by (3.7). Let Fk denote
an increasing sequence of σ-algebras such that xk is Fk measurable. We need to make the
following assumptions.

Assumption 3.1 (a) The stepsize ak satisfies ak > 0, ak → 0,
∑∞

k=0 ak = ∞, and
∑∞

k=0(ak)2 <
∞; (b) E[ωk|Fk] = 0 ; (c)

∑∞
k=1(ak)2E[‖wk‖2|Fk] < ∞ holds almost surely. (d) F is globally

Lipschitz with modulus L over Y; (e) F is strongly monotone with modulus σ over Y.

A few comments about Assumption 3.1 are in order. Part (a) is a standard rule for stepsize
choices in SA. See [27] for instance. Parts (b) and (c) state the stochastic error ωk is unbiased
and the scale of variance is under control. These assumptions are also standard in the literature
of SA methods. Parts (d) and (e) are specifically made for SVIP.

Recall that a sequence of random variables {Xk} converges almost surely to random vari-
able X if P(limn→∞Xk = X) = 1. Our first result on SA uses the lemma below which is a
generalization of the martingale convergence theorem.

Lemma 3.1 ([32]) Let {Fk} be an increasing sequence of σ-algebras and Vk, αk, βk and γk

be nonnegative random variables adapted to Fk. If it holds almost surely that
∑∞

k=1 αk < ∞,∑∞
k=1 βk <∞ and

E(Vk+1|Fk) ≤ (1 + αk)Vk − γk + βk,

then {Vk} is convergent almost surely and
∑∞

k=1 γk <∞ almost surely.

Theorem 3.1 Let {xk} be generated by iterative scheme (3.7). Suppose that Assumption 3.1 (b),
(c), (d) and (e) are satisfied for this scheme and the following conditions on stepsize hold

inf
k≥0

ak > 0, sup
k≥0

ak ≤
2σ

L2λmax(D−1)
. (3.8)

Then {xk} converges to the unique solution x∗ of SVIP (1.1) almost surely.

Proof. The existence and uniqueness of a solution for SVIP (1.1) is guaranteed by the strong
monotonicity property of F under Assumption 3.1 (e). We next prove convergence. By iterative
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scheme (3.7) and Proposition 2.1(c), we obtain

E[‖xk+1 − x∗‖2
D|Fk]

= E[‖ΠY,D[xk − akD
−1(F (xk) + wk)]−ΠY,D(x∗ − akD

−1F (x∗))‖2
D|Fk]

≤ E[‖xk − x∗ − akD
−1(F (xk)− F (x∗) + wk)‖2

D|Fk]
(By Proposition 2.1(a))

= ‖xk − x∗‖2
D + (ak)2(F (xk)− F (x∗))TD−1(F (xk)− F (x∗)) + (ak)2E[(wk)TD−1wk|Fk]

−2ak(xk − x∗)T (F (xk)− F (x∗))− 2ak(xk − x∗)T E[wk|Fk]
+(ak)2(F (xk)− F (x∗))TD−1E[wk|Fk]

= ‖xk − x∗‖2
D + (ak)2(F (xk)− F (x∗))TD−1(F (xk)− F (x∗)) + (ak)2E[(wk)TD−1wk|Fk]

−2ak(xk − x∗)T (F (xk)− F (x∗))
(By Assumption 3.1 (b))

≤ ‖xk − x∗‖2
D + (ak)2L2 λmax(D−1)

λmin(D) ‖xk − x∗‖2
D + (ak)2E[λmax(D−1)‖wk‖2|Fk]

−2ak
σ

λmax(D)‖x
k − x∗‖2

D

= ‖xk − x∗‖2
D(1− 2δk) + βk

(By (2.6), (3.8),Assumption 3.1 (d) and (e))
≤ ‖xk − x∗‖2

D(1 + 0)− δk‖xk − x∗‖2
D + λmax(D−1)(ak)2E[‖wk‖2|Fk]

= ‖xk − x∗‖2
D(1 + αk)− γk + βk,

where δk = 2ak
σ

λmax(D) − (ak)2L2 λmax(D−1)
λmin(D) , αk ≡ 0 ≥ 0, βk = λmax(D−1)(ak)2E[‖wk‖2|Fk] ≥ 0

and γk = δk‖xk − x∗‖2
D ≥ 0. Under Assumptions 3.1(c), we have

∑∞
k=1 αk <∞ and

∑∞
k=1 βk <

∞ almost surely. It follows from Lemma 3.1 that ‖xk − x∗‖D converges almost surely. and∑∞
k=1 γk < ∞ holds almost surely. By condition (3.8), {δk} is bounded away from zero which,

implies that {xk} converges to x∗ almost surely because condition (3.8) shows that {δk} is
bounded away from zero.

Theorem 3.1 is an extension of Theorem 12.1.8 of [8], which is a projection method for solving
VIP. Conditions (d) and (e) in Assumption 3.1 are quite strong when they are put together. In
what follows, we replace these two conditions with the following two weaker conditions.

(d′) There exists a solution x∗ of SVIP such that for any x ∈ Y, ‖F (x)‖ ≤ λ(1 + ‖x− x∗‖) for
a constant λ > 0.

(e′) At the solution x∗, infx∈Y:ρ≥‖x−x∗‖≥ε F (x)T (x− x∗) > 0, for any ρ > ε > 0.

The example below shows that condition (e′) is strictly weaker than condition (e).

Example 3.1 Consider SVIP (1.5) with single variable where

F (x) =

{
1
2(x+ 1), x < 1,
√
x, x ≥ 1,

(3.9)
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and Y = IR+. Then F is strictly monotone but not strongly monotone. Therefore Assumption 3.1
(e) is not satisfied in this case. However it is not difficult to verify that condition (e′) holds.
Too see this, notice that the problem has a unique solution x∗ = 0. Condition (e′) requires that

inf
x∈IR+:ρ≥‖x−x∗‖≥ε

F (x)Tx > 0.

for any ρ > ε > 0. By the definition of F , we have

inf
x∈IR+:ρ≥‖x−x∗‖≥ε

F (x)Tx ≥

{
1
2ε(ε+ 1), ε < 1,
1, ε ≥ 1.

Note that this function is globally Lipschitz continuous with modulus 0.5 (the maximum of the
absolute value of its derivative).

Despite it is weaker than Assumption 3.1(e), condition (e′) is a bit difficult to verify. We
discuss sufficient conditions for (e′) in Proposition 3.1 for which a proof can be found in appedix.

Proposition 3.1 Suppose that F is monotone on Y. Then

(a) (e′) holds either F is strictly monotone at x∗ or −F (x∗) is in the interior of the polar cone
of the tangent cone of Y at x∗;

(b) condition (e′) implies that SVIP (1.1) has a unique solution.

Theorem 3.2 Let sequence {xk} be generated by iterative scheme (3.7). Suppose that Assump-
tion 3.1 holds with (d) and (e) being replaced by (d′) and (e′) for this scheme. Suppose also that
F is monotone at x∗. Then {xk} almost surely converges to the unique solution x∗.

