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ABSTRACT  

In December 2015, a cyber-physical attack took place on the Ukrainian electricity distribution network. 

This is regarded as one of the first cyber-physical attacks on electricity infrastructure to have led to a 

substantial power outage and is illustrative of the increasing vulnerability of Critical National 

Infrastructure to this type of malicious activity. Few data points, coupled with the rapid emergence of 

cyber phenomena, has held back the development of resilience analytics of cyber-physical attacks, 

relative to many other threats. We propose to overcome data limitations by applying stochastic 

counterfactual analysis as part of a new vulnerability assessment framework. The methodology is 

developed in the context of the direct and indirect socio-economic impacts of a Ukrainian-style cyber-

physical attack taking place on the electricity distribution network serving London and its surrounding 

regions. A key finding is that if decision-makers wish to mitigate population disruptions, then they must 

invest resources more-or-less equally across all substations, to prevent the scaling of a cyber-physical 

attack. However, there are some substations associated with higher economic value due to their support 

of other Critical National Infrastructures, such as airports or maritime ports, which justifies the 

allocation of additional cyber security investment to reduce the chance of cascading failure. Further 

cyber-physical vulnerability research must address the trade-offs inherent in a system made up of 

multiple institutions with different strategic risk mitigation objectives and metrics of value, such as 

governments, infrastructure operators and commercial consumers of infrastructure services.  
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1. INTRODUCTION 

In December 2015, a power outage occurred in the Ukraine (1), where a Trojan was found on a number 

of electricity substations believed to be associated with a BlackEnergy Malware campaign utilising 

remote cyber intrusion (2). This was the first known instance where a cyber-attack caused an electricity 

blackout. Consequently, a key issue is how to develop risk analytics for emerging threats, such as cyber-

physical attacks on energy infrastructure, where we have limited information and data on the level of 

risk posed. Indeed, since the Ukrainian attack multiple news outlets have reported that malicious 

software has been found on computers belonging to energy companies in the United States, raising 

concerns around the growing vulnerability of Critical National Infrastructure (CNI) (3–5). 

The purpose of moving towards cyber-physical systems (including sensing, computing and 

communication hardware/software) is to develop intelligent monitoring and control of the physical 

world (6). However, the continuing shift towards smart cities, smart grids and the Internet of Things 

raises issues associated with increased connectivity and resilience. Indeed, the World Economic 

Forum’s Global Risks Report 2017 ranked the threat of cyber-attacks in the top ten for likelihood due 

to the growing number of physical systems connected to the internet (7). Other vulnerabilities include 

poor cyber security compliance, insufficient institutional training, the use of out-dated legacy software, 

vendor-contractor management practices and the increasingly easy access to hacking resources.  

Yet, one of the largest concerns to defenders is the risk from zero-day vulnerabilities, which by 

definition we do not have existing information on, as the first time a vendor is made aware of an exploit 

is the day an attacker utilises it. Considerable time and resources must be placed into identifying and 

patching the vulnerability by the vendor, which can only begin once the attack has begun.  

Due to the nature of rapidly evolving cyber threats, we are still some distance from undertaking effective 

resilience analytics of cyber-physical risks. Yet, decision-makers have highlighted the need for a 

quantitative framework that shows the direct and indirect socio-economic impacts of ‘what if’ scenarios. 

Whereas there are robust event sets of past natural catastrophes (e.g. hurricanes, flooding etc.), we have 

very limited information for cyber-attacks on CNI, including energy, transport, telecommunications, 



 
 

4 
 

water and waste, which are studied in this paper. We propose to overcome data limitations by applying 

stochastic counterfactual analysis as part of a new vulnerability assessment framework; see (8) for a 

timely introduction to counterfactual analysis. This assessment focuses on developing spatial attack 

footprints in the context of the direct and indirect socio-economic impacts of a Ukrainian-style cyber-

physical attack taking place on the electricity distribution network serving London and surrounding 

regions in the South East of England. We apply both downward counterfactual analysis, where we 

explore the implications of a greater number of substations being affected than in the Ukrainian attack, 

and upward counterfactual analysis, considering what would have happened if fewer substations were 

affected. When we convert an attack footprint to a consumption shock for economic impact assessment, 

we assume a 24-hour blackout.  

This counterfactual framework provides a more structured and rigorous approach to the risk analysis of 

emerging threats by using evidence-led scenarios, reducing subjectivity in the selection of scenario 

parameters by promoting benchmarking and calibration against severity (measured here as the number 

of electricity customers disrupted). To develop and demonstrate this counterfactual vulnerability 

assessment for emerging threats, we investigate the following research questions using a cyber-physical 

attack on the United Kingdom (UK) as a case study:  

1) What is the direct impact on power consumers and how this scale with the number of substations 

compromised from a cyber-physical attack? 

2) What is the indirect impact of a cyber-physical attack to other infrastructure users beyond electricity? 

3) Does the vulnerability assessment present insights beyond the substation level, towards a systemic 

understanding of cyber-physical risk? 

