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1 Introduction

Research from psychology has shown that humans often overweight the proba-

bility of rare, high impact events—such as those of unlikely but extreme financial returns.

To take such probability weighting into account in the human evaluation of risks, Ed-

wards (1962) proposed the replacement of objective probabilities with decision weights.

This idea was formalized in the rank-dependent utility model of Quiggin (1982) and in

1992’s (Tversky and Kahneman) prospect theory, among others, and aided economists in

studying the implications of probability weighting in numerous economic and financial set-

tings. In this paper, we study the implications of the most basic implication of probability

weighting—overweighting of the tails of the distribution—for asset prices. The investors

in our model have distorted mean-variance preferences (i.e., mean-variance preferences

with probability weighting). We abbreviate these preferences as Π-MV, where—as is com-

mon in the behavioral economics literature—Π stands for the set decision weights (i.e.,

the distorted probabilities) that the investor uses instead of the objective probabilities

when evaluating risky assets. The new model that is based on Π-MV preferences—the

Π-CAPM—extends the classical CAPM of Lintner (1965) and Sharpe (1964) by a single

parameter that captures probability weighting and reduces to it if that parameter is zero.

The Π-CAPM allows for the identification of the effect of tail overweighting on

asset prices and its predictions compare directly to those of the classical CAPM. We

assume a financial market that consists of two binary assets, which allows for simple and

transparent comparative statics analysis with respect to the assets’ volatility, skewness,

and correlation. Moreover, binary assets ensure the absence of arbitrage opportunities

for reasonable parameter values that otherwise may arise in a mean-variance framework

(Dybvig and Ingersoll 1982). A crucial assumption on the financial market is that of no

short-selling. As will be explained, short-selling interacts with the assumption of proba-

bility weighting in a non-trivial way that would make the analysis intractable. Probabil-

ity weighting is modeled using the well-proven single-parameter neo-additive weighting

function of Chateauneuf et al. (2007), which results in overweighting extreme good and

extreme bad events symmetrically. These assumptions jointly ensure that the Π-CAPM

largely retains the tractability of the classical CAPM. They allow for a number of analyti-

cal predictions—some known and some entirely new—regarding the pricing of skewed and
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correlated assets, as well as of options signed on them, in a standard (i.e., homogeneous

holdings) pricing equilibrium.

The Π-CAPM makes a number of specific predictions on the pricing of vari-

ance and skewness in stocks and stock options. First, while the price of a left-skewed

asset increases in skewness and decreases in the volatility of the asset, the price of a

right-skewed asset may decrease in skewness and increase in volatility. Intuitively, under

probability weighting, a right-skewed asset is generally overpriced (Barberis and Huang

2008), because the small probability of a large payoff is being overweighted. Increasing

the volatility of such an asset increases the payoff that is received with this overweighted

probability and may thus be desirable. That is, the price impact of volatility is skewness-

dependent in the Π-CAPM. The intuition behind the result that increasing the skewness

of a right-skewed asset may eventually decrease its price—the price impact of skewness is

also skewness-dependent—is more subtle and explained in main part of the paper. Our

equilibrium model with two skewed assets allows for another novel implication regarding

the pricing of skewness that concerns how skewed the assets are compared to one another.

Specifically, the Π-CAPM predicts that skewness of a given asset is more positively priced

if the other asset is slightly left-skewed as compared to slightly right-skewed.

Second, investors with probability weighting exaggerate the dependence be-

tween the assets. Intuitively, probability weighting results in the overweighting of small-

probability, extreme (low or high-payoff) events. The extreme events are those in which

all assets do either well or badly. But, these are just the events in which the assets

co-moving. Therefore, the probability of co-movement is overweighted. While this im-

plication of probability weighting (exaggerating the dependence of assets) seems rather

straightforward, to the best of our knowledge it has not been noted before. We show

that it has consequences for the correlation premium that results from selling realized

correlation (Driessen et al. 2009). In line with existing empirical evidence, the Π-CAPM

predicts it to be positive and sizable, while with standard preferences it is small and may

be even negative.

Third, two further novel predictions of the Π-CAPM concern the variance pre-

mium (Bollerslev et al. 2009; Carr and Wu 2009) and the skewness premium (Kozhan

et al. 2013). The variance premium of the stock market is known to be positive, which
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means that the strike of a variance swap exceeds the market’s realized variance; selling

realized variance earns a risk premium. The Π-CAPM predicts that the variance and

skewness premium of an individual asset, respectively, depend on its skewness in spe-

cific ways. The variance premium of a sufficiently asymmetric (i.e., sufficiently left- or

right-skewed) individual stock is positive, and increasing in the stock’s asymmetry. The

skewness premium increases in the skewness of the underlying stock, is negative for left-

skewed stocks, and is positive for right-skewed stocks. In the empirical part of the paper,

we verify these predictions regarding skewness dependence using the cross-section of U.S.

individual stock options. To this end, we adopt (and slightly adapt) the methodology of

Kozhan et al. (2013) that was developed for stock market index options. In particular

the results that the variance and skewness premiums of right-skewed stocks are positive

are noteworthy, because they are difficult to explain with standard preferences (as we

also show).

Related literature. This paper contributes to several strands of literature.

First, this paper contributes to the theoretical asset pricing literature by studying the

implications of a novel asset pricing model with probability weighting. As probability

weighting complicates equilibrium analysis substantially, there are relatively few models

that incorporate it, and they come with different assumptions, solution concepts, and

areas of focus in terms of application. Barberis and Huang (2008) were the first to

show that, with probability weighting, an individual asset’s own skewness is priced. This

result is obtained within a heterogeneous holdings equilibrium in which investors with

identical preferences may optimally hold different portfolios. Polkovnichenko and Zhao

(2013) show that probability weighting can explain non-monotone pricing kernels. Baele

et al. (2019) focus on a single-asset economy and show that probability weighting simul-

taneously explains the cross-section of put and call option prices as well as the positive

variance premium. Barberis et al. (2020) propose and calibrate a dynamic model that

includes all aspects of prospect theory (including probability weighting), and solve it nu-

merically to examine its ability to explain 23 prominent stock market anomalies. Some of

the distinguishing aspects of our model are that it nests and extends the classical Lintner-

Sharpe CAPM and allows for homogeneous pricing equilibrium with several correlated

assets and multiple investors. It allows for making analytical predictions, regarding the

price impact of volatility and skewness (both being skewness-dependent), regarding the
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exaggerated dependence between the assets, and regarding option-implied risk premiums.

Second, the paper contributes to the theoretical literature on the behavioral

implications of probability weighting more generally. Theoretical work has pointed to

the importance of probability weighting for portfolio choice (Bernard and Ghossub 2010),

insurance behavior (Bernard et al. 2015), and gambling decisions (Barberis 2012), among

many others. More recently,empirical researchers have documented direct links between

probability weighting and behavior.1

Third, the Π-CAPM theoretically underpins existing empirical work. For ex-

ample, a number of authors have presented evidence in support of the prediction that

skewness is negatively priced across many asset classes, including stocks and options, for

example Kumar (2009), Boyer et al. (2010), Bali et al. (2011), Conrad et al. (2013), Boyer

and Vorkink (2014), Ghysels et al. (2016), and Schneider (2019). As individual stock re-

turns tend to be right-skewed, the Π-CAPM’s prediction that the returns of right-skewed

assets typically decrease in volatility offers an explanation of the idiosyncratic volatility

puzzle as described in Ang et al. (2006). It makes the more refined prediction that, in

the cross-section of stock returns, the idiosyncratic volatility puzzle should not be ob-

served for left-skewed stocks. Barberis et al. (2020) explain the low returns on stocks

with high volatility by the fact that these stocks have, on average, higher skewness and

worse past performance. The Π-CAPM’s prediction that right-skewed assets earn (even)

lower expected returns when the remainder of the market is left-skewed is consistent

with the results of Gao and Lin (2015), who show that trading volume in Taiwanese

lottery-like stocks and the lottery jackpot are negatively correlated. In an experimental

setting, Dertwinkel-Kalt and Köster (forthcoming) have shown that choices are affected

by how skewed two risks appear relative to each other. The Π-CAPM predicts a sizable

correlation premium, and predicts that this premium decreases in the objective correla-

tion between the assets. The former prediction is documented by Driessen et al. (2009)

and Buss et al. (2016) in the equity market, and by Mueller et al. (2017) in the foreign

1Barseghyan et al. (2013) find that probability weighting can explain insurance deductible choices.
Barberis et al. (2016) find that stocks with return distributions that are appealing under probabil-
ity weighting underperform subsequently. Dimmock et al. (forthcoming) obtain survey evidence that
probability weighting is positively associated with portfolio under diversification and Sharpe ratio losses.
Moreover, higher probability weighting is associated with owning lottery-like stocks and positively skewed
equity portfolios.
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exchange market. The latter prediction is in line with Buss et al. (2016) who show that

the correlation premium of an industry decreases in the objective correlation of the stocks

within that industry, and in line with Mueller et al. (2017) who show that the correlation

premium in the foreign exchange market decreases in the objective correlation between

the currencies.

Finally, we make an empirical contribution to the literature on the option-

implied variance and skewness premiums. The stylized fact that the variance premium

of the stock market is positive is well documented, as shown by Bollerslev et al. (2009),

Carr and Wu (2009), Kozhan et al. (2013), Dew-Becker et al. (2017), and Baele et al.

(2019). For individual stocks, however, the evidence is somewhat mixed. As Carr and

Wu (2009) and Driessen et al. (2009) show, for individual stocks there is a lot of cross-

sectional variation in the sign, as well as in the size, of the variance premium. Our main

contribution is to show that the skewness of the underlying distribution is an important

determinant of the sign and the size of the variance premium, in the very way that is

predicted by the Π-CAPM. As regards the skewness premium, Kozhan et al. (2013) show

that the skewness premium of the stock market is negative and strongly related to the

variance premium. We replicate their result using a slightly different methodology and

for an extended time period. To the best of our knowledge, we are the first to study the

skewness premiums of individual stocks.2

2 Model

In this section, we define the financial market and the investor’s preferences.

Afterward, we determine the equilibrium prices of the assets in the economy and deter-

mine the no-arbitrage condition. The section closes with a calibration of the model that

will be used to illustrate some of its implications discussed in Section 3.

2There are papers, however, that utilize skewness implied from individual options to study expected
return variation in the cross-section of stock returns, such as Xing et al. (2010), Conrad et al. (2013),
and Schneider et al. (2020).
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2.1 Financial Market

The market we consider consists of two binary assets, X and Y. Letting pX ∈

(0, 1) and x̄ >
¯
x, asset X pays x̄ with probability pX and

¯
x otherwise. The payoff

distribution of asset Y is defined analogously; see Figure 1.

Figure 1: Asset X and Y .

X

¯
x

1− p
X

x̄
pX

Y

¯
y

1− p
Y

ȳ
pY

Binary distributed assets bring tractability and allow for effective comparative

statics analyses with respect to the moments of the distribution. In particular, mean,

variance, and (standardized) skewness of asset X are given by:

µX := EX = pX(x̄−
¯
x) +

¯
x,

σ2
X := E

(
X − µX

)2
= pX(1− pX)(x̄−

¯
x)2,

SX :=
E
(
X − µX

)3

σ3
X

=
1− 2pX√
pX(1− pX)

,

and analogously for asset Y. First, note that, even though the binary distribution is very

simple, it can independently match the first three moments of the payoff distribution.

A lognormal distribution, for example, while maybe appearing to be more general due

its continuous nature, matches only two moments (typically mean and variance). The

value of skewness is redundant and described by a complex function of the mean and

standard deviation parameters. Moreover, a lognormal distribution requires skewness

to be positive; that is, it is not possible to study negative skewness with a lognormal

distribution. A binary distribution, in contrast, can match any mean and skewness value,

and any strictly positive variance value.3 The assumption of binary payoff distributions

3Formally, there exists a one-to-one mapping between the parameter triples (pX , x̄,
¯
x) and (µX , σ

2
X ,

SX); see Proposition 1 in Ebert (2015). Therefore, rather than parametrizing the distribution by two
payoffs and probability, it can be parametrized by its first three moments, with any combination of
values being feasible (except for variance being negative, of course). Moreover, it can be shown that all
higher-order even (odd) moments are one-to-one to variance (skewness). That is, in the case of binary
assets, the second (third) moment exhaustively describes the symmetric (asymmetric) nature of risk.
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thus allows for a simple, transparent, and intuitive approach to the study of asset prices

and their dependence on variance and skewness.4

The joint distribution of assets X and Y can be expressed as

px̄ȳ := P (X = x̄, Y = ȳ) = pXpY + rXY ,

px̄
¯
y := P

(
X = x̄, Y =

¯
y
)

= pX(1− pY )− rXY ,

p
¯
xȳ := P (X =

¯
x, Y = ȳ) = (1− pX)pY − rXY , and

p
¯
x
¯
y := P

(
X =

¯
x, Y =

¯
y
)

= (1− pX)(1− pY ) + rXY ,

where the parameter rXY must be such that all state probabilities lie strictly between

zero and one.5 Intuitively, if the probability of both assets paying the higher amount

exceeds the product of their marginal probabilities, the assets are co-moving. For the

Pearson correlation coefficient ρXY ≡ corr(X, Y ) it follows that

ρXY =
rXY√

pX(1− pX)
√
pY (1− pY )

> 0 ⇐⇒ rXY > 0,

and rXY can be chosen such that correlation stays constant as one considers changes in

the skewness parameters pX and pY . In summary, the bivariate binary distribution allows

for ceteris paribus analysis regarding the pricing impact of all univariate moments as well

as of their dependence in the form of correlation. For example, it will allow us to study

the change in price of asset X as SX changes while leaving all over univariate moments

of X and Y as well as the correlation between them unchanged.

Consider an investor with initial wealth W0. Denote her holdings (her demand)

of assets X and Y, given prices PX and PY , by NX and NY , respectively. The remainder

of her endowment is invested in a riskless asset with total return Rf . Then, her terminal

wealth W1 in the market’s four states is given by the respective expressions in Figure 2.

4Binary distributions, in particular with the objective of studying skewness, are also used in other
asset pricing settings (e.g., Barberis and Huang (2008) and Schneider (2015)). Beddock and Karehnke
(2020) study an asset pricing setting with two skewed-normal risks.

5rXY must lie within the so-called Frechét bounds shown in equations (32). Allowing for state
probabilities to be exactly zero is possible, but comes with technical inconvenience and case distinctions
in the proofs, with little gain in the way of economic insight.
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Figure 2: Terminal wealth.
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xȳ

Wx̄
¯
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¯
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¯
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p x̄ȳ

Prices and demand are determined in equilibrium and depend on the investor’s preferences

over W1.

2.2 Preferences

We assume a representative investor with distorted mean-variance preferences

over wealth in period one.6 In the same way as in the rank-dependent utility (RDU)

model of Quiggin (1982) and in cumulative prospect theory (CPT, Tversky and Kah-

neman 1992), the investor uses decision weights (i.e., distorted probabilities) instead of

the objective probabilities in evaluating risks. As will be explained, the direct effect of

this probability distortion will be an overweighting of the tails of the wealth distribution.

