

The Cyber-Security Overlap

Centre for Risk Studies

Session 3: the Cyber-Security Overlap Agenda

- The triangle of pain: the role of policy, public and private sectors in mitigating the cyber threat
 - Professor Daniel Ralph, Academic Director, Cambridge Centre for Risk Studies & Professor of Operations Research, University of Cambridge Judge Business School
- Modelling the cost of cyber catastrophes to the global economy
 - Simon Ruffle, Director of Research & Innovation, Cambridge Centre for Risk Studies
- Towards cyber insurance: approaches to data and modelling
 - Jennifer Copic, Research Associate, Cambridge Centre for Risk Studies

The triangle of pain: the role of policy, public and private sectors in mitigating the cyber threat

Centre for Risk Studies

Professor Daniel Ralph

Academic Director & Professor of Operations Research
Cambridge Centre for Risk Studies
& Cambridge Judge Business School

Centre for Risk Studies Mission Statement To be the world's leading academic centre for research into systemic risk in business, the economy, and society

CCRS Cyber Research:

Stress Test Scenarios and Insurance Loss Models

In preparation

The Knowledge Economy

Old

New

Economies categorised by dependency on critical infrastructure

Centre for Risk Studies

What is Cyber Risk?

Cyber Risk

 "Any risk of financial loss, disruption or damage to the reputation of an organisation from some sort of failure of its information technology [or operational technology] systems"

The Institute for Risk Management. "Cyber Risk". 2014

- IT (information technology)
 - Attacks on non-physical assets could target enterprise systems, such as websites or databases
- OT (operational technology)
 - Attacks on physical assets could target industrial control systems like SCADA and have the potential to cause physical damage

Triangle of Pain: Failure of Critical Infrastructure

Optimizing the risk equation: who bears the risk?

Cyber Attacks by UK Sector

Historical UK Power Outages

1987

Wind storm breaks the link between UK and France. SE East England w/out power for approximately 6 hours

2003

Back to back transmission system faults caused a 34 minute power outage in parts of London. (London Assembly, 2004)

2009

A power cut due to arson at a cable installation left 94,000 customers without power for four days (BBC, 2009)

2010

A blackout in Portsmouth was caused by a substation fire, 47,000 people without power (BBC, 2010)

2013

Severe winter storms in Dec damaged distribution network affecting almost 1 million customers over 48 hours (Cabinet Office, 2015)

2015

An underground fire in Holborn cable tunnels caused a power outage. It took 36 hours to put out the blaze (BBC, 2015)

London Wednesday 1 April 2015 [Picture: Twitter/@mdw1989]

CRS Cyber Attack Scenarios on Power System

US Generation

EU Transmission
Future Project TBD

UK Distribution

SmartGrid/Smart Cities Future Project TBD

Electricity Distribution Under Threat From Cyber Attack

Triangle of Pain

Ultimately Responsible

Private sector critical infrastructure companies

Provision of service

Society: Corporate and Private Consumers

Source: National Grid. "Distribution Network Operator (DNO) Companies"

2015 Ukraine Cyber Attack on Electricity Distribution Substations

- Power outage 23 December 2015
- Electricity outage affected region with over 200,000 people for several hours
- Malware (BlackEnergy) in 3 distribution substations
- Still investigating if switching came from hackers
 - The Ukrainian energy ministry probing a "suspected" cyber attack on the power grid
- Ukraine CERT confirms there was spear phishing at affected companies prior to outage

Growing Interdependency Amplifies the Triangle of Pain

Modelling the cost of cyber catastrophes to the global economy

Centre for Risk Studies

Simon Ruffle

Director of Research & Innovation Cambridge Centre for Risk Studies

Catastrophe Modelling in Complex Systems

- The Centre for Risk Studies arises from shared interests by the participants in exploring areas of intersection between
 - Catastrophe modelling and extreme risk analytics
 - Complex systems and network failures
- Advance the scientific understanding of how systems can be made more resilient to the threat of catastrophic failures

To answer questions such as:

'What would be the impact of

a [War in China] on [Trade Networks] and how would this impact the [Global Economy]?