Proof. First, Proposition 3.1, monotonicity of F and condition (e′) imply the uniqueness of
the solution. We next prove convergence. By iterative scheme (3.7) and the fact that x∗ is a
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solution of SVIP, we have

E[‖xk+1 − x∗‖2
D|Fk]

= E[‖ΠY,D[xk − akD
−1(F (xk) + wk)]−ΠY,D(x∗)‖2

D|Fk]
≤ E[‖xk − x∗ − akD

−1(F (xk) + wk)‖2
D|Fk]

(By Proposition 2.1(a))
= ‖xk − x∗‖2

D + (ak)2F (xk)TD−1F (xk) + (ak)2E[(wk)TD−1wk|Fk]
−2ak(xk − x∗)TF (xk)− 2ak(xk − x∗)T E[wk|Fk] + 2(ak)2F (xk)TD−1E[wk|Fk]

= ‖xk − x∗‖2
D + (ak)2F (xk)TD−1F (xk) + (ak)2E[(wk)TD−1wk|Fk]

−2ak(xk − x∗)TF (xk)
≤ ‖xk − x∗‖2

D + (ak)2λmax(D−1)‖F (xk)‖2 + (ak)2λmax(D−1)E[‖wk‖2|Fk]
−2ak(xk − x∗)TF (xk)

≤ ‖xk − x∗‖2
D + 3(ak)2λmax(D−1)λ2(1 + ‖xk − x∗‖2)

+(ak)2λmax(D−1)E[‖wk‖2|Fk]− 2ak(xk − x∗)TF (xk) (By Assumption 3.1 (d’))

≤ ‖xk − x∗‖2
D + 3(ak)2λmax(D−1)λ2

(
1 + 1

λmin(D)‖x
k − x∗‖2

D

)
+(ak)2λmax(D−1)E[‖wk‖2|Fk]− 2ak(xk − x∗)TF (xk)

≡ ‖xk − x∗‖2
D(1 + αk)− γk + βk,

where

αk =
3λmax(D−1)λ2

λmin(D)
(ak)2 ≥ 0,

βk =
(
3λmax(D−1)λ2 + λmax(D−1)E[‖wk‖2|Fk]

)
(ak)2 ≥ 0

and

γk = 2ak(xk − x∗)TF (xk) = 2ak[(xk − x∗)T (F (xk)− F (x∗)) + (xk − x∗)TF (x∗)] ≥ 0.

Under Assumption 3.1 (a), (b) and (c),
∑∞

k=1 αk < ∞ and almost surely
∑∞

k=1 βk < ∞. It
follows from Lemma 3.1 that ‖xk − x∗‖ converges almost surely and

∞∑
k=1

ak(xk − x∗)TF (xk) <∞ (3.10)

almost surely. Suppose {xk} does not converge to x∗ almost surely. Then there exist a constant
ε > 0 and an index ` such that ‖xk − x∗‖ ≥ ε holds almost surely for all k ≥ `. By Condition
(d’), we have that F (xk)T (xk−x∗) > δ > 0 for any k ≥ ` with a positive constant δ. This shows
that

∞∑
k=`

akF (xk)T (xk − x∗) ≥
∞∑

k=`

akδ = δ
∞∑

k=`

ak = ∞,

which contradicts to (3.10). Therefore {xk} converges to x∗.

Remark 3.1 Theorems 3.1 and 3.2 address convergence of the same iterative scheme (3.7)
under different and non-overlapping assumptions. Theorem 3.1 assumes that (3.8) holds which
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implies the stepsize is bounded away from zero as k → ∞ while Theorem 3.2 replaces this
condition with Assumption 3.1(a) which requires stepsize go to zero as k →∞. This is the exact
reason why we can weaken Assumption 3.1(c) and (d) in Theorem 3.1 to Assumption 3.1(c’)
and (d’) in Theorem 3.2.

4 Stochastic Approximation Methods Based on Reformulations

Apart from projection methods, many numerical methods have been developed for solving de-
terministic VIP [8]. By introducing suitable merit functions, one can reformulate VIP into
equivalent smooth constrained or unconstrained optimization problems for which many efficient
methods are readily available. Our purpose in this section is to show some of the above methods
can be extended for solving SVIP. We prefer unconstrained optimization reformulations to con-
strained ones because the latter involves two projections: one due to reformulation of SVIP as a
constrained optimization problem and another due to the application of SA for the reformulated
optimization problems.

Consider the traditional SA method for solving the stochastic optimization problem (1.4)
with Y = IRn:

xk+1 = xk − ak(∇G(xk) + ωk), (4.11)

where ak is stepsize and ωk is the stochastic approximation error of ∇G at xk. Observe that find-
ing stationary points of (1.4) is equivalent to finding solutions of (1.3) with F (x) = ∇G(x). This
means that the above iterative scheme (4.11) is a special case of iterative scheme (3.7). There-
fore, it is not a surprise to obtain almost sure convergence results for iterative scheme (4.11).
As a matter of fact, such a convergence result can be found from many SA text books; see
for instance [27, Chapter 5]. The usual conditions that ensure such a convergence result are
strong convexity of G (or equivalently strong monotonicity of ∇G) and the Lipschitz continuous
property of ∇G, but can be replaced by their weaker counterparts Assumption 3.1 (d′) and (e′)
respectively. We shall investigate those conditions for some popular reformulations of VIP.

Regularized gap and D-gap functions proposed in [12, 41] are those merit functions that
have desirable properties for designing various efficient numerical methods for the deterministic
VIP. For any positive scalars α and β (β < α), the regularized gap function is defined by

Φα(x) = max
y∈Y

F (x)T (x− y)− α

2
‖y − x‖2,

and the D-gap function by
Ψαβ = Φα(x)− Φβ(x).

It is known [12] that

Φα(x) = F (x)T (x−ΠY [x− α−1F (x)])− α

2
‖ΠY [x− α−1F (x))− x‖2,
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i.e., ΠY [x − α−1F (x)] is the unique optimal solution of the maximization problem that defines
Φα(x). Note that the original regularized gap function is defined in a more general setting that
allows the norm ‖ · ‖ used in Φα(x) to be replaced by ‖ · ‖D with D a symmetric positive definite
matrix.

Based on either the regularized gap function or the D-gap function, VIP can be cast as either
a constrained optimization problem

min Φα(x)
s.t. x ∈ Y

(4.12)

or an unconstrained optimization problem

min Ψαβ(x)
s.t. x ∈ IRn

(4.13)

in the sense that any global solution of the reformulated optimization problem is a solution of
VIP, and vice versa. When F is continuously differentiable, both the regularized gap function
and the D-gap function are proved to be continuously differentiable [12, 41], but not necessarily
twice continuously differentiable in general. Moreover,

∇Φα(x) = F (x)− (∇F (x)− αI)(ΠY [x− α−1F (x)]− x).

When F is further assumed to be strongly monotone over Y, a stationary point of either (4.12)
or (4.13) is the unique solution of the VIP [12, 41]. Those analytical properties pave a way
for solving the VIP using numerical methods of smooth optimization problems. In the context
of the SVIP, we take that F (x) = E[f(x, ξ)] as defined in Section 1. Then our aim is to find
solutions of SVIP by solving its corresponding stochastic reformulations of (4.12) and (4.13).

Stochastic approximation methods for solving the stochastic optimization problem have been
extensively investigated in the literature. Here we apply the SA method in [27] to (4.12) and
(4.13). According to Theorem 5.3 in [27], convergence of the SA method in [27] relies on
Assumption 3.1 (d′) and (e′). When F is nonlinear, it is difficult to prove these properties for
either Φα(x) or Ψαβ(x). In what follows we consider the case where F is affine.

Proposition 4.1 Suppose that F : IRn → IRn is an affine mapping such that F (x) = Ax+b and
A ∈ IRn×n is positive definite. Then (a) if β > α > 0 are chosen such that A+AT−αI−β−1ATA

is positive definite, then Ψαβ(x) is strongly convex; (b) if α > 0 is chosen such that A+AT −αI
is positive definite then Φα(x) is strongly convex; (c) both ∇Φα(x) and ∇Ψαβ(x) are globally
Lipschitz continuous.

