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In recent years, the performance-based approach to contracting for medical services has been gaining popu-

larity across different healthcare delivery systems, both in the US (under the name of “Pay-for-Performance”,

or P4P), and abroad (“Payment-by-Results”, or PbR, in the UK). One common element of performance-

based compensation is the inclusion of patient service access metrics, in addition to the quality of clinical

outcomes, in the process of performance evaluation for a provider of healthcare services. For example, the

implementation of the “Payment-by-Results” approach includes appointment scheduling targets designed

to shorten patient waiting time, and adherence to these targets is monitored through a dedicated online

outpatient appointment system, “Choose-and-Book”.

The goal of our research is to build a unified performance-based contracting (PBC) framework that

incorporates patient access-to-care requirements and that explicitly accounts for the complex outpatient care

dynamics facilitated by the use of an online appointment scheduling system. In our model, a service provider

needs to allocate his service capacity among three patient groups: urgent patients whose service cannot be

postponed, and two groups of non-urgent patients, dedicated patients who insist on getting served by their

first-choice provider and flexible patients who will choose another provider if the online appointment system

shows no available appointments with their first-choice provider. The principal wants to minimize her cost

(payments made to the provider offset by the waiting-time penalty) of achieving the expected waiting-time

target. We model the appointment dynamics in the presence of a mixed-patient population as that of an

M/D/1 queue and analyze several contracting approaches under adverse selection (asymmetric information)

and moral hazard (private actions) settings. We study the first-best and the second-best solutions, as well

as their specific contracting implementation schemes. Our results show that simple and popular schemes

used in practice cannot implement the first-best solution and that the linear PBC cannot implement the

second-best solution. In order to overcome these limitations, we propose a threshold-penalty PBC approach

and show that it coordinates the system for an arbitrary patient mix and that it achieves the second-best

performance for the setting where all patients are dedicated.

Key words : Healthcare; performance-based contracting, principal-agent theory; queueing theory.
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1. Introduction

As the US healthcare system is preparing to face a set of fundamental changes, the overarching

task of controlling the cost of providing medical care while maintaining a high quality and a

satisfactory level of access to care occupies one of the central places in current political debate.

The evidence that continuing increases in healthcare spending in many instances do not translate

into desired improvements in quality of care or into better patient outcomes (Institute of Medicine

Report (2001), McGlynn et al. (2003), Fisher et al. (2004), Leape and Berwick (2005)) suggests

that reform of the overall healthcare system should include significant changes in the current

mechanisms of compensating healthcare providers for the services they deliver. In the domain

of publicly financed healthcare programs, Medicare, which leads both in terms of the number of

patients covered and financial spending, provides an important example of the historical evolution of

these compensation practices. Initially, Medicare employed a retrospective payment approach under

which service providers (hospitals and physicians) received compensation based on the minimum

of usual and customary charges or the actual costs incurred while delivering a particular service.

The exact payment amount was known only at the end of the calendar period, after the customary

charges were established and the incurred costs verified. The incentives to perform more services and

to charge more for them were built into this payment system and led to a gradual escalation of costs

and charges, which, in turn, resulted in the introduction in 1983 of the current, prospective payment

mechanism. Unlike the retrospective approach, the prospective system uses a schedule of pre-

determined fees that are calculated for each particular kind of medical service by the government

body, Centers for Medicare and Medicaid Services (CMS) 1. The intended purpose of the fee-for-

service (FFS) system was to incentivize providers to improve the efficiency of their service delivery

processes and to contain their per-unit-of-service costs at the levels specified by fee-for-service

schedules. Although an improvement over the retrospective system in terms of limiting the growth

of healthcare expenditures, the FFS approach still suffers from major weaknesses. Firstly, it still

encourages providers to increase the volume of provided services and shifts providers’ attention

towards new, complex and more expensive treatments and away from less costly alternatives. In

addition, FFS payments are not tied to the quality of provided services as measured by patient

experiences and clinical outcomes, and thus do not provide any incentives for preventive activities or

for coordination of patient care, that may reduce the need for future costly interventions. These and

other limitations of the fee-for-service approach are summarized in the seminal Institute of Medicine

1 At the end of 2009, 77% of the total of 45 million Medicare patients were enrolled in the federally administered
fee-for-service program (Kaiser Family Foundation Report (2009)).
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2006 Report, “Rewarding Provider Performance: Aligning Incentives in Medicare”, which calls for

the introduction of an alternative, “Pay-for-Performance” (P4P) provider compensation scheme.

Under the P4P compensation approach, not only the quantity but also the quality of provided

services influence the compensation amounts. In all cases of P4P adoption, the reported quality

metrics include prophylaxis measures, such as cancer screenings and coordinated diabetes care,

as well as clinical outcomes, such as hospital readmission rates and preventable hospitalizations

(Mullen et al. (2010)). In a number of cases, clinical performance measures are augmented by

“patient experience” metrics that include prompt access to care (Integrated Healthcare Association

(2010)).

While P4P framework is only now emerging from its pilot status in the US, it is a well accepted

paradigm in a number of European countries as well as in Australia. In the United Kingdom, in

particular, it is already used at the national level by the National Health Service (NHS), which

coordinates both the financing and the delivery of healthcare services. Since 2002, the NHS uses

a system of hospital financing called “Payment-by-Results”, or PbR (since 2004 this system has

also been applied to primary care physicians) 2. Similar to the fee-for-service approach adopted by

Medicare, PbR ensures that a service provider (e.g., a hospital) receives a fixed payment from a

service purchaser (a government agency) for each delivered treatment, with the payment amount

determined by the treatment’s Health Resource Group (HRG) code (the UK analog of the US

diagnosis-related group, or DRG, code). Under the PbR system, primary care trusts (PCTs, the

commissioning agencies of the NHS) are free to purchase healthcare services from any qualified

local provider, in either the public or private sector. Unlike fee-for-service, PbR includes various

service quality measures, including those related to patient access to care. In particular, the NHS

currently uses a series of patient waiting-time targets including the 18-week period as a maximum

waiting time for any outpatient to receive elective specialist care 3 (most specialist care in the

UK is done in state-managed hospitals). Overall, the PbR mechanism ties a substantial portion

of physician/hospital compensation (as much as 18% (Roland (2004)) to conformance with service

quality standards 4. A representative example of how patient waiting times influence provider

compensation is provided by the 2008 standard NHS contract for acute services (NHS Contract

(2008)), which stipulates penalties of up to 5% of the revenue from elective services for violating

the 18-week waiting target. Recently, in order to facilitate better patient access to care and to

2 http://www.dh.gov.uk/en/Managingyourorganisation/Financeandplanning/NHSFinancialReforms/index.htm

3 http://www.18weeks.nhs.uk

4 The corresponding figure for the US P4P initiatives is about 5% (Rosenthal et al. (2004)).
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streamline the management of outpatient appointments, a nation-wide electronic appointment

booking system, Choose-and-Book (CaB), was set up.

While these innovations are actively changing the way healthcare delivery systems operate,

the nature of interactions between different contractual obligations imposed on service providers

remains poorly understood. The goal of our research is to build a unified performance-based con-

tracting (PBC) framework that incorporates patient access-to-care requirements and that explicitly

accounts for the complex outpatient care dynamics facilitated by the use of an online appointment

scheduling system. Our model of outpatient care is based on the UK setting, where a hospital,

based on private information about its operational costs, makes two types of capacity allocation

decisions: how many appointment slots to make available through the online appointment schedul-

ing system (and, consequently, how many to reserve for same-day urgent cases), and how many days

in advance to release such capacity into the online system (CaB). Using these two decision levers,

the hospital allocates its service capacity between same-day patients as well as two distinct types

of patients with delayed service requests, “dedicated” and “flexible”. Dedicated patients insist on

having their service provided by a particular hospital, irrespective of whether the CaB system shows

any appointments available in that hospital - and they have the recourse to enforce an appointment

within the 18-week horizon through the use of a phone-based override system. Flexible patients,

on the other hand, will select another service provider and forgo the additional inconvenience

associated with using the override if the CaB system displays no available appointments within

the horizon selected by their first-choice provider. We assume that the hospital receives a known

revenue from the government agency (similar to an FFS payment) for each patient receiving care.

In addition, the hospital incurs penalties if its operational planning turns out to be inadequate.

First, the overtime penalty is incurred in cases when the total daily demand for outpatient services

exceeds the hospital’s nominal service capacity (the value of the overtime cost is assumed to be the

hospital’s private information). Also, every time a patient switches to another hospital due to lack

of appointment capacity as declared through the CaB system, a “work transfer” penalty is incurred.

Finally, the government agency charges the hospital an “access-to-care” penalty proportional to the

length of the appointment waiting list it has. The revenue amount and the access-to-care penalty

value form the core of the hospital’s PBC put forward by the government agency. In our analysis,

we consider an asymmetric information setting in which a hospital has perfect knowledge about

the value of its overtime costs while the government knows only the distribution of its potential

values. In this setting, the government agency makes its decision regarding the parameters of the

PBC in anticipation of the provider’s rational choices with respect to the proportion of the total
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daily capacity allocated to advanced appointments and the threshold on the queue of advance

appointments.

Such a contract can be modeled using the principal-and-agent framework in which the purchaser

of services acts as a principal and the service provider as an agent. The agent aims to maxi-

mize his profits, which consist of the payment for provided services net of the penalty for making

patients wait and the overtime and the work-transfer cost. The principal wants to minimize her

cost (payments made to the provider offset by the waiting-time penalty) of achieving the expected

waiting-time target. In addition, the principal’s problem includes the standard individual ratio-

nality constraint inducing the agent to accept the contract, as well as the incentive compatibility

constraint forcing the agent to reveal the true value of her overtime cost. Using this principal-agent

framework, we analyze both the FFS and PBC approaches under adverse selection (asymmetric

information) and moral hazard (private actions) settings. For both settings, we study the first-best

and the second-best solutions, as well as the performance of a simple contract that applies the

same contract parameters to all agents, irrespective of their overtime cost values. In particular, our

analysis addresses the following questions:

• What is the optimal structure for each type of contract under different information settings?

• When does the PBC approach result in better outcomes for the principal; and,

• What is the impact of the waiting-time target on the agent’s decisions and the principal’s

optimal contract design?

In our analysis, we gain important insights by comparing the FFS and PBC mechanisms in different

settings: with complete information, with asymmetric information, and with private agent actions.

In particular, we show that when the agent’s capacity allocation decisions are observable and

contractible, the FFS and PBC approaches produce the same outcome, irrespective of whether the

information setting is symmetric or asymmetric; see Proposition 2 and Proposition 4, respectively.

However, if the agent’s decisions are not observable and contractible, PBC outperforms FFS. This

suggests that PBC should replace FFS in settings similar to the one observed in the UK NHS

system, where the government does not routinely collect operational cost information and where

hospitals possess a lot of power for making their own capacity management decisions.

The rest of this paper is organized as follows. Section 2 reviews the related research. Section

3 describes our model in detail. Sections 4 and 5 analyze the setting in which all of the capacity

allocation decisions are made by the purchaser of services (principal) under either complete or

incomplete information. In Section 6, we consider threshold penalty performance-based contracts,

which can achieve the first-best outcome for any diverting rate, and for the special case of having
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dedicated patients only, which can achieve the second-best outcome. We conclude the paper in

Section 7.

2. Literature Review

Goddard et al. (2000) and Farrar et al. (2007) describe conceptual frameworks for designing fee-for-

service contracts from an economic perspective and outline potential risk factors associated with

the FFS approach, in particular, decreased quality of delivered services and reduced access to care.

Farrar et al. (2007) present an empirical study of the consequences of introducing FFS schemes in

the UK and provide evidence of reductions in the cost of care. At the same time, there appears to be

less evidence of increased volume of delivered services, and no evidence of a detrimental impact on

the quality of care. De Fraja (2000) underscores the information asymmetry between a purchaser

of services (government agency) and a service provider (hospital) inherent in healthcare settings

and presents a stylized model of FFS contracting based on the principal-and-agent framework. In

particular, it is shown that in settings where providers have private information about their costs,

lower-cost providers may receive, under the optimal contract, a higher compensation per unit of

delivered services.

In the UK, the performance of physicians and hospitals on a number of clinical and patient

access-to-care metrics is measured vigorously, and performance violations lead to financial penalties

and can threaten the careers of those who manage the delivery of care. It is only natural that the

PbR, originally conceived as an activity-based, FFS mechanism, has gradually evolved to include

provider performance metrics. Contract theory literature streams in economics and operations

management (see Bolton and Dewatripont (2005) and Cachon (2003) for comprehensive reviews)

include a large number of papers that focus on designing incentives to induce desired performance.

Below we highlight several studies on service supply chain contracting which are closely related to

our work.