Regional Conflict

Air Travel Network

Global GDP \$ Trillion GDP@Risk

Global Economy

Centre for Risk Studies

Cambridge Taxonomy of Threats

Default

Pressure

Trade Sanctions

Force

War

Social Unrest

Natural Catastrophe

Run

Crime

Eruption

Tsunami

Tornado &

Storm

Heatwave

Atmospheric System Change

Accident

Disease Outbreak

Threat

Plant

CCRS Research Outputs: Explorations of individual threats

Taxonomy of Threats

Geopolitical Conflict Emerging Risk Scenario

Pandemic Emerging Risk Scenario

Cyber Catastrophe Emerging Risk Scenario

Social Unrest Emerging Risk Scenario

Ebola Emerging Risk Scenario

Financial Catastrophes

Global Property Crash Financial Risk Scenario

Eurozone Meltdown Financial Risk Scenario

High Inflation Financial Risk Scenario

Dollar Dethroned Financial Risk Scenario

Historical Crises Financial Risk

Cyber Accumulation Insurance Risk Report

NatCat FinCats Clash Report

Business Blackout Lloyds Emerging Risk Report

Infrastructure Cyber Attack UK

World City Risk 2025 Lloyds Co-Branded Report

Solar Storm Emerging Risk Scenario 18

Scenario Development Process

Historical Context

A justification and context for a 1% annual probability of occurrence worldwide

Timeline & Footprint

Sequencing of events in time and space in hypothetical scenario

Narrative

Detailed description of events 3-4 variants of key assumptions for sensitivity testing

Loss Assessment

Metrics of underwriting loss across many different lines of insurance business

Macroeconomic Consequences

Quantification of effects on many variables in the global economy

Investment Portfolio Impact

Returns and performance over time of a range of investment assets

Catastronomics: GDP@Risk

GDP@Risk: Cumulative first five year loss of global GDP, relative to expected, resulting from a catastrophe or crisis

Cyber Risk Research at CCRS

IT Scenarios Information Technology

Data Exfiltration ('Leakomania')

Denial of Service Attack ('Mass DDoS')

Cloud Service Provider Failure ('Cloud Compromise')

Financial Theft ('Cyber Heist')

Ransomware ('Extortion Spree')

Malware ('Sybil Logic Bomb")

Sybil Logic Bomb

US Cyber Blackout

Exposure Data Schema

OT Scenarios Operations Technology

Cyber Attack on **US Power Generation** ('Business Blackout')

Cyber Attack on **UK Power Distribution** ('Integrated Infrastructure')

Cyber attack on **Commercial Office Buildings** (Laptop batteries fire induction')

Cyber attack on **Marine Cargo Port** ('Port Management System')

Cyber Attack on **Industrial Chemical Plant** ('ICS Attack')

Cyber Attack on **Oil Rigs** ('Phishing-Triggered Explosions')

Accumulation Scenarios

UK Cyber Blackout

Cyber Terrorism

Malware: the 'Erebos' Trojan

- Erebos is the Greek God of Darkness
- Understand the scale of loss
 - We have not yet had 'the Big One' for cyber
 - This fictional event explores what a cyber catastrophe might look like
- Insurance industry needs to quantify the size of the loss
- Malware trojans
 - A team of software hackers creates the 'Erebos' Remote Access Trojan
 - The Erebos Trojan is a fictional piece of malware that can infect generator control rooms that goes undetected
 - When activated it finds generators with specific characteristics and forces them to burn out

The Aurora Vulnerability: Phase Angle De-Synchronisation of a Generator

US Electricity Grid Interconnections

Erebos Business Blackout Scenario

- During peak summer demand for electricity there is a coordinated simultaneous attack targeted at two regions of United States power grid (NPCC and RFC)
- Malware finds 50 generators that it can control and forces them to overload and burn out
 - in some cases causing additional fires and explosions
- Electricity blackout that plunges 15 US states and Washington DC into darkness
- 93 million people without power
- More than 17 TW-Hours of generation is lost around 12% of supply

Outage & Restoration of Power

Historical Examples

New York 8 million people

Scenario Outage Levels Comparable with Extreme Weather

- Generation supply loss in our scenario is equivalent to extreme outage levels expected from US weather events
- Historical data suggests a weather-related outage of around 17 TW-hours can be expected with an annual probability of 2%
- We are not assigning a probability to a cyber attack
 - The return period of our scenario is unknown
 - We are providing historical weather disruption for context