Proof. (a) This is proved in Proposition 1 of [26]. (b) follows from part (a) by taking β to
infinity in which case Ψαβ(x) reduces to Φα(x).

(c) This can be easily proved by checking ∇Φα(x) and ∇Ψαβ(x) and the fact that the
projection operator is nonexpansive; see Proposition 2.1.
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Theorem 4.1 Suppose that F : IRn → IRn is an affine mapping such that F (x) = Ax + b and
A ∈ IRn×n is positive definite.

(a) Assume β > α > 0 are chosen such that A + AT − αI − β−1ATA is positive definite.
Let xk+1 = xk − ak(∇Ψαβ(xk) + wk). If Assumptions 3.1 (a), (b) and (c) hold for this
scheme1, then {xk} converges to the unique solution of SVIP almost surely.

(b) Assume α > 0 is chosen such that A+ AT − αI is positive definite. Let xk+1 = ΠY [xk −
ak(∇Φα(xk) + wk)]. If Assumptions 3.1 (a), (b) and (c) hold, for this scheme, then
sequence {xk} generated converges to the unique solution of SVIP almost surely.

Proof. Proposition 4.1 implies Assumption 3.1 (d′) and (e′), which are equivalent to Conditions
(i) and (ii) of Theorem 5.3 of [27] respectively. Therefore the results in (a) and (b) follow from
Theorem 5.3 of [27].

Remark 4.1 The computational efforts of the stochastic approximation methods used in (a)
and (b) of Theorem 4.1 are comparable since the former needs to evaluate the projection of xk−
ak(∇Φα(xk) +wk) over Y while the latter applies projections twice when evaluating ∇Ψαβ(xk).

One of the challenges in solving SVIP is to evaluate or approximate Φα(x) and Ψαβ(x) both
involving evaluation of F (x). It is even more challenging to evaluate or approximate ∇Φα(x)
and ∇Ψαβ(x) both involving evaluations of Jacobians of F . Therefore, it is computationally
advantageous to adopt derivative free iterative schemes that have been proposed for solving
VIP.

Based on the merit function Ψαβ , Yamashita et. al. [41] propose a derivative free iterative
scheme for solving VIP with the search direction below:

d = r(x) + ρs(x),

where
r(x) = yα(x)− yβ(x), s(x) = α(x− yα(x))− β(x− yβ(x)),

and yα(x) = ΠY [x− α−1F (x)] is the unique solution of the maximization problem that defines
Φα(x); see the beginning of this section. The derivative-free search direction d is proved to be
a descent direction of the merit function Ψαβ and the proposed derivative-free iterative scheme
is proved to converge to the unique solution of VIP when F is strongly monotone over IRn.

To extend the above derivative-free iterative scheme to SVIP, we need the following result.

Lemma 4.1 ([41]) Let d = r(x)+ρs(x). Suppose F is strongly monotone with modulus σ over
IRn.

1This means that ak, ωk and Fk in the assumption refer to this scheme. The same comment applies to part

(b) of this theorem, Theorem 4.2, Theorem 5.1 and Corollary 5.1.
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(a) ∇ψαβ(x)Td ≤ −σ
2 (‖r(x)‖+ ρ‖s(x)‖)2.

(b) If x is not a solution of VIP, then

∇Ψαβ(x)Td ≤ −σ
2
‖d‖2 (4.14)

for sufficiently small positive ρ.

(c) If r(x) = s(x) = 0, then x is a solution of VIP.

(d) The level set of ψαβ(x) is bounded.

Proof. (a), (c) and (d) are proved in [41]. (b) follows (a) by the definition of d.

We are now ready to state the SA method that extends the above derivative-free iterative
scheme of [41] based on the unconstrained reformulation (4.13) of SVIP: Given the current
iterate xk,

xk+1 = xk − ak(dk + ωk), (4.15)

where
dk = r(xk) + ρs(xk),

and ωk represents the stochastic error when approximating dk from sampling. In computational
implementation, dk + ωk is replaced by a sample dk(ξ) = r(xk, ξ) + ρs(xk, ξ), where

r(x, ξ) = yα(x, ξ)− yβ(x, ξ), s(x, ξ) = α(x− yα(x, ξ))− β(x− yβ(x, ξ)),

and yα(x, ξ) = ΠY [x− α−1f(x, ξ)].

Theorem 4.2 Suppose that Assumptions 3.1(a), (b), (c), (d) and (e) hold for iterative scheme
(4.15), and ∇Ψαβ(x) is globally Lipschitz continuous. Then sequence {xk} generated by this
scheme almost surely converges to the unique solution x∗ of SVIP when ρ > 0 is sufficiently
small and β > α > 0.

Proof. By virtue of the mean value theorem, there exists yk located on the line segment between
xk and xk+1 such that

Ψαβ(xk+1) = Ψαβ(xk) +∇Ψαβ(yk)T (xk+1 − xk).

Since ∇Ψαβ is globally Lipschitz continuous, there exists L > 0 such that

‖∇Ψαβ(yk)−∇Ψαβ(xk)‖ ≤ L‖xk+1 − xk‖.

14



By iterative scheme (4.15) and the fact that x∗ is a solution of SVIP, we have

E[Ψαβ(xk+1)|Fk] = E[Ψαβ(xk) +∇Ψαβ(yk)T (xk+1 − xk)|Fk]
= E[Ψαβ(xk) + ak∇Ψαβ(yk)T (dk + wk)|Fk]
= Ψαβ(xk) + akE[∇Ψαβ(yk)(dk + wk)|Fk]
= Ψαβ(xk) + akE[∇Ψαβ(xk)T (dk + wk)|Fk]

+(∇Ψαβ(yk)−∇Ψαβ(xk))T (dk + wk)|Fk]
= Ψαβ(xk) + ak∇Ψαβ(xk)Tdk + 0

+akE[(∇Ψαβ(yk)−∇Ψαβ(xk))T (dk + wk)|Fk]
≤ Ψαβ(xk) + ak∇Ψαβ(xk)Tdk + akE[L‖yk − xk‖‖dk + wk‖|Fk]
≤ Ψαβ(xk) + ak∇Ψαβ(xk)Tdk + L(ak)2E[‖dk + wk‖2]
≤ Ψαβ(xk) + ak∇Ψαβ(xk)Tdk + 2L(ak)2(‖dk‖2 + E[‖wk‖2|Fk]
≤ Ψαβ(xk)− ak

σ
2 ‖d

k‖2 + 2L(ak)2(‖dk‖2 + E[‖wk‖2|Fk]
(By Lemma 4.1(b))

≤ Ψαβ(xk) + ak(2Lak − σ)‖dk‖2 + 2L(ak)2E[‖wk‖2|Fk]
= Ψαβ(xk)− γk + βk,

where
γk = −ak(2Lak − σ)‖dk‖2,

and
βk = 2L(ak)2E[‖wk‖2|Fk].

By Assumption 3.1 (a) and (c),
∞∑

k=1

βk <∞.

By applying Lemma 3.1 to the recursive equation

E[Ψαβ(xk+1)|Fk] ≤ Ψαβ(xk)− γk + βk,

we show almost surely that Ψαβ(xk) is convergent, {Ψαβ(xk)} is bounded, and
∑∞

k=1 γk < ∞.
The latter implies that

∑∞
k=1 ‖dk‖2 < ∞ almost surely, and limk→∞ dk = 0 almost surely. By

Lemma 4.1 (d), almost sure boundedness of {Ψαβ(xk)} implies that {xk} is bounded almost
surely. Furthermore, since ∇α,βΨ(xk) is bounded almost surely, Lemma 4.1 (a) implies that

0 = lim
k→∞

∇Ψαβ(xk)Tdk ≤ lim
k→∞

−σ
2
(‖r(xk)‖+ ρ‖s(xk)‖)2 ≤ 0, almost surely.