Previous research for three different types of electricity blackouts on two different continents, has found 

that it can be incredibly challenging for infrastructure operators to identify their own exposure (9–11). 

Although this may suggest a lack of defender capability, the root of the difficulty is that CNI networks 

have evolved over decades into very large socio-technical systems comprised of thousands of assets, 

technologies, networks and operator protocols. Analytics which show the potential risk to CNI are also 
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required by other parties such as governments, who have a responsibility to protect their citizens, but 

lack evidence on this matter. 

It has been reported that almost half of all UK firms have been affected by a cyber breach or attack in 

2016-2017 (12). Consequently, the UK has made a multi-billion-pound commitment to cyber security, 

as outlined in the National Cyber Security Strategy (13). Moreover, in the National Risk Register of 

Civil Emergencies, the UK Cabinet Office (14) identifies both (i) widespread electricity failure and (ii) 

the risk of cyber-attacks on CNI as having the potential to cause significant disruption. If a widespread 

electricity failure were to take place, current recovery plans called ‘Black Start’ could take up to five 

days due to a total or partial shutdown, with some potential disruption beyond this timescale (Ibid). 

The rest of this paper is presented as follows. In Section 2, we undertake a literature review before 

presenting the methodology in Section 3. The results are reported in Section 4 before being discussed 

in Section 5. Finally, we conclude in Section 6.  
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2. LITERATURE REVIEW 

2.1. Counterfactual approaches for risk analysis 

‘Counterfactual’ quite literally means contrary to the facts, and usually involves a point of departure 

from a set of historical decisions or outcomes (15). Using counterfactuals as a method of intellectual 

inquiry is not new, as it has been applied by philosophers and historians for at least two millennia (16). 

Although there has been some focus on developing counterfactuals for risk analysis purposes (17–20), 

they have not been used to assess vulnerability, or ideally to develop resilience analytics for cyber-

physical risk – an area where there is significant potential for application due to data limitations. Indeed, 

there are numerous ways that counterfactual analysis could usefully be applied to the science of 

emerging risks, including modelling of past events using stochastic forensics or scenario event trees (8).  

After significant disruptive events, we inevitably evaluate mitigation measures and broader resilience 

strategies and how they could have reduced the impact, otherwise known as ‘upward’ counterfactual 

thinking, involving the hypothesising of how an event could have led to a more positive outcome. While 

this may be useful for risk practitioners, in contrast, we may rarely ask ourselves whether an event could 

have been much worse, otherwise known as a ‘downward’ counterfactual thinking. Figure 1 illustrates 

this conceptually, whereby different actions lead to more positive or negative outcomes, allowing a 

single event to be recreated as either an upward or downward counterfactual.    
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Figure 1 Conceptualisation of upward and downward counterfactuals 

 

Cyber-risk is a classic example of how ‘a statistical analysis of past incidents alone does not provide a 

full description of the risk of future attacks’ (21). Indeed, our contention is that counterfactual analysis 

is a highly appropriate method for assessing cyber-physical risks to critical infrastructure, as we can 

borrow and combine information from the number of limited past events as well as from expert 

elicitation. Consequently, anchoring risk analysis in history makes the endeavour inherently more 

plausible and convincing than purely hypothetical scenarios, while still allowing for exploration of 

unknown exposure via zero-day vulnerabilities.  

2.2. Cyber-risk assessments of CNI 

While there are many engineering-focused assessments of direct and indirect interdependencies 

between power and Information Communication Technologies (22,23), with some focusing on cyber-

attack risks (24,25), we still lack many appropriate methods for identifying key system 

interdependencies. Frameworks for cybersecurity risk assessment and management are increasingly 

being put forward as existing approaches (including probabilistic and risk-based decision-making 

techniques applied to cyber systems) do not always properly address threats, vulnerabilities and 
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potential consequences (26). Indeed, qualitative risk metrics are often used within current industry 

standards for estimating cyber security risk, as opposed to using the quantitative risk metrics commonly 

found in other industrial sectors such as finance and banking (e.g. Basel II) (27). Moreover, some 

assessment methods only focus on existing vulnerabilities, such as the Common Vulnerability Scoring 

System (28), without putting enough consideration to unknown vulnerabilities. In improving the risk 

analysis of cyber-physical systems for CNI, we need not only better cyber vulnerability assessment, but 

also impact analysis of how vulnerabilities may cause cascading failures to other systems and ultimately 

lead to different socio-economic impacts (29).  