Specifically, with reference to Figure 2, given decision weights πij of the states ij with

i ∈ {x̄,
¯
x} and j ∈ {ȳ,

¯
y}, the representative investor with risk-aversion parameter γ

evaluates W1 as:

U(W1) = EΠ(W1)− 1

2
γvarΠ(W1), (1)

where

EΠ(W1) =
∑
i,j

πij ·Wij and varΠ(W1) = EΠ
(
W1 − EΠW1

)2
.

6Under the subsequently made assumptions, we could start out with multiple investors who aggregate
to a representative investor; see Section 2.3 for details. Ingersoll (2014) shows that such aggregation is
not generally guaranteed with probability weighting.
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Before we detail the computation of the decision weights πij, we make four remarks

on the use of Π-MV preferences in general. First, when πij = pij for each state ij, U

describes standard mean-variance (MV) preferences. Therefore, as we will demonstrate

explicitly below, our asset pricing model nests the standard CAPM of Sharpe (1964) and

Lintner (1965) as a special case. Any differential pricing implications are thus due to

the change from the pij’s to πij’s; that is, due to probability weighting. Everything else

and, in particular, the equilibrium concept employed is standard. Different from CPT

models such as Barberis and Huang (2008), our probability weighting model allows for the

study of prices in a standard homogeneous equilibrium (in which investors with identical

preferences hold the market portfolio).

Second, Π-MV preferences relate to RDU just as (standard) mean variance

preferences relate to EU. Either can be obtained from a second-order Taylor expansion

of utility. Π-MV preferences, however, are more tractable and allow for the analysis of

skewed and correlated assets presented in this paper. The tractability allows us to obtain

a number of predictions analytically.

Third, another natural extension of MV preferences are mean-variance-skewness

(MVS) preferences. Models based on MVS preferences make quite different pricing predic-

tions, both conceptually and quantitatively. While Π-MV preferences have implications

different from MV preferences even when risks are symmetric, MVS preferences do not.

For example, MVS preferences may predict a negative correlation risk premium in this

case while Π-MV preferences predict a positive one (as is in line with the data). Further,

it can be verified that only Π-MV preferences feature the sizable “first-order” preference

effects regarding skewness that are known for models with probability weighting (Ebert

and Karehnke 2019).

Fourth, because MV preferences are not in general monotonic, their applica-

tion in asset pricing models may violate no-arbitrage (Dybvig and Ingersoll 1982). In

Section 2.4, we derive the necessary and sufficient condition for no-arbitrage in the Π-

CAPM and show that the bounded support of the binary assets averts arbitrage for

reasonable parameter values.

As in RDU and CPT, the decision weights πij are computed by means of a so-
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called probability weighting function. We assume the probability weighting function to be

the single-parameter neo-additive function of Chateauneuf et al. (2007).7 For a ∈
[
0, 1

2

)
it is defined as:

w(p) =


0 for p = 0,

(1− 2a)p+ a for 0 < p < 1,

1 for p = 1.

(2)

A graph of the neo-additive probability weighting function is shown in Figure 3.

Figure 3: The neo-additive weighting function.
This figure shows the neo-additive weighting function given by equation (2) when a = 0.12. It is linear in the interior of
its domain and discontinuous at probabilities zero and one.
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0.6
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1

Decision weights are computed as differences of the weighted cumulative prob-

abilities of the ranked outcomes. Assuming (for now) that this ranking is given by

7The neo-additive weighting function belongs to the class of inverse-S shaped weighting functions and
yields, similar to the weighting function by Kahneman and Tversky (1979), the economic prediction of
tail overweighting. Unlike the latter weighting function and others, the effect of tail overweighting is not
conflated with other, subtler, and sometimes unintended effects that stem from the specific parametric
form assumed. Wakker (2010, p. 210) remarks that “the neo-additive weighting functions are among
the most promising candidates regarding the optimal tradeoff of parsimony and fit” and that “the
interpretation of its parameters is clearer and more convincing that with other families.”
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Wx̄ȳ ≥ Wx̄
¯
y ≥ W

¯
xȳ ≥ W

¯
x
¯
y, they can be computed analytically:

Π =



πx̄ȳ = w
(
px̄ȳ
)

= a+ (1− 2a)px̄ȳ

πx̄
¯
y = w

(
px̄ȳ + px̄

¯
y

)
− w

(
px̄ȳ
)

= (1− 2a)px̄
¯
y

π
¯
xȳ = w

(
px̄ȳ + px̄

¯
y + p

¯
xȳ

)
− w

(
px̄ȳ + px̄

¯
y

)
= (1− 2a)p

¯
xȳ

π
¯
x
¯
y = 1− w

(
px̄ȳ + px̄

¯
y + p

¯
xȳ

)
= a+ (1− 2a)p

¯
x
¯
y.

(3)

Note that the decision weights are non-negative and sum to one so that Π describes

a probability measure. The common interpretation of Π is, however, one in terms

of preferences—the investor prefers to weigh states differently than by their objective

probabilities—rather than one in terms of having false beliefs about those objective prob-

abilities; see Kahneman and Tversky (1979) and Quiggin (1982).

We now explain the implications of neo-additive probability weighting for pref-

erences. When a = 0, w(p) = p so that decision weights and objective probabilities

coincide and preferences are standard MV. When a > 0, the investor distorts probabil-

ities. The direct effect of this probability distortion is the overweighting of the tails of

the wealth distribution—in the current case, of the best state x̄ȳ and the worst state
¯
x
¯
y

(the two “extreme states”). Specifically, a fraction of 2a is removed from the probability

mass of all four states, and the resulting total of 2a(px̄ȳ + px̄
¯
y + p

¯
xȳ + p

¯
x
¯
y) = 2a is, in

equal proportions, redistributed to only the two extreme states.

Why do we choose the neo-additive weighting function to compute distorted

probabilities? As will be explained in the next section, this weighting function buys us

tractability. Moreover, recent theoretical research has argued in favor of the neo-additive

weighting function; see, for example, Wakker (2010 p. 209-210). As explained in the pre-

vious paragraph, the parameter a has a simple and unambiguous interpretation in terms

of tail overweighting. While the parameter of the original Kahneman-Tversky weighting

function, for example, is typically also interpreted in terms of tail overweighting, this

interpretation is confounded with subtle other effects that are more difficult to interpret

as well as assessed quantitatively. In particular, our assumption of the point-symmetric

(one-parameter) neo-additive weighting function ensures that the redistribution of prob-

ability mass is not done in favor of either tail. A major point of this paper is that, even
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though for a = 0 preferences are MV so that skewness is irrelevant, and even though

a > 0 does nothing else other than symmetrically overweighting the tails, a > 0 yields

asymmetric pricing predictions for left- and right-skewed risks. In this first study on

distorted MV preferences we do not wish to confound this asymmetric pricing effect of

symmetric probability distortion with any additional effects that result from probability

distortion being asymmetric in itself.

Before we derive and discuss the equilibrium of the model, we impose the stand-

ing assumption that pY = 0.50 (i.e., asset Y symmetric). This assumption mirrors the

normality assumption in Barberis and Huang (2008). Another reason for this assumption

is that we are mostly interested in the pricing effects of an asset’s own skewness. How-

ever, in Section 3.6, we relax this assumption and discuss the pricing effect of relative

skewness.

Standing assumption. Asset Y is symmetric (pY = 0.50).

2.3 Equilibrium Prices

In this section, we derive the equilibrium prices of the assets. Inserting the

expression for terminal wealth W1 in Figure 2 into the value function (1) yields:

U(W1) =W0R
f +NX

(
EΠX − PXRf

)
+NY

(
EΠY − PYRf

)
− 1

2
γN2

XvarΠ
(
X
)
− 1

2
γN2

Y varΠ
(
Y
)
− γNXNY covΠ

(
X, Y

)
. (4)

In equilibrium, prices are such that the asset demands NX and NY maximize U(W1) and

equal their respective supplies N̄X > 0 and N̄Y > 0. To ensure optimality of demand

in equilibrium, we assume that the investor can only take long positions in either asset

(i.e., demand is non-negative). Theorem 1 below shows that an equilibrium exists and

presents the closed-form pricing equations of our model.

Before we state and discuss the equilibrium described in Theorem 1, we highlight

how our model overcomes a major difficulty in equilibrium models with probability dis-

tortion. As emphasized in the sentence preceding the expressions for the decision weights
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in equation (3), these expressions are contingent on Wx̄ȳ ≥ Wx̄
¯
y ≥ W

¯
xȳ ≥ W

¯
x
¯
y (i.e., on

“the ranking” of the wealth states). Since demand and asset prices are endogenous in

equilibrium analysis, so is terminal wealth in each state and the ranking. The issue is that

a small/continuous change in the wealth of two states can change their ranking, which,

in general, leads to a large/discontinuous change of their decision weights. Our model

circumvents this issue. First, due to the assumption of no short-selling, the highest and

lowest ranked states are always—that is, no matter the demand of each asset—x̄ȳ and

¯
x
¯
y, respectively. Second, due to the linearity of the neo-additive probability weighting

function on the interior of its domain, the decision weights of the two middle states do

not depend on their ranking (i.e., on whether Wx̄
¯
y ≥ W

¯
xȳ or vice versa).8 Therefore, no

matter the demand of each asset, the decision weights are given by the right-hand-side

expressions in equation (3). This is a unique feature of the Π-CAPM that distinguishes

it from other asset pricing models with probability weighting. Elementary methods then

allow for the derivation of homogeneous equilibrium, as with standard MV preferences.

The proofs of the following theorems and propositions can be found in the appendix of

the paper.

Theorem 1 (Equilibrium Prices in the Π-CAPM). In equilibrium, the pricing equations

are given by:

PXR
f = EΠX − γN̄XvarΠ(X)− γN̄Y covΠ(X, Y ), (5)

PYR
f = EΠY − γN̄Y varΠ(Y )− γN̄XcovΠ(X, Y ). (6)

Equations (5) and (6) can be rewritten in terms of non-distorted moments, as follows:

PXR
f = µX + aSXσX − γN̄X

[
σ2
X + a(1− a)σ2

XS
2
X

]
− γN̄Y

[
cov(X, Y )(1− 2a) + a

σXσY√
pX(1− pX)

]
, (7)

PYR
f = µY − γN̄Y σ

2
Y − γN̄X

[
cov(X, Y )(1− 2a) + a

σXσY√
pX(1− pX)

]
. (8)

8It is also for this reason (i.e., the decision weights of middle states being independent of their ranking)
that the model is easily extended to a finite number of assets. More middle states do not complicate the
analysis if probability weighting is neo-additive.
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Theorem 1 states that the prices of the assets correspond to a linear combination

of distorted mean, distorted variance, and distorted covariance. In the proof of Theorem 1,

we obtain the following equations for the distorted moments of asset X in order to derive

equation (7):

EΠX = µX + aSXσX , (9)

varΠ(X) = σ2
X + a(1− a)S2

Xσ
2
X , (10)

covΠ(X, Y ) = (1− 2a)cov(X, Y ) + a
σXσY√

pX(1− pX)
. (11)

These equations offer important first insight into the price comparative statics of our

model, for example, regarding the impact of asset X’s skewness, SX . Equation (9) shows

that the investor evaluates the mean of the asset differently from its objective mean.

Specifically, the asset’s distorted mean is an affine function of SX and larger than the

objective mean if and only if skewness is positive. Equation (10) shows that the distorted

variance is always larger than its objective counterpart and increasing in the asset’s

asymmetry (i.e., the absolute, or the square, of skewness). Similarly, recalling the negative

one-to-one relationship between pX and SX above, Equation (11) implies that also the

distorted covariance increases in the asset’s asymmetry. In all three cases, the effects

increase in the distortion parameter a. In Section 3.1, we study the joint impact of these

distortion effects on prices and see that they go sometimes in the same and sometimes in

opposite directions. One implication is that an increase in skewness mostly increases the

price of the asset (for example, when it is left-skewed and when all three effects go in the

same direction), but, in other cases, may also decrease it.

Theorem 1 presents the pricing equations of the assets in equilibrium where

the investor evaluates risk according to probability weighting. Note that, in case a = 0

pricing equation (7) can be rewritten as:

PXR
f = µX − γ · cov

(
X, N̄XX + N̄Y Y

)
,

which says that PX is determined by its mean minus the price of risk (γ) multiplied with

the covariance between its payoff and the market portfolio. Then, the standard CAPM
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equation (Sharpe 1964; Lintner 1965), in terms of returns, is easily derived:

ERX −Rf = βXE
(
Rm −Rf

)
, (12)

where,

RX =
X

PX
, Rm =

N̄XX + N̄Y Y

N̄XPX + N̄Y PY
, and βX =

cov(RX , Rm)

var(Rm)
.

With probability distortion, equation (12) no longer holds,9 and the novel pricing il-

lustrations are more conveniently discussed in terms of prices, using the equations in

Proposition 1.

The pricing equations of Theorem 1 are derived for an economy in which both

assets are in strictly positive supply. In a homogeneous equilibrium, the representative

investor optimally holds the market portfolio (i.e., both assets). While, for simplicity, we

assumed a representative investor, the same equilibrium is obtained under the assumption

of many, identical investors. In the asset pricing model of Barberis and Huang (2008),

probability weighting leads to a different type of equilibrium in an economy with many

investors and in which the skewed asset is in infinitesimal supply (and thus not part of

the market portfolio). In this heterogeneous equilibrium, different investors hold different

portfolios. Some investors only hold the market portfolio while others hold the market

portfolio and the small skewed asset. In this equilibrium, the skewed asset earns a low

expected return. In case a homogeneous equilibrium exists, Barberis and Huang (2008)

show that the expected return of the skewed asset is equal to the risk-free rate. Different

from this result of Barberis and Huang (2008), Theorem 1 shows that, in our homoge-

neous equilibrium, the price of the skewed asset is (always) affected by its skewness, and

the expected return will not be equal to the risk-free rate. In particular, while nega-

tively skewed assets earn the risk-free rate in the homogeneous equilibrium of Barberis

and Huang (2008), our model predicts substantial positive returns for negatively skewed

assets.

9In this sense, the Π-CAPM is itself not a CAPM. It is a model that results from distorting the
classical CAPM.
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2.4 No-arbitrage and risk-neutral pricing measure

In Theorem 2, we characterize no-arbitrage in the Π-CAPM and derive the

risk-neutral pricing measure in closed form.

Theorem 2 (No-arbitrage in the Π-CAPM). The following statements are equivalent:

1. The Π-CAPM is arbitrage free with unique risk-neutral measure Q, defined through

the state probabilities

qij = pij ·
πij
pij

[
1−γN̄X(i−µX−aσXSX)−γN̄Y (j−µY )

]
, i ∈ {x̄,

¯
x}, j ∈ {ȳ,

¯
y}. (13)

2. The Π-CAPM model parameters satisfy

1

γ
> N̄Y σY + 2

√
a(1− a)N̄XσX (14)

and pX ∈ (p∗1, p
∗
2) for 0 < p∗1 < p∗2 ≤ 1 whose expressions are stated in the proof.