In the call-center context, Ren and Zhou (2008) and Hasija et al. (2008) study coordination mech-

anisms in the setting where a client company outsources call-center operations to a vendor. Ren

and Zhou (2008) model call-center operations using a fluid approximation to a G/G/s queue with

customer abandonment and present a principal-agent model in which the agent (vendor) controls

the staffing level (service capacity) and the level of effort focused on achieving the desired service

quality (defined as a fraction of customer calls successfully “resolved”), and the principal focuses

on coordinating these decisions using a family of performance-based and cost-sharing contracts.

It is shown that neither the fee-for-service, or “piecemeal”, contract nor its performance-based
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extension under which only “resolved” calls are compensated, manage to achieve the first-best

solution. At the same time, system coordination is achieved, irrespective of whether the agent’s

quality effort level is observable to the principal and contractible or not, if the performance-based

contract is augmented by an appropriate cost-sharing mechanism. Hasija et al. (2008), on the other

hand, model a call center as an M/M/N queue with customer abandonment and use a diffusion

approximation derived in Garnett et al. (2002) to derive service performance measures, such as the

expected waiting time, the probability of the waiting time exceeding a given threshold, and the

equilibrium probability of abandonment. In a principal-agent setting similar to the one described

in Ren and Zhou (2008), the principal uses a family of contracts which include FFS (pay-per-time

(PPT) and pay-per-call (PPC)) as well as PBC (service-level agreement (SLA) constraint and asso-

ciated penalty, and waiting-time penalty) elements, and the agent maximizes her expected profit

by making capacity sizing and productivity (service rate) decisions. An important feature of the

proposed model is the information asymmetry between the principal and the agent with respect to

the agent’s productivity value. The authors establish, in particular, that a combination of a PPC

and a PPT-based contract which incorporates linear penalties for customer waiting time coordi-

nates the system and allows the principal to maximize her profit without paying any information

rent. While information asymmetry generally produces an information rent for the agents with the

information advantage, in the model presented in Hasija et al. (2008), for a given capacity decision,

the asymmetric information about productivity levels impacts only the principals revenue and the

transfer payments but not the agents’ costs. Under a coordinated solution, both the capacity level

and the transfer payment for the high-productivity agent is lower than that for the low-productivity

agent, while the marginal revenue rate per customer for the high-productivity agent is higher than

that for the low-productivity agent. This explains why it is possible for the principal to avoid

paying information rent by offering a PPC-based contract to the high-productivity agent and a

PPT-based contract to the low-productivity one.

Similar to Ren and Zhou (2008) and Hasija et al. (2008), we examine the role of the activity-based

and the performance-based incentives on the structure of service contracts. Despite the similarity

of a research agenda, our modeling approach differs from the one adopted in Ren and Zhou (2008)

and Hasija et al. (2008) in several essential ways, reflecting the reality of a typical outpatient

setting. Firstly, our model explicitly treats outpatient appointment and service dynamics as that of

an M/D/1 queue without using first-moment or diffusion approximations; this feature, however, is

slightly moderated by the fact that we ignore customer abandonments. Secondly, the information

structure of our model is different from that of Hasija et al. (2008) (Ren and Zhou (2008) do not
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analyze information asymmetry). In particular, Hasija et al. (2008) consider information asymmetry

in agents’ service rates. In the outpatient care setting we model, provider productivity is visible to

the purchaser of healthcare services, and the most important aspect of the information asymmetry

concerns the provider’s overtime costs. As a result, in their model the principal can design a contract

to eliminate the entire information rent, while in our model the information rent is unavoidable.

Thirdly, and most importantly, in our model the agent’s decisions shift from capacity sizing and

effort/productivity level management in the face of a homogenous customer base to the rather

different task of allocating fixed service capacity among three different patient groups.

In the context of the after-sales service supply chains for complex, multi-component products,

Kim et al. (2007) introduce a multi-task principal-agent model to analyze contracts observed in

practice. Their model describes a setting in which a principal (the end-user of the product) is

faced with the task of coordinating the inventory stocking and the cost-cutting effort level deci-

sions of multiple agents, each of which is responsible for supplying one of the product’s essential

components. The expected product downtime is used as a performance metric, and it is shown

that while the performance-based contract achieves the first-best solution in the setting where all

channel members are risk-neutral, an additional cost-sharing mechanism is required to produce the

second-best outcome in the setting where channel members are risk-averse. In addition to two fea-

tures described above (use of the M/D/1 queueing approach to model the outpatient appointment

and service dynamics and the capacity allocation nature of the agent’s problem), another impor-

tant difference between our work and Kim et al. (2007) is the type of modeling assumption that

generates the inefficiency of basic performance-based contracting approaches. In our model, both

parties are risk-neutral, but there exists an information asymmetry between them, while in Kim et

al. (2007) the same information is available to the principal and the agents, and both parties are

risk-averse.

The number of applications of contract theory to healthcare services, while somewhat limited as

compared to retail and other service supply chains, has been growing in recent years, in part due

to the increased popularity of the performance-based contracts. Lu and Donaldson (2000) present

a review of the economics literature dealing with performance-based contracting, and underscore

that the inherent informational advantage that healthcare providers have over patients as well as

agencies purchasing services is one of the major sources of potential market failure in the health-

care domain 5. Under a dynamic principal-agent framework, Fuloria and Zenios (2001) study an

5 An interesting exception to this general statement is analyzed in Su and Zenios (2006), where, in the kidney
transplantation context, patients may have an informational advantage over care providers.
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outcomes-adjusted payment system where the purchaser determines the contract terms contingent

on the observed outcomes (patient deaths and medical complications) to induce the provider to

choose the optimal treatment intensities. Our analysis differs from the one presented in Fuloria

and Zenios (2001) in several ways. First, we focus on the operational performance measure (patient

waiting time) rather than on the clinical outcomes. Second, while Fuloria and Zenios (2001) con-

sider only the moral hazard setting, we analyze an information asymmetry setting which leads to

both moral hazard and adverse selection. Finally, Fuloria and Zenios (2001) focuses on the linear

contract structure, while we also study non-linear, threshold performance-based contracts. Lee and

Zenios (2007) study evidence-based incentive systems within a multi-task principal-agent model

in the context of dialysis treatment for patients with end-stage renal disease. In particular, they

develop an empirical methodology to identify appropriate intermediate performance measures to

be included in the overall agent’s performance set in addition to outcome-based metrics, such as

patient hospitalization frequency. In the outpatient service context analyzed in our work, most of

the performance measures used in practice (such as patients’ waiting time) fall within the category

of intermediate performance measures. So and Tang (2000) consider a Medicare contract for the

reimbursement of drug prescriptions in an outpatient environment with a clinical outcome-based

performance metric and derive the optimal drug application policy that maximizes the outpatient

clinic’s expected profit. This paper, however, does not analyze the optimal contract structure nor

does it impose, due the context of the analyzed problem, a limit on outpatient clinic service capac-

ity. A separate research stream within the healthcare contracting literature focuses on the issues

of excess demand and waiting for service (for a comprehensive review see Siciliani (2007)). While

several existing papers model the information asymmetry between the purchasers of services and

their providers, none of them analyze the underlying service capacity management issues and their

impact on patient waiting times.

In our model, we use a principal-agent set-up in which the agent solves the problem of allocating

its service capacity among the same-day patients and the patients who use the online appointment

system. The extant literature contains numerous papers that deal with various instances of service

capacity allocation in healthcare settings (for example, see Gupta and Denton (2008) for a com-

prehensive review of recent advances in the appointment scheduling literature). However, to the

best of our knowledge, our work is the first to incorporate appointment capacity allocation within

the contracting principal-agent framework.
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3. Contracting for Outpatient Medical Services: The Model

We consider a healthcare service contract problem in which a purchaser of services (a government

agency, such as a primary care trust in the UK context) offers a contract to a provider (a hospital) to

deliver outpatient services. The provider manages outpatient appointments via an online outpatient

appointment booking system (such as Choose-and-Book). Demand for outpatient services is random

and is comprised of two distinct streams: advance appointments which can be served either on the

current day or on a future date, and same-day appointments which must be served on the day

they arrive. The provider has a limited nominal daily service capacity, but is obligated to serve all

same-day appointments and all accepted advance appointments due on each day; when the total

number of patients requiring service on a particular day exceeds the nominal daily service capacity,

the provider incurs overtime costs to cover the extra demand.

A waiting list (queue) for advance appointments arises as a result of uncertain demand and lim-

ited service capacity. The provider manages its limited service capacity under an incentive structure

that includes a fixed revenue for serving each patient (a fee-for-service component) and penalties

for delaying or refusing patient service (the performance-based component). The purchaser of ser-

vices needs to minimize the service cost while meeting an appointment waiting time target. The

interaction between the purchaser and the provider can be recast as a principal-agent model, where

the purchaser acts as a principal and the provider as an agent.

3.1. Capacity Allocation Policy, Appointment Backlog Dynamics and Cost
Structure

We assume that the provider has a nominal capacity of C equal-length outpatient time slots per

day. Advance appointment requests from the online appointment booking system (CaB) arrive

according to a Poisson process with an average daily demand rate of λ (arrivals on different days

are independent). Advance appointments are divided into two classes: dedicated and flexible. A

dedicated patient makes an appointment either through the CaB if she finds an available time slot

or through the override phone-based system (in the UK, the national Telephone Advice Line, TAL)

if no time slot is available from her chosen provider through the CaB. In other words, a dedicated

patient insists on being serviced by her first-choice provider for reasons of geographical proximity,

provider’s reputation, etc., even if this may result in a longer wait and extra administrative costs

in getting an appointment through the override route. A flexible patient, on the other hand, is

unwilling to incur the extra cost associated with the override option and makes an appointment

with another provider if the CaB shows no appointment available with his first-choice provider.

We assume that a patient who finds that no appointment slots are available through the CaB
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with the first-choice provider turns out to be a dedicated patient with probability θ, a parameter

which describes the perceived level of provider reputation/popularity. In particular, θ = 1 describes

a unique facility with a strong reputation for a particular kind of specialist services, while θ = 0

would characterize an undistinguished facility with easy-to-find substitutes. In reality, patients may

make choices not only in terms of preferred providers, but also in terms of the day and time slots

on which they would like to be seen. For tractability, we assume that advance-booking patients

always choose the earliest appointment time slot available through the CaB. We also ignore the

phenomenon of no-shows and assume that all patients punctually show up for their appointments.

The same-day demand for outpatient services, D0, is assumed to be a discrete random variable

with cdf FD0
(·), statistically independent from the demand for advance appointments. We also

assume that, each day, same-day patients are served after advance appointments.

Hospital management is faced with the problem of allocating its service capacity among three

patient groups: advance dedicated, advance flexible, and same-day patients. While every hospital in

the UK is required to manage its advance appointments using the CaB system, the exact fraction

of its service capacity to be released to the CaB is within a hospital’s discretion. We consider

the following (A,Z) capacity allocation policy: the hospital releases to CaB A out of C daily

appointment slots starting from the present day until some time in the future so that the total

number of released slots is equal to Z. This policy ensures that C−A daily appointment slots are

reserved for same-day patients, and that the flexible advance demand is blocked from entering the

system when the appointment backlog exceeds Z/A days. Our interactions with hospital managers

in several UK hospitals confirm the appeal of this type of capacity allocation approach due to

the simplicity and ease of its implementation. We assume that, with very high probability, the

length of appointment backlog exceeds A slots, or, in other words, that patients almost always wait

for their appointments for more than one day. Such an assumption was satisfied in all outpatient

appointment environments we observed, and allows us to model the evolution of the appointment

backlog under (A,Z) policy as that of an M/D/1 queue, where D reflects the fixed duration of an

appointment slot, and the single-server feature describes the patient service dynamics proceeding

at the rate of A slots per day. Note that the patient appointment backlog grows both during and

outside of office hours, since appointment requests can arrive to the CaB system at any point during

the day. At the same time, appointment backlog reduction can happen only during the part of the

day corresponding to A slots, and during the rest of the day no appointment patients are served.

While such a dynamics is best described using the framework of queues with server vacations (Tian

and Zhang (2006)), no closed-form expressions for queueing performance measures exist within this
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framework. Instead, we assume that the server works continuously, and that the entire demand for

appointments arrives only during the time period corresponding to A slots, at the rate of λ/A per

slot if the appointment backlog is smaller than Z, and of θλ/A if the appointment backlog is equal

to or larger than Z (when no slots are available through the CaB, only dedicated patients can

get appointments). Note that this queueing system, which we denote as modified M/D/1 queue,

reduces to a standard M/D/1 queue when θ = 1, and to a finite-buffer M/D/1/Z queue when

θ = 0. To ensure the stability of the appointment backlog system, we assume that the minimum

offered load value, θλ/A, is strictly less than one, which implies that θλ < A. Let X(A,Z) be the

random variable denoting the number of appointments in the system under the capacity allocation

policy (A,Z). Then, the expected daily number of diverted patients is λ(1− θ)Pr(X(A,Z)≥ Z),

and the expected daily throughput for advance appointments is λ(1− (1− θ)Pr(X(A,Z) ≥ Z)).