Therefore, for any accumulation point x∗ of {xk}, r(x∗) = s(x∗) = 0, i.e., x∗ is a solution of
SVIP according to Lemma 4.1 (c). By the strong monotonicity property of F , x∗ is the unique
solution of SVIP and {xk} converges to x∗.
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5 Stochastic Approximation Methods for Stochastic Nonlinear

Complementarity Problems

In the preceding sections, we proposed stochastic approximation methods for solving SVIP
(1.1). Theoretically, these methods can be applied to solving SNCP (1.2) as the latter is a
special case of the former. However, we are motivated to consider specific iterative scheme for
SNCP for three main reasons. (a) The SA methods proposed so far are designed for general
SVIP without exploiting specific structures of SNCP; in particular the methods in Section 4
based on gap functions are typically designed for SVIP rather than SNCP as this is well known
in the deterministic case. (b) The conditions imposed for convergence of SA methods for SVIP
may be weakened when SVIP is reduced to SNCP. For instance, Theorem 4.1 only applies to the
case when F is a linear affine function, and Theorem 4.2 requires F to be strongly monotone.
Alternative methods for SNCP, which require weaker conditions for the convergence analysis,
may be possible. (c) Numerical methods based on NCP functions such as the Fischer-Burmeister
function are very popular and powerful for solving deterministic NCPs. It is therefore natural
for us to consider specialized SA methods based on these NCP functions for solving SNCP.

Specifically, we reformulate SNCP as a stochastic nonsmooth system of equations and then
solve the equations via least-squared minimization. Recall that Fischer-Burmeister function
φ : IR2 → IR is defined as

φ(a, b) =
√
a2 + b2 − a− b.

Using this function, SNCP (1.2) is equivalent to the following system of stochastic equations

H(x) ≡


φ(x1, F1(x))

...
φ(xn, Fn(x))

 = 0 (5.16)

in the sense that the solution set of (5.16) coincides with that of (1.2). One of the main benefits
in using the Fischer-Burmeister function is that it is semismooth everywhere and continuously
differentiable of any order at any point except the origin. Also the function is globally Lipschitz
continuous. It is natural to propose SA methods for solving SSE (5.16) for solutions of the
SNCP. By Proposition 4.4 of [2], convergence of SA for SSE usually requires H in (5.16) to
be strongly monotone and globally Lipschitz continuous. However the following example shows
that H in (5.16) is not necessarily monotone even when F is strongly monotone.

Example 5.1 Let F (x) = Ax + b where A =

(
2 1
−10 20

)
, and b = (0,−20)T . It is

easy to verify that A + AT is positive definite. Therefore A is positive definite and F is
strongly monotone. In what follows, we show that H is not monotone at the point (0, 1),
which is equivalent to showing that ∇H(0, 1) is not positive semi-definite. Since F1(0, 1) = 1,
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F2(0, 1) = 0, H is continuously differentiable at (0, 1) and ∇H(0, 1) =

(
−1 0
10 −20

)
. There-

fore ∇H(0, 1)+∇H(0, 1)T =

(
−2 10
10 −40

)
. The above matrix has two real valued eigenvalues:

0.4709 and −42.4709. This shows ∇H(0, 1)+∇H(0, 1)T , or equivalently, ∇H(0, 1) is indefinite.
By continuity of ∇H at (0, 1), ∇H(·) is indefinite in a small neighborhood of point (0, 1). This
shows that H is not monotone in the neighborhood.

The above example discourages us to consider a Robbins-Monro type iterative scheme for
solving SSE (5.16). In what follows, we consider SA methods based on a minimization reformu-
lation of SNCP. Let

min
x

Ψ(x) ≡ 1
2
‖H(x)‖2. (5.17)

Under suitable conditions [8], the global solution set of (5.17) is the same as the solution set of
SNCP. Analogous to Theorem 4.1, one may attempt to propose SA methods for solving SNCP
based on (5.17). If one can prove strong convexity of Ψ and global Lipschitz continuity of ∇Ψ,
then it follows from Theorem 5.3 of [27] that the SA method based on the merit function Ψ
converges almost surely to a global solution of (5.17) and hence a solution of the SNCP.

Instead of looking for conditions that ensure convergence of SA methods applied to refor-
mulations (5.16) and (5.17), we propose an SA method in the spirit of iterative scheme (4.15),
which is a derivative-free approach. Consider the following SA scheme for solving (5.17):

xk+1 = xk − ak(dk + ωk), (5.18)

where

dk
i = −φ(xk

i , Fi(xk))∇bφ(xk
i , Fi(xk)), i = 1, · · · , n, (5.19)

and ωk is the stochastic error when approximation of dk is obtained from a sample. For instance,
if ξk is a sample of ξ(θ), then we may choose dk + wk = −φ(xk

i , fi(xk, ξk))∇bφ(xk
i , fi(xk, ξk)).

The search direction is used for developing derivative-free iterative scheme for solving NCP
in [13, 19]. The following result states that under proper conditions, dk is a descent direction of
Ψ at xk and dk = 0 implies that xk is a solution of SNCP.

Lemma 5.1

(a) x is a solution of SNCP (1.2) if and only if d = 0, where

di = −φ(xi, Fi(x))∇bφ(xi, Fi(x)), i = 1, · · · , n.

(b) If F is continuously differentiable and there exists σk > 0 such that dT∇F (xk)d ≥ σk‖d‖2,
then dk is a descent direction of Ψ at xk and

∇Ψ(xk)Tdk ≤ −σk‖dk‖2. (5.20)
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Proof. (a) is proved in [13, Lemma 4.1]. The result in (b) is analogous to [13, Lemma 4.1].
The only difference is that modulus σk depends on xk whereas the modulus used in [13] is a
constant. We omit details for the proof.

Next, we analyze convergence of sequence {xk} generated by iterative scheme (5.18). We
require conditions similar to those in iterative scheme (3.1). A proof for Lemma 5.2 below is
provided in the appendix.

Lemma 5.2 Let ψ(a, b) = φ(a, b)2 where φ is the Fischer-Burmeister function. Then (a)
ψ is continuously continuously differentiable; (b) ψ is twice continuously differentiable over
IR2\{(0, 0}; (c) ∇ψ is locally Lipschitz over IR2; (d) the Clarke generalized Jacobian of ∇ψ is
bounded over IR2; (e) ∇ψ is globally Lipschitz continuous over IR2.

Proposition 5.1 Suppose that F is globally Lipschitz continuous and twice continuously differ-
entiable, and there exist positive constants C1, C2 such that

max
i

(‖x‖+ C1)‖∇2Fi(x)‖ ≤ C2, ∀x ∈ IRn. (5.21)

Then ∇Ψ is globally Lipschitz continuous over IRn.

A proof for Proposition 5.1 can be found in the Appendix. Note that Condition (5.21) is
satisfied when F is a linear affine function.

Theorem 5.1 Suppose that Assumption 3.1 (a), (b), (c) and (d) hold, for iterative scheme
(5.18). Assume that F is twice continuously differentiable, that Condition (5.21) is satisfied,
and there exist t ∈ (1, 2) and C > 0 and a continuous function σ(x) > 0 such that

(F (y)− F (x))T (y − x) ≥ min(σ(x)‖y − x‖2, C‖y − x‖t), ∀y ∈ IRn, (5.22)

and the stepsize satisfies

0 < ak ≤
σ(xk)
2L

. (5.23)

Then sequence {xk} generated by this scheme almost surely converges to the unique solution x∗

of SVIP.