One example of a cyber-attack on the oil and gas sector in the Gulf Coast of the US presents a framework 

for linking cybersecurity metrics to the modelling of macroeconomic interdependencies using the 

Inoperability Input-output Model (IIM) (30). This methodology has also been used to quantify the risk 

posed by interdependent Supervisory Control and Data Acquisition (SCADA) systems vulnerable to 

cyber-attack (31), and fault trees have also been developed to assess the systemic risks associated with 

cloud-computing (32). Moreover, one method used to develop effective risk mitigation approaches 

involves attack and defence modelling to understand the strategic interactions between different agents 

(33,34). Increasingly, the risk posed by insider threats has been assessed to provide insight into the 

human cybersecurity factors affecting an organisations environment during the attack of a corporate 

cyber network (35). Finally, in a paper presenting multiple approaches, Paté‐Cornell et al. present a 

general probabilistic risk analysis framework for the management of critical infrastructure from cyber 

threats, producing loss results from cyber-attacks under different risk mitigation measures (21). A 

review of the potential socio-economic impacts of critical infrastructure failure will now be undertaken.  

2.3. Socio-economic impacts of infrastructure failure 

Although we do not have many examples of cyber-attacks on CNI, we do understand the potential socio-

economic impacts of infrastructure failure due to other natural and man-made hazards. For example, 

major blackouts in North America took place in 1996 and 2003 (36,37), as well as in Europe in 2003 

and 2006 (38) which we can learn from. For example, during the December 2015 flood-induced outage 

in Lancashire, UK, the loss of power led to the complete disruption of digital communications, health 
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care provision, retail businesses and banking, transport and essential utilities (39).  To understand such 

disruptions across interconnected infrastructures different modelling techniques have been employed, 

which include, among others, agent-based models of complex adaptive systems (40), empirical analysis 

(41), system dynamics approaches (42), network-science based models (43), macroeconomic input-

output (IO) based (30) or computational general equilibrium (CGE) models (44,45). For a detailed 

literature review on different modelling techniques see (46). While all the above modelling techniques 

provide their own advantages, increasingly network models have proven to be most convenient for 

suitably representing interconnected infrastructures at multiple scales (47).  

This paper uses network models to quantify social impacts of infrastructure failures, in terms of 

customer disruptions. Investing disruption using this key metric builds on existing analysis of: (i) 

measuring spatial critical hotspots of total disrupted customers affected by failure to England and 

Wales’ interconnected electricity, transport, water, waste, telecoms infrastructures (48); (ii) flood 

vulnerability assessment of electricity networks and dependent water, wastewater, telecoms, and 

transport assets in the Thames catchment in England (49); (iii) quantifying daily passenger disruptions 

on Great Britain’s rail network (50); (iv) measuring customer disruptions due to flooding and drought 

exposures of energy, transport, water, and waste networks in China (51); and (v) analysis of customer 

disruption due to failures in interdependent electricity, fuels, and transport networks in New Zealand 

(52).                 

The most preferred approaches for measuring economic impacts of infrastructure failures include the 

CGE and IO approaches. Rose et al. use CGE models to estimate the business interruption impact of a 

terrorist attack on the electric power system in Los Angeles, focusing on both indirect economic effects, 

and the role of resilience (44). Port infrastructure has also been the focus for modelling the potential 

economic consequences of a 90-day disruption (45), using a supply-driven IO modelling approach. The 

IIM literature includes several studies on economic impact assessment of infrastructure failures (30,53). 

Mostly in existing CGE and IO based approaches, infrastructures are represented as macroeconomic 

sectors, with little link established between their socio-technical network structures and economic 

characteristics. Recently, some studies have established that link, by integrating customer disruptions 
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measured from network failure models with demand-driven IO models (50,54). This paper also 

integrates an infrastructure network model with an economic model, while addressing some 

shortcoming of existing approaches. For example, many IO models utilise data that are a number of 

years old due to the complexity and amount of time required to develop national account statistics. 

Moreover, IO and CGE models can be poor at forecasting future economic states. We overcome this by 

employing an industry-standard Macroeconometric Error Correction forecasting model that combines 

the advantages of both Vector Auto Regression and Dynamic-Stochastic General Equilibrium methods, 

allowing the robust testing of scenarios in future periods using the most up-to-date information. The 

methodology will now be outlined in Section 3.  
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3. METHODOLOGY 

We present a methodological framework that allows risk analysts to assess the direct and indirect socio-

economic impacts of a counterfactual cyber-physical attack on electricity distribution substations, as 

illustrated in Figure 2. In the following sections, we discuss the specific components of the framework, 

but first we present a generalised methodology for quantifying the different components. 

As discussed previously, we are interested in counterfactuals of a historic event 𝐻𝐻𝐻𝐻, which we identify 

as a threat to the system of study. We denote the level of cyber-physical threat manifestation of the 

actual event as 𝐻𝐻𝐻𝐻0, and different counterfactual events as 𝐻𝐻𝐻𝐻1, … ,𝐻𝐻𝐻𝐻𝑧𝑧. For example, the 

counterfactual scenario 𝐻𝐻𝐻𝐻𝑖𝑖 signifies that 𝑚𝑚 physical components of a 𝑛𝑛 component system could have 

failed due to a cyber-attack. Specifically, in our study 𝐻𝐻𝐻𝐻𝑖𝑖 signifies that 𝑚𝑚 electricity substations out of 

a 𝑛𝑛 substation network could have failed due to a cyber-attack. For an exhaustive vulnerability 