Equations (13) in statement 1 describe the pricing kernel of the Π-CAPM. The

factor πij/pij describes the inflation or deflation of the objective probability pij that

is due to probability weighting. Extreme states, be they good or bad, receive more

weight while the middle states receive less weight (see above). The extreme good state

is relatively more overweighted than the bad state (πx̄ȳ/px̄ȳ) > π
¯
x
¯
y/p

¯
x
¯
y) if and only if

its objective probability is smaller (i.e., if X is right-skewed). The term in the square

brackets corresponds to what would be marginal utility in an EU model. Under MV

preferences, payoffs enter the euqations relative to the mean payoff, while under Π-MV

preferences these payoffs enter relative to the distorted mean payoff; see equation (9). In

either case, marginal utility is relatively lower in states with high wealth compared to the

(distorted) mean. Recall that the term aσXSX describes the difference between distorted

and objective mean so that the sign of the asset’s skewness determines whether the

distorted mean is smaller (if SX < 0) or larger (if SX > 0) than its objective counterpart.

No-arbitrage requires that all qij are positive or, equivalently, that Π-MV preferences are

monotone over the relevant parameter range.
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The no-arbitrage condition in statement 2 ensures that the assets’ payoffs are

such that the Π-MV preferences are monotone for the relevant risks considered. This is

possible because our assets have finite support to begin with. If one restricts the model

parameters appropriately, arbitrage opportunities as in classical articles on models with

mean-variance preferences such as Dybvig and Ingersoll (1982) do not arise. We discuss

no-arbitrage in some more detail in Appendix 7.11. There we show that, as asset X or

risk aversion becomes small (technically, γN̄Xσ
2
X close to zero), no-arbitrage holds for

any level of skewness (technically, (p∗1, p
∗
2) close to (0, 1)). The model calibration outlined

below satisfies no-arbitrage for empirically realistic skewness values and beyond. Likewise,

all of our propositions make implications for arbitrage-free versions of the Π-CAPM.10

2.5 Calibration of the Model

In this section, we discuss the calibration of the model and explain the parameter

choices. This calibration serves to illustrate the economic significance of the analytical

results we prove in the next section. Throughout the paper, we use the calibration of the

financial market and preference parameters of Table 1.

Table 1: Model Calibration.
The table shows the parameter choices for mean µX , volatility σX , skewness SX , correlation ρXY , supply of asset X N̄X ,
probability distortion parameter a, and risk-aversion parameter γ. The parameters for asset Y are denoted analogously.

Parameter Value Parameter Value

µX 1 ρXY 0

µY 1 N̄X
1
10

σX 0.20 N̄Y 1

σY 0.20 Rf 1.01

SX
[
− 4.13, 4.13

]
a 0.12

SY 0 γ 1.5

As shown in Ebert (2015), the distribution of each assetX and Y is characterized

by its mean, standard deviation, and skewness of the payoff. The expected payoff of each

10In Appendix 7.11, we also compare no-arbitrage in the presence and in the absence of probability
weighting. Probability weighting neither relaxes nor tightens the no-arbitrage conditions and modifies
them only slightly.
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asset is normalized to one. Due to this normalization, the standard deviation of the

asset’s payoff will be close to the standard deviation of the asset’s return.11 SY = 0 is

in line with our standing assumption on the skewness of asset Y , and the skewness level

for asset X is in line with skewness levels of the skewed asset in Barberis and Huang

(2008) and empirical levels reported in Barberis et al. (2020). Lastly, we choose the

correlation between the assets to be zero for simplicity. We normalize the supply N̄Y to

one and choose N̄X = 1
10

such that a relatively small part of the market can be skewed.

The risk aversion parameter γ = 1.5 is chosen such that the equity premium of the

market portfolio is reasonable in the absence of probability distortion.12 The probability

distortion parameter a follows from Abdellaoui et al. (2010) by matching the slope of the

weighting function to their calibration.13 In case of probability weighting and when the

skewness of both assets equals zero, the equity premium equals 6.2% with a volatility of

19.6%.

3 Predictions of the Π-CAPM

In this section, we present implications and predictions derived from the Π-

CAPM. First, we explore the effects of increased skewness and variance of the skewed

asset X on its price and its risk-neutral distribution. If asset X is left-skewed, its price

is unambiguously increasing in its skewness and decreasing in its volatility. If asset X is

right-skewed, however, these price effects depend on parameters. In particular, the price

of asset X can be decreasing in its skewness and increasing in its volatility. We explain

the mechanism underlying these skewness-dependent comparative statics results. Second,

we show that the variance premium of an asset increases in the asymmetry (i.e., in the

absolute of skewness) of its distribution, whereas the skewness premium increases with

its skewness. In the last two subsections of this section, we focus on interaction effects of

11In fact, the standard deviation of the return for each asset is equal to the standard deviation of the
asset’s payoff divided by its price.

12In that case, the expected return on the market is unaffected by the skewness values of the assets.
The equity premium equals 5.9% with a volatility of 19.5% in absence of probability weighting. It
can be verified that the calibration implies the reasonable value of 3.10 for relative risk aversion for an
investment of 50% in the stock market.

13Due to our assumption of symmetry in the weighting function, the chosen calibration follows imme-
diately by matching the slopes of our weighting function with that of the estimate in Abdellaoui et al.
(2010).
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both the assets. We show that the model predicts a positive and economically significant

correlation premium. Furthermore, we show that relative skewness matters for pricing:

An increase in the skewness of asset X has less impact on its price when the skewness of

asset Y larger.

Throughout this section, we relate the implications of our model to existing

empirical work. Moreover, we illustrate them numerically alongside our model calibration

from Section 2.5, which provides insight into the economic significance of our analytical

results.

3.1 Skewness-dependent pricing of skewness

In Theorem 1, we have shown that the pricing equations of both assets depend

on the skewness of asset X (SX) due to its effect on the distorted mean, variance, and

covariance; see also equations (9)—(11), respectively. Before we assess the pricing im-

plications of skewness in general, we illustrate the effect of SX on its distorted mean,

variance, and covariance for our model calibration detailed in Table 1. This will help us

in understanding the subsequent results better. In Figure 4, we plot the distorted mean,

variance, and covariance of the assets in our benchmark calibration as a function of SX .

Figure 4: Distorted mean, variance, and covariance of the assets.
This figure illustrates the effect of SX on the distorted mean, distorted variance, and distorted covariance. The dashed
lines represent the distorted mean and distorted variance of asset X. The solid lines represent the objective mean of asset
X, objective variance of asset X and objective covariance between asset X and Y . The left graph plots the distorted
mean as a function of SX . The right graph plots the distorted variance of both assets as well as the distorted covariance
as a function SX .

-4 -3 -2 -1 0 1 2 3 4
0.85

0.9

0.95

1

1.05

1.1

1.15

-4 -3 -2 -1 0 1 2 3 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

In the left graph of Figure 4, the distorted (objective) mean of asset X is rep-
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resented by the dashed (solid) line. The distorted mean of asset X is increasing in SX .

This result is driven by the fact that probability weighting makes the investor over-weight

the probability of extreme events. If asset X is right-skewed, the small probability of an

extremely good state is overweighted. This overweighting results in a distorted mean

that is larger than the objective mean. If asset X is left-skewed, the reverse is true. Due

to probability weighting, the probability of the bad state is overweighted, which yields a

smaller distorted mean.

In the right graph of Figure 4, the distorted (objective) variance of asset X is

represented by the dashed (solid) line, and the distorted (objective) covariance of the

assets by the dash-dotted black (solid grey) line. The distorted variance of asset X

increases in the asymmetry of X. The logic behind this result is similar to that for the

distorted mean just discussed: Probability weighting makes the investor overweight the

good state for a right-skewed asset and the bad state for a left-skewed asset, respectively.

As the probability of the extreme state, either good or bad, is overweighted, distorted

variance increases. The distorted covariance between X and Y is larger than the objective

covariance for all SX and increases in asymmetry of X. We prove this formally later

on and refer to the result as “covariance exaggeration.” Notably, probability weighting

exaggerates covariance even when both assets are symmetric. Therefore, skewness is not

the only channel through which probability weighting affects prices. One implication of

exaggerated covariance is that the Π-CAPM predicts a positive correlation premium as

will be discussed in Section 3.5.

After this preliminary discussion of the impact of skewness on the distorted

moments that determine asset X’s price, we now turn to the effect of skewness on asset

prices. In Proposition 1, we formalize the effect of SX on the price of asset X. Recall

that our setting allows for varying the skewness of the asset’s payoff, while maintaining

its expected value, variance, and correlation with the other asset. The derivative in

Proposition 1 below thus describes how price changes with respect to skewness while

keeping any other moments constants; see Ebert (2015) for details. The same is true for

later propositions that consider derivatives with respect to other moments—all of these

derivatives describe ceteribus paribus moment changes, which is a major feature of the

model setup in Section 2. Because, in particular, mean remains unchanged, the effect of

21



SX on the price of X can also be directly interpreted in terms of X’s expected return.

Proposition 1 (Skewness-dependent pricing of skewness). If and only if a > 0, there

exists S̄ > 0 such that
∂PX
∂SX

> (=, <)0 for SX < (=, >)S̄.

Proposition 1 states that the price of a negatively or not too positively skewed

asset increases in its skewness. This is in line with the intuition that probability weighting

results in overweighting rare and extreme events, both bad ones (as come with left-skewed

risks) and good ones (as come with right-skewed risks). The formal mechanism behind this

result is as follows: If asset X is left-skewed, we have shown in Figure 4 that an increase

in the asset’s skewness increases its distorted mean and, at the same time, decreases its

distorted variance and distorted covariance. All these effects are desirable to an investor

with mean-variance preferences with probability distortion, making her willing to pay a

higher price.

If asset X is right-skewed, a further increase in SX continues to increase its

distorted mean, but increases rather than decreases its distorted variance and covariance.

The first effect dominates for SX below S̄ and the second dominates for SX above S̄. In

that latter case, increased skewness results in a lower price. The threshold skewness level

S̄ depends on the model parameters. For example, the investor cares about the increase

in distorted variance and covariance more if parameters N̄X or γ are larger. We illustrate

this result in Figure 13 in Appendix 7.11, which further shows that prices may decrease

in skewness for skewness levels that are consistent with no-arbitrage of the Π-CAPM.

Letting the supply of asset X, N̄X , go to zero, we can compare our result to

the pricing of skewness in the model of Barberis and Huang (2008). In their model,

the investor overweights the small probability of the large payoff and, therefore, the

positively skewed asset has a high price (and low expected return). In our setting, even

when the supply of asset X tends to zero, increasing its skewness could lower the price of

a right-skewed asset due to the effect of skewness on the distorted covariance, as shown

in the right graph of Figure 4. This effect is absent in the model of Barberis and Huang

(2008). As the supply of asset X increases, the effect of the distorted variance adds to

the covariance effect for right-skewed assets. The result that the pricing of skewness—

even under symmetric probability distortion—is not monotonic is new and different from
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the skewness preference under expected utility.

We now explore the effect of SX on the risk premium of asset X numerically, us-

ing the calibration from Section 2.5. As mentioned before, when conducting comparative

statics with respect to skewness, the volatility of the asset’s payoff remains unchanged.

This is also why Proposition 1 as well as our later price comparative statics results could

likewise be stated in terms of asset X’s return. Our numerical results, however, are most

conveniently illustrated for the assets’ alphas defined as

αi = ERi −Rf − βiE(Rm −Rf ), i ∈ {X, Y }. (15)

One reason is that, as an asset’s price changes, the volatility of its return distribution

changes slightly.14 By considering α’s, we control for this fact. Moreover, for a = 0, the

standard CAPM holds so that αY = αY = 0, which offers a single and easy-to-interpret

benchmark for both assets.

Figure 5: The effect of SX on the α’s of assets.
This figure illustrates the effect of SX on the α of each asset. The dashed and dash-dotted line represent αX and αY in
case the investor distorts probabilities. The solid line represents the αX and αY in case the investor does not distort
probabilities. The scale is in percentages per annum.
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14Indeed, the graphs for returns that correspond to those in Figures 5, 6, and 10 look qualitatively and
quantitatively very similar. Because asset X is small, so is the aforementioned effect of changing return
volatility.
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In Figure 5, we represent αX and αY as a function of SX . The solid lines show

that, in the absence of probability weighting, αX and αY are equal to zero. The dashed

line and dash-dotted line represent αX and αY in the case in which the investor distorts

probabilities. In that case, αX is decreasing in SX , both when asset X is left-skewed

or right-skewed. That is, for the parameters assumed in Figure 5, we are in the case of

Proposition 1 in which the price of asset X is decreasing in SX . The effect of SX on αX is

economically sizable. As skewness increases from SX = −1.5, to SX = 1.5, αX decreases

from 5% to −2.5% per annum. Figure 5 further shows that the effect of SX on αX is

diminishing in its level (i.e., αX is convex in SX). The reason is that, as explained, a

more asymmetric asset X has greater distorted variance and covariance, making it less

desirable. For even larger SX than shown in Figure 5, αX would increase in SX , as we

show in Proposition 1. The effect of SX on αY is positive and smaller than that on αX

just discussed, which is driven by the fact that the value-weighted sum of αX and αY

equals zero. However, since the supply of asset X (N̄X) is small but not infinitesimally

small, unlike in Barberis and Huang (2008), the skewness of asset X does impact the

equilibrium price of Y.

The result that larger skewness typically decreases expected returns is docu-

mented in the empirical asset pricing literature in various markets. Boyer et al. (2010)

find that stocks with large idiosyncratic skewness earn low expected returns. Further-

more, Conrad et al. (2013) show that stocks with a positively skewed return distribution,

proxied with risk-neutral skewness, earn low expected returns. Boyer and Vorkink (2014)

document that also in individual options markets there is a strong negative relation-

ship between total skewness of the option and its expected returns; see also Schneider

(2015).15 We are not aware of empirical work that examines whether the relationship

between skewness and returns is non-monotonic for high skewness levels, and we leave

this empirical question for further research.16

15Other empirical papers that discuss the effect of skewness on returns are Kumar (2009), Bali et al.
(2011) and Ghysels et al. (2016).

16In an experimental setting, Ebert (2015) has observed that skewness preference is less pronounced
for (extremely) right-skewed risks.
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3.2 Skewness-dependent pricing of volatility

In this section, we explore the effect of the volatility of asset X on its price.

From the expressions for the distorted moments in equations (9) to (11) it is clear that

a change in the objective volatility of asset X affects its distorted mean and distorted

volatility whenever X is skewed. We formalize the effect of volatility of asset X on its

price in Proposition 2 below. Statement 1 assumes γ > 0 sufficiently small, an assumption

we occasionally also make later in the paper. We impose the assumption if the effect of

risk (or variance) aversion can be opposite to that of probability weighting and dominate

it. γ small but not zero ensures that the effect of probability weighting dominates that

of risk aversion so that we can learn about the novel force at work within the Π-CAPM.

Proposition 2 (Skewness-dependent pricing of volatility).

1. If and only if a > 0, for γ > 0 sufficiently small
∂PX
∂σX

> (=, <)0 for SX > (=, <)0.

2. If and only if a > 0, there exists S̄ > 0 such that
∂2PX

∂σX∂SX
> (=, <)0 for SX < (=

, >)S̄.