Scenario variants

Peak Demand Demand Over 30 days		190 GW 136.8 TWh	
S1	S2	X1	
13%	27%	46%	
17 TWh	37 TWh	63 TWh	

Economic Impact: GDP@Risk

Scenario Variant	Outage Duration (to 90% reconnected)	Consumption	Labour	Exports	Confidence	GDP@Risk (5 Yr)
S 1	2 Weeks	0.6%	0.6%	1.3%	5%	\$243 Bn
S2	3 Weeks	1.3%	1.3%	2.8%	10%	\$544 Bn
X 1	4 Weeks	2.2%	2.2%	4.9%	20%	\$1,024 Bn

Summary of Erebos Business Blackout Scenario

Scenario Variant	Outage Duration (to 90% reconnected)	Number of Generators Damaged	Economic Output Lost GDP@Risk	Insurance Industry Loss Estimate
S1	2 Weeks	50	\$243 Bn	\$21.4 Bn
S2	3 Weeks	50	\$544 Bn	\$39.9 Bn
X1	4 Weeks	100	\$1,024 Bn	\$71.1 Bn

For context:

Total insurance catastrophe losses 2014: \$45 Bn
Hurricane Katrina 2005: \$80 Bn
Tohoku Earthquake Japan 2011: \$38 Bn
Superstorm Sandy 2012: \$37 Bn
Hurricane Andrew 1992: \$28 Bn
9/11 WTC 2001: \$26 Bn

[2015 \$ value]

Full details of insurance loss estimation methodology: http://www.lloyds.com/news-and-insight/risk-insight/library/society-and-security/business-blackout

Towards cyber insurance: approaches to data and modelling

Centre for Risk Studies

Jennifer Copic

Research Associate
Cambridge Centre for Risk Studies

Insurance and Cyber Risk

- Insurance is a risk transfer tool for corporates trying to manage this emerging risk
- Cyber offers potential for market growth and new product development
- Insurers are concerned with accumulation risk due to the potentially systemic impact of an event
 - Regulators are also concerned of accumulation risk in the market
- Insurers themselves have operational exposure to cyber risk

Four Different Types of Cyber Insurance Exposure

- Affirmative Standalone Cyber Cover: Specific standalone policies for data breach, liabilities, property damage and other losses resulting from information technology failures, either accidental or malicious
 - This is generally known as cyber liability insurance cover (CLIC)
 - Technology errors and omissions (E&O) liability insurance, available as a specific insurance product for the providers of technology services or products to cover both liability and other loss exposures.
- Affirmative Cyber Endorsements: Cyber endorsements that extend the coverage of a traditional insurance product, such as commercial general liability
- 3. Silent Cyber Exposure Gaps in Explicit Cyber Exclusions: There are a range of traditional policies, such as commercial property insurance, that have exclusion clauses for malicious cyber attacks
 - Except certain nominated perils such as: Fire; Lightning; Explosion and Aircraft Impact (FLEXA)
- 4. Silent Cyber Exposure Policies without Cyber Exclusions: Many insurance lines of business incorporate 'All Risks' policies without explicit exclusions or endorsements for losses that might occur via cyber attacks

Cyber Loss Coverage Categories

- Wide variation in coverage language
 - No two cyber products are the same
- Additionally, insurers need to capture cyber attribute data, such as
 - Number of records of PII
 - Named cloud providers
 - Named payment system providers

v1.0 Code	Cyber Loss Coverage Category	% of Products Offering this Cover (Sample of 26)	
1	Breach of privacy event	92%	
2	Data and software loss	81%	
6	Incident response costs	81%	
15	Cyber extortion	73%	
4	Business interruption	69%	
12	Multi-media liabilities (defamation and disparagement)	65%	
7	Regulatory and defence coverage	62%	
14	Reputational damage	46%	
3	Network service failure liabilities	42%	
5	Contingent Business Interruption	33%	
9	Liability – Technology Errors & Omissions	27%	
10	Liability – Professional Services Errors & Omissions	23%	
13	Financial theft & fraud	23%	
16	Intellectual property (IP) theft	23%	
18	Physical asset damage	19%	
19	Death and bodily injury	15%	
11	Liability – Directors & Officers	13%	
8	Liability – Product and Operations	8%	
17	Environmental damage	4%	