assessment of the counterfactual event 𝐻𝐻𝐻𝐻𝑖𝑖 we look at all the 𝑑𝑑 = �𝑛𝑛𝑚𝑚� combinatorial failure 

possibilities in the system, to obtain a set of failure scenarios 𝑆𝑆1, … , 𝑆𝑆𝑑𝑑. The failure outcomes are first 

measured in terms of the populations of direct electricity customer disruptions 𝐷𝐷𝐷𝐷1, … ,𝐷𝐷𝐷𝐷𝑑𝑑 

corresponding to each failure scenario. Investigating the indirect disruptions for all failure scenarios 

could be infeasible, given the large number of combinatorial possibilities, so we select certain 

representative scenarios. This is done by assigning exceedance probabilities 𝐸𝐸𝐸𝐸1, … ,𝐸𝐸𝐸𝐸𝑑𝑑 to direct the 

customer disruptions of the failure scenarios. We then sample scenarios based on exceedance 

probabilities of interest. 

Following the selection of a smaller set of specific scenarios 𝑆𝑆1, . . , 𝑆𝑆ℎ, we estimate the indirect 

customers 𝐼𝐼𝐼𝐼1, … , 𝐼𝐼𝐼𝐼ℎ for different sectors dependent upon electricity. We can also measure the wider 

macroeconomic impacts in terms of different metrics such as private consumption (𝑃𝑃𝑃𝑃), investments 

(𝐼𝐼𝐼𝐼), capital stock (𝐶𝐶𝐶𝐶), gross value added (𝐺𝐺𝐺𝐺𝐺𝐺) or gross domestic product (𝐺𝐺𝐺𝐺𝐺𝐺). Hence in the end 

for a particular counterfactual event 𝐻𝐻𝐻𝐻𝑖𝑖 we can sample a scenario 𝑆𝑆𝑗𝑗 and assemble different direct and 

indirect metrics (𝐷𝐷𝐷𝐷𝑗𝑗 , 𝐼𝐼𝐼𝐼𝑗𝑗 ,𝑃𝑃𝑃𝑃𝑗𝑗 , 𝐼𝐼𝐼𝐼𝑗𝑗 ,𝐶𝐶𝐶𝐶𝑗𝑗 ,𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗 ,𝐺𝐺𝐺𝐺𝐺𝐺𝑗𝑗).    
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Figure 1 Framework for assessing the socio-economic impacts of cyber-physical attack 

 

Figure 2 represents how the above generalised methodology was applied in the current study. The initial 

development of this framework involved a set of stakeholder interviews conducted with representative 

organisations (number of interviewees in parentheses) from energy [13], security [6], insurance [20], 

defence [2], government [9] and academia [4], to assess current understanding, potential exposure and 

analytics which could aid resilience building activities.  

Research initially began in July 2015 when defining a hypothetical event similar to the Ukrainian attack, 

at a set of scenario development workshops, consisting of UK representatives from government [5] and 

academia [8], and the electricity [2], defence [1], risk management [3] and cyber security [1] industries 
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[number of attendees in parentheses]. Rather than regional control rooms being of greatest risk, which 

have significant cyber and physical security procedures, it was local substations that were identified as 

vulnerable assets. Traditionally, these local substations are less protected than those parts of the network 

which are higher up the distribution (or transmission) hierarchy. However, stakeholders identified that 

pinpointing which substations were potentially vulnerable was highly challenging. In December 2015, 

as this research was being written up into an industry white paper (9), the Ukrainian electricity 

substation attack took place, turning a hypothetical scenario into an actual event.  

3.1. Threat identification 

A threat is defined as any potential hazard implemented for malicious intent, which could interfere with 

normal operational conditions, causing a blackout event. This likely involves ‘hacking’ Industrial 

Control Systems (ICS), which include SCADA systems, distributed control systems and programmable 

logic controllers. These systems are found in many industrial applications including CNI systems. 

Indeed, electricity distribution operators are increasingly using some form of ICS to control, automate 

and maintain operation of their equipment and the flow of electricity (29). Since Stuxnet sabotaged 

Iran’s nuclear programme in 2009 and 2010, we have seen a dramatic increase in the threat to ICS and 

SCADA systems, raising concerns around our ability to protect CNI e.g. the Dragonfly Campaign (55). 

The attacker may specifically aim to spoof sensors with false data, disconnect key devices required for 

normal operations, and control physical components such as actuators. As well as remote attacks, there 

is also potential for intruders to physically connect a rogue hardware attack platforms into the Local 

Area Network of a substation, breaching ‘air-gapped’ networks (see Cambridge Centre for Risk Studies, 

2016).  

3.2. Threat manifestation  

The 2015 Ukrainian attack has been documented by the US Department for Homeland Security (56). 