The first statement of Proposition 2 states that the price of the skewed asset

increases (decreases) in its volatility if the asset is right-skewed (left-skewed) for risk

aversion sufficiently small. Intuitively, under probability weighting, volatility may be

desirable or undesirable—depending on the asset’s skewness and how strong probability

weighting is relative to risk aversion. In Theorem 1, we have shown that prices increase

in distorted mean and decrease in distorted variance and distorted covariance. From

equation (7) it immediately follows that the first effect dominates if risk aversion is

sufficiently small. Therefore, we effectively show that the distorted mean of the skewed

asset increases (decreases) in its volatility if the asset is right-skewed (left-skewed): The

price of volatility is skewness-dependent.17

The second statement of Proposition 2 states that the price change of asset X

with respect to volatility increases in SX for SX below S̄ (in particular, SX being negative).

17Naturally, larger γ makes volatility more undesirable for left-skewed assets and less desirable or even
undesirable for right-skewed assets. Statement 1 of Proposition 2 thus also well illustrates the role of
the “γ sufficiently small” assumption. Very large values of γ would simply make volatility undesirable,
dominating the differential effect that probability weighting brings into the Π-CAPM.
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That is, for negatively and not too positively skewed assets, volatility is disliked less the

more right-skewed the asset is. For right-skewed assets, the interpretation of the cross-

derivative is analogous, but one must keep in mind that increased skewness and volatility

may or may not, respectively, increase price in that case (Propositions 1 and 2). Figure 6

illustrates the economically most interesting case graphically.

Figure 6: The effect of volatility of X on the α of the assets.
This figure illustrates a case where αX is increasing in volatility (left graph) and one where it is not (right graph). The
left graph represents the case in which SX = −3, whereas the right graph represents the case in which SX = 3. The
dashed and dash-dotted line represent αX and αY in case the investor distorts probabilities. The solid line represents the
αX and αY in case the investor does not distorts probabilities. The scale is in percentages per annum.
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The dashed lines in Figure 6 illustrate the skewness-dependent pricing of volatil-

ity (statement 1 of Proposition 2). The left graph of Figure is for SX = −3 and shows

that αX is increasing in the asset’s volatility. As the volatility of asset X increases from

10% to 40%, αX increases from 5% to 25% (per annum), indicating an economically siz-

able effect. The weighted sum of αX and αY equals zero; therefore, as αX increases in the

volatility of asset X, αY decreases (dash-dotted line). The right graph of Figure 6 is for

SX = 3 and shows that, under probability distortion, αX is decreasing in the volatility

of asset X. This case thus constitutes an example in which the price of the right-skewed

asset is increasing in its volatility. The result is economically sizable: As the volatility

of asset X increases from 10% to 40%, αX decreases from −2% to −7% per annum.

Asset prices reflecting volatility aversion for left-skewed assets and volatility-seeking for

right-skewed assets are at odds with the predictions of expected utility with positive risk-

aversion, because an investor with these type of preferences would be averse to volatility

for left-skewed and right-skewed assets.

A prominent asset pricing puzzle is the idiosyncratic volatility puzzle described
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in Ang et al. (2006), who find a negative relation between idiosyncratic volatility of

individual stock returns and subsequent alpha of the stock. This finding is in sharp

contrast to classical theorems of finance, which predict that idiosyncratic volatility does

not affect its expected return or alpha. The Π-CAPM, however, explains the result for

right-skewed assets, whose alpha’s may decrease in their volatility. The graphs of Figure

5 thus present a new prediction for the cross-section of stock returns: The alpha for a

right-skewed asset is decreasing in its volatility, whereas for a left-skewed asset the alpha

is increasing in its volatility.

3.3 Left-skewed and right-skewed assets have a positive vari-

ance premium

The variance premium of the stock market being positive (i.e., its risk-neutral

variance exceeding the objective one) is empirically well-documented (Carr and Wu 2009;

Kozhan et al. 2013). While difficult to reconcile with standard asset pricing models,

in this section we show that the Π-CAPM predicts a positive variance premium for

sufficiently asymmetric individual assets (either sufficiently left-skewed or right-skewed).

Particularly the result for right-skewed assets is noteworthy, because, in the absence of

probability weighting this variance premium will be negative. Moreover, we find that the

size of an asset’s variance premium increases in its asymmetry. These predictions, based

on the Π-CAPM, are new and testable. In section 4, we report very supportive evidence

for them utilizing data from the cross-section of individual stock options.18

Theorem 2 presented the risk-neutral distribution for the Π-CAPM and illus-

trated its dependence on skewness in equation (13). Consequently, the skewness of asset

X has pricing implications for derivatives signed on it. Following Bollerslev et al. (2009)

and Kozhan et al. (2013), we define the variance premiums as a quadratic contract with

the return of asset X as the underlying.19

18Baele et al. (2019) show that probability weighting predicts a large variance premium of the S&P
500 and verify this prediction using index options. The Π-CAPM allows for multiple assets and makes
predictions regarding the variance premium of individual stocks. In particular, we show that (and how)
the size of the variance premium of an individual stock varies with its skewness, and we verify this new
prediction using the cross-section of individual options.

19We consider a squared yearly return contract. The price of such a contract is approximately equal
to the price of a variance contract if daily returns are uncorrelated. The prices are exactly equal in case
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Definition 1. The variance premium is defined as follows: V PX = EQ
(

(rX)2
)
−E
(

(rX)2
)

=(
qX − pX

)
·
(

(rx̄)
2 − (r

¯
x)

2
)

, where (rx̄)
2 and (r

¯
x)

2 are the squared (simple) return in the

good and bad state of asset X, respectively, and qX := qx̄ȳ + qx̄
¯
y.

Proposition 3 (Left-skewed and right-skewed assets have a positive variance premium).

1. If a = 0, ρXY ≥ 0, and SX ≥ 0, then V PX < 0.

2. If a > 0, for γ > 0 sufficiently small there exists S̄ < 0 such that V PX > 0 ⇐⇒

SX 6∈ (S̄, 0).

The main result of Proposition 3, its second statement, makes the assumption

of sufficiently small risk aversion discussed before when interpreting Proposition 2 on

the price impact of volatility. Before we discuss the implications of Proposition 3, it is

insightful to discuss the “small γ” assumption’s impact on the Π-CAPM’s risk-neutral

distribution in general.

The risk-neutral distribution of the Π-CAPM reflects the investor’s (standard)

mean-variance preference as well as probability weighting. First, risk aversion (i.e., vari-

ance aversion) affects risk-neutral probabilities similarly to risk aversion in the expected

utility model. Low wealth states receive risk-neutral probabilities that exceed their ob-

jective probabilities (as if the investor had decreasing marginal utility of wealth). Analo-

gously, the risk-neutral probabilities of high wealth states are decreasing in risk aversion.

Second, probability weighting causes overweighting of extreme, small probability states—

be they good or bad—and thus increases the risk-neutral probability of either. Conse-

quently, probability weighting can have opposite or similar effects on the risk-neutral

probabilities:

• Risk aversion increases the risk-neutral probability of states with low wealth. Prob-

ability weighting increases the risk-neutral probability of the extreme bad state.

• Risk aversion decreases the risk-neutral probability of states with high wealth.

Probability weighting increases the risk-neutral probability of the extreme good

state.

of uncorrelated daily log returns.
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Whether—in the case of higher wealth states—the effect of risk aversion or the effect

of probability weighting dominates depends on the relative strength of risk aversion and

probability distortion. The assumption of sufficiently small risk aversion then ensures

that probability weighting dominates so as to make the effects of the novel force of the

Π-CAPM visible. In particular, sufficiently small risk aversion ensures an increase in the

risk-neutral probabilities of all extreme states.

The first statement of Proposition 3 serves to illustrate that, for reasonable

parameter values, standard preferences struggle with the prediction of a positive variance

risk premium.20 The intuition is that the squared-return contract pays the large outcome

(rx̄)
2 in states in which the investor has relatively large wealth, and thus these states

have a low price of risk. For the variance premium to be positive, the price of risk has to

be high in states with relatively high wealth. Consequently, such a prediction is difficult

to reconcile with standard preferences.

The second statement of Proposition 3—the main result, on the impact of prob-

ability weighting—states that, for sufficiently small risk aversion, the variance premium

is positive if asset X is right-skewed (SX > 0) or sufficiently left-skewed (SX < S̄).21 The

fact that, in our equilibrium model, the expected return is usually not zero but positive

leads to the slight asymmetry regarding a negative variance premium for mildly left-

skewed assets; for details see the proof of Proposition 3 in the appendix. The prediction

that left-skewed assets have a positive variance premium holds irrespective of the inclu-

sion of probability weighting. In the case of probability weighting, however, the variance

premium is amplified significantly (see also the numerical illustration in Figure 7 below).

In contrast, the prediction that right-skewed assets have a positive variance premium

20To formally see why, note that, under the assumption of positive correlation, the risk-neutral proba-
bility of the state in which asset X pays the high outcome is lower than the objective probability of this
state. It follows that the first factor in the calculation of the variance premium, qX − pX , is negative.
Under the assumption that asset X is right-skewed, the second factor in the calculation of the variance
premium (rx̄)2 − (r

¯
x)2 is positive. In total, the variance premium is negative.

21To get the formal intuition for this result, first note that the variance premium is positive if the
two factors qX − pX and r2

x̄ − r2

¯
x in the calculation of V PX have the same sign. With risk aversion

sufficiently small and probability weighting being symmetric, the first factor is strictly positive if and
only if pX < 0.5 because, then, pX is overweighted and qX > pX . Therefore, the first factor is strictly
positive if and only if X is right-skewed. Regarding the second factor, first note that, for a right-skewed
distribution with mean zero, the square of the largest outcome exceeds that of the smallest outcome.
Doing the analogous thought experiment with a left-skewed distribution with mean zero, and combining
with the previous argument that qX > pX ⇐⇒ SX > 0, yields V PX > 0⇐⇒ SX 6= 0.
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is different from, and unique to, the case of probability weighting. This result is due

to the differential impact of probability weighting and risk aversion on the price of risk

of each state discussed above. Probability weighting increases the price of risk in small

probability states with extreme high and extreme low wealth, whereas risk aversion only

increases the price of risk in states with relatively low wealth.

Figure 7 shows that the variance premium predicted by the Π-CAPM is eco-

nomically sizable for our benchmark calibration and very different from the ordinary

CAPM.

Figure 7: The effect of SX on the variance premium of asset X.
This figure illustrates the effect of SX on the variance premium of asset X. We plot the variance premium of Definition 1
for the skewed asset X as a function of SX . The dashed line corresponds to our benchmark calibration with probability
distortion and the solid line is in absence of probability distortion.
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For right-skewed assets, the variance premium is negative in the absence of

probability weighting (solid line), in line with the first statement of Proposition 3. With

probability weighting, for our model calibration with risk aversion level well above zero

(γ = 1.5), the asset has to be sufficiently right-skewed for the variance premium to be

positive. Then, the effect of probability weighting dominates the effect of risk aversion,

and yields a positive variance premium. The effect of probability weighting on the vari-

ance premium is economically sizable. For SX = −2, the variance premium equals 0.02,
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meaning that the investor has to pay a premium of approximately 33% = 0.02/0.06 p.a.

to hold the squared return contract for asset X.

If asset X is sufficiently left-skewed, the variance premium is positive regardless

of the presence of probability weighting. In the absence of probability weighting, the

risk-neutral probability of the extreme (bad) state is lower due to risk aversion. With

probability weighting, the risk-neutral probability is further increased and, therefore, the

variance premium is significantly amplified for left-skewed assets in the Π-CAPM.

3.4 A right-skewed asset has a positive skewness premium

In this section, we analyze the predictions of the Π-CAPM with respect to

the skewness premium. An asset’s skewness premium is an important determinant of

the prices of options signed on the asset (to be discussed in detail at the end of this

section). Kozhan et al. (2013) have found that the skewness premium of the market is

negative, and strongly related to the variance premium. We show that the Π-CAPM

predicts a positive skewness premium for right-skewed assets and a negative skewness

premium for left-skewed assets. In particular the former prediction noteworthy, because

the standard CAPM predicts a negative skewness premium for right-skewed assets. Unlike

the standard CAPM, the Π-CAPM predicts an economically sizable skewness premium

for a left-skewed and right-skewed assets alike. In Section 4, we verify these predictions

in the cross-section of individual stock options.

In order to study the prediction of the asset’s skewness on the skewness premium,

we define the skewness premium as the difference between the price and expected payoff

of a cubic contract in Definition 2. We formalize the predictions of the Π-CAPM with

respect to the skewness premium in Proposition 4.

Definition 2. The skewness premium is defined as follows: SPX = EQ
(

(rX)3
)
−E
(

(rX)3
)

=(
qX − pX

)
·
(

(rx̄)
3 − (r

¯
x)

3
)

, where (rx̄)
3 and (r

¯
x)

3 are the cubic (simple) return in the

good and bad state of asset X, respectively.

Proposition 4 (A right-skewed asset has a positive skewness premium).

1. If a = 0 and ρXY ≥ 0, then SPX < 0.
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2. If a > 0, for γ > 0 sufficiently small, then SPX < (=, >)0 for SX < (=, >)0.

The first statement of Proposition 4 states that, in the absence of probability

weighting, the skewness premium is always negative for positively correlated assets X

and Y (irrespective of SX).22 That is, buying the realized cubic-return is on average

profitable. The intuition is that the cubic-return contract pays the large outcome (rx̄)
3

in states in which the investor has relatively large wealth, and thus these states have a

low price of risk. The second statement of Proposition 4 states that, with probability

weighting and risk aversion sufficiently small , the skewness premium of asset X is positive

(negative) if the asset is right-skewed (left-skewed).23

The dashed line in Figure 8 illustrates that, for our benchmark calibration, the

skewness premium predicted by the Π-CAPM is sizable.

22To get the intuition, first note that the second term in the calculation of the skewness premium,
(rx̄)3 − (r

¯
x)3, is always positive, and, therefore, the sign is determined by qX − pX . If assets X and Y

are positively correlated, the risk-neutral probability of the good state of asset Y is always smaller than
the objective probability.

23Note that, the sign of the skewness premium is determined by the difference in the risk-neutral
probability and objective probability of the good state of asset X. If asset X is right-skewed, the risk-
neutral probability of the good state is, for sufficiently small risk aversion, larger than the objective
probability, and vice versa if asset X is left-skewed.
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Figure 8: The effect of SX on the skewness premium of asset X.
This figure illustrates the effect of SX on the skewness premium of asset X. We plot the skewness premium of Definition
2 for the skewed asset X as a function of SX . The dashed line corresponds to our benchmark calibration with probability
distortion and the solid line is in absence of probability distortion.
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It is increasing in SX , negative for SX negative, and positive for SX positive.

In contrast, without probability weighting, the skewness premium is small in absolute

size, non-monotone in SX , and negative also for SX is large. That is, for a right-skewed

underlying, probability weighting changes the skewness premium’s sign, its size, and its

slope with respect to skewness.

We close this section with a discussion of the implications of our results on the

variance and skewness premium for the pricing of put an call options. In particular, the

Π-CAPM’s predictions regarding the variance and skewness premiums’ dependence on

the skewness of asset X translate into predictions regarding the prices of puts and calls

signed on asset X (and how they depend on its skewness). The reason is that, to earn

the variance premium, the investor could buy a portfolio of out-of-the-money (OTM)

call options and OTM put options, as shown in Britten-Jones and Neuberger (2000).