Note that since the stationary distribution of X(A,Z) depends on A only through the value of the

offered load, we can treat A as a continuous variable in our analysis.

Hospital operational cost structure includes three terms: fixed maintenance and labor costs,

which we normalize to zero, the cost for diverting patients, and the overtime costs. The patient-

diversion cost represents the effect of the loss of goodwill for refusing to serve flexible patients and

forcing them to select another care provider. If b is the cost for diverting one patient, the expected

daily diverting cost is given by

P (A,Z) = bλ(1− θ)Pr(X(A,Z)≥Z). (1)

Information asymmetries between purchasers and providers and between providers and clients

pervade healthcare service supply chains (Arrow (1963), Haas-Wilson (2001), Bloom et al. (2008)).

It is often pointed out that providers occupy a unique position in healthcare service delivery

systems since they have an informational advantage over both the purchasers of services and the

patients. In healthcare settings, the cost structure of the service provider often remains private

knowledge which is neither communicated to nor verified by the purchaser. In particular, in an

outpatient care environment, the key component of this private cost structure is the overtime cost

that reflects the provider’s ability to stretch its daily service capacity to match unexpected surges

in same-day patient demand. In our analysis, we assume that the value of this cost constitutes

private information, and we consider a setting in which the hospital’s overtime cost associated with

serving one patient can take two values, ot, t∈ {H,L}, with oH > oL. The hospital is said to be of

type H if t = H; otherwise, it is said to be of type L. Under the assumption that the length of the
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appointment backlog almost always exceeds A, the expected daily overtime cost for the hospital of

type t is given by

Ot(A) = otED0
[(D0−C +A)+]. (2)

Under the information asymmetry setting we model, the purchaser of services only knows the

distributional information regarding the value of the provider’s overtime cost: for the purchaser,

the hospital is of type H (L) with probability 0 < p < 1 (respectively, 1− p).

3.2. Performance Metric: Patient Waiting Time

The set of measures used in practice for evaluating the performance of healthcare providers include

clinical outcomes as well as other quality-of-service metrics. In our analysis, we concentrate on the

expected waiting time for advance appointments (expressed in terms of the number of appointment

slots), Wq(A,Z), as a measure of patient access to care. Let Lq(A,Z) = E[(X(A,Z)− 1)+] be the

expected length of the waiting list. Since the expected value of the effective daily demand for

appointments is λ(1− (1− θ)Pr(X(A,Z)≥Z)), it follows from Little’s law that

Lq(A,Z) = λ(1− (1− θ)Pr(X(A,Z)≥Z))
Wq(A,Z)

A
. (3)

For general values of provider reputation factor θ and arbitrary capacity allocation policy (A,Z),

there exist no closed-form expressions for Lq(A,Z) or Wq(A,Z). However, it is possible to derive

monotonicity properties for these quantities, which are helpful in analyzing performance-based

contracts.

Proposition 1. For the modified M/D/1 queue,

(a) Lq(A,Z), Wq(A,Z), and Wq(A,Z)/A are monotone increasing in θ, λ, and Z, and monotone

decreasing in A, and

(b) Pr(X(A,Z)≥Z) is monotone increasing in θ and λ, and monotone decreasing in A and Z.

Most of the results of Proposition 1 are intuitive. On the one hand, an increase in θ, or λ or Z

indicates an increase in the effective demand for appointments, which implies an increase in average

queue length and in average waiting time expressed in terms of the number of appointment slots

or working days. On the other hand, an increase in A indicates an increase in service capacity,

which implies a decrease in average queue length and in average waiting time expressed in terms of

the number of appointment slots or working days. The monotonicity property of Pr(X(A,Z)≥Z)

with respect to the value of the CaB booking limit Z is, however, less obvious. As Proposition 1

indicates, the probability that the queue length exceeds the chosen CaB limit decreases with the

value of that limit.



14 Jiang, Pang and Savin: Performance-based Contracts

In the special cases of θ = 1 and θ = 0, waiting-time performance measures can be expressed in

closed form under any (A,Z) policy. In particular, for a hospital with an entirely dedicated patient

population (θ = 1), the offered load is ρ = λ/A, and the Pollaczek-Khintchine result implies that

Lq(A,Z) =
ρ2

2(1− ρ)
=

λ2

2A(A−λ)
, (4)

and

Wq(A,Z) =
ρ

2(1− ρ)
=

λ

2(A−λ)
. (5)

Note that since during a working day the number of advance appointment slots is A, the expected

number of days a patient has to wait is

Wq(A,Z)
A

=
λ

2A(A−λ)
. (6)

On the other hand, if all patients are flexible (θ = 0), the appointment dynamics under the (A,Z)

policy corresponds to that of a finite-buffer M/D/1/Z queue. Closed-form expressions for the

stationary distribution for such system are presented in Brun and Garcia (2000).

The principal operates under the constraint on the maximum value of the expected waiting time:

Wq(A,Z)
A

≤M, (7)

where M is waiting-time target measured in days. Note that for θ = 1 or Z =∞, Wq(A,Z)/A =
λ

2A(A−λ)
. From the result of Proposition 1 it follows that the service-level constraint (7) implies a

lower bound for the value of A,

A∗ =
λ

2
+

√
λ2

4
+

λ

2M
, (8)

which, as expected, is a monotone increasing function of λ and a monotone decreasing function of

M . To ensure the feasibility of the capacity management problem, we require that the overall daily

service capacity C is not lower than A∗. Formally, we impose the following assumption, which will

be required throughout our paper:

C ≥A∗ =
λ

2
+

√
λ2

4
+

λ

2M
. (9)

We conclude this subsection by stating a connection between the assumption (9) and the service

level constraint (7).

Lemma 1. Consider the modified M/D/1 queue. For any θ ∈ [0,1] and any Z ≥ 0, the service

level constraint (7) is satisfied for any A∈ [A∗,C].
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3.3. Structure of Contract Payments and Contracting Process

We assume that both the purchaser and the provider are risk-neutral. In particular, for the provider

of type t, the expected profit is obtained by combining the transfer payment (14) with the patient-

diverting and overtime costs, (2) and (1):

Πt
a (At,Zt) = T t (At,Zt)−Ot(At,Zt)−P (At,Zt)

= T t(At,Zt)− otED0
[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt). (10)

Similarly, the purchaser minimizes the expected cost

Πp = pT H +(1− p)T L, (11)

while ensuring that the patient waiting-time target (7) is met.

A performance-based contract, a special case of the general contract defined above, consists

of two types of payments: an activity-based, FFS payment from the service purchaser to the

provider, and the penalty payment that the purchaser extracts from the provider based on achieved

performance. Specifically, a contract (rt, lt) designed for a provider of type t includes payment rt

paid to the provider for serving each patient and daily penalty lt incurred by the provider for every

day patients spend, on average, waiting for appointments. A clear advantage of such a contract

is its simple form: the performance-based penalty term is linear in the expected patient waiting

time. At the same time, more general non-linear contracts may allow the purchaser to design a

better calibrated incentive structure. In Section 6, we will consider one such contract under which

a performance-based penalty is imposed once the expected patient waiting time exceeds a critical

value.

We assume that the FFS payment is the same for both advance and same-day patients. As the

expected number of patients treated each day is equal to

λ0 +λ(1− (1− θ)Pr(X(At,Zt)≥Zt)), (12)

the expected daily FFS payment is

rt (λ0 +λ(1− (1− θ)Pr(X(At,Zt)≥Zt))) . (13)

On the penalty side, the expected daily amount is ltWq(At,Zt)/At, so that the total expected daily

transfer payment from the purchaser to the provider is given by

T t (rt, lt,At,Zt) = rt (λ0 +λ(1− (1− θ)Pr(X(At,Zt)≥Zt))− lt
Wq(At,Zt)

At
. (14)
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In the healthcare economics literature, it is often assumed that the service provider is altruistic and

derives additional, non-monetary utility from providing a service to patients (see, e.g., Kaarboe

and Siciliani (2011)). In practice, however, it is very hard to evaluate such a utility contribution,

and, thus, we limit our analysis to the provider that maximizes expected profit. It is interesting to

note that even in the UK, where healthcare providers are publicly funded non-profit organizations,

they are faced with increasing financial pressure on their incomes and budgets, and with increasing

freedom to manage their assets and provide services. For example, NHS Foundation Trusts, despite

being public service providers, enjoy a significant level of autonomy over their affairs and substantial

financial flexibility, and are often described as profit maximizers (De Fraja (2000) and Miraldo et

al. (2011)).

In our analysis, we focus on the structure of the general contract and the performance-based

contract under different information settings, starting with the benchmark case of symmetric infor-

mation, under which the provider’s cost structure is known to the purchaser, and following up with

the asymmetric information case in which the provider’s cost information is private. The sequence

of events during the contracting process is as follows. Under the symmetric information setting, the

provider’s type t (H or L) is revealed, and the purchaser sets the contract terms for the provider.

Under asymmetric information, the purchaser determines the contract terms for each provider type

and offers a menu consisting of two contracts to the provider. Next, the provider either accepts the

offered contract (under the symmetric information setting) or selects one contract from the offered

menu (under the asymmetric information setting) and delivers the contracted service. Finally,

the total number of activities (served patients) is counted and the service performance (expected

waiting time) is evaluated, after which the provider receives contractual compensation.

4. Symmetric Information Setting
Under the symmetric information setting, the purchaser learns the provider’s type t before decid-

ing on the contract terms, and can therefore formulate a contract tailored to the specific provider

type. In some healthcare systems, the purchaser can also observe and verify the provider’s capacity

allocation decisions, and can make those decisions a part of the provider’s contractual obligations.

For example, in a number of European countries, an active use of centralized appointment and

record keeping systems provides purchasing agencies with a visibility of providers’ capacity man-

agement actions. In more decentralized healthcare delivery environments, such as the one used in

the US, capacity allocation policies often constitute the provider’s “private actions”, which remain

unobservable to the purchaser. In such environments, the purchaser cannot include capacity man-

agement actions in a provider’s contract and has to rely on financial levers to incentivize the

provider to act on the purchaser’s behalf. Below we analyze both of these environments.



Jiang, Pang and Savin: Performance-based Contracts 17

4.1. Observable and Contractible Actions: The First-Best Solution and The
Infinite-Horizon Heuristic

If the provider’s capacity allocation policy (A,Z) is observable and contractible, the purchaser can

always force the provider to act on the purchaser’s behalf. In particular, given that the provider is

of type t∈ {H,L}, the purchaser solves the following problem:

min
T t,At,Zt

T t (At,Zt) (15)

s.t. (At,Zt)∈R (M,C,θ,λ) (16)

Πt
a (T t,At,Zt)≥ 0, (17)

T t ≥ 0, (18)

where

R (M,C,θ,λ) = {(A,Z)|Wq(A,Z)
A

≤M,
θλ

2
+

√
θ2λ2

4
+

θλ

2M
≤A≤C,Z ∈N}. (19)

The objective for the purchaser is to minimize the expected payout T t, t ∈ {H,L}. The first

constraint, (16), specifies a service-level requirement stating that the expected number of days

a patient spends waiting for her appointment does not exceed M , and that At cannot be below
θλ
2

+
√

θ2λ2

4
+ θλ

2M
, the value that guarantees that the expected waiting-time target is met even

for Zt = 0. The second constraint, (17), is a participation requirement which stipulates that the

provider’s expected profit has to be non-negative. The following proposition describes the optimal

solution for the complete information problem, also known as the first-best solution.

Proposition 2. (a) For θλ
2

+
√

θ2λ2

4
+ θλ

2M
≤A≤C, let

ZM(A) = max
Z∈N

(
Z|Wq(A,Z)

A
≤M

)
. (20)

The family of optimal first-best contracts (T t
FB,At

FB,Zt
FB) is characterized by:

At
FB = argmin

θλ
2 +

√
θ2λ2

4 + θλ
2M≤At≤C

(
otED0

[(D0−C +At)+] + bλ(1− θ)Pr (X (At,Zt
M (At))≥Zt

M (At))
)
,

Zt
FB = ZM (At

FB) , (21)

and

T t
FB = otED0

[(D0−C +At
FB)+] + bλ(1− θ)Pr(X(At

FB,Zt
FB)≥Zt

FB). (22)

(b) The first-best capacity allocation decisions At
FB and Zt

FB are non-increasing functions of ot

and non-decreasing functions of b.

(c) The linear performance-based contract can achieve the optimal first-best performance if and

only if

rt
FB =

otED0
[(D0−C +At

FB)+] + bλ(1− θ)Pr(X(At
FB,Zt

FB)≥Zt
FB)+ ltFBWq(At

FB,Zt
FB)/At

FB

λ0 +λ(1− (1− θ)Pr (X(At
FB,Zt

FB)≥Zt
FB))

,

ltFB ∈ R+, t∈ {H,L}. (23)
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Figure 1: Matching appointment horizon ZM (A) as a function of the daily threshold A for different values of the

expected waiting target M and the fraction of dedicated patients θ (λ = 18).