The malicious attackers managed to firstly deliver potentially malicious BlackEnergy Malware via 

spear phishing emails using malicious Microsoft Office attachments. Secondly, intruders conducted 

comprehensive reconnaissance of critical systems in advance. Finally, to commence the attack 



 
 

14 
 

substation breakers were disconnected using legitimate credentials with either remote administration 

tools or remote ICS client software via a Virtual Private Network connection. Little about this attack 

was specific to Ukrainian technology or critical infrastructure, and therefore it could be replicated in 

similar ways in other nations. Analysis of this attack (2) indicates that (i) the attack could have been far 

worse, and (ii) the idea of a major cyber-physical attack on energy infrastructure is not a matter of if, 

but when.  

Although there has been some discrepancy in the number of substations affected by the Ukrainian attack 

in 2015, approximately 30 substations were affected (2), consisting of seven 110 kV and the remainder 

35 kV (57). However, more substations could have been affected. We replicate the Ukrainian-style 

threat for the UK, which is divided into electricity regions consisting of nine Distribution Network 

Operators (DNOs), out of which we have chosen one. To capture both upward and downward 

counterfactual events, we select both half and double the number of substations affected by the 

Ukrainian attack. We therefore test the implications of 15, 30 and 60 substations being compromised 

by a zero-day vulnerability. As consequently explained in this methodology, each of these three 

potential events is investigated separately utilising Monte Carlo Simulation. The number of substations 

is used to represent different scales of attack. As this analysis focuses specifically on modelling the 

socio-economic impact of a Ukrainian-style cyber-physical attack on the UK, we measure the direct 

disruption as the proportion of the local population disconnected from the electricity network.  

3.3. Direct disruption: Threat scenario selection 

Following the creation of the threat scenarios, we estimate the disruptive consequences associated with 

different cyber-physical attacks on electricity substations. Figure 3 provides a generalised overview of 

the electricity transmission and distribution networks, which form a hierarchy of flows, from power 

generation to electricity users, where the electricity is sequentially stepped down from high voltage 

transmission networks to low voltage distribution networks (47). ‘Stepping-down’ is performed by 

electricity transformers that are located within substations, which we assume are ICS operated and 

potentially vulnerable to a remote cyber-physical attack. Our study focusses on 132kV substations in 

the network hierarchy as the points of cyber-physical attack. To understand the impact, this modelling 
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approach assigns spatially located customers to local distribution substation assets, leading to variation 

in the number of customers per substation (47,48,50), and further details in Section 3.4), hence leading 

to ‘larger’ or ‘smaller’ substations. 

Figure 3 Generalised overview of electricity transmission and distribution in England 

 

Classical scenario analysis is a tool frequently used for risk management purposes, however it often is 

used in a very deterministic manner. It is arguably more beneficial to know something about the 

distribution of possibilities associated with a threat, given that there are a wide range of potential 

outcomes that could arise (particularly for zero-day vulnerability risks). There are approximately 252 

132 kV substations in the London, South East and East of England region available for the simulation 

in this analysis. We stochastically explore the event space by randomly sampling 15, 30 or 60 

substations per event, leading to a total number of 5.2x1023, 6.9x1038, 6.9x1058 substation combinations 

respectively. Each substation has an equal likelihood of being selected. 

This simple approach, in which we sample subsets of affected substations and calculate the population 

impacted in each case, is justified on two grounds. Firstly, we lack the technical details of each 
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substation, and their potential vulnerabilities, as well as the actual topology of the substation network 

that would be needed to undertake a (more sophisticated) network view of impairment. This is partly 

reflective of the variation in the state of knowledge of CNI operators. Secondly, the level of uncertainty 

embodied in the assessment of cyber-physical risks to CNI suggests that the uncertainties from zero-

day vulnerabilities will outweigh any additional resolution obtained at the engineering level.  

Once we have a dataset of simulation results we calculate the Exceedance Probability (EP), as is 

common in the modelling of catastrophe risk (58). The EP (𝑃𝑃) for event 𝑖𝑖 based on the number of 

substations randomly attacked is as follows: 

𝑃𝑃𝑖𝑖 =  
𝑚𝑚𝑖𝑖

(𝑛𝑛𝑖𝑖 + 1)
 1 

where 𝑚𝑚𝑖𝑖 is the rank of the total population affected by each simulation iteration (with 1 being given to 

the largest possible value), and 𝑛𝑛𝑖𝑖 being the total number of simulation runs. Event simulation results 

are illustrated in Figure 4. For example, for an event with 15 attacked substations (Event 1), the 

probability of more than 1 million people being affected, i.e. the probability of exceedance of 1 million 

people, is approximately 50%.  

Spatial and indirect disruption results can be found in Section 4.  
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Figure 4 Distribution of direct disruption: Population affected for each stochastic event 

 

For a given stochastic event, for example where 30 substations are attacked, the difference in the 

population affected by the substation selection relates to changes in the spatial attack footprint and the 

network topology. In contrast, differences between stochastic events relate to the scale of attack across 

the network and the number of infected substations. We select exceedance probabilities that relate to 

the mean impact (50th percentile, or median) and the tail risk (10th and 1st percentile), as these were 

identified as being important to the scenario stakeholders at the development workshops. Tail risk has 

also been identified as vital in the cyber-risk literature (21).  