Before providing a proof, we note that condition (5.23) on stepsize choice here is more
restrictive than Assumption 3.1 (a) because it must be bounded above by σ(xk)

2L , which implies
that we need some knowledge at xk when choosing ak. Technically this is feasible because we
do not have to select the sequence of stepsizes at the beginning of the iterative scheme. This
condition is automatically satisfied when F is strongly monotone. But our intention here is to
cover other monotone functions which are not strongly monotone. For instance the function in
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Example 3.1 is monotone but not strongly monotone. This function, however, satisfies Condition
(5.22). Note that the ξ-monotonicity [8, Definition 2.3.1] implies (5.22).

Proof of Theorem 5.1. We first check the condition (5.20) of Lemma 5.1 (b). Consider (5.22).
Let d ∈ IRn with ‖d‖ = 1 be fixed. Let y = x + τd. Then for τ > 0 sufficiently small, 1

4τ
2‖d‖2

is dominated by 1
4‖τd‖

t. Since F is continuously differentiable, it follows from (5.22) that

dT∇F (xk)d = lim
τ↓0

(F (xk + τd)− F (xk))Td/τ ≥ σ(xk).

This shows that the condition in Lemma 5.1 (b) holds.

Next, we will use Lemma 3.1 to prove our main result. By virtue of the mean value theorem,
there exists yk located at a point on the line segment between xk and xk+1 such that

Ψ(xk+1) = Ψ(xk) +∇Ψ(yk)T (xk+1 − xk).

By Proposition 5.1, ∇Ψ is globally Lipschitz continuous. Therefore there exists L > 0 such that

‖∇Ψ(yk)−∇Ψ(xk)‖ ≤ L‖xk+1 − xk‖.

By iterative scheme (5.18) and the fact that x∗ is a solution of SNCP, we have

E[Ψ(xk+1)|Fk] = E[Ψ(xk) +∇Ψ(yk)T (xk+1 − xk)|Fk]
= E[Ψ(xk) + ak∇Ψ(yk)T (dk + wk)|Fk]
= Ψ(xk) + akE[∇Ψ(yk)(dk + wk)|Fk]
= Ψ(xk) + akE[∇Ψ(xk)T (dk + wk)|Fk]+

akE[(∇Ψ(yk)−∇Ψ(xk))T (dk + wk)|Fk]
= Ψ(xk) + ak∇Ψ(xk)Tdk + 0 + akE[(∇Ψ(yk)−∇Ψ(xk))T (dk + wk)|Fk]
≤ Ψ(xk) + ak∇Ψ(xk)Tdk + akE[L‖yk − xk‖‖dk + wk‖|Fk]

(By Proposition 5.1)
≤ Ψ(xk) + ak∇Ψ(xk)Tdk + L(ak)2E[‖dk + wk‖2]

(By (5.18))
≤ Ψ(xk) + ak∇Ψ(xk)Tdk + 2L(ak)2(‖dk‖2 + E[‖wk‖2|Fk]

(By Assumption 3.1 (b))
≤ Ψ(xk)− akσ(xk)‖dk‖2 + 2L(ak)2(‖dk‖2 + E[‖wk‖2|Fk]

(By (5.20))
= Ψ(xk) + ak(2Lak − σ(xk))‖dk‖2 + 2L(ak)2E[‖wk‖2|Fk]
= Ψ(xk)− γk + βk,

where γk = −ak(2Lak − σ(xk))‖dk‖2, and βk = 2L(ak)2E[‖wk‖2|Fk]. By (5.23) and Assump-
tion 3.1 (a), γk ≥ 0, and by Assumptions 3.1 (a) and (c),

∑∞
k=1 βk < ∞. Applying Lemma 3.1

to the recursive equation
E[Ψ(xk+1)|Fk] ≤ Ψ(xk)− γk + βk,

we show that Ψ(xk) is convergent almost surely and
∑∞

k=1 γk <∞.
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We next show that Ψ(xk) is convergent to 0 for every sample path corresponding to conver-
gence of Ψ(xk). Let the sample path be fixed.

First, we prove that xk is bounded. Assume for the sake of a contradiction that ‖xk‖ → ∞
for the sample path at which Ψ(xk) is convergent. Let

J ≡ {i ∈ {1, 2, · · · , n} : {xk
i } is unbounded}.

Then J 6= ∅. Define yk ∈ IRn as follows

yk
i ≡

{
0, if i ∈ J,
xk

i , if i 6∈ J.

Then {yk} is bounded, that is, there exists a constant C̄ > 0 such that yk is located within C̄B,
where B denotes the closed unit ball in IRn. Let

σ = inf
x∈C̄B

σ(x).

For sufficiently large k, σ(yk)‖xk − yk‖2 > C‖xk − yk‖t. By (5.22), we have

C

(∑
i∈J

(xk
i )

2

)t/2

= C‖xk − yk‖t

≤
n∑

i=1

(xk
i − yk

i )(Fi(xk)− Fi(yk))

≤
√∑

i∈J

(xk
i )2

n∑
i=1

|Fi(xk)− Fi(yk)|.

Following a similar argument as in the proof of [13, Theorem 3.2], we can prove that there exists
an index i0 ∈ J such that |xk

i0
| → ∞, and |Fi0(x

k)| → ∞. By [13, Lemma 3.1], ψ(xk
i0
, Fi0(x

k)) →
∞, as k →∞, which implies Ψ(xk) →∞, which contradicts the fact that {Ψ(xk)} is convergent.
Therefore, {xk} is bounded.

Because {xk} is bounded, there exists σ̂ > 0 such that σ(xk) ≥ σ̂ > 0. Consequently we can
derive from

∑∞
k=1 γk <∞ that dk → 0 as k →∞. By Lemma 5.1 (a) and Assumption 3.1 (a),

we show that {xk} converges to the unique solution of SNCP (1.2). Almost sure convergence
follows from the fact that the argument above holds for every sample path corresponding to
convergence of Ψ(xk).

Note that Conditions (5.21) and (5.22) play an important role in the above theorem. The
next example shows that these two conditions do hold for some functions that are not strongly
monotone.

Example 5.2 Consider the function in Example 3.1. We shall prove that (5.22) holds when
C = 1

4 and t = 3
2 and

σ(x) =

{
1

4
√

x
if x ≥ 1,

1
4 otherwise.
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We only need to prove that for any x, y ∈ IR,

(F (y)− F (x))(y − x) ≥ E(x, y), (5.24)

where

E(x, y) =



1
4(y − x)

3
2 if 1 < x, 9x < y,

1
4
√

x
(y − x)2 if 1 < x, 1 ≤ y ≤ 9x,

1
4
√

x
(y − x)2 if 1 < x, 0 ≤ y < 1,

1
4
√

x
(y − x)2 if 1 < x, y < 0,

1
4(y − x)2 if 0 ≤ x ≤ 1, y < 1,
1
4(y − x)2 if 0 ≤ x ≤ 1, 1 ≤ y ≤ 4,
1
4(y − x)

3
2 if 0 ≤ x ≤ 1, 4 < y,

1
4(y − x)2 if x < 0, y ≤ 1,
1
4(y − x)

3
2 if x < 0, 1 < y.

The inequality (5.24) can be proved using the definition of F and some simple and direct calcu-
lations. Here we only provide some simple clues for each case but omit tedious detail.

If 1 < x, 9x < y :
√
y − x ≤ √

y, 3
√
x ≤ √

y.

If 1 < x, 1 ≤ y ≤ 9x : (
√
y −

√
x)(
√
y +

√
x) = y − x,

√
y ≤ 3

√
x.

If 1 < x, 0 ≤ y < 1 : −y ≤ −2y
√
x,
√
x ≤ x.