The results of Proposition 2 state that the first-best capacity allocation policy (At
FB,Zt

FB) minimizes

the sum of the expected overtime cost and the patient diverting cost, while ensuring, as (20) and

(21) indicate, that the waiting-time constraint is satisfied in as tightly as possible. As follows from

the monotonicity properties of Wq(A,Z)

A
described in Proposition 1, appointment horizon ZM(A)

matching daily capacity for advance appointments, A, is an increasing function of A and M , and

a decreasing function of θ, as illustrated in Figure 1. The first-best policy represents, as expected,

a “centralized” capacity allocation solution, i.e., it maximizes the expected profit for the entire

service supply chain. In addition, the optimal payment T t is set to extract the entire surplus from

the provider, so that Πt
a (T t

FB,At
FB,Zt

FB) = 0. In a similar way, the optimal linear performance-based

contract parameters, rt
FB and ltFB, are set to extract the entire surplus from the provider, so that

Πt
a (rt

FB, ltFB,At
FB,Zt

FB) = 0. As (23) implies, there exists an infinite number of (rt
FB, ltFB) pairs that

achieve the first-best solution, so that the first-best contract can be cast in a performance-based
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(ltFB > 0) or a fee-for-service (ltFB = 0) format. It is important to note that the optimal value of the

objective function for the first-best problem, T t
FB (rt

FB, ltFB,At
FB,Zt

FB), does not depend on the choice

of (rt
FB, ltFB), but is rather determined by the capacity allocation policy (At

FB,Zt
FB). In general, no

closed-form expressions exist for Zt
FB and At

FB, so the first-best capacity allocation policy has to be

established numerically. However, sharper characterizations of the first-best controls are available

for several special cases.

Corollary 1. (a) For ot = 0, t∈ {H,L}, the first-best solution is given by

At
FB = C,

Zt
FB = ∞. (24)

Moreover, the optimal linear performance-based contract parameters are given by

rt
FB =

λltFB

2C (C −λ) (λ+λ0)
,

ltFB ∈ R+, t∈ {H,L}. (25)

(b) For b = 0, the first-best solution is given by

At
FB =

θλ

2
+

√
θ2λ2

4
+

θλ

2M
,

Zt
FB = 0. (26)

Moreover, the optimal linear performance-based contract parameters are given by

rt
FB =

otED0
[(D0−C +At

FB)+] + ltFBM

λ0 + θλ
,

ltFB ∈ R+, t∈ {H,L}. (27)

(c) For θ = 1, the first-best solution is given by

At
FB = A∗ =

λ

2
+

√
λ2

4
+

λ

2M
,

Zt
FB ∈ N . (28)

Moreover, the optimal linear performance-based contract parameters are given by

rt
FB =

otED0
[(D0−C +At

FB)+] + ltFBM

λ0 +λ
,

ltFB ∈ R+, t∈ {H,L}. (29)
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Corollary 1 outlines the intuitive nature of the first-best capacity allocation policy: as the relative

importance of the patient-diverting penalty cost over the overtime cost increases, the policy shifts

from allocating the minimum feasible capacity to advance appointments while completely blocking

flexible patients (A = θλ
2

+
√

θ2λ2

4
+ θλ

2M
and Z = 0) to allocating the entire available capacity to

advance appointments and serving the entire pools of dedicated and flexible patients (A = C and

Z =∞). Note that for the provider serving only dedicated patients, the optimal capacity allocated

to advance appointments, At
FB, does not depend on the provider’s type. Thus, the expected cost

to the purchaser of enforcing the waiting-time target, TFB = pT H
FB + (1− p)T L

FB, can be expressed

as

TFB = pT H
FB +(1− p)T L

FB = (poH +(1− p)oL)ED0
[(D0−C +A∗)+]. (30)

In the “dedicated only” setting, both At
FB and the optimal expected payout value T t

FB for either

provider type are increasing in the average daily demand for advance appointments, λ, and decreas-

ing in value for the waiting-time target, M . The latter property is illustrated in Figure 2 for the

case of Poisson same-day demand with the rate λ0 = 2, λ = 18 and C = 20. Note that the cost that

the purchaser has to incur to ensure the patient waiting-time target of M weeks increases dra-

matically as M (expressed in days) becomes comparable to the expected demand rate for advance

appointments λ. Both components of the capacity allocation policy, At
FB and Zt

FB, play their

own important roles in ensuring that the waiting-time target is achieved at the lowest cost. In

particular, At
FB controls the overtime costs by reserving C −At

FB daily service slots for the use of

same-day patients, while Zt
FB serves as an important lever regulating flexible patient access to the

service capacity. Figure 3 illustrates the first-best capacity allocation decisions as functions of the

waiting-time target M in 9 settings characterized by different compositions of patient population

(θ = 0.1, corresponding to mostly flexible patients, θ = 0.5, corresponding to an equal mix of dedi-

cated and flexible patients, and θ = 0.9, corresponding to mostly dedicated patients) and different

values of the ratio of overtime and patient diverting costs ot/b = 1, 5, and 10. We observe that

in the setting where the cost of patient diversions is comparable to that of overtime service, At
FB

remains relatively insensitive to the composition of the patient population or the service access

requirements, and the first-best policy adjusts the allocation of service capacity almost entirely

through changes in Zt
FB that conform to the monotonicity properties illustrated in Figure 1: the

higher is the fraction of flexible patients and the tolerance for service delays, the higher is the

first-best appointment horizon. On the other hand, as financial penalties associated with patient

diversions diminish, the composition of the patient population plays an increasingly important role
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Figure 2: Optimal first-best transfer payment TFB/(poH +(1− p)oL) as a function of the waiting time target M for

θ = 1, λ = 18, Poisson same-day demand with rate λ0 = 2, and C = 20.

in shaping the first-best capacity allocation policy: while being largely insensitive to service level

M , both At
FB and Zt

FB change in a non-monotone fashion as functions of θ.

Our interactions with UK hospital managers point to an interesting observation: while the role

of At
FB is well understood by practitioners, there exists a certain degree of reluctance about using

Zt
FB to protect the capacity for the use of dedicated patients. This reluctance is manifested in a

policy under which the entire appointment horizon is made available through the CaB system:

in our model, this corresponds to the setting Zt =∞. As Proposition 2 and Corollary 1 indicate,

such an approach may be advisable in settings where the patient-diverting cost is high. Based

on this approach, we can formally define a heuristic capacity allocation policy (which we call

infinite-horizon, or IH, heuristic). In particular, under the IH heuristic, Zt
IH =∞ and At

IH = A∗ =
λ
2

+
√

λ2

4
+ λ

2M
. Note that the IH capacity allocation policy ensures that the waiting-time target

is met: Wq(At
IH,Zt

IH)

At
IH

= M . The following result establishes a bound on the performance of the IH

heuristic in a general setting.

Lemma 2.
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Figure 3: Optimal first-best capacity allocation decisions At
FB and Zt

FB as functions of the waiting time target M

for λ = 18, λ0 = 5, and C = 20.

TIH

TFB

≤
ED0

[(
D0−C + λ

2
+

√
λ2

4
+ λ

2M

)+
]

ED0

[(
D0−C + θλ

2
+

√
θ2λ2

4
+ θλ

2M

)+
] . (31)

As shown by the result of Lemma 2, the IH heuristic is particularly effective in settings where the

majority of patients are dedicated - an intuitive result in light of Proposition 2 and Corollary 1.

On the other hand, as the fraction of flexible patients increases, a capacity allocation policy that

ignores the necessity of reserving service capacity for dedicated patients fares increasingly poorly.
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4.2. Private Actions: Implementing the First-Best Outcome under Information
Symmetry

In our analysis above, we have assumed that the provider’s capacity allocation decisions A and

Z are both observable and contractible by the purchaser. In practice, however, observing and

verifying the provider’s decisions may be too difficult and/or too costly for the purchaser. In such

“private action” settings, the contract terms offered by the principal do not include a specification

of capacity allocation policies, and the provider will choose such policies to maximize his expected

profit. Thus, to implement the first-best solution, the contract terms must be designed to induce

the provider of type t to choose At and Zt as his optimal decisions. Below, we consider three types

of contracts that have been used in the past or are being used at present by the UK’s National

Health Service: the fixed lump-sum payment (block contract), the fee-for-service payment (FFS),

and the linear performance-based contract (PBC).

Under the block contract, let T t be the fixed lump-sum payment paid by the purchaser to the

provider irrespective of the actual volume of provided services or the achieved service access level.

The type-t provider’s problem is

max
At,Zt

(
T t− otED0

[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt)
)

(32)

s.t. θλ≤At ≤C,Zt ∈N . (33)

It is clear that the provider’s optimal capacity allocation in this case is not influenced by T t. In

particular, the provider will choose Zt =∞ to eliminate the patient diversion cost. Also, since the

overtime cost is decreasing in At, the provider will choose it to be at its lower-bound value θλ,

resulting in a violation of the purchaser’s waiting-time constraint. Thus, under the private action

setting, the block contract cannot achieve the first-best outcome.

Under the FFS contract, the purchaser controls only the payment amount rt for each patient

served by the provider, producing a standard linear price contract (Bolton and Dewatripont (2005)).

Under the FFS approach, the transfer payment can be written as

T t = rt (λ0 +λ(1− (1− θ)Pr(X(At,Zt)≥Zt))) . (34)

For any rt, the type-t provider’s problem is

max
At,Zt

(
rt (λ0 +λ(1− (1− θ)Pr(X(At,Zt)≥Zt)))− otED0

[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt)
)

s.t. θλ≤At ≤C,Zt ∈N . (35)

Note that the provider’s objective is increasing in Zt. Thus, similar to the block contract, the

provider will choose Zt =∞ and At = θλ, which will violate the purchaser’s waiting-time constraint.

Thus, the FFS contract cannot achieve the first-best outcome either.
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Now, let us consider a linear performance-based contract under which the fee-for-service payment

is adjusted by the performance penalty based on the achieved expected patient waiting time, so

that the transfer payment is given by

T t = rt (λ0 +λ(1− (1− θ)Pr(X(At,Zt)≥Zt)))− lt
Wq(At,Zt)

At
. (36)

The following proposition identifies linear PBC contract parameters that achieve the first-best

outcome for the setting in which all patients are dedicated.

Proposition 3. For θ = 1, the first-best outcome is obtained by using the contract

r̃t =
ot

λ+λ0




λ

(
1−FD0

(
C − λ

2
−

√
λ2

4
+ λ

2M

))

4M
√

λ2

4
+ λ

2M

+ED0




(
D0−C +

λ

2
+

√
λ2

4
+

λ

2M

)+




 , (37)

l̃t = ot




1−FD0

(
C − λ

2
−

√
λ2

4
+ λ

2M

)

4M2

√
λ2

4
+ λ

2M


 , (38)

where λ0 = ED0
[D0].

Proposition 3 states that in the private-action setting, the performance-based contract parameters,

rt and lt, are no longer arbitrarily selected from a set described in Corollary 1, but are uniquely

determined by (37) and (38). Note that shorter waiting-time target values lead to higher activity-

based price levels, higher performance-based penalties, and higher transfer payments:

Corollary 2. For θ = 1, the optimal contract terms, r̃t and l̃t, as well as the resulting transfer

payment, T̃ t, are monotone decreasing functions of M for any provider type t.

In summary, our analysis of the private-action setting indicates that even when the purchaser

possesses complete information about provider’s cost structure, the fee-for-service contract alone

cannot support the waiting-time target, and the performance-based incentive is required to ensure

that the provider will allocate adequate capacity to serve advance appointments.

5. The Asymmetric Information Setting

The informational advantage of service providers over purchasers is expected to infuse inefficiency

into service capacity allocation outcomes. In the analysis below, we explore the influence of infor-

mation asymmetry regarding the value of the provider’s overtime cost on the structure of the

optimal service contracts. As in the case of information symmetry, we start by considering the case

in which the provider’s capacity allocation actions are both observable and contractible.
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5.1. Observable and Contractible Actions: The Second-Best Solution

The information asymmetry in assessing the provider’s overtime costs leads to the adverse selection

problem. In particular, given a contract menu {T t,At,Zt}, t ∈ {H,L}, a provider of type H may

choose to select a contract designed for a provider of type L, if the latter gives him a higher payoff.

To deal with this possibility, the purchaser must design a contract menu by applying the revelation

principle. More specifically, let Πts
a , t, s ∈ {H,L} denote the expected payoff for the provider of

type t who reports to be of type s (in other words, who chooses a contract designed for type s

providers):

Πts
a (T s,As,Zs) = T s (As,Zs)− otED0

[(D0−C +As)+]− bλ(1− θ)Pr(X(As,Zs)≥Zs). (39)

Note that Πt
a (T t,At,Zt) defined in (10) is equivalent to Πtt

a (T t,At,Zt). The purchaser’s problem

can be formulated as follows:

min
T t,At,Zt,t∈{H,L}

(
pT H

(
AH ,ZH

)
+(1− p)T L

(
AL,ZL

))
(40)

s.t. (At,Zt)∈R (M,C,θ,λ) , t∈ {H,L} (41)

Πtt
a (T t,At,Zt)≥ 0, t∈ {H,L} (42)

Πtt
a (T t,At,Zt)≥Πts

a (T s,As,Zs), t, s∈ {H,L}, s 6= t, (43)

T t ≥ 0, t∈ {H,L}. (44)

The waiting-time target and stability constraints (41) and the individual rationality constraints

(42) are the analogues of the constraints (16) and (17) in the symmetric information setting.