Figure 4 shows that an extreme scenario (10th or 1st percentile) associated with a lower number of 

infected substation, has a smaller disruptive impact than the mean scenario of an event with more 

infected substations. For example, the 1st percentile of the event with 15 infected substations affects 
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power supply for 1.5 million people, while the mean number of disconnections for a 30-substation event 

is above 2 million. The implication for the management of power distribution networks is evident: 

Preventing (or recovering from) cyber-attacks which can scale up from a few substations to many is the 

priority. By implication, protecting larger substations with greater investment of resources, may be a 

less effective means of prevention according to the metric of consumer disruption. 

3.4. Indirect disruption: Cascading network failure metrics 

We also examine other critical infrastructures, including rail, ports, airports, water, wastewater, and 

telecommunications, which typically derive their electrical power needs from a direct connection to the 

distribution network. The electricity network is connected to other infrastructures, to map their 

dependencies on electricity, to create a system-of-systems network model with results reported for 379 

Local Authority Districts (47). The dependent infrastructures include water towers, wastewater 

treatment works, macrocellular basestations, airports, and ports as point assets, along with a railway 

network. Figure 3 already showed a graphical representation of the infrastructure types connected to 

the electricity network in the demand layer. For details of these infrastructure assets and networks, along 

with their dependencies see previous studies (47,49,50). The dependencies are derived based on 

multiple criteria including (i) existing data on the physical connections between networked assets; (ii) 

geographic proximity of assets to their nearest electricity substations of appropriate voltage, and (iii) 

functional understanding of the flow of electricity from substations to other infrastructures. For 

example, we consider instances of network redundancies where large assets such as airports are 

connected to multiple substations (47), and several railway stations are connected to sets of substations 

(50). The exact voltage level to which individual CNI assets are connected may vary. However, the 

majority of each asset type connects to the same voltage level (the same substation type).  

We define failure as a condition of the network node (or edge) asset such that it is no longer able to 

perform its functional purpose. In our description, this means that the service demand satisfied by the 

affected node is lost and all its connections are interrupted. Based on the selected scenarios, it is assumed 

that all the included electricity substations have failed and subsequently the number of disrupted 
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electricity customers is estimated. In parallel there are also cascading failures towards the dependent 

assets of other sectors.  

To estimate disruption, we first model customer assignments to different types of infrastructures. For 

all infrastructures, we create average daily customer estimates. Electricity, water, wastewater, and 

telecoms provide utility services over fixed areas called asset footprints (47,48,50). These assets 

footprints are derived using a Voronoi decomposition technique, which results in connecting customers 

to their nearest assets in space – an assumption which holds true in the real world (47,48,50). Assigning 

customer values to assets is based on a spatial union of its asset footprint with census derived population 

estimates. For the railway network customer demands are derived using a model of station entries, 

interchanges and exits, and by combining these with train frequencies along routes, to obtain daily 

origin-destination trip assignments for passenger flows (50). Airports customers are derived from 

annual flight statistics and are calculated as the total number of terminal passengers for an average day 

in 2009. Similarly, average daily port freight tonnage is derived using 2009 national port usage statistics. 

For each threat scenario, the infected electricity substations lead to failure propagating along the whole 

network path where the flow of electricity via the failed substations takes place (as illustrated in Figure 

3). For other critical infrastructures such as airports, ports, telecoms masts, water towers and waste 

water treatment works customer disruptions are estimated based on whether the connected electricity 

substation has failed. For the railway network disruptions, we first consider the stations disrupted due 

to connection to failed electricity substations. Following which we consider all origin-destination 

journeys that are lost even after rerouting due to disruption of the selected stations (50). The aggregated 

number of customers affected by each critical infrastructure sector provides the disruption estimates 

reported. 

3.5. Indirect disruption: Economic impact metrics 

We quantify economic impact given a demand-side economic shock due to reduced private 

consumption, from households being without power. Private consumption is affected as consumers are 

unable to complete daily economic transactions. The Oxford Economics Global Economic Model is 
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utilised which is a widely employed macroeconomic model with users including the International 

Monetary Fund and World Bank (59), and consists of over 26,500 interlinked equations based on 

historical correlations and economic theory. Multivariate forecasts are produced for many economies, 

but here we focus only on the UK. The modelling approach adopts Keynesian principles in the short 

run, where shocks to demand generate economic cycles that can be influenced by fiscal and monetary 

policy. While over the long run, output is determined by supply-side factors including investment, 

demographics, labour and productivity. The basic modelling principle of the simulation framework is 

that GDP output (Y) can be expressed as the summation of aggregate Consumption (C), Investment (I), 

Government Spending (G) and Net Exports (NX) (hence, Y = C + I + G + NX). 