Similarly, to earn the skewness premium, the investor could buy OTM call options but

sell OTM put options, as shown in Kozhan et al. (2013). Appendix 7.12 recalls the formal

relationships between the variance and skewness premiums and put and call option prices.
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With this view of the variance and skewness premiums as option portfolios,

first consider the case in which asset X is left-skewed. Π-MV preferences imply a high

willingness to pay for the OTM put options, due to overweighting the probability of

the stock doing poorly. Therefore, the price of a portfolio with the OTM put options is

larger than its expected payoff. Thus, the positive variance premium of a left-skewed asset

indicates large put option prices. A similar intuition holds for the skewness premium. The

fact that (expensive) OTM put options are sold and (less expensive) OTM call options

are bought results in a negative skewness premium.

Second, if the underlying asset X is right-skewed, Π-MV preferences imply a

high willingness to pay for OTM call options, due to overweighting the probability of the

stock doing very well. Consequently, OTM calls are relatively more expensive than puts.

Since both the replicating portfolios of the variance premium and the skewness premium

are long in OTM calls, both are positive.

3.5 Positive correlation premium

In this section, we show that the Π-CAPM predicts a positive correlation pre-

mium and illustrate using our calibration that it decreases in the size of correlation. The

correlation premium is defined as the difference between risk-neutral correlation and ac-

tual correlation. First, we show that the covariance between assets is exaggerated if the

investor distorts probabilities. This “covariance exaggeration” has pricing implications

and leads to a positive correlation premium, in line with existing empirical work, and

contrary to the prediction without probability distortion .

We first show formally that probability weighting results in exaggerating the

co-movement of assets.

Proposition 5 (Probability weighting exaggerates covariance). If and only if a > 0 :

covΠ(X, Y ) > cov(X, Y ).

Proposition 5 states that the covariance used for pricing assets is larger than

the objective covariance. A consequence of Proposition 5 is that probability weighting

has pricing implications even when it is symmetric (as assumed throughout) and even
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when none of the assets is skewed (SX = SY = 0). That is, probability weighting has

asset pricing implications beyond the (surely important) re-evaluation of skewness. Next,

we define the correlation premium and formalize the predictions of the Π-CAPM with

respect to the correlation premium in Proposition 6.

Definition 3. The correlation premium is defined as follows: CP = corrQ
(
X, Y

)
−

corr
(
X, Y

)
= ρQXY − ρXY . The risk-neutral probabilities follow from equation (13).

Proposition 6 (Positive correlation premium).

1. If a = 0, then CP can be negative.

2. If a > 0 and γ > 0 sufficiently small, then CP > 0.

The first statement of Proposition 3 shows that, without probability weighting,

the correlation premium can be negative. Figure 9 illustrates this negativity for our

benchmark calibration.24 These results are at odds with empirical studies discussed

in detail below, who find a positive and economically sizable correlation premium for

positively correlated individual stocks.

The second statement of Proposition 6 states that, with probability weighting

(and risk aversion γ sufficiently small), the correlation premium is positive. Intuitively,

an investor with probability weighting exaggerates the objective correlation (Proposi-

tion 5), which yields a risk-neutral correlation that is larger than the (actual) objective

correlation. Specifically, in equilibrium, the investor holds the supply of both assets and,

therefore, the extreme states of the economy are the states where both assets pay the

good and bad payoff, respectively. Probability weighting makes the investor overweight

small probabilities of extreme states. That is, she overweights the probabilities in which

the assets move in the same direction—she exaggerates the objective correlation. As ex-

plained before, risk aversion sufficiently small isolates the effect of probability weighting

on the risk-neutral distribution.

24Theoretically, Buraschi et al. (2014) and Buss et al. (2017) show that models with investor dis-
agreement or long-run risks can explain empirical features of the correlation premium. In the absence
of investor disagreement or in the case of standard CRRA preferences, the models predict a correlation
premium close or equal to zero.
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Figure 9 illustrates the results of Proposition 9 for our benchmark calibration

and pX = pY = 0.50. Notably, contrary to the case without probability weighting, with

probability weighting, the correlation premium is economically sizable and positive.

Figure 9: The effect of correlation on the correlation premium.
This figure illustrates the effect of the correlation between the assets and the correlation premium. We plot the
correlation premium of Definition 3 as a function of the correlation between the assets. The dashed line corresponds to
our benchmark calibration with probability distortion and the solid line is in absence of probability distortion.
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For a positive correlation between the assets of 0.5, the risk-neutral correlation

equals 0.6, which results in a positive correlation premium of 0.1. In the absence of

probability weighting the correlation premium is approximately equal to zero, and even

mildly negative in case of positively correlated assets. Therefore, the Π-CAPM and the

standard CAPM have very different predictions in case of positively correlated assets. In

sum, the Π-CAPM predicts that the correlation premium is sizable, decreases in objective

correlation, and approaches zero as objective correlation approaches one.

The Π-CAPM predicting a significant and positive correlation premium (unless

objective correlation is close to one) is in line with empirical evidence. In particular,

Driessen et al. (2009) and Buss et al. (2016) show that an option strategy that sells

correlation risk on the S&P 100 and S&P 500, respectively, earns an economically sizable
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premium. In contrast to what is documented in the data, the standard CAPM predicts a

negative correlation premium for positively correlated assets. Further, Buss et al. (2016)

show that the correlation premium of an industry is negatively correlated with the average

correlation of the stocks within this industry. Mueller et al. (2017) document a correlation

premium in currency markets and, in line with Π-CAPM, find a negative cross-sectional

association between average currency correlations and the average correlation premium.

3.6 Relative skewness matters for asset prices

In this section, we investigate the effect of relative skewness on the price of the

skewed asset. Here, relative skewness refers to how skewed asset X is relative to the other

asset Y (and vice versa). In particular, we are interested in whether asset X is more or

less expensive depending on the skewness of asset Y. Therefore, in this section we relax

the assumption pY = 0.50 and allow Y to be either left- or right-skewed. Proposition 7

implies that the Π-CAPM predicts that a right-skewed asset X is more expensive if the

other asset Y is moderately left-skewed as opposed to moderately right-skewed:

Proposition 7 (Relative skewness matters for prices). If and only if a > 0, there exists

S̄1 < 0 and S̄2 > 0 such that
∂2 PX
∂SX∂SY

< 0 for SY ∈ (S̄1, S̄2).

Proposition 7 states that, for asset Y sufficiently symmetric, the derivative of

the price of asset X with respect to SX is lower if asset Y is right-skewed rather than

left-skewed. Intuitively, a more positively skewed asset is more desirable when the market

(excluding the skewed asset) is slightly left-skewed. At the same time, a more negatively

skewed asset is more undesirable when the market (excluding the skewed asset) is slightly

left-skewed.

To assess the economic significance of these effects, we again resort to our bench-

mark calibration. We vary the skewness of asset Y and assess its effect on αX . Figure 10

shows the result of two cases, one in which Y is left-skewed and one in which Y is

right-skewed.
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Figure 10: The effect of relative skewness on αX .
This figure shows αX as a function of SX in the case in which Y is left-skewed (dashed line) and we plot αX as a
function of SX in the case in which Y is right-skewed (dash-dotted line). We use the following parameters the figure.
SY = 1.15 corresponds to asset Y right-skewed and SY = −1.15 corresponds to asset Y left-skewed. The scale is in
percentages per annum.
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First, Figure 10 shows that αX decreases in SX both when asset Y is moderately

left-skewed and when it is moderately right-skewed. The magnitude of the effect of SX

on αX is smaller when Y is right-skewed (i.e., the dash-dotted line declines less quickly).

In line with Proposition 7, the investor cares less about additional skewness of asset X

when asset Y is already right-skewed. Second, the difference between the two curves

in Figure 10 is relatively small compared to how strongly they are decreasing. That is,

the effect of relative skewness on the price of asset X is smaller than the effect of its

own skewness on price (see also in Section 3.1). For asset X having skewness SX = 2,

αX increases by 2% per annum if the skewness of asset Y increases from SY = −1.15 to

SY = 1.15. Moreover, if SX is lower than approximately −1, the difference in αX becomes

negative. Third, the fact that the curves cross as SX increases can be interpreted as

follows. Preference toward the skewness of asset X—be it the aversion to its returns

being very left-skewed or the preference for its returns being very right-skewed—is more

pronounced when the other asset is left-skewed: The investor accepts larger negative

(lower positive) α for a right-skewed (left-skewed) X when Y is left-skewed.
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The result of a stronger skewness preference when the other asset is left-skewed

has interesting time-series implications. Expected returns for right-skewed assets should

be lower in times when the market is more left-skewed. While we are not aware of any

evidence for this new asset pricing prediction, the effect of relative skewness is arguably in

line with the results of Gao and Lin (2015), who show that trading volume in Taiwanese

lottery-like stocks and the lottery jackpot are negatively correlated.25 Furthermore, in a

laboratory experiment Dertwinkel-Kalt and Köster (forthcoming) found that how skewed

two lotteries are relative to one another matters for choice.

4 Empirical analysis of the cross-section of variance

and skewness premiums

In this section, we take the Π-CAPM’s predictions from Sections 3.3 and 3.4—

those regarding the variance and skewness premium—to the data. Specifically, Proposi-

tion 3 states that the variance premium is positive for left- and right-skewed assets alike,

and Figure 11 shows that it increases in the asymmetry (i.e., in the absolute of skewness)

of the underlying asset’s distribution. Proposition 4 states that the skewness premium is

negative for a left-skewed asset and positive for a right-skewed asset, and Figure 12 shows

that its absolute value increases in the asymmetry of the underlying asset’s distribution.

We find economically and statistically significant support for all of these predictions. A

further prediction from Figures 11 and 12 is that the effects are economically larger for

left-skewed than for right-skewed assets, which we confirm for the variance premium but

not for the skewness premium (a null result obtains). Particularly the results on right-

skewed assets constitute strong support for the Π-CAPM, because, without probability

weighting, variance and skewness premiums are predicted to be negative. At the same

time, while a model without probability gets the sign of the premiums for left-skewed

assets right, their size is difficult to reconcile without probability weighting.

Besides supporting the Π-CAPM, we believe that our results on the variance

25The fact that the trading volume in lottery-like (right-skewed) stocks decreases when the jackpot of
the lottery increases (becomes more right-skewed) can be explained by the fact that the preference of
investors for right-skewed stocks decreases when other assets are more right-skewed.
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and skewness premiums are interesting in their own right. Documenting that (and how)

the variance and skewness premiums of individual stock options crucially depend on

the skewness of the underlying stock contributes to the recent literature on variance

and skewness risk premiums, as discussed in the introduction. In the remainder of this

section, we explain and validate our empirical methodology, and afterward we present

our empirical results.

4.1 Empirical methodology

Our approach to estimating variance and skewness premiums is close to that

of Kozhan et al. (2013). Because applying the methodology of Kozhan et al. (2013) to

calculate the variance and skewness risk premiums of individual companies (rather than

of the S&P 500, as they do) raises the potential concern of data availability. Carr and

Wu (2009) show that for the 35 companies with the most option quotes, the number

of available strikes is lower than for the S&P 500.26 Moreover, the number of available

strikes varies significantly across companies and also over time (with an increasing trend).

In order to alleviate these concerns, we infer option prices from the volatility surface of

OptionMetrics, which covers a fixed number of put and call options that are interpolated

from the raw option pricing data. Below we discuss the data and methodology in more

detail and show that, when (for the sake of validating our methodology) estimating the

variance and skewness premium of the S&P 500, we match the results of Kozhan et al.

(2013) closely. Afterward, we apply it to estimate the variance and skewness premiums

of individual stocks.

4.2 Data preparation

In this section, we discuss the data preparation in more detail. We use daily

option pricing data for individual companies that are included in the S&P 500 during

the period 01-1996 to 12-2017. We focus on stocks included in the S&P 500 as these are

26In their Table 1 (sample period 1996-2003), Carr and Wu (2009) show that even for the 35 individual
stocks with the most quotes available, the average number of available strikes equals approximately 10,
whereas for the S&P 500 it equals 26.
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large companies with relatively liquid options. The data come from OptionMetrics and

we use the daily volatility surface for options with one-month maturity. The volatility

surface contains data on put and call options with delta in the range of [−0.80,−0.20]

and [0.20, 0.80], respectively. From the definitions of the variance and skewness swap

(see the next section and Appendix 4), the fixed rate of each swap depends on OTM

option prices with deltas close to zero. For this reason, we inter- and extrapolate the

volatility surface to a grid up to option deltas of +/− 0.01, using cubic splines analogous

to Chang et al. (2013). Further, from equation (40) in Appendix 4, the floating rate of

the skewness swap depends on daily price changes in the entropy contract. The value

of the entropy contract is computed from option prices, and we need option prices with

maturity between one month and one day in order to calculate its daily changes. To do so,

we assume that the term structure of implied volatility is flat for options with maturity

between one month and one day. Because the volatility surfaces from OptionMetrics

describe the implied volatilities of European options, in order to calculate option prices,

one needs the underlying’s dividend yield and the risk-free rate. We assume that the

dividend yield of each stock is equal to the average dividend yield over the period for

which we observe the volatility surface. As the risk-free rate we use the zero-coupon yield

curve from OptionMetrics and interpolate it to the appropriate maturity.

4.3 Validation of methodology: Replicating Kozhan et al. (2013)

In this section, we show that applying our methodology to estimate variance

and skewness premiums of the S&P 500, replicates the findings of from the seminal

contribution of Kozhan et al. (2013) closely. This replication suggests that using the

volatility surface instead of the raw option is acceptable for the estimation of skewness and

variance risk premiums. The detailed results are relegated to Table 4 of Appendix 7.13.

As a side result, we can easily extend the sample period of Kozhan et al. (2013) by six

years, and document the robustness of their findings for the recent past. Further, in

Table 4 we show that our methodology slightly underestimates the risk-neutral skewness

of the S&P 500. This underestimation is likely driven by the fact that our extrapolation

is not able to fully capture the steep volatility smile of S&P 500 index options. However,

Bakshi et al. (2003) show that the volatility smile for individual stock options is less
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pronounced than for index options, which alleviates this underestimation. Overall, despite

the difference in methodology, we match the results of Kozhan et al. (2013) closely. An

advantage of our method is that it is relatively straightforward to implement—and it aids

itself to the analysis of variance and skewness premiums of individual options.

4.4 Empirical results for the variance premium

We first formulate exact testable hypotheses regarding the dependence of an

individual stock’s variance premium on its skewness, in line with the predictions of the

Π-CAPM. Afterward, we verify that the variance premium is positive for left-skewed

stocks (Empirical result VP1), positive for right-skewed stocks (Empirical result VP2),

and larger for left-skewed stocks (Empirical result VP3). We further show that all these

results hold relatively stronger for more asymmetric stocks (e.g., the variance premium

of left-skewed stocks increases in their left-skewness.) While all analysis is based on

instruments with one month to maturity, unless noted otherwise we report annualized

estimates, as they allow for better comparisons with our model predictions.