Constraint (43) ensures correct matching between provider types and contract types. The contract

optimizing the purchaser’s objective is usually labeled as the second-best solution. Note that in

the case of a linear performance-based contract, T t(At,Zt) takes the special form of

T t(At,Zt) = rt (λ0 +λ(1− (1− θ)Pr(X(At,Zt)≥Zt))− lt
Wq(At,Zt)

At
. (45)

Proposition 4. (a) The family of optimal second-best contracts is characterized by

At
SB = argmin

θλ
2 +

√
θ2λ2

4 + θλ
2M≤At≤C

(
ôtED0

[(D0−C +At)+] + bλ(1− θ)Pr (X (At,Zt
M (At))≥Zt

M (At))
)
,

Zt
SB = ZM (At

SB) , (46)

where

ôH = oH +
1− p

p

(
oH − oL

)
,

ôL = oL, (47)

and ZM (A) as defined in (20).
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(b) The optimal values of the expected payments to providers are given by

T H
SB = oHED0

[(D0−C +AH
SB)+] + bλ(1− θ)Pr(X(AH

SB,ZH
SB)≥ZH

SB),

T L
SB = oLED0

[(D0−C +AL
SB)+] + (oH − oL)ED0

[(D0−C +AH
SB)+]

+bλ(1− θ)Pr(X(AL
SB,ZL

SB)≥ZL
SB). (48)

(c)

AH
SB ≤AH

FB ≤AL
FB = AL

SB, (49)

and

ZH
SB ≤ZH

FB ≤ZL
FB = ZL

SB. (50)

where At
FB and Zt

FB are the first-best capacity allocation controls defined in (21).

(d) The linear performance-based contract can achieve the optimal second-best performance if

and only if

rH
SB =

oHED0
[(D0−C +AH

SB)+] + bλ(1− θ)Pr(X(AH
SB,ZH

SB)≥ZH
SB)+ lHSBWq(AH

SB,ZH
SB)/AH

SB

λ0 +λ(1− (1− θ)Pr (X(AH
SB,ZH

SB)≥ZH
SB))

,

rL
SB =

oLED0
[(D0−C +AL

SB)+] + bλ(1− θ)Pr(X(AL
SB,ZL

SB)≥ZL
SB)+ lLSBWq(AL

SB,ZL
SB)/AL

SB

λ0 +λ(1− (1− θ)Pr (X(AL
SB,ZL

SB)≥ZL
SB)

+
(oH − oL)ED0

[(D0−C +AH
SB)+]

λ0 +λ(1− (1− θ)Pr (X(AL
SB,ZL

SB)≥ZL
SB)

,

ltSB ∈ R+, t∈ {H,L}. (51)

As Proposition 4 states, the second-best capacity allocation policy is obtained by solving two

separate optimization problems, one for each provider type, with a structure identical to that of

the first-best problem (21). In particular, the optimization problem for the low-cost provider is

completely identical to (21), while that for the high-cost provider uses the value of the overtime cost

for this provider type adjusted upward due to the presence of information asymmetry. Consequently,

while the second-best capacity allocation policy intended for the low-cost provider replicates the

first-best policy for this provider type, the second-best capacity allocation policy intended for

the high-cost provider differs from the corresponding first-best solution. In particular, the daily

capacity allocated to advance appointments under the second-best solution (AH
SB) is, in general,

lower than that under the first-best solution (AH
FB) - inefficiency created by information asymmetry.

The transfer payment structure is also different from that of the first-best solution. Although the

payout to the high-cost provider is still equal to its operational cost (equal to the sum of the

overtime cost and the patient diverting cost), the payout to the low-cost provider is higher than

its operational cost: an additional information rent, (oH − oL)ED0
[(D0−C +AH

SB)+], is paid to the
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low-cost provider as a result of the existing information asymmetry. Consequently, the high-cost

provider’s net surplus is zero, just as in the symmetric information setting, while the low-cost

provider’s net surplus is equal to the information rent: a payout structure similar to one outlined

in the health economics literature (De Fraja (2000)).

Comparing the capacity allocation policies for the low- and the high-cost providers indicates

that, in both the first-best and the second-best solutions, the high-cost provider tends to release

less capacity to advance appointments and to have a shorter appointment horizon. Recall that

the effective daily demand for appointments is λ(1 − (1 − θ)Pr(X(A,Z) ≥ Z)). The results of

Proposition 4 (c) and Proposition 1 (b) imply that

λ(1− (1− θ)Pr(X(AH
SB,ZH

SB)≥ZH
SB))≤ λ(1− (1− θ)Pr(X(AL

SB,ZL
SB)≥ZL

SB)), (52)

which indicates that a provider of type L serves more patients than a provider of type H (while not

necessarily receiving a higher total transfer payment or a higher transfer payment per appointment).

Closed-form expressions for the second-best contract parameters can be obtained in the same

special cases described in Corollary 1. In particular, in all of these special cases (ot = 0, t∈ {H,L},
or b = 0, or θ = 1) the second-best and the first-best capacity allocation parameters intended for

the high-cost provider coincide, and so do the second-best and the first-best solutions.

Similar to the first-best solution, if both At and Zt are observable and contractible, the second-

best outcome can be achieved by either block, FFS contracts, or linear PBCs because the optimal

payout to each provider type is completely determined by the capacity allocation policy. In the

previous section, we have also shown that in the absence of such information asymmetry, neither

block nor FFS contracts can reproduce the first-best solution in settings with private provider

actions. At the same time, there exists a unique linear PBC that achieves this task when θ = 1,

as specified by Proposition 3. However, as shown below, if private provider actions are allowed in

the asymmetric information setting, the linear PBC is no longer able to achieve the second-best

solution even in the setting where all patients are dedicated.

5.2. Performance-Based Contracts under Information Asymmetry with Private
Actions

In this section we establish that, in general, the second-best outcome cannot be implemented under

information asymmetry using a linear PBC. In particular, we focus on the special case of a hospital

serving only dedicated patients (θ = 1). Note that in this case the value of Zt does not influence

appointment dynamics or cost structure, and, therefore, the capacity allocation policy reduces to
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choosing the daily appointment threshold level At. Given a menu of linear PBCs, (rt, lt), t∈ {H,L},
the type-t provider who reports to be of type s solves the following optimization problem:

max
θλ≤Ats≤C

(
Πts

a (rs, ls,Ats)≡ T s(rs, ls,Ats)− otED0
[(D0−C +Ats)+]

)
, s∈ {H,L}, (53)

where T s(rs, ls,Ats) = rs(λ + λ0) − lsλ
2Ats(Ats−λ)

is the transfer payment to the provider of type t

who reports to be of type s. Denote the solution of the above optimization problem by Ats
PA.

The following proposition provides a partial characterization of the provider’s optimal capacity

allocation decision.

Proposition 5. Let θ = 1. Then, for any menu of contracts (rt, lt), t∈ {H,L},
(a) ALH

PA ≥AHH
PA . In particular, if λ < AHH

PA < C, then ALH
PA > AHH

PA .

(b) ALL
PA ≥AHL

PA . In particular, if λ < AHL
PA < C, then ALL

PA > AHL
PA .

(c) Ats
PA is increasing in ls. In particular, Ats

PA ≤A∗ = λ
2
+

√
λ2

4
+ λ

2M
if and only if ls ≤ l̃t, where

l̃t = ot




1−FD0

(
C − λ

2
−

√
λ2

4
+ λ

2M

)

4M 2

√
λ2

4
+ λ

2M


 , s, t∈ {H,L}. (54)

Proposition 5 shows that given any menu of contracts, the high-cost provider cannot choose higher

capacity level than the low-cost provider. In addition, it states that the provider’s capacity allocated

to advance appointments, as expected, is increasing in the waiting-time penalty cost. In particular,

when this penalty cost is low enough, the provider chooses a capacity level below A∗, which, in

turn, violates the patient waiting-time requirement.

In the private action setting, the purchaser of outpatient services solves the following optimization

problem:

min
rt,lt,t∈{H,L}

(
pT H(rH , lH ,AHH

PA )+ (1− p)T L(rL, lL,ALL
PA)

)
(55)

s.t. AHH
PA ≥A∗, (56)

ALL
PA ≥A∗, (57)

ΠHH
a

(
rH , lH ,AHH

PA

)≥ 0, (58)

ΠLL
a

(
rL, lL,ALL

PA

)≥ 0, (59)

ΠHH
a

(
rH , lH ,AHH

PA

)≥ΠHL
a

(
rL, lL,AHL

PA

)
, (60)

ΠLL
a

(
rL, lL,ALL

PA

)≥ΠLH
a

(
rH , lH ,ALH

PA

)
, (61)

rt ≥ 0, lt ≥ 0, t∈ {H,L}. (62)

While it is impossible to obtain closed-form expressions for the optimal contract parameters in

(55)-(62), a partial characterization is provided below.
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Proposition 6. When θ = 1, the optimal contract, (rt
PA, ltPA) , t ∈ {H,L}, can be characterized

as follows:

(a) ltPA ≥ l̃t, t∈ {H,L}.
(b) ALL

PA > A∗.

(c) ΠHH
a (rH , lH ,AHH

PA ) = 0,ΠLL
a (rL, lL,ALL

PA) > (oH − oL)ED0
[(D0−C +A∗)+].

(d) pT H(rH , lH ,AHH
PA )+ (1− p)T L(rL, lL,ALL

PA) > oHED0
[(D0−C +A∗)+].

Proposition 6 implies that compared to the first-best capacity allocation, A∗, providers of both

types tend to allocate higher capacities to serving advance appointments. In particular, the low-cost

provider’s capacity allocation is strictly larger than A∗, indicating that information asymmetry dis-

torts the provider’s behavior, which results in a loss of efficiency. Parts (c) and (d) of Proposition 6

provide further evidence of PBC’s inability to achieve the second-best outcome: the purchaser pro-

vides a higher rent to the low-cost provider, and, overall, pays more for the same level of service

than she does in the second-best solution.

6. Threshold-Penalty Performance-Based Contracts
Proposition 3 shows that the linear PBC can achieve the first-best performance when θ = 1 (though

not necessarily for an arbitrary θ < 1). Proposition 6 shows that even when θ = 1, the linear PBC

cannot achieve the second-best performance and cannot coordinate the service supply chain. Below

we show that these shortcomings can be remedied if one extends the analysis to include contracts

with non-linear penalties for patient wait times. In particular, we focus on a simple threshold-

penalty contract structure, under which a) the provider receives a fixed payment F , and b) a fixed

penalty K is imposed on a provider if and only if the waiting-time target is not achieved. In our

analysis we use the notation (F,K) to designate such a contract.

The following result describes a family of (F,K) contracts that achieve the first-best performance

for any composition of patient population.

Proposition 7. Consider the symmetric information setting with private actions and let

F t = otED0

[
(D0−C +At

FB)+
]
+ bλ(1− θ)Pr(X(At

FB,Zt
FB)≥Zt

FB), (63)

and let K be the positive constant such that

K > F t− otED0
[(D0−C + θλ)+]. (64)

Consider a threshold-penalty contract under which a provider of type t receives a payment of F t if

the waiting-time constraint is satisfied and a payment of F t−K if it isn’t:

T t =
{

F t, if Wq(At,Zt)/At ≤M,
F t−K, if Wq(At,Zt)/At > M.

(65)
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Any threshold-penalty performance-based contract specified by (63)-(65) achieves the first-best out-

come.

In the asymmetric information setting, such a threshold-penalty contract structure can achieve the

second-best performance in the case of dedicated-only patients.

Proposition 8. Consider the asymmetric information setting with private actions and a

threshold-penalty PBC (F,K) defined by

F = F H , (66)

and

K = F H − oLED0
[(D0−C + θλ)+], (67)

where F H is given by (63).

(a) Contract (F,K) minimizes the expected provider’s cost among all threshold-penalty PBCs.

(b) Under the contract (F ,K), the optimal capacity allocation policy for each provider type is

described by

AH
TP (F,K) = AH

FB,

ZH
TP (F,K) = ZH

FB,

AL
TP (F,K) = AL

FB,

ZL
TP (F,K) = ZL

FB, (68)

and the resulting expected transfer payments are

T H (F ,K) = T L (F,K) = F . (69)

(c) The threshold-penalty PBC (F ,K) achieves the second-best solution for θ = 1:

AH
TP (F ,K) = AL

TP (F ,K) = A∗,

T H (F ,K) = T L (F,K) = oHED0
[(D0−C +A∗)+]. (70)

One important advantage of the (F,K) contract is its relative simplicity as, instead of a menu

of contracts, it offers the same terms to both provider types. Note that in the case of θ = 1, the

second-best solution coincides with the first-best one, and, therefore, the threshold-penalty contract

coordinates the system.