We use the model to see the effect of a shock directly applied to private consumption to understand the 

impact on GDP. A quarterly shock is parametrised using the total population affected for each scenario 

for a single 24-hour period. Additionally, we report a set of intermediate macroeconomic indicators 

including lost investment, capital stock formation, manufacturing GVA and services GVA, to quantify 

the economic impact by scenario.  

On the one hand, this may overestimate the impact due to the potential rescheduling of consumption 

purchases. While on the other, we do not consider potentially much larger impacts on the supply-side 

due to business interruption, or indeed harm to labour productivity. Given the challenge of estimating 

supply-side impacts, they are of the scope of this analysis and are identified as an area of future research 

in the discussion. 
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4. RESULTS 

The modelled electricity distribution network accounts for just under a third of the total UK population. 

In this section, the results are reported for the nine scenarios tested within the assessment framework 

with a spatial resolution of 379 Local Authority Districts. Firstly, the spatial direct disruption to 

electricity users will be reported, followed by the indirect impacts. The latter includes spatial customer 

disruption on non-electricity CNI and estimates of economic loss due to the consequent disruption to 

private consumption across all affected infrastructures. 

4.1. Direct disruption metrics: Spatial distribution of disruption 

In the selected scenarios, the population affected ranged from 1-5 million, reflecting between 1.6-7.6% 

of the total UK population. A larger proportion was affected as the number of compromised substations 

increased. This contrasted with changes in the exceedance probability, which only had a marginal 

impact on the direct level of population disruption. This pattern is illustrated within Figure 5, where a 

15-substation attack with a 1% probability of exceedance (S3) had a lower severity, in comparison with 

a 30-substation attack with only the mean probability of exceedance (S4).  
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Figure 5 Direct disruption: Spatial impacts of population affect by electricity blackouts 

 

The spatial attack footprint is visibly different between the event types, in terms of the scale of the 

disruption. However, even in the least severe scenarios there was still a significant proportion of the 

population disrupted, with over 200,000 people being affected in at least one London Local Authority, 

in each 15-substation scenario. Having examined the spatial footprints of the direct population impacts, 

the indirect results will now be reported.   
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4.2. Indirect disruption metrics: Spatial distribution of disruption 

As well as direct infrastructure disruption, a cyber-physical attack on electricity distribution substations 

could lead to further indirect infrastructure cascading failure. Some of this disruption will take place 

outside of the attack zone footprint, with rail passenger journeys being a prime example, as illustrated 

in Figure 6. In every scenario, the biggest impact was evident in London due to the large number of 

commuters relying on transportation from suburban or rural locations, into urban areas. However, the 

spatial distribution of passenger disruptions is highly dependent on the scenario and the location of 

compromised substations. For example, in S3 and S7 the West Coast Mainline railway is affected with 

disruption to passenger journeys leading from London all the way to North Wales, North West England 

and Northern Scotland. In contrast, in S2 and S4 the East Coast Mainline is affected, with passenger 

disruption leading through the East Midlands, Yorkshire, North East England and finally to Scotland. 

Passenger disruptions in each 15-substation scenario were more localised to London, whereas events 

with more compromised substations led to a greater number of passenger disruptions in other major 

cities such as Birmingham, Manchester and Leeds.   
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Figure 6 Indirect disruption: Rail passenger disruptions  
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The spatial distribution of disruption to other critical infrastructures was less spread across the UK, as 

provision is more local. For example, with telecommunications, fresh water and waste water, services 

are distributed closer to the end-user’s premises, mainly confining disruption to the areas with 

compromised substations, as illustrated in Figure 7. Hence, the underlying topological structure of the 

infrastructure network has a significant impact on the spatial extent of disruption. The significance of 

this disruption for each CNI may manifest in different ways. For example, wireless telecommunications 

in theory allow users more flexibility to access different basestations, but recent evidence has suggested 

that during power loss it takes only a couple of hours for the system to become completely inoperable 

in the blackout zone (39).  
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Figure 7 Indirect disruption: Cascading failure across CNI 
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The total impacts are illustrated in Figure 8, for both customer disruption and economic impact by 

scenario. The aggregate figures show that for infrastructure cascading failure, disruption in telecoms, 

fresh water and waste water is highly correlated with the number of electricity customers affected in 

each scenario. Airport, maritime port and rail disruption is less correlated, and highly dependent on 

whether certain, more critical, substations are affected in the attack.  

In terms of the economic impact, which we assess here based purely on consumption disruption, the 

estimated loss to GDP in 2018 following an event in Q4 2017, ranged from £66 million in S1, up to 

£276 million in S9. As illustrated in Figure 8, the quantity of lost investment and capital stock formation 

in each scenario was relatively similar. Lost investment amounted to £13 million in S1, to £58 million 

in S9, whereas lost capital stock formation ranged from £11 to £51 million respectively. The GVA 

impacts broadly reflected the underlying economic structure of the UK’s economy which is dominated 

by service-sector activities. This meant manufacturing GVA loss was relatively minor in comparison 

with the £38-171 million loss in services.  