If 1 < x, y < 0 : −(1 + x) ≤ −2
√
x,−x ≤ −xy.

If 0 ≤ x ≤ 1, y < 1 : trivial.
If 0 ≤ x ≤ 1, 1 ≤ y ≤ 4 : y ≤ 4

√
y − 3, x ≤ 1.

If 0 ≤ x ≤ 1, 4 < y : 2 ≤ √
y, x ≤ √

y,
√
y − x ≤ √

y.

If x < 0, y ≤ 1 : trivial.
If x < 0, 1 < y : 1 ≤ √

y,
√
y − x ≤ √

y − x.

Finally Condition (5.21) can be verified easily by calculating the first and the second order
derivative of F .

When F is an affine strongly monotone function, Conditions (5.21) and (5.22) in Theorem
5.1 are satisfied, and Condition (5.23) is redundant. Hence we have the following result.

Corollary 5.1 Suppose that Assumption 3.1 (a), (b) and (c) hold for for iterative scheme (5.18).
Suppose also that F is a strongly monotone affine function, that is, F (x) = Ax + b where A is
positive definite. Then sequence {xk} generated by iterative scheme (5.18) almost surely con-
verges to the unique solution x∗ of SVIP.

Before we conclude this section, it is worthwhile to point out what has been done in the
literature on SA for SVIP and SNCP. Flam [10] proposes a projection based SA for solving SNCP
that is formulated from a number of optimization problems describing equilibrium systems. A
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major difference between Flam’s SA and iterative scheme (3.7) is that the projection in the
former method is carried out in the feasible solution space of variable xi rather than Y = IRn

+.
Under similar conditions to Assumption 3.1, Flam proves convergence of his SA method.

6 Sample Applications

In this section, we present a few SVIP and SNCP examples arising from the areas of economics,
engineering and operations management.

Example 6.1 Stochastic User Equilibrium [40]. Network equilibrium models are commonly
used for predictions of traffic patterns in transportation networks which are subject to congestion.
Network equilibrium is characterized by Wardrop’s two principles. The first principle states that
the journey times in all routes actually used are equal to or less than those which would be
experienced by a single vehicle on any unused route. The traffic flows satisfying this principle
are usually referred to as user equilibrium flows. The second principle states that at equilibrium
the average journey time is minimum.

A variant of user equilibrium is the stochastic user equilibrium (SUE) in which each trav-
eller attempts to minimize their perceived dis-utility/costs, where these costs are composed of
a deterministic measured cost and a random term. For each origin-destination (OD) pair j in
the traffic network and a particular path r of OD j, the user’s dis-utility function is defined by
ur = θ0dr + θ1E[Cr] + θ2E[max(0, Cr − τj)], where dr represents the composite of attributes such
as distance which are independent of time/flow, Cr denotes the travel time on path r which is
implicitly determined by the flows on all arcs on path r, τj denotes the longest acceptable travel
time for j, θ0 is the weight placed on these attributes, θ1 is the weight placed on time, and θ2 is
the penalty coefficient when the actual travel time on j exceeds τj. Let xr denote the traffic flow
on path r and Rj denote the collection of all feasible paths for j. Assume that the total demand
for OD pair j is qj. Then the feasible set of the traffic flow across the whole network can be
expressed as X =

{
x :
∑

r∈Rj
xr = qj ,∀j, xr ≥ 0,∀r

}
, which is a convex set.

A vector x∗ ∈ X is a stochastic user equilibrium if and only if (x− x∗)Tu(x∗) ≥ 0,∀x ∈ X ,
which is an SVIP.

Example 6.2 Electricity Supply Networks [8].Oligopolistic pricing models have wide ap-
plicability in spatially separated electricity markets. The aim of these models is to determine the
amount of electricity produced by each competing firm, the flow of power, and the transmission
prices through the links of the electricity network. We describe a simplified, single-period, spa-
tially separated, oligopolistic electricity pricing model with random demand. A slightly different
example is presented in [28].

Consider an electricity network with node set N and arc set A. As many as n firms compete
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to supply electricity to the network. Each firm i owns generation facilities in a subset of nodes
Ni ⊂ N . Let Gij denote the set of generation plants by firm i at node j ∈ Ni and qij` the amount
of electricity produced by firm i at plant ` ∈ Gij. Market demand at node j is described by an
inverse demand function pj(

∑n
i=1 dij , ξj) which is a function of the total amount of electricity∑n

i=1 dij supplied to node j and a random shock ξj, where dij is the amount of electricity delivered
to node j by firm i.

Let ria be the amount of electricity transmitted through arc a ∈ A by firm i. Then dij , j ∈ Ni,
qij`, j ∈ Ni, ` ∈ Gij and ria, a ∈ A are all decision variables for firm i, which is collectively
denoted by xi. Firm i needs to make a decision before demands at nodes are realized and its
decision problem is to maximize their profit which is equal to the total revenue minus the total
production cost and transmission cost:

ui(xi, x−i) = E

∑
j∈Ni

pj(
n∑

i=1

dij , ξ)dij −
∑
j∈Ni

∑
`∈Gij

Cij`(qij`)−
∑
a∈A

ρaria

 ,
where x−i is the joint decision variables for all other firms except firm i, Cij` is the production
cost function at plant ` of node j for firm i, and ρa is the unit transmission cost on arc a.

In order for the electricity flow to be feasible, it must satisfy the flow balance at each node,
production capacity at each plant, and transmission capacity on each arc. Let Xi(x−i), which is
precisely defined on page 30 of [8], denote the feasible set of electricity flow for firm i given the
joint decision variables x−i for all other firms. Overall, firm i’s profit maximization problem is
maxxi ui(xi, x−i) subject to xi ∈ Xi(x−i). Following Proposition 1.4.3 of [8], this game theoretic
model for the electricity supply network problem can be converted into an SVIP.

Example 6.3 Newsvendor Competition [24]. The newsvendor (or newsboy) model is an
important mathematical model in supply chain management, operations management and applied
economics used to determine optimal inventory levels. It is typically characterized by fixed prices
and uncertain demand.

Suppose there are n players in the market who produce the same product. Let pi and ci

be the unit price and unit production cost of newsvendor i. Assume the number of customers
who prefer to buy the product from newsvendor i is Di, which is a random variable. Customers
always purchase the product from their unique preferred newsvendor provided that the product
is available. However a proportion, say oij, of the customers of newsvendor j will purchase
the product from newsvendor i if they find that newsvendor j does not have any product left
unsold. Let qi be the production level for newsvendor i. Given the production levels q−i for all
other newsvendors, newsvendor i chooses their optimal production level qi by maximizing their
expected profit: ui(qi, q−i) = piE[min(qi, Di +

∑
j 6=i oij max(Dj − qj , 0))]− ciqi.

All newsvendors play an oligopolistic game by choosing their production levels appropriately.
An optimal solution for the newsvendor game is a Nash equilibrium which states that no newsven-
dor will increase their expected profit by unilaterally altering their production level. It is well
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known from Proposition 1.4.2 of [8] that any oligopolistic Nash game can be converted into an
example of VIP under the conditions that the utility function is concave and continuously dif-
ferentiable with respect to the player’s own strategy. Hence this oligopolistic Nash game can be
converted into an example of SVIP. Several other newsvendor examples of SNCP and SVIP can
be found from [4, 23] and references of [24].

Example 6.4 Wireless Networks [25]. Wireless networks have dramatically changed the
world and our daily life. Many wireless network problems can be formulated as game theoretic
models. Consider a multipacket reception wireless network with n nodes and an uplink commu-
nication channel where the nodes communicate with a common base station.