As the results of Proposition 2 (c) indicate, in settings with mixed patient populations the

threshold-penalty PBC may no longer be able to achieve the second-best performance. Figure 4
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depicts the second-best solution (AH
SB, ZH

SB, AL
SB, ZL

SB) and the threshold-penalty PBC solution

(AH
TP, ZH

TP, AL
TP, ZL

TP) in the same patient-mix settings as in Figure 3: θ = 0.1 (mostly flexible

patients), θ = 0.5 (an equal mix of dedicated and flexible patients), and θ = 0.9 (mostly dedicated

patients). The capacity allocation policies shown in Figure 4 prompt several observations. First,

high-cost providers never allocate more capacity for advance appointments, either in terms of the

number of daily appointments or in terms of the appointment horizon, than do low-cost providers.

Second, the optimal allocation policies for the low-cost providers under the (F ,K) PBC and in the

second-best solution coincide. Third, under the (F ,K) PBC contract, both the daily appointment

capacity and the appointment horizon selected by high-cost providers are always between the corre-

sponding allocations in the second-best solution for the high-cost providers and the corresponding

allocations in the second-best solution for the low-cost providers. Thus, the threshold-penalty PBC

does not always achieve the second-best solution, and the corresponding loss of efficiency occurs

through the capacity allocation policies of the high-cost providers. Finally, consistent with the

result of part (c) of Proposition 8, the efficiency gap reduces as the patient population mix shifts

towards mostly dedicated patients.

7. Conclusions

As an ever increasing number of healthcare organizations recognize service access as an important

component of the quality of healthcare services, performance-based contracts (PBC) that include

access performance measures gain equally increasing popularity. In our paper we study an approach

to contracting for outpatient services used in the UK under the aegis of the National Health Ser-

vice. Two features of this approach are of particular importance for our analysis: an online system

(“Choose-and-Book”) for managing advance appointments, and explicit penalties imposed by pur-

chasers on providers for delaying patient services. Faced with contracts that include compensation

for provided services as well as penalties for denying or delaying service, hospitals and individual

physicians respond with a policy for allocating their limited service capacity between urgent and

non-urgent patients, with the latter group comprised of dedicated patients who prefer to receive

service from the medical facility of their choice even if the wait involved is longer, and flexible

patients who will prefer another provider in order to shorten their wait for an appointment. By

designing a performance-based contract, a purchaser of healthcare services aims to achieve a par-

ticular service access goal (expressed in terms of patient appointment waiting time) at the lowest

possible cost. In practice, this task is often complicated by information asymmetry between the

provider and the purchaser of services. For such a setting, we derive the properties of the first-best



32 Jiang, Pang and Savin: Performance-based Contracts

1 1.5 2 2.5 3
10

12

14

16

18

M , days

 

 

A

A

A

Z

Z

Z

M , days

M , days

M , days

1 1.5 2 2.5 3
0

20

40

60

80

1 1.5 2 2.5 3
10

12

14

16

18

M , days
1 1.5 2 2.5 3

0

20

40

60

80

1 1.5 2 2.5 3
10

12

14

16

18

M, days
1 1.5 2 2.5 3

0

20

40

60

80

 

 

SB L

SB H

PBC L

PBC H

θ = 0.1

θ = 0.5

θ = 0.9

θ = 0.1

θ = 0.5

θ = 0.9

Figure 4: The optimal second-best solution (AH
SB, ZH

SB, AL
SB, ZL

SB) and the optimal solution (AH
TP, ZH

TP, AL
TP, ZL

TP)

for the threshold-penalty PBC as functions of the waiting-time target M for different values of θ (0.1,

0.5, 0.9), λ = 18, Poisson same-day demand with rate λ0 = 5, oH/b = 5, oL/b = 1, p = 0.5 and C = 20.

The top, middle and bottom subplots are for the settings of θ = 0.1,0.5,0.9, respectively.

and the second-best solutions for different patient population mixes by modeling the appointment

dynamics as that of an M/D/1 queueing system. We show, in particular, that a linear PBC is

guaranteed to achieve coordination only in the case of dedicated-only patients, and that it fails to

achieve the second-best outcomes. As a remedy, we propose a simple threshold-penalty contract

that always achieves the first-best performance and that also produces the second-best outcome in

the case of dedicated-only patients.

An important feature of real-life capacity allocation decisions made by care providers is their
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multi-dimensional and dynamic nature. In the present work, we have adopted a simplifying

approach to modeling these decisions by assuming a two-dimensional, open-loop provider’s response

that has allowed us to focus on important contractual issues while capturing important capacity

allocation trade-offs. We believe future research can build on our findings by incorporating more

complex and more realistic features of day-to-day appointment accumulation and service dynamics.

On the contract design side, more investigation is needed into the nature of non-linear penalty con-

tracts that can close the information-asymmetry-generated efficiency gap for an arbitrary patient

mix. This line of research is particularly important in view of the increasing complexity of emerging

performance-based contract structures (NHS Contract (2008)).
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Appendix A: Notation

Table 1 Notation

C = total number of daily service slots
A = number of daily service slots allocated for advance appointments
Z = total number of service slots made available for advance appointments on CaB
D0 = same-day demand
λ0 = expected value of same-day demand
λ = expected value of daily advance appointment requests
ρ = λ/A, average number of advance appointment requests per service slot
θ = fraction of dedicated patients
X = number of patients in the system
L = length of patient waiting list
Lq = average length of patient waiting list
Wq = average patient waiting time
M = target waiting time (measured in days)
r = reimbursement per patient served
l = daily penalty cost incurred by the service provider for each patient on the waiting

list
b = per-patient diverting cost
o = per-patient overtime cost
T = transfer payment between the purchaser and the provider
F = fixed payment under a threshold-penalty contract
K = penalty under a threshold-penalty contract
Πa = expected profit for the provider
Πp = expected cost for the purchaser
H - a superscript representing a provider with high overtime cost
L - a superscript representing a provider with low overtime cost
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Appendix B: Proofs

Proof of Proposition 1

Some preliminary results on stochastic dominance for the modified M/D/1 queue are presented

before we prove the results in Proposition 1. Let X(t) be the number of patients in the appointment

queue at time t and S(t) the residual service time for a patient in service (if there is any). Then

the system can be fully characterized by the two-dimensional state variable (X(t), S(t)). At any

point in time, the length of the queue is Lq(t) = (X(t)− 1)+ and the length of time an incoming

patient will wait is Wq(t) = (X(t)− 1)+ +S(t).

We approximate the continuous-time system with a discrete-time system with time intervals of

equal length δ = 1/N , where N is a large positive integer. Then, each service time slot contains

N successive intervals. The system state can be represented by (x, s), where x is the number of

patients in the system and s is the number of residual service time intervals of the patient in

service, s = 0,1, . . . ,N . Note that we assume that s = 0 whenever x = 0. The Poisson arrival process

is approximated by a Bernoulli process such that there is at most one patient arriving in each time

interval. We assume that the service starts at the beginning of a time interval and occupies the

entire time interval. If there is a patient on the waiting list at the beginning of service, his/her

service starts immediately after the completion of the previous service. For instance, if the system

is empty at the beginning of an interval, then the service of the first patient to arrive during that

interval starts at the beginning of the following interval, at which point the system state changes

from (0,0) to (1,N). Assuming that the system state at the beginning of a time interval is (x,1),

x > 0, and there is no patient arrival during this this time interval, the system state changes to

(x− 1,N) at the end of this time interval. If, however, there is a patient arrival, the state changes

to (x,N). Note that the state (x,0) is observed only if x = 0. Similarly, if the system state at the

beginning of a time interval is (x, i), x > 0, i > 1, the system state changes to (x, i−1) if there is no

patient arrival during that time interval, and to (x, i− 1) otherwise.

The two-dimensional state variable can be aggregated into a single state variable i = N(x −
1)+ + s, which represents the total number of time intervals an incoming patient should wait to

be served. That is, given any state i, the number of patients in the system (including the one

in service) is di/Ne (the nearest integer greater than or equal to i/N) and the number of time

intervals of the residual service time of the patient in service is i−Nbi/Nc where bi/Nc represents

the nearest integer less than or equal to i/N . Note that i > 0 implies that x > 0, and vice versa.

Let ρ = λ/A. Given the policy parameter, Z, if the number of patients in the system, di/N rceil,

is less than Z, then with a probability of ρδ an appointment request will arrive and a patient will
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join the waiting list, and with a probability of 1−ρδ there is no patient arrival. If di/Ne ≥Z, then

with probability θρδ a patient will join the waiting list, and with probability 1− θρδ there is no

patient arriving in this time interval. We assume that service for each patient starts only in the

beginning of an interval. The transition matrix for the time-discretized Markov chain is represented

by ΠN = (πi,j(δ)), where

πi,j(δ) =





1− ρδ if i/N ≤Z − 1, j = (i− 1)+,
ρδ if i/N ≤Z − 1, j = (i− 1)+ +N,
1− θρδ if i/N > Z − 1, j = (i− 1)+,
θρδ if i/N > Z − 1, j = (i− 1)+ +N,
0 otherwise

for i, j ∈N or

ΠN =




1− ρδ 0 0 · · · ρδ 0 0 · · · 0 0 0 · · · 0 0 0 · · ·
1− ρδ 0 0 · · · ρδ 0 0 · · · 0 0 0 · · · 0 0 0 · · ·

0 1− ρδ 0 · · · 0 ρδ 0 · · · 0 0 0 · · · 0 0 0 · · ·
0 0 1− ρδ · · · 0 0 ρδ · · · 0 0 0 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
0 0 0 · · · 0 0 0 · · · 1− ρδ 0 0 · · · ρδ 0 0 · · ·
0 0 0 · · · 0 0 0 · · · 0 1− θρδ 0 · · · 0 θρδ 0 · · ·
0 0 0 · · · 0 0 0

. . . 0 0 1− θρδ · · · 0 0 θρδ · · ·
...

...
... · · · ...

...
...

. . .
...

...
... · · · ...

...
...

. . .




. (B1)

Let I represent the aggregated system state at any random time. Note that we require ρθ < 1,

which ensures the existence of the stationary distribution of I. Denote the stationary distribution

by Q = [q0, q1, · · · ], where qi is the stationary probability for the system state i. Note that Q =

QΠN = limn→∞QΠn
N .

A sequence X = [x0, x1, · · · ]′ is called an increasing sequence if xi ≤ xi+1 for any i = 0,1, . . .. The

next lemma shows that matrix ΠN maps an increasing sequence into an increasing sequence.

Lemma B1. For any increasing sequence X = [x0, x1, · · · ]′, Y = ΠNX is also an increasing

sequence.

Proof. It is straightforward to see that if (i+1)/N ≤Z − 1 or (i− 1)/N ≥Z − 1, then

πi,(i−1)+x(i−1)+ +πi,(i−1)++Nx(i−1)++N ≤ πi+1,ixi +πi+1,i+Nxi+N , (B2)

where πi,(i−1)++N = πi+1,i+N and is equal to ρδ or θρδ, and πi,(i−1)+ = πi+1,i and is equal to 1− ρδ

or 1− θρδ. Otherwise, i/N = Z − 1, then

[πi,i−1xi−1 +πi,i−1+Nxi−1+N ]− [πi+1,ixi +πi+1,i+Nxi+N ] (B3)
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= [(1− ρδ)xi−1 + ρδxi−1+N ]− [(1− θρδ)xi + θρδxi+N ] (B4)

= [(1− ρδ)xi−1 + ρδxi−1+N ]− [(1− ρδ)xi + ρδxi+N +(1− θ)ρδ(xi−xi+N)] (B5)

≤ 0, (B6)

where the last inequality follows from the fact that X is an increasing sequence. Then, ΠNX is

also an increasing sequence. ¤
Consider two parameter triples, (θk, ρk,Zk), k = 1,2. Let Xk = [xk

1 , x
k
2 , · · · ], k = 1,2, be two

increasing sequences such that X1 ≤X2, i.e., x1
i ≤ x2

i for all i. Let Πk
N be the respective transition

matrices. The next lemma shows the monotone preservation property of ΠN .

Lemma B2. If θ1 ≤ θ2, ρ1 ≤ ρ2 and Z1 ≤Z2, then Π1
NX1 ≤Π2

NX2.