Having reported the results, we will now discuss their implications in Section 5. 
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Figure 8 Total impacts by scenario 
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5. DISCUSSION 

Even the most diligent operators are exposed to zero-day exploits; indeed, the discovery and application 

(by attackers) of zero-day flaws is stochastic by nature. Modelling and pinpointing these exposures is 

therefore extremely challenging. In this paper, the analysis focused on applying counterfactual 

information to develop upward and downward scenarios of physical asset failure, enabling us to answer, 

‘what if’ questions by quantifying impacts without getting mired in specific details of either the 

attackers’ modus operandi or the engineering specifications of the system attacked (which may be 

unknown or unavailable, respectively).  

A key finding identified within this paper, pertaining to research question 1, is that the size of direct 

population disruption from a substation attack is better predicted by the number of substations affected, 

rather than by taking into account the size of population served by (larger) substations. The first order 

implication is that monitoring and response preparedness across the entirety of substations under the 

control of a distribution network operator is more valuable than increasing the resistance to attack of 

more important substations.  

Regarding the indirect impacts, pertaining to research question 2, we find that customer disruption for 

different CNI sectors is correlated with power loss in two distinct ways. For example, telecoms, fresh 

water and waste water services are highly correlated with the spatial footprint of electricity disruption. 

In contrast, in transportation there are relatively few, yet very important, critical hubs. Therefore, there 

may be a lower probability of infecting a substation which serves one of these critical hubs. However, 

if this happens, there could be higher disruptive consequences from a single asset. This results from 

differences based on disruption metrics, and whether one uses the number of direct connections lost (as 

applied here), or a weighted metric which reflects the relative importance of each connection (an area 

for future analysis). For example, airports and maritime ports may deserve a higher weighting due to 

the economic disruption associated with their inoperability. 

The analytics provide the following systemic information, helping to address research question 3. 

Customer disruptions are highly correlated in some CNI sectors with the spatial attack footprint on the 
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electricity distribution network. However, for other CNI sectors with critical hubs, such as commercial 

transportation, customer disruption is not necessarily an effective measure of societal value. Indeed, 

there may be three competing interests for CNI operators. Firstly, meeting regulated service standards 

for domestic consumers. Secondly, meeting industrial demand from high-value customers who 

purchase large quantities of services with high reliability requirements. Thirdly, providing security of 

supply for critical infrastructure assets including essential government services, hospitals, healthcare 

and commercial information technology for banking and payment services. We believe the next steps 

towards cyber-physical resilience analytics, will explicitly address the multiple objectives of these 

competing interests, to quantify trade-offs at the operator and policy levels.  

We bring the paper to a close with a reflection, aimed at CNI operators. It is difficult to completely 

disable large numbers of substations, i.e scale an attack, as vulnerabilities are specific to types of 

substation hardware, software, and all the different components of security that need to be overcome to 

enable a plan to succeed. Therefore, the greater diversity between substations in terms of their software 

and hardware subsystems, the more difficult it is for a vulnerability of a subsystem to cause a problem 

at scale (across substations). Indeed, the scalability of the attack depends on the standardisation of 

components and systems in place.  

Yet, prescribing a multiplicity of different configurations such as substation design, subsystem and 

implementation, may not be practical, as any increase in the number of configurations requires a 

comparative increase in resource for maintenance and security. Due to the uncertainty associated with 

the dynamic nature of cyber, a more appropriate strategy may be to invest in and actively undertake 

comprehensive and widespread monitoring of assets. This approach does not interfere with existing 

ICS, and will allow a much more efficient response if, or rather when, an attack does take place.  
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6. CONCLUSION 

A key finding identified within this paper is that the size of direct population disruption from a 

substation attack is better predicted by the number of substations affected, rather than paying specific 

attention to larger substations. Nevertheless, certain substations are critical for the functionality of other 

key assets such as airports or maritime ports, for which other metrics of societal value, other than 

population disruption, are appropriate.  

With such a small history of known cyber-physical attacks, individual organisations have struggled to 

justify investment in ICS cyber security measures using traditional return-on-investment thinking. We 

are unlikely to obtain a robust event set of cyber-physical attacks on CNI in the near future because of 

the rapidly changing landscape associated with this threat. This is common with low probability, high 

impact events, which is a key justification for using a counterfactual approach. 

In many countries, such as the USA or UK, governments do not own the infrastructure – private 

operators do. Yet, the public will look to governments when we see another cyber-physical attack on 

critical infrastructure. The scenarios presented within this analysis provides further evidence on a 

developing area, for key private and governmental stakeholders, on how direct and indirect customer 

disruption takes place for different scales of cyber-physical attack. This paper sets a direction for the 

assessment of risks that are both systemic and emergent, by undertaking a vulnerability assessment 

using a stochastic counterfactual framework. Cyber-physical vulnerability assessment, as a path to 

developing effective resilience analytics, must quantify the trade-offs inherent in a system made up of 

multiple institutions with different objectives, such as governments, infrastructure operators and 

commercial consumers of infrastructure services. 
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