Following Conrad et al. (2013), we proxy the skewness of an asset’s return distri-

bution with its risk-neutral (standardized) skewness. Figure 11 illustrates the dependence

of the variance premium on its risk-neutral skewness, as predicted by the Π-CAPM.
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Figure 11: The effect of risk-neutral skewness on the variance premium in the Π-CAPM
This figure illustrates the dependence of the (annual) variance premium V PX of asset X on its risk-neutral skewness, as
predicted by the Π-CAPM. The dashed line corresponds to our benchmark calibration with probability distortion and the
solid line is in absence of probability distortion.
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Note that the curves in Figure 7 (which was for objective skewness) and Fig-

ures 11 (for risk-neutral skewness) are very similar. In either case the figure clearly shows

that the variance premium is positive for (sufficiently) left- and right skewed assets alike,

and that it increases in the asymmetry of the asset’s distribution. Quantitatively, the

results are more pronounced for negative skewness.

Following Kozhan et al. (2013), we measure risk neutral skewness as implied by

option prices, as follows:

S
(i)
t =

s
(i)
t(

vs
(i)
t

) 3
2

, (16)

where s
(i)
t and vs

(i)
t correspond to the fixed rate of a skewness and variance swap for

stock i at time t that expires in one month respectively, and are defined in equations (41)

and (39) of Appendix 7.12. Because the options we use all have a maturity of one

month, we suppressed the maturity in the notation. The variance premium of stock i
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that is realized at time T (in one month) is measured as V P
(i)
t,T := vs

(i)
t − rv

(i)
t,T , where we

calculate the variance swap rate vs
(i)
t and the realized variance rv

(i)
t,T using equations (39)

and (38) in Appendix 7.12, respectively. Note, we include T in the notation to indicate

that the realized variance premium is observed at maturity of the variance swap (because

it depends on the realized variance of the underlying). The realized variance premium of

a given stock can be interpreted as the payoff from selling variance swaps (receiving the

fixed variance swap rate).

We obtain the following results. Across all time periods and stocks, the variance

premium for stocks with a risk-neutral skewness of −0.5 or less equals on average 0.053

(t = 8.74), and for stocks with a risk-neutral skewness of 0.5 or more this value is 0.036

(t = 3.54).27 The former is larger than the latter with statistical significance (t = 2.72).

To obtain a stricter test of the Π-CAPM’s prediction regarding the variance premium’s

dependence on the underlying stock’s skewness, we estimate the following cross-sectional

regression using Fama-Macbeth:

V P
(i)
t,T = β0 + β1 · S(i)

t × 1
S

(i)
t <0

+ β2 · S(i)
t × 1

S
(i)
t >0

+ εt, (17)

Our (alternative) hypotheses are that: β1 < 0, β2 > 0, and |β1| > |β2|. The

results are shown in Table 2.

Table 2: Cross-sectional regression of variance premium.
This table shows the the Fama-Macbeth estimates of equation (17). The dependent variable is the variance premium

measured as vs
(i)
t − rv

(i)
t,T . t-statistics are shown in parentheses and are computed using Newey-West standard errors with

the number of lags equal to 210.

Coefficient V P
(i)
t,T

β0
(t-stat)

−0.008
(−0.54)

β1
(t-stat)

−0.038
(−4.83)

β2
(t-stat)

0.019
(5.09)

The results in Table 2 confirm the Π-CAPM’s prediction that the variance pre-

27The conditional averages coincide with the slope estimates from a Fama-Macbeth cross-sectional
regression of the variance premium on the indicator variables 1

S
(i)
t <−0.5

and 1
S

(i)
t >+0.5

. The standard

errors of the reported t-tests are corrected for cross-sectional correlation, and calculated using Newey-
West with 210 lags to account for serial auto-correlation.
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mium of left-skewed (right-skewed) stocks increases in left-skewness (right-skewness),

consistent with the general U-shaped relation shown in Figure 11. Also, the t-statistic

for the null hypothesis −β1 ≤ β2 equals 3.80, which means that the effect is larger for

left-skewed than for right-skewed assets (as predicted by the Π-CAPM).

The economic magnitudes of the coefficients β1 and β2 in Table 2 are also sig-

nificant. For example, if the underlying stock has an expected variance of 0.04 and

risk-neutral skewness of −1, then the estimate of −0.038 means that the variance swap

rate equals 0.078. Consequently, if for one year an investor hedges variance monthly, the

premium equals (0.040/0.078− 1)/12 = 4.1% per month.28

Empirical results:

VP1 The variance premium is positive for left-skewed stocks.

VP2 The variance premium is positive for right-skewed stocks.

VP3 The variance premium of left-skewed stocks is larger than that of right-skewed

stocks.

Moreover, VP1 to VP3 are relatively stronger the more left-skewed resp. right-skewed

the considered stocks are.

4.5 Empirical results for the skewness premium

Proposition 4 states that an individual stock’s skewness premium is negative

if the stock is left-skewed and positive if it is right-skewed. We proceed analogously to

the analysis of the variance premium and first formulate exact testable hypotheses, in

line with the predictions of Π-CAPM. Afterward, we verify that the skewness premium

is negative for left-skewed and positive for right-skewed stocks (Empirical results SP1

and SP2, respectively). A null result obtains regarding a third prediction, being that the

28The magnitudes of the model are similar to the data as we consider a squared yearly return contract
in the model and the price of such a contract is approximately equal to the price of a variance contract
based on daily squared returns if daily returns are uncorrelated. The prices are exactly equal in case of
log returns.
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absolute of the skewness premium is larger for left-skewed stocks. As with the variance

premium, the results hold relative stronger for more asymmetric (left-skewed or right-

skewed) stocks.

Similar to the analysis for the variance premium, we first illustrate the depen-

dence of the skewness premium on the underlying asset’s risk-neutral skewness; see Figure

12.

Figure 12: The effect of risk-neutral skewness on the skewness premium of asset X.
This figure illustrates the dependence of the (annual) variance premium SPX of asset X on its risk-neutral skewness, as
predicted by the Π-CAPM. The dashed line corresponds to our benchmark calibration with probability distortion and the
solid line is in absence of probability distortion.
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As was the case for objective skewness (recall Figure 8), the skewness premium

increases in risk-neutral skewness when the investor distorts probabilities (dashed line).

The skewness premium decreases faster in negative risk-neutral skewness than it increases

in positive risk-neutral skewness.

The skewness premium of stock i that is realized at time T is measured as

SP
(i)
t,T := s

(i)
t − rs

(i)
t,T , where the realized skewness premium is calculated using equations

(40) and (41) in Appendix (7.12). Then, conceptually following the analysis for the

variance premium, for stocks with a risk-neutral skewness of −0.5 or less we find an
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average skewness premium of −0.263×100−1 (t = −11.90). For stocks with a risk-neutral

skewness of 0.5 or more, the average is 0.366 × 100−1 (t = 3.54). The absolute value of

the former is smaller than the latter, but without statistical significance (t = −1.46). We

run the regression from equation (17), except for replacing the realized variance premium

with the realized skewness premium. Our (alternative) hypotheses are β1 > 0, β2 > 0,

and β1 > β2. The results of this cross-sectional regression, which is estimated using

Fama-Macbeth, are shown in Table 3.

Table 3: Cross-sectional regression skewness premium.
This table shows (non-annualized) results of the Fama-Macbeth estimates of equation (17). The dependent variable is the

skewness premium computed as s
(i)
t − rs

(i)
t,T . t-statistics are shown in parentheses and are computed using Newey-West

standard errors with the number of lags equal to 210.

Coefficient SP
(i)
t,T

β0 × 100−1

(t-stat)

−0.016
(−0.29)

β1 × 100−1

(t-stat)

0.166
(6.93)

β2 × 100−1

(t-stat)

0.169
(5.95)

In line with our alternative hypotheses, we observe with statistical significance

that β1 and β2 are positive. The t-statistic for the null hypothesis β1 ≤ β2 equals −0.07

and, therefore, we fail to reject that the effect is larger for right-skewed assets than for

left-skewed assets.

As regards the assessment of the economic significance of our results on the

skewness premium, note that we defined the skewness premium as the difference between

the price and expected payoff of a yearly cubic contract. Because it is not readily possible

to scale a monthly skewness swap based on daily returns to a yearly skewness swap, we

cannot directly compare the cubic yearly contract to the skewness swaps in the data.

Hence, the magnitudes of the results in this section cannot be readily compared to those

in Figure 12. However, from Table 3 we can infer a large premium for OTM call (put)

options on right-skewed (left-skewed) stocks. In combination with our results on the

variance premium, this observation indicates that the variance premium for right-skewed

(left-skewed) stocks is driven by the expensiveness of OTM call (put) options.

Empirical results:
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SP1 The skewness premium is negative for left-skewed stocks.

SP2 The skewness premium is positive for right-skewed stocks.

Moreover, SP1 to SP2 are relatively stronger the more left-skewed resp. right-skewed the

considered stocks are.

4.6 Summary of the empirical analysis

In this section we presented some empirical support for the Π-CAPM. We con-

firmed its predictions that the variance premium is positive for left-skewed and right-

skewed assets alike, and that it is larger for left-skewed than for right-skewed assets. We

further confirmed the Π-CAPM’s predictions that the skewness premium is positive (neg-

ative) for positively (negatively) skewed assets. All these results hold relatively stronger

for more asymmetric stocks (e.g., the variance premium of left-skewed stocks increases in

their left-skewness.)

Especially the results of positive variance and skewness premiums for right-

skewed assets constitute strong evidence in favor of the Π-CAPM. Underlying these pre-

dictions are preferences that imply a large willingness to pay for securities that pay in

large wealth states. This is not the case for standard preferences, for which securities

paying in states with large wealth should have low prices.

5 Conclusion

This paper has proposed and analyzed the Π-CAPM—a capital asset pricing

model in which objective probabilities are replaced with a collection of decision weights,

denoted by Π, as motivated by the behavioral economics literature on probability weight-

ing. The Π-CAPM nests the classical Lintner-Sharpe-CAPM and extends it by one

parameter that captures probability weighting. The tractability of the Π-CAPM allows

for a number of predictions—some known and some entirely new—regarding the pric-

ing of skewed and correlated assets. In the Π-CAPM, symmetric probability weighting
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has asymmetric pricing implications, objective correlation is exaggerated, and volatility

and skewness affect asset prices in specific ways. While the price of a left-skewed asset

increases in skewness and decreases in variance of the asset, the price of a sufficiently

right-skewed asset may decrease in skewness and increase in variance of the asset.

One novel prediction of the Π-CAPM is that variance and skewness premiums

depend in specific ways on the underlying asset’s own skewness. In the empirical part

of the paper, we take this prediction to the test and find strong support for it within

the cross-section of individual US stock options. We find that the variance premium of

individual stocks is positive and increasing in the stock’s asymmetry (the absolute of

skewness). The skewness premium increases in the skewness of the underlying stock,

is negative for left-skewed stocks, and is positive for right-skewed stocks. While the

skewness dependence of variance and skewness premiums that we document in the data

is difficult to explain with standard preferences (both qualitatively and quantitatively),

it is consistent with Π-CAPM.
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7 Appendix

In the following subsections we conveniently use the following notation for the

decision weights. Similar to joint probability density of the two assets, we derive the

marginal components of each asset for the decision weights in the following way:

πX := πx̄ȳ + πx̄
¯
y,

πY := πx̄ȳ + π
¯
xȳ, (18)

rΠ
XY := πx̄ȳ − πXπY .

These decision weights are used in the next section where we derive the equilibrium of

the model.

7.1 Proof of Theorem 1

As explained in the main text preceding Theorem 1, the ranking of wealth

states is not affected by changes in demand and the value function is differentiable in NX

and NY . In equilibrium, demand for either asset must satisfy the respective first-order

condition. From equation (4):

∂U(W1)

∂NX

= EΠX − PXRf − γNXvarΠ
(
X
)
− γNY covΠ

(
X, Y

)
= 0, and

∂U(W1)

∂NY

= EΠY − PYRf − γNY varΠ
(
Y
)
− γNXcovΠ

(
X, Y

)
= 0.

The second-order condition yields the following:

∂2U(W1)

∂N2
X

· ∂
2U(W1)

∂N2
Y

−

(
∂2U(W1)

∂NX∂NY

)2

≥ 0,

⇐⇒ γ2varΠ
(
X
)
varΠ

(
Y
)
− γ2covΠ

(
X, Y

)2 ≥ 0,

⇐⇒ −1 ≤ corrΠ
(
X, Y

)
≤ 1,

and indicates that the optimal demand functions obtained from the first-order conditions,

indeed, maximize the utility.
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Market clearing, NX = N̄X and NY = N̄Y , yields the pricing equations in terms of

distorted moments:

PXR
f = EΠX − γN̄XvarΠ

(
X
)
− γN̄Y covΠ

(
X, Y

)
, and (19)

PYR
f = EΠY − γN̄Y varΠ

(
Y
)
− γN̄XcovΠ

(
X, Y

)
. (20)

Next, we express the distorted moments in terms of non-distorted moments. For the

distorted mean we obtain:

EΠX = πX x̄+ (1− πX)
¯
x = πX(x̄−

¯
x) +

¯
x

=
(
a+ (1− 2a)pX

)
(x̄−

¯
x) +

¯
x = a(1− 2pX)(x̄−

¯
x) + pX(x̄−

¯
x) +

¯
x︸ ︷︷ ︸

=µX

= aSXσX + µX .

Similarly distorted variance is given by:

varΠ(X) = πX(1− πX)(x̄−
¯
x)2

=
(
a+ (1− 2a)pX

)(
1− a− (1− 2a)pX

)
(x̄−

¯
x)2

=
(
a(1− a) + (1− 4a+ 4a2)pX − (1− 4a+ 4a2)p2

X

)
(x̄−

¯
x)2

= a(1− a)
(
1− 4pX + 4p2

X

)
(x̄−

¯
x)2 + pX(1− pX)(x̄−

¯
x)2

= a(1− a)S2
Xσ

2
X + σ2

X . (21)

Note that the distorted variance is given by

covΠ(X, Y ) = rΠ
XY (x̄−

¯
x)(ȳ −

¯
y),

where

rΠ
XY = πx̄ȳ − πXπY

=
(
a+ (1− 2a)px̄ȳ −

(
a+ (1− 2a)pX

))(
a+ (1− 2a)pY

)
= a(1− a) + (1− 2a)

(
px̄ȳ − apY − apX − (1− 2a)pXpY

)
= a(1− a) + (1− 2a)rXY − a(1− 2a)

(
pY (1− pX) + pX(1− pY )

)︸ ︷︷ ︸
= 1

2
if SY =0
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=
1

2
a+ (1− 2a)rxy. (22)

Therefore,

covΠ(X, Y ) = (1− 2a)cov(X, Y ) +
1

2
a(x̄−

¯
x)(ȳ −

¯
y)

= (1− 2a)cov(X, Y ) +
1

2
a

σX√
pX(1− pX)

· σY√
pY (1− pY )

= (1− 2a)cov(X, Y ) + a
σXσY√

pX(1− pX)
.