Proof. We have

Π1X1 = [π1
0,0x

1
0 +π1

0,Nx1
N , π1

1,0x
1
0 +π1

1,Nx1
N , · · · , π1

N(Z1−1)+1,N(Z1−1)x
1
N(Z1−1) +π1

NZ1+1,NZ1
x1

NZ1
,

· · · , π1
N(Z2−1)+1,N(Z2−1)x

1
N(Z2−1) +π1

NZ2+1,NZ2
x1

NZ2
, · · · ]′

≤ [π1
0,0x

2
0 +π1

0,Nx2
N , π1

1,0x
2
0 +π1

1,Nx2
N , · · · , π1

N(Z1−1)+1,N(Z1−1)x
2
N(Z1−1) +π1

NZ1+1,NZ1
x2

NZ1
,

· · · , π1
N(Z2−1)+1,N(Z2−1)x

2
N(Z2−1) +π1

NZ2+1,NZ2
x2

NZ2
, · · · ]′

≤ [π2
0,0x

2
0 +π2

0,Nx2
N , π2

1,0x
2
0 +π2

1,Nx2
N , · · · , π2

N(Z1−1)+1,N(Z1−1)x
2
N(Z1−1) +π2

NZ1+1,NZ1
x2

NZ1
,

· · · , π2
N(Z2−1)+1,N(Z2−1)x

2
N(Z2−1) +π2

NZ2+1,NZ2
x2

NZ2
, · · · ]′

= Π2X2,

where the first inequality follows from the assumption that X1 ≤X2 (i.e., x1
i ≤ x2

i for all i) and the

second from the fact that π1
i,(i−1)+

≥ π2
i,(i−1)+

and π1
i,(i−1)++N

≤ π2
i,(i−1)++N

, and therefore

π1
i,(i−1)+x2

(i−1)+ +π1
i,(i−1)++Nx2

(i−1)++N = x2
(i−1)+ +π1

i,(i−1)++N(x2
(i−1)++N −x2

(i−1)+)

≤ x2
(i−1)+ +π2

i,(i−1)++N(x2
(i−1)++N −x2

(i−1)+)

= π2
i,(i−1)+x2

(i−1)+ +π2
i,(i−1)++Nx2

(i−1)++N .

¤
Let Ik be the number of time intervals an incoming patient will wait to be served corresponding

to (θk, ρk,Zk), k = 1,2. We say that I1 is stochastically smaller (denoted by ≤st) than I2 if for

any increasing function h, E[h(I1)]≤ E[h(I2)]. Let Xk
N be the number of patients in the system

corresponding to (θk, ρk,Zk). The next lemma proves that the stationary distributions of I and XN

are stochastically monotone in θ, ρ, and Z.

Lemma B3. If θ1 ≤ θ2, ρ1 ≤ ρ2 and Z1 ≤Z2, then I1 ≤st I2 and X1
N ≤st X2

N . In addition, W 1
q ≤

W 2
q , L1

q ≤L2
q and Pr(X1

N ≥Z1)≥ Pr(X2
N ≥Z2).



Jiang, Pang and Savin: Performance-based Contracts 5

Proof. Let h(·) : Z+ → R be any increasing function. Then Y = [h(0), h(1), · · · ]′ is an increasing

sequence. Applying Lemma B2 yields Π1
NY ≤ Π2

NY . For any integer n ≥ 1, we have (Π1
N)n · Y ≤

(Π2
N)n ·Y .

Let Qk be the stationary distribution of the number of patients in the system corresponding to

(θk, ρk,Zk). Then,

Qk = QkΠk
N = lim

n→∞
Q0(Πk

N)n,

where Q0 can be any starting distribution. Then, we have

Q1 ·Y = lim
n→∞

Q0(Π1
N)n ·Y ≤ lim

n→∞
Q0(Π2

N)n ·Y = Q2 ·Y.

That is, E[h(I1)]≤E[h(I2)] where Ik, k = 1,2 represent aggregated system states. Then, I1 ≤st I2.

Note that the number of patients in the system, Xk
N = dI/Ne, is an increasing function of Ik.

Then, X1
N ≤st X2

N . As W k
q = E[Ikδ], the stochastic monotonicity implies that W 1

q ≤W 2
q . Similar,

as Lk
q = E[(Xk

N − 1)+], then L1
q ≤L2

q. The stochastic monotonicity also implies that Pr(X1
N > 0)≤

Pr(X2
N > 0). Note that under equilibrium the average arrival rate is ρ(1− (1− θ)Pr(Xk

N ≥ Z)) =

ρ(1− (1− θ)Pr(Ik ≥NZ)). By the conservation law, Pr(Xk
N > 0) = ρ(1− (1− θ)Pr(Xk

N ≥ Zk)).

Then, for any θ < 1, Pr(X1
N > 0)≤ Pr(X2

N > 0) implies that Pr(X1
N ≥Z1)≥ Pr(X2

N ≥Z2). ¤

As N →∞ (δ→ 0), the Bernoulli process converges to the Poisson process and the discrete-time

system converges to the continuous-time system. Then the stationary distribution of XN converges

to the stationary distribution of X(t), which, consequently, has the stochastically monotone prop-

erties characterized in B3. Then, the monotone properties in Proposition 1 follow. ¤

Proof of Lemma 1

Proposition 1 shows that Wq(A,Z)/A is monotone increasing in Z and monotone decreasing in A.

Then for any θ ∈ [0,1], any Z ≥ 0, and any A≥A∗, we have

Wq(A,Z)
A

≤ Wq(A,∞)
A

≤ Wq(A∗,∞)
A∗

=
λ

2A∗(A∗−λ)
= M,

(B7)

where the first equality follows from (6) and the second from the definition of A∗. This shows that

the service level constraint is satisfied. ¤
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Proof of Proposition 2

(a) Proposition 1 states that Pr (X(At,Zt)≥Zt) is decreasing in Zt for any given At, and decreas-

ing in At for any given Zt. Then, the objective function of the first-best problem (21) is decreasing

in Zt, which implies that the service level constraint must be satisfied as tightly as possible at the

optimal solution, i.e., Wq (At
FB,Zt

FB)/At
FB ≤M while Wq (At

FB,Zt
FB +1)/At

FB > M . Now, consider

the first-best solution (T t
FB,Zt

FB,At
FB). Suppose that Πt

a (T t
FB,At

FB,Zt
FB) > 0. Then, since both T t

and Πt
a are monotone increasing in T t, we can improve the objective function by lowering T t

FB

without violating the individual rationality constraint. Thus, Πt
a (T t

FB,At
FB,Zt

FB) has to be equal to

0. Then, (21) is obtained by replacing T t in the objective function of the purchaser’s problem by

its expression from (10).

(b) As Proposition 1 states, Wq (At,Zt)/At is increasing in Zt and decreasing in At. This, in

turn, implies that Zt
M(At) is increasing in At. Let At

FB be the solution to (21). Observe that

the objective function in this problem is supermodular in (ot,At). Then, applying Theorem 6.3

from Topkis (1978), we obtain that At
FB is non-increasing in ot, which implies that AH

FB ≤ AL
FB.

Moreover, ZH
FB = Zt(AH

FB) ≤ Zt(AL
FB) = ZL

FB. Similarly, the objective function is submodular in

(b,At), and, consequently, At
FB and Zt

FB are both non-decreasing in b.

(c) The result follows from the definition of the performance-based contract and the formula for

T t
FB. ¤

Proof of Corollary 1

(a) For ot = 0, (21) reflects the minimization of Pr (X (At,Zt)≥Zt). For any finite Zt, as follows

from Proposition 1, this objective is minimized by setting At = C. Note that for Zt → +∞, the

appointment dynamics is identical to one of the M/D/1 queue, and limZt→+∞Pr (X (C,Zt)≥Zt) =

0, as long as the corresponding M/D/1 system is stable, i.e., as long as C > λ. This last condition

is implied by (6), which also ensures that the waiting-time requirement is satisfied.

(b) For b = 0, the objective function in (21), for given Zt, is minimized by setting At to the

smallest possible value compatible with the service level constraint W (At,Zt)/At. Since Proposi-

tion 1 shows that W (At,Zt)/At is an increasing function of Zt and a decreasing function of At,

the value of Zt has to be set at the lowest possible value. For Zt = 0, the appointment dynamics

becomes that of an M/D/1 queue with a Poisson arrival rate of θλ, and the patient waiting time

constraint becomes
θλ

2At(At− θλ)
≤M, (B8)

which is equivalent to

At ≥ θλ

2
+

√
θ2λ2

4
+

θλ

2M
. (B9)
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Thus, At
FB = θλ

2
+

√
θ2λ2

4
+ θλ

2M
.

(c) For θ = 1, the optimization objective is the same as in part (b). At the same time, θ = 1

also implies that the appointment dynamics becomes that of an M/D/1 queue with a Poisson

arrival rate of λ, irrespective of the chosen value of Zt. Using the same arguments, we obtain

At
FB = λ

2
+

√
λ2

4
+ λ

2M
. ¤

Proof of Lemma 2

Note that the expected transfer payment incurred under the infinite-horizon (IH) policy

can be expressed as TIH = (poH + (1 − p)oL)ED0
[(D0 − C + A∗)+]. In order to prove the

statement of the Lemma, we need to establish the lower bound on the optimal values of

the optimization problem (20)-(21), T t
FB. Such lower bound can be obtained by dropping

the constraint on Zt in (20). The solution to the resulting optimization problem is At =
θλ
2

+
√

θ2λ2

4
+ θλ

2M
and ZT = ∞, with the corresponding optimal objective function value

otED0

[(
D0−C + θλ

2
+

√
θ2λ2

4
+ θλ

2M

)+
]
. Thus, T t

FB ≥ otED0

[(
D0−C + θλ

2
+

√
θ2λ2

4
+ θλ

2M

)+
]
.

Using TIH = (poH +(1− p)oL)ED0

[(
D0−C + λ

2
+

√
λ2

4
+ λ

2M

)+
]
, we obtain the result. ¤

Proof of Proposition 3

First, note that the provider’s objective function Πt
a(rt, lt,A) is concave in A. Indeed,

∂Πt
a

∂A
= lt

λ

2

[
1

(A−λ)2
− 1

A2

]
− ot(1−FD0

(C −A)), (B10)

and
∂2Πt

a

∂A2
= ltλ

[
1
A3

− 1
(A−λ)3

]
− otfD0

(C −A)≤ 0. (B11)

The first-order optimality condition for the provider of type t is:

−lt
λ

2

[
− 1

(A−λ)2
+

1
A2

]
− ot(1−FD0

(C −A)) = lt
λ2(2A−λ)
2A2(A−λ)2

− ot(1−FD0
(C −A)) = 0. (B12)

Under the contract (37)-(38), A∗ defined in (8) satisfies the above first-order optimality condition

as well as simple bounds constraints. The concavity of the objective function implies that A∗ is an

optimal solution for the provider’s problem.

Next, it is easy to check that given contract (37)-(38), the optimal solution A∗ for the provider

satisfies the service level constraint and gives an objective function value otED0
[(D0−C + A∗)+],

which is equal to the optimal objective function value for the purchaser in the first-best solution.

Hence, we have proved that the contract (37)-(38) achieves the first-best outcome. ¤
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Proof of Proposition 4

(a) First, note that the purchaser’s optimization problem can be reformulated as

min
T t,At,Zt,t∈{H,L}

(
pT H +(1− p)T L

)
, (B13)

s.t. (At,Zt)∈R (M,C,θ,λ) , t∈ {H,L}, (B14)

Πtt
a (T t,At,Zt)≥ 0, t∈ {H,L}, (B15)

Πtt
a (T t,At,Zt)≥Πts

a (T s,As,Zs) , t, s∈ {H,L}, s 6= t, (B16)

where

Πtt
a (T t,At,Zt) = T t− otED0

[(D0−C +At)+]− bλ(1− θ)Pr ((X(At,Zt)≥Zt) , t∈ {H,L},
Πts

a (T s,As,Zs) = T s− otED0
[(D0−C +As)+]− bλ(1− θ)Pr ((X(As,Zs)≥Zs) ,

t, s∈ {H,L}, s 6= t. (B17)

Note that the constraint (B16) for t = L and s = H,

T L− oLED0
[(D0−C +AL)+]− bλ(1− θ)Pr ((X(AL,ZL)≥ZL)≥

T H − oLED0
[(D0−C +AH)+]− bλ(1− θ)Pr ((X(AH ,ZH)≥ZH) , (B18)

is equivalent to

ΠLL
a

(
T L,AL,ZL

)≥ΠHH
a

(
T H ,AH ,ZH

)
+(oH − oL)ED0

[(D0−C +AH)+]. (B19)

Then, since ΠHH
a (T H ,AH ,ZH) ≥ 0, (B19) implies that ΠLL (T L,AL,ZL) > 0. Note that

ΠHH
a (T H ,AH ,ZH) = 0 at the optimum: otherwise, the purchaser can reduce the objective function

value by decreasing both T H and T L by the same amount without violating (B15) and (B16).