Let ξi denote the channel state of node i, which is a continuous random variable and pi(ξi)
the decision variable which is a Lebesgue measurable function that maps channel state ξ to a
transmission policy. The objective of node i is to find an optimal transmission policy function
pi(ξi) that maximizes its individual utility (the expected value of a complicated function of pi(ξi)).
A particular transmission policy called threshold policy characterizes pi by a single real-valued
parameter xi, that is, pi(ξi) = 0 if ξi ≤ xi, and 1 otherwise, where xi ∈ [0,M ]. In this case,
the utility can be reformulated as a function of xi, denoted by Ti(xi, x−i), where x−i denotes
the parameters that determine the policies of the other nodes. Consequently node i’s decision
problem is to maximize Ti(xi, x−i) for given x−i subject to xi ∈ [0,M ]. This is a stochastic
minimization problem with a single variable xi.

A wireless network solution is a Nash equilibrium (x∗1, · · · , x∗n) where no node is better off
by unilaterally altering its strategies xi. Similar to Example 6.3, under certain conditions, the
multipacket reception wireless network problem can be reformulated as an SVIP.

7 Conclusions

In this paper, we have proposed several SA methods for solving stochastic variational inequality
and stochastic nonlinear complementarity problems. They are iterative schemes generalized from
their deterministic counterparts. Iterative scheme (3.7) is a projection-type method and it does
not involve any calculation of derivatives. Therefore it is more suitable for those problems with
a simple feasible set but a relatively complex structure of underlying functions. Iterative scheme
(4.11) is based on the gap functions of SVIP and it allows us to explore high-order derivative
information so that faster convergent algorithms can be designed. See the next paragraph
for simultaneous perturbation stochastic approximation. Iterative scheme (5.18) is specifically
proposed for SNCP and is based on the well-known Fischer-Burmeister function. It is interesting
to note that implementation of this scheme does not require differentiability of the underlying
functions although we required second order derivatives in the convergence analysis. Numerical
efficiency of those proposed iterative schemes remains to be investigated.
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A couple of topics are worth further investigation. First, averaging SA methods [30] are
proven to speed up convergence for solving SSE and the stochastic optimization problem. It
would be interesting to see whether or not averaging SA methods can also speed up convergence
when they are used for solving SVIP and SNCP. Second, some SA methods such as simultaneous
perturbation stochastic approximation [18] that incorporate higher order derivative information
of the underlying functions for SSE and the stochastic optimization problem have been exten-
sively examined in the literature. The same method might be explored for SVIP and SNCP.

Acknowledgements: The authors are thankful to three anonymous referees, Associate Editor
Ji-Feng Zhang, Jong-Shi Pang, Danny Ralph, Stefan Scholtes, Defeng Sun and Roger Wets for
their constructive comments and to Roger Wets for bringing reference [7] to our attention.

References

[1] T. Basar and G. Olsder, Dynamic Noncooperative Game Theory, SIAM, 1999.

[2] D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, 1996.

[3] D. Bertsimas and S. de Boer, Simulation-based booking limits for airline revenue manage-
ment, Operations Research 53 (2005) 90–106.

[4] F.Y. Chen, H. Yan and L. Yao, A newsvendor pricing game, IEEE Transactions on Systems,
Man & Cybernetics: Part A, 34 (2004) 450–456.

[5] X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear
complementarity problems, Mathematics of Operations Research, to appear.

[6] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New-York, 1983.

[7] Y. Ermoliev, Stohastic quasigradient methods, In Y. Ermoliev and R.J-B. Wets (Eds.),
Numerical Techniques for Stochastic Optimization Problems, Springer-Verlag: Berlin, Heidel-
berg, pp. 141–186 (1988).

[8] F. Facchinei and J.S. Pang, Finite-dimensional Variational Inequalities and Complementarity
Problems, Springer, New York, 2003.

[9] J. Filar and K. Vrieze, Competitive Markov Decision Processes, Springer-Verlag, 1997.

[10] S.D. Flam, Learning equilibrium play: A myopic approach, Computational Optimization
and Applications 14 (1999) 87–102.

[11] M.C. Fu, Optimization for simulation: Theory vs. Practice, INFORMS Journal on Com-
puting 14 (2002) 192–215.

[12] M. Fukushima, Equivalent differentiable optimization problems and descent methods for
asymmetric variational inequality problems, Mathematical Programming 53 (1992) 99–110.

25



[13] C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems, Com-
putational Optimization and Applications 5 (1996) 155–173.

[14] E.G. Golshtein and N.V. Tretyakov, Modified Lagrangian and Monotone Maps in Optimiza-
tion, John Wiley and Sons, New York, 1996.
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8 Appendix

Proof of Proposition 2.1. Proofs for (a) and (c) can be found in [8].

(b) LetH(x, y) = 1
2(y−x)TD(y−x). Then∇yH(x, y) = D(y−x). In view of the optimization

problem in Definition 2.1, for any fixed x ∈ IRn, y∗ = ΠY,D(x) is the unique optimal solution.
Then the first order necessary condition of the optimization problem indicates

∇yH(x, y∗)T (y − y∗) ≥ 0, ∀y ∈ Y,

which with the symmetric property of D implies that

(y −ΠY,D(x))TD(y −ΠY,D(x)) ≥ 0, ∀y ∈ Y.

Let x take two different values x1, x2 ∈ IRn, let y take values of ΠY,D(x1), ΠY,D(x2). Then we
obtain from the inequalities above

(ΠY,D(x2)− x1)TD(ΠY,D(x2)−ΠY,D(x1)) ≥ 0,

and
(ΠY,D(x1)− x2)TD(ΠY,D(x1)−ΠY,D(x2)) ≥ 0.

Adding the last two inequalities, we obtain

(ΠY,D(x1)−ΠY,D(x2))TD(x1 − x2) ≥ ‖ΠY,D(x1)−ΠY,D(x2)‖2
D,

i.e., ΠY,D is ISM under the D-norm with modulus 1.

(d) Let E(x) = x−ΠY,D(x−aD−1F (x)). Since ΠY,D is ISM under the D-norm with modulus
1, for any x1, x2 ∈ IRn, we have

(ΠY,D(x1 − aD−1F (x1))−ΠY,D(x2 − aD−1F (x2)))TD(x1 − aD−1F (x1)− x2 + aD−1F (x2))

≥ ‖ΠY,D(x1 − aD−1F (x1))−ΠY,D(x2 − aD−1F (x2))‖2
D.

By the definition of E(x), this is equivalent to the following

(x1 − x2 − E(x1) + E(x2))TD(E(x1)− E(x2)− aD−1F (x1) + aD−1F (x2)) ≥ 0.

Further rearrangements of the above inequality yield

(x1 − x2)TD(E(x1)− E(x2)) ≥ (x1 − x2)TD(aD−1F (x1)− aD−1F (x2)) + ‖E(x1)− E(x2)‖2
D

−(E(x1)− E(x2))TD(aD−1F (x1)− aD−1F (x2))
≥ aµ‖F (x1)− F (x2)‖2 + ‖E(x1)− E(x2)‖2

D

−a(E(x1)− E(x2))T (F (x1)− F (x2))
= ‖E(x1)− E(x2)‖2

D − a
4µ‖E(x1)− E(x2)‖2

+aµ‖F (x1)− F (x2)− 1
2µ(E(x1) + E(x2))‖2

≥ ‖E(x1)− E(x2)‖2
D − a

4µ‖E(x1)− E(x2)‖2

≥ ‖E(x1)− E(x2)‖2
D − a

4µλmin(D)‖E(x1)− E(x2)‖2
D

= (1− a
4µλmin(D))‖E(x1)− E(x2)‖2

D,
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where the second inequality follows the fact that F is ISM on Y with modulus µ, and the last
inequality from (2.6). The result follows.