The expressions for distorted mean and distorted variance of asset Y are obtained analo-

gously. Inserting all the expressions for the distorted moments into in equations (19) and

(20), and exploiting that SY = 0⇐⇒ pY = 0.5, yields the result. �

7.2 Proof of Theorem 2

We first prove that 2. implies 1. In particular, we assume that c > 2
√
a(1− a)

and pX ∈ (p∗1, p
∗
2), where

c : =
1− γN̄Y σY
γN̄XσX

, (23)

p∗1 :=
(2a− 1)(2a− 2) + c2 − c ·

√
c2 − 4a(1− a)

2c2 + 2(1− 2a)2
, and (24)

p∗2 :=
(2a− 1)(2a− 2) + c2 + c ·

√
c2 − 4a(1− a)

2c2 + 2(1− 2a)2
. (25)

Let i ∈ {x̄,
¯
x}, j ∈ {ȳ,

¯
y} and recall that pij > 0 by assumption. Statement 1 follows if (i)

EQX = PXR
f , (ii)

∑
i,j qij = 1, (iii) qij ∈ [0, 1], and (iv) qij > 0 ⇐⇒ pij > 0. Conditions

(ii) and (iii) mean that Q is a probability measure, (i) means that it is a risk-neutral

pricing measure, and (iv) means that it is equivalent to P. By the first fundamental

theorem of asset pricing, conditions (i) to (iv) jointly ensure the absence of arbitrage.

We first rewrite the pricing equation (5):

PXR
f = EΠX − γN̄XvarΠ(X)− γN̄Y covΠ(X, Y )

= EΠX
[
1− γN̄X(X − EΠX)− γN̄Y (Y − EΠY )

]
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= EΠX
[
1− γN̄X(X − µX − aσXSX)− γN̄Y (Y − µY )

]
where we made use of equation (9) and pY = 0.5. Therefore, (i) holds for Q (and only for

Q) as defined through the state probabilities in equation (13).

Because of EΠγN̄X(X − EΠX) = 0 and EΠγN̄Y (Y − EΠY ) = 0, we have that∑
i,j qij =

∑
i,j πij = 1. Therefore, (ii) holds.

Next, observe that qij > 0 for all i, j is equivalent to:

1− γN̄X(i− µX − aσXSX)− γN̄Y (j − µY ) > 0 for all i, j

⇐⇒ 1− γN̄X(x̄− µX − aσXSX)− γN̄Y (ȳ − µY ) > 0

⇐⇒ 1− pX − a(1− 2pX)√
pX(1− pX)

<
1− γN̄Y σY
γN̄XσX

≡ c. (26)

⇐⇒ p2
X

(
(1− 2a)2 + c2

)
− pX

(
(2a− 1)(2a− 2) + c2

)
+ (1− a)2 < 0, (27)

where the necessity in the last step follows from c > 2
√
a(1− a) > 0. The assumption

that c > 2
√
a(1− a) ensures that the the left hand side of inequality (27) has two roots

in pX . They are given by equations (24) and (25). Inequality (27) holds for pX ∈ (p∗1, p
∗
2)

and thus qij > 0. qij < 1 then follows from (ii), which proves (iii).

(ii) and (iii) together imply (iv).

We now prove that 1 implies 2. By the equivalence of Q and P we have qij > 0.

Therefore, inequality (27) holds. If c ≤ 2
√
a(1− a), the left hand side of inequality

(27) has no or one root and is (weakly) positive, which would contradict inequality (27).

Therefore, c > 2
√
a(1− a) and pX ∈ (p∗1, p

∗
2). It remains to show that 0 < p∗1 < p∗2 ≤ 1.

The first and second inequality are straightforward. Lastly,

p∗2 ≤ 1 ⇐⇒
(2a− 2)(2a− 1) + c2 + c

√
c2 − 4a(1− a)

2(1− 2a)2 + 2c2
≤ 1

⇐⇒ 2a(1− 2a)− c2 +
√

(c2 − 2a(1− a))2 − (4a(1− a))2 ≤ 0

⇐= 2a(1− 2a)− c2 +
√

(c2 − 2a(1− a))2 ≤ 0.

⇐⇒ a ≥ 0.
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This completes the proof. �

7.3 Proof of Corollary 1

Noting that (2a− 2)(2a− 1) > 2(1− 2a) for all a ∈ [0, 0.5] it follows that

p∗2 ≥
(2a− 2)(2a− 1) + c2

2(1− 2a)2 + 2c2
> 0.5.

Because c > 1 ⇐⇒ N̄Y σY + N̄XσX < 1
γ
, from inequality (26) it follows that c > 1 ⇐⇒

p∗1 < 0.5⇐⇒ 0.5 ∈ (p∗1, p
∗
2). The equivalence statement thus follows from Theorem 2. As

regards the statement 1, from the last derivation of the proof of Theorem 2 p∗2 ≤ 1 ⇐⇒

a = 0. Because p∗1 < 0.5, the l.h.s of inequality (26) is minimized for a→ 0.5. As regards

the statement 2, note that c → ∞ ⇐⇒ γN̄XσX → 0. The statement then follows from

equations (24) and (25). �

7.4 Proof of Proposition 1

We prove the claim by first showing that ∂PX

∂pX
= 0 ⇐⇒ a = 0 or SX = S̄.

Afterward, we show that the sign of ∂PX

∂SX
changes around the skewness level S̄. Because,

∂PX

∂pX
< (=, >)0 ⇐⇒ ∂PX

∂SX
> (=, <)0, we solve for the roots of ∂PX

∂SX
as follows:

∂PXR
f

∂pX
=aσX

∂SX
∂pX

− γN̄Xa(1− a)σ2
X2SX

∂SX
∂pX

− γN̄Y aσY σX(1− 2pX)
∂SX
∂pX

= 0,

⇐⇒ aσX
∂SX
∂pX

[
1− 2γN̄X(1− a)σXSX − γN̄Y σY (1− 2pX)

]
︸ ︷︷ ︸

=:f(pX)

= 0,

⇐⇒ a = 0 or f(pX) = 0.

Due to f(1
2
) = 1 and ∂SX

∂pX
< 0 it follows that ∂PX

∂SX
> 0 at pX = 1

2
. Moreover, because

f(pX) → −∞ as pX → 0, it follows, by the mean value theorem, that there exists

p̄ : f(p̄) = 0. Because ∂f(pX)
∂pX

> 0, f is strictly increasing so that p̄ is unique and ∂PX

∂SX
< 0

for pX < p̄. The claim follows for S̄ := 1−2p̄√
p̄(1−p̄)

. �

58



7.5 Proof of Proposition 2

We prove the first claim by calculating the derivative of the pricing equation of

Theorem 1 with respect its volatility:

∂PXR
f

∂σX
=aSX − γN̄X2σX(1 + a(1− a)S2

X)

− γN̄Y σY

[
(1− 2a)ρXY +

a√
pX(1− pX)

]
. (28)

If γ > 0 sufficiently small, the sign of the derivative of equation (28) is determined by

the sign of SX . The first claim follows.

We prove the second claim by first showing that ∂2PX

∂σX∂SX
= 0 ⇐⇒ a = 0 or

SX = S̄. Afterward, we show that the sign of ∂2PX

∂σX∂SX
changes around the skewness level

S̄. First, we solve for the roots of ∂2PX

∂σX∂SX
, which follows from equation (28):

∂2PXR
f

∂σX∂pX
= 0,

⇐⇒ a
∂SX
∂pX

[
1− 4γN̄X(1− a)σXSX − γN̄Y σY (1− 2pX)

]
︸ ︷︷ ︸

=:f(pX)

= 0,

⇐⇒ a = 0 or f(pX) = 0.

Due to f(1
2
) = 1 and ∂SX

∂pX
< 0 it follows that ∂2PX

∂σX∂SX
> 0 at pX = 1

2
. Moreover,

because f(pX) → −∞ as pX → 0, it follows, by the mean value theorem, that there

exists p̄ : f(p̄) = 0. Because ∂f(pX)
∂pX

> 0, f is strictly increasing so that p̄ is unique and

∂2PX

∂σX∂SX
< 0 for pX < p̄. The second claim follows for S̄ := 1−2p̄√

p̄(1−p̄)
. �

7.6 Proof of Proposition 3

To prove the first statement, we prove the more general statement:

If a = 0, ρXY > − N̄XσX
N̄Y σY

, then there exists S̄ < 0 such that V PX < (=, >)0 for SX > (=

, <)S̄.

From Definition 1 we know that V PX =
(
qX − pX

)
·
(

(rx̄)
2 − (r

¯
x)

2
)

. In case
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a = 0, it follows from equation (13) that the risk-neutral distribution is given by:

qij = pij

[
1− γN̄X(i− µX)− γN̄Y (j − µY )

]
, i ∈ {x̄,

¯
x}, j ∈ {ȳ,

¯
y}.

Therefore, the first term in the calculation of V PX can be rewritten as:

qX − pX =px̄ȳ

[
1− γN̄X(x̄− µX)− γN̄Y (ȳ − µY )

]
+

px̄
¯
y

[
1− γN̄X(x̄− µX)− γN̄Y (

¯
y − µY )

]
− pX

=− γ
[
N̄XpX(1− pX)(x̄−

¯
x) + N̄Y rXY (ȳ −

¯
y)
]
.

This term is negative if and only if:

rXY > −
N̄XpX(1− pX)(x̄−

¯
x)

N̄Y (ȳ −
¯
y)

⇐⇒ rXY√
pX(1− pX)

√
pY (1− pY )

= ρxy > −
N̄XσX
N̄Y σY

Next, note that:

(
(rx̄)

2 − (r
¯
x)

2
)

=
( x̄

PX
− 1
)2

−
(

¯
x

PX
− 1
)2

=
1(
PX
)2

(
x̄2 −

¯
x2
)
− 2

PX

(
x̄−

¯
x
)

= 0

⇐⇒
(
x̄−

¯
x
)(
x̄+

¯
x
)
− 2PX

(
x̄−

¯
x
)

= 0

⇐⇒PX =
1

2
(x̄+

¯
x) =

1

2

(
µX + σX

√
1− pX
pX

+ µX − σX
√

pX
1− pX

)
⇐⇒PX = µX +

1

2
σXSX ,

such that,

(
(rx̄)

2 − (r
¯
x)

2
)

= 0⇐⇒ SX =
µX(1−Rf )− γN̄Xσ

2
X − γN̄Y cov(X, Y )

1
2
σXRf

=: S̄,

which is negative for all Rf > 1 if ρXY > − N̄XσX
N̄Y σY

. Furthermore, it follows that (rx̄)
2 −

(r
¯
x)

2 > (=, <)0 for SX > (=, <)S̄. The statement follows.

In the following, we prove the second statement. We first determine the sign of
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the first factor in the calculation of V PX , which can be rewritten as:

qX − pX =qx̄ȳ + qx̄
¯
y − pX

=πx̄ȳ

(
1− γ

(
N̄X(x̄− EΠX) + N̄Y (ȳ − EΠY )

))
+

πx̄
¯
y

(
1− γ

(
N̄X(x̄− EΠX) + N̄Y (

¯
y − EΠY )

))
− pX

=πX − pX − γN̄XπX(1− πX)(x̄−
¯
x)− γN̄Y

(
πx̄ȳ(1− πX)− πx̄

¯
yπY︸ ︷︷ ︸

=rΠ
XY

)
(ȳ −

¯
y)

=a(1− 2pX)− γ
[
N̄X

(
a(1− a)S2

X + 1
)
pX(1− pX)(x̄−

¯
x)− N̄Y r

Π
XY (ȳ −

¯
y)
]
.

(29)

For γ > 0 sufficiently small, the sign of equation (29) is determined by a(1 − 2pX) and

thus qX −pX > 0 ⇐⇒ SX > 0. In order to prove the second claim we show that SX > 0

yields PX < µX + 1
2
σXSX . From the pricing equation PX in Theorem 1, we derive the

following condition:

PX < PXR
f = µX + aSXσX − γN̄X

[
σ2
X + a(1− a)σ2

XS
2
X

]
− γN̄Y

(
rXY (1− 2a) +

1

2
a
) 2σXσY√

pX(1− pX)
< µX +

1

2
σXSX

⇐⇒ (a− 1

2
)SXσX − γN̄X

[
σ2
X + a(1− a)σ2

XS
2
X

]
− γN̄Y

(
rXY (1− 2a) +

1

2
a
) 2σXσY√

pX(1− pX)
< 0,

which indeed holds for γ > 0 sufficiently small and SX > 0. In summary, for SX > 0 we

have qX − pX > 0 and (rx̄)
2 − (r

¯
x)

2 > 0 and thus V PX > 0 as claimed.

For SX < 0, the claim follows if, for γ > 0 sufficiently small, PX > µX + 1
2
σXSX . We

obtain:

PXR
f = µX + aSXσX >

(
µX +

1

2
σXSX

)
Rf

⇐⇒µX
(
1−Rf

)
+ (a− 1

2
Rf )SXσX > 0

⇐⇒SX <
µX
(
1−Rf

)(
1
2
Rf − a

)
σX

=: S̄. (30)
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Note that, indeed, S̄ < 0 as Rf = 1 + rf > 1. The second claim follows. �

7.7 Proof of Proposition 4

By Definition 2, SPX =
(
qX − pX

)
·
(

(rx̄)
3 − (r

¯
x)

3
)

. As the second factor is

always positive, the sign is determined by qX −pX . In the proof of Proposition 3 we have

shown that, for a = 0 and ρXY > − N̄XσX
N̄Y σY

, qX − pX < 0 and, therefore, SPX < 0. The

first claim follows.

We now prove the second statement. In the proof of Proposition 3 we have

shown that, if a > 0 and γ > 0 sufficiently small, SX > 0 yields qX − pX > 0 and SX < 0

yields qX − pX < 0. The second claim follows. �

7.8 Proof of Proposition 5

By the definitions of rΠ
XY and rXY :

covΠ
(
X, Y

)
= rΠ

XY (x̄−
¯
x)(ȳ −

¯
y), cov

(
X, Y

)
= rXY (x̄−

¯
x)(ȳ −

¯
y).

The claim follows if rΠ
XY > rXY . From equation (18), note that:

rΠ
XY = πx̄ȳ − πXπY = πx̄ȳ − (πx̄ȳ + πx̄

¯
y)(πx̄ȳ + π

¯
xȳ)

= πx̄ȳ(1− πx̄ȳ − πx̄
¯
y − π

¯
xȳ)− πx̄

¯
yπ

¯
xȳ = πx̄ȳπ

¯
x
¯
y − πx̄

¯
yπ

¯
xȳ.

Therefore:

rΠ
XY − rXY = πx̄ȳπ

¯
x
¯
y − πx̄

¯
yπ

¯
xȳ − rXY

=
(
a+ (1− 2a)px̄ȳ

)(
a+ (1− 2a)p

¯
x
¯
y

)
− (1− 2a)px̄

¯
y(1− 2a)p

¯
xȳ − rXY

= a2 + a(1− 2a)
(
p

¯
x
¯
y + px̄ȳ

)
+ (1− 2a)2px̄ȳp

¯
x
¯
y − (1− 2a)2px̄

¯
yp

¯
xȳ︸ ︷︷ ︸

=(1−2a)2rXY

−rXY

= a2 − 2arXY + a(1− 2a)
(
1− pX(1− pY )− pY (1− pX)

)
. (31)
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The claim follows if (31) is greater than zero. All probabilities being (strictly) between

zero and one yield the so-called Fréchet bounds on the dependence parameter:

rXY < min (pX(1− pY ), pY (1− pX)) and rXY > max (−pXpY ,−(1− pX)(1− pY )) .

(32)

Exploiting the Fréchet bound of equation (32), it suffices to show that:

a2 − 2amin
(
pX(1− pY ), pY (1− pX)

)
+ a(1− 2a)

(
1− pX(1− pY )− pY (1− pX)

)
> 0.