Cyber Catastrophe Scenarios for Insurance Accumulation Management

Jan 2016 v1.0 First complete schema

Industry Organizations
Supporting the Schema

Cyber Catastrophe Scenarios for Insurance Accumulation Management

Affirmative cyber attack scenarios developed by Centre for Risk Studies

Deployed in CAMS v1.0

Data Exfiltration

('Leakomania')

Denial of Service Attack

('Mass DDoS')

Cloud Service Provider Failure

('Cloud Compromise')

Cyber Heist

('Financial Theft')

Ransomware

('Extortion Spree')

ShadowBrokers

('ExtraBacon Exploited')

Cyber Catastrophe Scenarios for Insurance Accumulation Management

Silent cyber attack scenarios developed by Centre for Risk Studies Deployed in CAMS v2.0

Cyber-Induced Fires in Commercial Office Buildings (Laptop batteries fire induction')

Cyber-Enabled Marine Cargo Theft from Port ('Port Management System')

ICS-Triggered Fires in Industrial Processing Plants ('ICS Attack')

PCS-Triggered Explosions on Oil Rigs ('Phishing-Triggered Explosions')

Regional Power Outage from Cyber Attack on **US Power Generation** ('Business Blackout') S1, X1

Regional Power Outage from Cyber Attack on **UK Power Distribution** ('Integrated Infrastructure')

Lloyd's Cyber Realistic Disaster Scenarios (RDS)

CRS Cyber Scenarios

1. Data Theft from an Aggregator

Data Exfiltration (Variant of 'Leakomania')

2. Cloud Computing Service Provider

Cloud Service Provider Failure ('Cloud Compromise' Reference View)

3. Northeast Blackout Scenario S1

Attack on **US Power Generation** ('Business Blackout Scenario S1')

4. Northeast Blackout Scenario X1

Attack on **US Power Generation** ('Business Blackout Scenario X1')

5. UK Blackout Scenario

Attack on **UK Power Distribution** ('Integrated Infrastructure')

6. Offshore Energy - MODU DP attack

Version in development Different attack vector

7. Aviation – navigation control attack

8. Marine – ballast control system attack

Version in development Different attack vector

Lloyd's have opted to only require the Northeast Blackout (Erebos) Scenario for future reporting

Insurance Loss Estimate

Power Generation Companies	\$	millions
Property Damage (Generators)		633
Business Interruption (Generator Damage)		3,817
Incident Response Costs		3
Fines - FERC/NERC		4
Other liabilities		-
Defendant Companies		
Liability		2,253
Companies that Lose Power		
Perishable Contents		595
Contingent Business Interruption - Suppliers		6,769
Extension		0,709
Liability		3,120
Companies Indirectly Affected		
Contingent Business Interruption - Critical Vendor		2,928
Liability		749
Homeowners		
Household Contents		465
Specialty		
Event Cancellation		63
Total	\$	21,398

Centre for Risk Studies

Panel Discussion 1: Triangle of Pain

- Accountability and responsibility of cyber
- When there is a disassociation of asset owners to customers and markets, who has culpability?
- Are there sector views?
 - Health
 - Energy
 - Media

Panel Discussion 2: Economic Consequences of Cyber

Total GDP loss is on scale of some large natural catastrophe events

- Would the public find GDP loss compelling within the cyber security discussion?
- What other metrics might the public find more informational than GDP loss?
- What are some other consequences of a large scale cyber threat?

Panel Discussion 3: Regulation of Cyber

Regulation exists to address health, safety, standards, public good, etc.

- Currently, lack of governmental incentives in regulation on cyber security standards for preparedness.
- What might a regulator of cyber look like for different sectors; major considerations?
 - Health
 - Energy
 - Media

Panel Discussion 4: Final Thoughts on Cyber

- Is there a step change in the way cyber security threats should be considered in the future?
- How can cyber security threats be managed as AI & autonomous systems become more pervasive
 - Health
 - Energy
 - Media

Centre for **Risk Studies**

http://www.jbs.cam.ac.uk/faculty-research/centres/risk/