Thus, the optimal transfer payment designed for the high-cost provider is equal to the sum of the

overtime and the patient-diverting costs:

T H = oHED0
[(D0−C +AH)+] + bλ(1− θ)Pr

(
X(AH ,ZH)≥ZH

)
. (B20)

The inequality (B18) (or equivalently (B19)) must be binding at the optimum, i.e., the expected net

payoff of the low-cost provider is equal to the information rent. Otherwise, the purchaser can reduce

T L, without violating other constraints, until (B18) or (B19) is binding. Thus, at the optimum,

T L = oLED0
[(D0−C +AL)+] + bλ(1− θ)Pr

(
(X(AL,ZL)≥ZL

)

+ (oH − oL)ED0
[(D0−C +AH)+]. (B21)
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As ΠHH
a (T H ,AH ,ZH) = 0 and ΠLL

a (T L,AL,ZL) = (oH − oL)ED0
[(D0−C +AH)+], the constraint

ΠHH
a

(
T H ,AH ,ZH

)≥ΠLL
a

(
T L,AL,ZL

)
+(oL− oH)ED0

[(D0−C +AL)+] (B22)

is equivalent to

(oH − oL)(ED0
[(D0−C +AH)+]−ED0

[(D0−C +AL)+])≤ 0, (B23)

which implies that AH ≤ AL. Finally, (46) is obtained by replacing T H and T L in the objective

function of the purchaser’s problem by their expressions from (B20) and (B21).

(b) The results follow from (B20) and (B21).

(c) Since ôH > oH > oL, the result of part (b) of Proposition 2 implies that the optimal solution

to (46) automatically satisfies AH
SB ≤AH

FB ≤AL
SB = AL

FB. Given that the service-level constraints are

binding at both first-best and second-best solutions and Wq/A is increasing Z and decreasing in

A, we have ZH
SB ≤ZH

FB ≤ZL
SB = ZL

FB.

(d) The result follows from the definitions for the payments T t when T t takes the linear

performance-based contract and part (b) of this proposition. ¤

Proof of Proposition 5

(a), (b) Note that ∂Πts
a (rs,ls,Ats)

∂ot =−ED0
[(D0−C +Ats)+] is decreasing in Ats. Thus, Πts

a (rs, ls,Ats)

is submodular in (ot,Ats). Then, as follows from Theorem 6.3 in Topkis (1978), the maximizer of

Πts
a in terms of Ats is increasing in ot, which implies that ALH

PA ≥AHH
PA and ALL

PA ≥AHL
PA .

If λ < AHH
PA < C, then AHH

PA is an interior optimum of provider’s objective function, and

λlH(2AHH
PA −λ)

2(AHH
PA (AHH

PA −λ))2
− oH(1−FD0

(C −AHH
PA )) = 0. (B24)

Then,
λlH(2AHH

PA −λ)
2(AHH

PA (AHH
PA −λ))2

− oL(1−FD0
(C −AHH

PA )) > 0. (B25)

The concavity of Πts
a (rs, ls,Ats) with respect to Ats implies that

∂ΠLH
a

∂A
=

λlH(2A−λ)
2(A(A−λ))2

− oL(1−FD0
(C −A)) (B26)

is decreasing in A, which, in turn, implies that ALH
PA > AHH

PA . Similarly, if λ < AHL
PA < C, then

ALL
PA > AHL

PA .

(c) As λ/(2Ats(Ats−λ)) is decreasing in Ats, the provider’s profit Πts
a (rs, ls,Ats) is supermodular

in (ls,Ats). Then, as follows from Theorem 6.3 in Topkis (1978), Ats is increasing in ls. Proposition 3

states that A∗ is the optimal solution for the provider’s optimization problem for ls = l̃t. Thus,

Ats
PA ≤A∗ if and only if ls ≤ l̃t. In particular, from A∗ < C and Πts

a (rs, ls,Ats) being strictly concave

in Ats, it follows that Ats > A∗ for ls > l̃t. ¤
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Proof of Proposition 6

(a) As follows from Proposition 5, lH ≥ l̃H and lL ≥ l̃L, since, otherwise, the agent will choose AHH
PA

or ALL
PA that are less than A∗, and the patient waiting-time constraint would be violated.

(b) Note that

ΠLH
a (rH , lH ,ALH

PA ) = rH(λ+λ0)− lHλ/(2ALH
PA (ALH

PA −λ))− oLED0
[(D0−C +ALH

PA )+]

≥ rH(λ+λ0)− lHλ/(2AHH
PA (AHH

PA −λ))− oLED0
[(D0−C +AHH

PA )+]

= ΠHH
a (rH , lH ,AHH

PA )+ (oH − oL)ED0
[(D0−C +AHH

PA )+]

> ΠHH
a (rH , lH ,AHH

PA ), (B27)

where the first inequality follows from the optimality of ALH
PA and the second one from the condition

oL < oH . Using (61) and (58), we get

ΠLL
a (rL, lL,ALL

PA)≥ΠLH
a (rH , lH ,ALH

PA ) > ΠHH
a (rH , lH ,AHH

PA )≥ 0, (B28)

which implies that ΠLL
a (rL, lL,ALL

PA) > 0. Thus, (59) is not binding at the optimum and can be

ignored.

Further, observe that the terms T LL(rL, lL,ALL
PA) and T HH(rH , lH ,AHH

PA ) from the objective func-

tion of the principal are strictly increasing in rL and rH , respectively. Then, (58) will have to

be binding at the optimum: otherwise, the principal can reduce rH and rL by the same amount

until (58) is binding while leaving the constraints (60) and (61) unaffected. Similarly, (61) must be

binding at the optimum: otherwise, the principal can reduce the rL until (61) is binding without

impacting (58).

Now we can show that ALL
PA > A∗. Indeed, suppose that ALL

PA = A∗. Then, as follows from Propo-

sition 5, AHL
PA < ALL

PA. Since (58) is binding at the optimum, from (60) we have

0 ≥ rL(λ+λ0)− lLλ/(2AHL
PA (AHL

PA −λ))− oHED0
[(D0−C +AHL

PA )+]

> rL(λ+λ0)− lLλ/(2ALL
PA(ALL

PA −λ))− oHED0
[(D0−C +ALL

PA)+]

= ΠLL
a (rL, lL,ALL

PA)− (oH − oL)ED0
[(D0−C +ALL

PA)+], (B29)

where the first inequality follows from (60) and the fact that (58) is binding, and the second is due to

the strict concavity of ΠHL
a (rL, lL,AHL) with respect to AHL and the optimality of AHL

PA . The above

inequalities imply that ΠLL
a (rL, lL,ALL

PA) < (oH − oL)ED0
[(D0 −C + ALL

PA)+] = (oH − oL)ED0
[(D0 −

C +A∗)+]. However, since (61) is binding and (B27) holds, we get

ΠLL
a (rL, lL,ALL

PA) = ΠLH
a (rH , lH ,ALH

PA )
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≥ ΠHH
a (rH , lH ,AHH

PA )+ (oH − oL)ED0
[(D0−C +AHH

PA )+]

= (oH − oL)ED0
[(D0−C +AHH

PA )+]

≥ (oH − oL)ED0
[(D0−C +A∗)+], (B30)

where the equality is due to the fact that (58) is binding. We have a contradiction. Thus, ALL
PA > A∗.

(c) We next establish that ΠLL
a (rL, lL,ALL

PA) > (oH − oL)ED0
[(D0−C +A∗)+]. If AHH

PA > A∗, then

ΠLL
a (rL, lL,ALL

PA) ≥ (oH − oL)ED0
[(D0−C +AHH

PA )+] > (oH − oL)ED0
[(D0−C +A∗)+]. (B31)

On the other hand, if AHH
PA = A∗, then by Proposition 5, ALH

PA > AHH
PA . Then,

ΠLL
a (rL, lL,ALL

PA) = ΠLH
a (rH , lH ,ALH

PA )

> ΠLH
a (rH , lH ,AHH

PA )

= (oH − oL)ED0
[(D0−C +AHH

PA )+]

= (oH − oL)ED0
[(D0−C +A∗)+]. (B32)

Here, the first equality holds because (61) is binding at the optimum, while the inequality holds

because ΠLH
a (rH , lH ,ALH) is strictly concave in ALH and ALH

PA is the unique optimal point. The

second equality holds due to the fact that (58) is binding at the optimum.

(d) Using (B32), we get

pT H(rH , lH ,AHH
PA )+ (1− p)T L(rL, lL,ALL

PA)

= p(ΠHH
a (rH , lH ,AHH

PA )+ oHED0
[(D0−C +AHH

PA )+])+ (1− p)(ΠLL
a (rL, lL,ALL

PA)+ oLED0
[(D0−C +ALL

PA)+])

> p(oHED0
[(D0−C +A∗)+])+ (1− p)((oH − oL)ED0

[(D0−C +A∗)+] + oLED0
[(D0−C +A∗)+])

= oHED0
[(D0−C +A∗)+]. (B33)

¤

Proof of Proposition 7

If a provider of type t chooses At and Zt that violate the service-level constraint, then the definition

of K implies that the objective function value at (At,Zt) for the provider is

F t−K − otED0
[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt), (B34)

which is smaller than

otED0
[(D0−C + θλ)+]− otED0

[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt). (B35)

The latter is a negative number because At ≥ θλ, which is a necessary condition to ensure the

stability of the queueing system. On the other hand, if a provider of type t chooses At = At
FB and
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Zt = Zt
FB, then the service-level constraint is not violated, the transfer payment is F t, and the

objective function value at (At
FB,Zt

FB) for the provider is zero. Therefore, (At
FB,Zt

FB) is a better

solution than any solution (At,Zt) that violates the service-level constraint for the provider of type

t.

Then, the problem for the provider of type-t is equivalent to

max
(At,Zt)∈R(M,C,θ,λ)

(
F t− otED0

[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt)
)
. (B36)

Since F t is constant, the provider’s problem is further equivalent to

min
(At,Zt)∈R(M,C,θ,λ)

(
otED0

[(D0−C +At)+] + bλ(1− θ)Pr(X(At,Zt)≥Zt)
)
. (B37)

By Proposition 2, the optimal solution for a provider of type t is (At
FB,Zt

FB). Therefore, we have

proved that the first-best outcome is achieved by the nonlinear performance-based contract. ¤

Proof of Proposition 8

First, note that

F H = oHED0

[
(D0−C +AH

FB)+
]
+ bλ(1− θ)Pr(X(AH

FB,ZH
FB)≥ZH

FB)

> oLED0

[
(D0−C +AH

FB)+
]
+ bλ(1− θ)Pr(X(AH

FB,ZH
FB)≥ZH

FB)

≥ oLED0

[
(D0−C +AL

FB)+
]
+ bλ(1− θ)Pr(X(AL

FB,ZL
FB)≥ZL

FB) = F L. (B38)

Below we will prove that for any contract (F,K) satisfying conditions

F ≥F H , (B39)

and

F −K ≤ oLED0
[(D0−C + θλ)+], (B40)

a provider of type t will always choose At and Zt such that the service-level constraint is not

violated.

Indeed, if a provider of type t chooses At and Zt that violate the service-level constraint, then

the condition

F −K ≤ oLED0
[(D0−C + θλ)+] (B41)

implies that the objective function value for the provider is

F t−K − otED0
[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt), (B42)
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which is smaller than

otED0
[(D0−C + θλ)+]− otED0

[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt). (B43)

The latter is a negative number because At ≥ θλ, which is a necessary condition to ensure the

stability of the queueing system. On the other hand, if a provider of type t chooses At = At
FB and

Zt = Zt
FB, then the service-level constraint is not violated, the transfer payment is F t, and the

objective function value at (At
FB,Zt

FB) for the provider is F − F t ≥ 0. Therefore, for a provider

of type t, (At
FB,Zt

FB) is a better solution than any solution (At,Zt) that violates the service-level

constraint.

The problem for a provider of type-t is equivalent to

max
(At,Zt)∈R(M,C,θ,λ)

(
F t− otED0

[(D0−C +At)+]− bλ(1− θ)Pr(X(At,Zt)≥Zt)
)
. (B44)

Since F t is constant, the provider’s problem is further equivalent to

min
(At,Zt)∈R(M,C,θ,λ)

(
otED0

[(D0−C +At)+] + bλ(1− θ)Pr(X(At,Zt)≥Zt)
)
. (B45)

By Proposition 2, the optimal solution for a provider of type t is (At
FB,Zt

FB).

So far we have proved that if F ≥ F and F −K ≤ oLED0
[(D0 − C + θλ)+], then the optimal

solution for a provider of type-t is (At
FB,Zt

FB), the participation constraint is satisfied, and the

objective function value for the purchaser is F . Since the purchaser wants to minimize her transfer

payment to the provider, the minimum transfer payment is F . On the other hand, the above

procedure has shown that F = F and K = K is a feasible solution to the purchaser with a transfer

payment of F . Furthermore, we prove that any contract (F,K) such that F < F is infeasible

because F −K ≤ F < F , which shows that the participation constraint is violated. Therefore, (F ,

K) is an optimal threshold-penalty PBC contract for the purchaser. The results in parts (b) and

(c) of this Proposition follow immediately. ¤