Proof of Proposition 3.1. Part (a). Let

a(ε) := min
x∈Y:ρ≥‖x−x∗‖≥ε

(F (x)− F (x∗))T (x− x∗)

and
b(ε) := min

x∈Y:ρ≥‖x−x∗‖≥ε
F (x∗)T (x− x∗).

Since Y is a closed convex set, both a(ε) and b(ε) are well defined. It is easy to observe that

inf
x∈Y:ρ≥‖x−x∗‖≥ε

F (x)T (x− x∗) ≥ a(ε) + b(ε).

The fact that x∗ is a solution implies that b(ε) ≥ 0, and the monotonicity property of F at x∗

implies a(ε) ≥ 0. It is easy to verify that a(ε) > 0 when F is strictly monotone at x∗. In what
follows we show that b(ε) > 0 when −F (x∗) is in the interior of the polar cone of the tangent
cone of Y at x∗. To see this, let TY(x∗) denote the tangent cone of Y at x∗ and d ∈ TY(x∗). By
definition, F (x∗)Td > 0. Assume for a contradiction that for any t > 0, there exists x(t) ∈ Y,
‖x(t)−x∗‖ ≥ ε such that F (x∗)T (x(t)−x∗) ≤ t. Divide both sides of the inequality by ‖x(t)−x∗‖
and let d(t) = (x(t) − x∗)/‖x(t) − x∗‖. Then by driving t to zero, we may get a subsequence
of {d(t)} such that it converges to d∗ and F (x∗)Td∗ ≤ 0. This contradicts the assumption as
d∗ ∈ TY(x∗). This shows b(ε) > 0.

Part (b). Let x∗∗ be another solution and (e′) holds at the point. The monotonicity property
of F implies that

(F (x∗∗)− F (x∗))T (x∗∗ − x∗) = 0.

Using this relation and (e′), we have

F (x∗∗)T (x∗∗ − x∗) = F (x∗)T (x∗∗ − x∗) > 0

and by symmetry
F (x∗)T (x∗ − x∗∗) = F (x∗∗)T (x∗ − x∗∗) > 0

a contradiction! The proof is complete.

Proof of Lemma 5.2. (a) is proved in [13], (b) is obvious, and (c) is proved in Example 7.4.9
of [8]. We only need to prove (d) and (e).

(d) It follows from (b) that ψ is twice continuously differentiable over IR2\{(0, 0} and

∇2ψ(a, b) = 2∇φ(a, b)∇φ(a, b)T + 2φ(a, b)∇2φ(a, b), ∀(a, b) 6= (0, 0).

Therefore the Clarke generalized Jacobian of ∇ψ coincides with ∇2ψ on IR2\{(0, 0}. It is easy
to calculate ∇φ(a, b) and to prove that ∇φ is bounded over IR2\{(0, 0}. In order to prove that
∇2ψ is bounded over IR2\{(0, 0}, we only need to show that φ(a, b)∇2φ(a, b) is bounded over
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IR2\{(0, 0}. The latter holds by showing that φ(a, b)∂2φ(a,b)
∂a2 , φ(a, b)∂2φ(a,b)

∂b2
and φ(a, b)∂2φ(a,b)

∂a∂b

are bounded over IR2\{(0, 0}.

By a simple calculation

∂2φ(a, b)
∂a2

=
1√

a2 + b2
− a2√

(a2 + b2)3
.

Therefore

φ(a, b)
∂2φ(a, b)
∂a2

= 1− a+ b√
a2 + b2

− φ(a, b)
a2√

(a2 + b2)3
.

The third term on the right hand side of the above equation can be written as

a2

a2 + b2

(
1− a+ b√

a2 + b2

)
,

which is obviously bounded since ∣∣∣∣ a+ b√
a2 + b2

∣∣∣∣ ≤ 2.

Thus φ(a, b)∂2φ(a,b)
∂a2 is bounded over IR2\{(0, 0}. Similarly, we can prove that φ(a, b)∂2φ(a,b)

∂b2
is

bounded over IR2\{(0, 0} as b and a are symmetric in φ.

Finally, we consider φ(a, b)∂2φ(a,b)
∂a∂b . Since

φ(a, b)
∂2φ(a, b)
∂a∂b

= − ab

a2 + b2

(
1− a+ b√

a2 + b2

)
,

it is easy to see that the right hand side is bounded. This shows φ(a, b)∇2φ(a, b) is bounded
over IR2\{(0, 0}.

So far we have shown that ∇2ψ is bounded over IR2 \ {0, 0} except origin (0, 0). By [6,
Definition 2.6.1], the Clarke generalized Jacobian of ∇ψ at (0, 0) is the convex hull of the
limiting Jacobians of ∇2ψ(x) as x→ (0, 0), and it is compact by Proposition 2.6.2 of [6]. Hence
the boundedness of ∂∇ψ(0, 0) follows from that of ∇2ψ(x).

(e) For any x, y ∈ IR2, it follows from Proposition 2.6.5 of [6] that

∇ψ(x)−∇ψ(y) ∈ Co∂∇ψ([x, y])(y − x), (8.25)

where Co∂∇ψ([x, y]) is the convex hull of all the Clarke generalized Jacobians of ∇ψ at z that
belongs to the line segment between x and y. By (iv), there exists a positive constant L such
that ‖∂∇ψ(z)‖ ≤ L. This, together with (8.25), implies that for any x, y ∈ IR2

‖∇ψ(x)−∇ψ(y)‖ ≤ L‖x− y‖

i.e., ∇ψ is globally Lipschitz over IR2.

Proof of Proposition 5.1. By definition

Ψ(x) =
1
2

n∑
i=1

ψ(xi, Fi(x)),
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and

∇Ψ(x) =
n∑

i=1

[∇aψ(xi, Fi(x))ei +∇bψ(xi, Fi(x))∇Fi(x)],

where ei is a unit n-dimensional vector with the i-th component being 1 and others being 0.

By Lemma 5.2, ∇ψ is globally Lipschitz continuous over IR2, and by the assumption, F is a
globally Lipschitz continuous. Therefore ∇aψ(xi, Fi(x)) is globally Lipschitz continuous as it is
a composition of two globally Lipschitz functions over IRn.

To prove that ∇Ψ is globally Lipschitz continuous over IRn, we are now left to prove that
for any i = 1, · · · , n, ∇bψ(xi, Fi(x))∇Fi(x) to be globally Lipschitz continuous over IRn. By
proposition 2.6.6 of [6], ∇bψ(xi, Fi(x))∇Fi(x) is locally Lipschitz and its generalized Jacobian
at x is contained in the following set

Ω(x) ≡ ∇Fi(x)∂∇bψ(xi, Fi(x))T +∇bψ(xi, Fi(x))∇2Fi(x).

It suffices to prove {Ω(x) : x ∈ IRn} is bounded in order to prove that ∇bψ(xi, Fi(x))∇Fi(x)
to be globally Lipschitz continuous over IRn. The boundedness of {Ω(x) : x ∈ IRn} follows from
the facts below:

• ∂∇bψ(xi, Fi(x)) is bounded by Lemma 5.2,

• ∇Fi(x) is bounded because F is globally Lipschitz,

•
‖∇bψ(xi, Fi(x))‖ = 2‖φ(xi, Fi(x))∇bφ(xi, Fi(x))‖

≤ 4 max (|xi|, |Fi(x)|)
≤ 4 max (|xi|, |Fi(x)|)
= O(‖x‖+ C1)

where C1 is a positive constant,

• Condition (5.21).

The proof is complete.
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