(33)

WLOG, let pX ≤ pY (if pX > pY , then the following arguments apply analogously due

to symmetry of the algebraic expressions in pX and pY ). Then, min
(
pX(1− pY ), pY (1−

pX)
)

= pX(1− pY ) and the left-hand side of (33) becomes:

a2 − 2apX(1− pY ) + a(1− 2a)
(
1− pX(1− pY )− pY (1− pX)

)
=: f(pX , pY ).

It remains to show that f(pX , pY ) > 0. First, due to:

fpXpX (pX , pY ) · fpY pY (pX , pY )− fpXpY (pX , pY )2 < 0,

f has no minimum on the interior of its domain. Therefore, it remains to show that any

minimum of f on the edges of its domain, which are
{

(0, pY ) | pY ∈ [0, 1]
}

,
{

(pX , 1) | pX ∈

[0, 1]
}

and
{

(pX , pX) | pX ∈ [0, 1]
}

, is strictly greater than zero in the former two cases

and equal to zero in the latter case. Due to

f(0, pY ) > 0, ⇐⇒ pY < 1 +
a

1− 2a
and f(pX , 1) > 0, ⇐⇒ pX > − a

1− 2a
,

each of which is always fulfilled, any minimum of f on the first two edges must be strictly

positive. Finally, turning to the third edge, it is easy to show that:

f̄(pX) := f(pX , pX) = a2 − 2a · (pX − p2
X) + a(1− 2a) ·

(
1− 2(pX − p2

X)
)

= 4a(1− a) · p2
X − 4a(1− a) · pX + a(1− a),
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has the global minimum of zero (at pX = pY = 1
2

and rXY = pX(1−pY )). Since any other

minimum of f can only be positive, the global minimum of f is also zero. By the Fréchet

bounds of equation (32), it follows that rXY < pX(1 − pY ) and, therefore, fpX ,pY > 0.

The claim follows. �

7.9 Proof of Proposition 6

By Definition 3 and due to bilinearity of correlation it follows that:

CP =
qx̄ȳ − qXqY√

qX(1− qX) ·
√
qY (1− qY )

− px̄ȳ − pXpY√
pX(1− pX) ·

√
pY (1− pY )

, (34)

where the risk-neutral probabilities follow from (13) and are equal to:

qx̄ȳ = πx̄ȳ

(
1− γ

[
N̄X(1− πX)(x̄−

¯
x) + N̄Y (1− πY )(ȳ −

¯
y)
])
,

qX = πx

(
1− γ

[
N̄X(1− πX)(x̄−

¯
x) + N̄Y

rΠ
XY

πX
(ȳ −

¯
y)
])
,

qY = πy

(
1− γ

[
N̄X

rΠ
XY

πY
(x̄−

¯
x) + N̄Y (1− πY )(ȳ −

¯
y)
])
.

We show that, if γ = 0 and rXY ∈
(
− 1

4
, 1

4

)
, then CP > 0. Then, by continuity of the

CP in γ, CP > 0 also holds for γ > 0 sufficiently small and rXY ∈
(
− 1

4
, 1

4

)
and the

claim follows. Note that, rXY = ±1
4
⇐⇒ ρXY = ±1 and it follows that px̄

¯
y = p

¯
xȳ = 0,

which is not in line with the assumption that all state probabilities are strictly positive.

For γ = 0 and pY = 1
2
, equation (34) becomes:

CP =
πx̄ȳ − πXπY√

πX(1− πX) ·
√
πY (1− πY )

− px̄ȳ − pXpY√
pX(1− pX) ·

√
pY (1− pY )

=
2rΠ

XY√
πX(1− πX)

− 2rXY√
pX(1− pX)

=
2
(

1
2
a+ (1− 2a)rXY

)√
πX(1− πX)

− 2rXY√
pX(1− pX)

=
2
(

1
2
a+ (1− 2a)rXY

)√
pX(1− pX) + a(1− a)(1− 2pX)2

− 2rXY√
pX(1− pX)

64



=
2
(

1
2
a+ (1− 2a)rXY

)√
pX(1− pX)− 2rXY

√
pX(1− pX) + a(1− a)(1− 2pX)2√

pX(1− pX) + a(1− a)(1− 2pX)2 ·
√
pX(1− pX)

,

(35)

where in the third and fourth equality, equations (22) and (21) of Appendix 7.1 are used,

respectively. CP > 0 is equivalent the nominator of equation (35) being stricly positive

or, equivalently:

rXY < −
1
2
a
√
pX(1− pX)

(1− 2a)
√
pX(1− pX)−

√
pX(1− pX) + a(1− a)(1− 2pX)2

= −
1
2
a

1− 2a−
√

1 + a(1− a)S2
X

=
1
2
a

2a+
√

1 + a(1− a)S2
X − 1

=: h(a).

Note that, by l’Hopital’s rule:

lim
a→0

h(a) =
1
2

2 + 1
2
S2
X

=
1

4 + S2
X

,

such that h(a) is defined and continuous on [0, 1
2
). Moreover, it is easy to check that:

h′(a) ≥ 0 ⇐⇒ a2S2
X

(1

4
S2
X + 1

)
≥ 0,

and thus h is increasing on [0, 1
2
), taking its global minimum at zero. Consequently:

CP > 0 ⇐⇒ rXY <
1

4 + S2
X

. (36)

First, note that if SX = 0, the inequality of (36) becomes rXY < 1
4
, which is true by

assumption. Second, suppose that SX > 0 ⇐⇒ pX < 1
2
. Then, the Fréchet bound from

inequality (32) yields rXY ≤ 1
2
pX and, from inequality (36), CP > 0 follows if:

1

2
pX <

1

4 + (1−2pX)2

pX(1−pX)

⇐⇒ 3p2
X − pX − 1 < 0,

which is true for pX < 1
2
. Third and similarly, if SX < 0 ⇐⇒ pX > 1

2
, CP > 0 follows
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if:

1

2
(1− pX) <

1

4 + (1−2pX)2

pX(1−pX)

⇐⇒ 3p2
X − 5pX + 1 < 0,

which is true for pX > 1
2
. The claim follows. �

7.10 Proof of Proposition 7

Following the same lines as in the proof of Theorem 1, for pY ∈ (0, 1) we obtain:

PXR
f = µX + aSXσX − γN̄X

[
σ2
X + a(1− a)σ2

XS
2
X

]
− γN̄Y

σXσY√
pX(1− pX)

√
pY (1− pY )

rΠ
XY ,

where rΠ
XY = a(1 − a) + (1 − 2a)rXY − a(1 − 2a)

(
pY (1 − pX) + pX(1 − pY )

)
. First, we

calculate the derivative of the pricing equation of X with respect to skewness of Y :

∂PXR
f

∂pY
=γN̄Y

σXσY√
pX(1− pX)

√
pY (1− pY )

(
a(1− 2a)(1− 2pX)

)
+

1

2
γN̄Y

[
a(1− a)− a(1− 2a)(pX(1− pY ) + pY (1− pX)

]
· σXσY√

pX(1− pX)
√
pY (1− pY )

1− 2pY
pY (1− pY )

.

Next, we evaluate this derivative at pY = 1
2

and calculate the derivative with respect to

the skewness of asset X:

∂2PX
∂pY ∂pX

=
1

Rf
· 2a(1− 2a)γN̄Y σXσY ·

∂SX
∂pX

, (37)

which is strictly negative as ∂SX

∂pX
< 0. Therefore, by continuity, the cross-derivative of

(37) is also negative in a neighbourhood of pY = 1
2
. �
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7.11 The no-arbitrage condition in the Π-CAPM

In this appendix, we discuss the no-arbitrage condition of Theorem 2 in more

detail. First, we prove a corollary regarding the condition and afterward we discuss the

no-arbitrage condition in our benchmark calibration.

The following corollary shows that the introduction of probability weighting

changes the no-arbitrage condition slightly but does not make it stronger. In particu-

lar, without (with) probability weighting, no-arbitrage holds for some left-skewed (right-

skewed) assets for which the model admits arbitrage in the case with (without) proba-

bility weighting. Moreover, regardless of whether there is probability weighting or not,

the boundedness of the binary assets ensures that assets of arbitrary skewness level are

priced if these assets are small enough and/or risk aversion is sufficiently low. Then, all

possible payoffs of the assets are part of the domain where preferences are monotone.

Corollary 1 (No-arbitrage in the Π-CAPM also when pX = 0.50). The Π-CAPM is

arbitrage-free for pX = 0.50 if and only if N̄Y σY + N̄XσX < 1
γ

and pX ∈ (p∗1, p
∗
2) for

0 < p∗1 <
1
2
< p∗2 ≤ 1 as stated in the proof of Theorem 2. Moreover:

1. p∗1 is smallest for a→ 0.5 while p∗2 is largest for a = 0.

2. As γN̄XσX → 0, p∗1 → 0 and p∗2 → 1.

Corollary 1 states that the Π-CAPM is arbitrage-free also for a symmetric X if

and only if N̄Y σY + N̄XσX < 1
γ
. Technically by Theorem 2, the no-arbitrage condition

holds for pX ∈ (p∗1, p
∗
2) which holds by Theorem 2. By Corollary 1, this interval includes

the case pX = 0.50. This is an interesting case, because it is not possible for a model with

MV-preferences and two assets that follow a normal distribution to be arbitrage-free as

shown in Dybvig and Ingersoll (1982).

We show in Figure 13 that the no-arbitrage condition allows for extreme skew-

ness levels of asset X. We plot the price of the skewed asset in our benchmark calibration

as a function of its skewness on the interval such that the no-arbitrage condition is met.
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Figure 13: The price of asset X as a function of SX .
The figure shows the price of asset X in the Π-CAPM as a function of its skewness in the range were the no-arbitrage
condition is met. The enlarged plot shows (in line with Proposition 1) that the price of the skewed asset decreases in its
skewness beyond a certain skewness level S̄, which is within the no-arbitrage region. The calibration of the Π-CAPM is
from Table 1.
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The dashed line in Figure 13 plots the price of the skewed asset in the case of

probability distortion, while the solid line plots the price in the absence of probability

distortion. The vertical dashed lines indicate the bounds of the no-arbitrage interval for

our benchmark calibration with probability distortion, labelled as S(p∗Π1 ) and S(p∗Π2 ).

The solid vertical line indicates the bound on the no-arbitrage interval in the absence

of probability distortion and is labelled S(p∗1) (in the absence of probability distortion,

there is no lower bound on skewness). Figure 13 has three main takeaways. First, the

Π-CAPM is arbitrage-free for our benchmark calibration for a wide range of skewness

levels of X. Second, the skewness intervals for which the Π-CAPM is arbitrage-free

have a large overlap in the cases with and without probability distortion. In case of

probability distortion, the upper bound on skewness is somewhat larger than in the

absence of probability distortion, i.e. S(p∗Π1 ) > S(p∗Π2 ) which holds in general by statement

2 of Corollary 1. Third, as shown in the enlarged plot, the price of asset X decreases

in its skewness beyond the skewness level S̄, which is in line with Proposition 1. In the

benchmark calibration S̄ = 13.19, which is rather large from an empirical perspective.
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7.12 Empirical methodology to estimate variance and skewness

premium

In this appendix, we explain our methodology to compute the variance and

skewness premium, respectively. To do so, we replicate variance and skewness swaps

with options. We begin with the variance swap and explain the skewness swap afterward.

A long position in the variance swap at time t with maturity T corresponds to

paying an at time t agreed-upon fixed amount, the variance swap rate, and receiving the

realized variance over period t to T, where the exchange occurs once and at time T. We

estimate the realized variance premium of stock i at time t for maturity T as the difference

between the variance swap rate and the realized variance during the lifetime of the swap.

We now detail how these two components are computed. Using the approximation r2 ≈

2
(
er − 1 − r

)
, which is mathematically convenient, the realized variance of a variance

swap entered at time t with maturity T for stock i is calculated in the following way:

rv
(i)
t,T =

T∑
j=1

[
2
(
er

(i)
t+j − 1− r(i)

t+j

)]
, (38)

where r
(i)
t+j is the daily log return realized on day t + j for stock i. The variance swap

rate is then equal to the risk-neutral expectation of the realized variance specified in

equation (38). Kozhan et al. (2013) show how to calculate the variance swap rate with

maturity T for stock i at time t from option prices:

vs
(i)
t =

2

Bt

[∫ F
(i)
t

0

P
(i)
t (K)

K2
dK +

∫ ∞
F

(i)
t

C
(i)
t (K)

K2
dK

]
, (39)

where Bt is the risk-free bond price at time t with maturity T , F
(i)
t is the forward price of

stock i at time t with maturity T , P
(i)
t (K) and C

(i)
t (K) are prices of European put and call

options on stock i at time t with maturity T and strike price K. Note we suppressed the

maturity T, because all these quantities are known at time t and because their maturity

is fixed to be one month in the empirical analysis.

The prediction of a positive variance premium implies that the variance swap

rate of equation (39) is larger than the expected realized variance of equation (38). Eco-
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nomically this means that if an investor hedges the variance risk of the underlying, she has

to pay a positive premium; that is, the expected return on the variance swap is negative.

Kozhan et al. (2013) also show how to construct a skewness swap from option

pricing data. The contract is similar to a variance swap in the sense that the long position

holder exchanges the skewness swap rate for realized skewness at maturity. The realized

skewness of a skewness swap entered at time t with maturity T for stock i is calculated

as follows:

rs
(i)
t,T =

T∑
j=1

[
3∆ve

(i)
t+j ·

(
er

(i)
t+j − 1

)
+ 6
(
2− 2er

(i)
t+j + r

(i)
t+j + r

(i)
t+je

r
(i)
t+j
)]
, (40)

where ∆ve
(i)
t+j is the daily change in an entropy contract and equal to:

∆ve
(i)
t+j = ve

(i)
t+j(T − j)− ve

(i)
t+j−1(T − j + 1),

where ve
(i)
t+j(T − j) is value of the entropy contract at time t+ j for stock i with maturity

T − j.

Kozhan et al. (2013) show that this version of the skewness swap is similar

to a specification where the floating rate is equal to the sum of cubic daily returns,

but analytically more tractable. The skewness swap rate is equal to the risk-neutral

expectation of the realized skewness in equation (40). Like the variance swap rate, the

skewness swap rate is computed from option prices. Kozhan et al. (2013) show that the

skewness swap rate is equal to the difference between the variance swap rate of equation

(39) and the entropy contract with maturity T for company i at time t and is defined as:

ve
(i)
t =

2

Bt

[∫ F
(i)
t

0

P
(i)
t (K)

K · F (i)
t

dK +

∫ ∞
F

(i)
t

C
(i)
t (K)

K · F (i)
t

dK

]
.

The skewness swap rate is then defined as follows:

s
(i)
t = 3

(
ve

(i)
t − vs

(i)
t

)
. (41)

The Π-CAPM predicts that the skewness premium of stock i at time t, defined as the

difference between the skewness swap rate of equation (41) and the expected realized

70



skewness of equation (40), is positive for right-skewed assets and negative for left-skewed

assets. This means that an investor who takes a long position in a skewness swap for a

left-skewed (right-skewed) asset receives (pays) a premium.

7.13 Replication and extension of sample period of Kozhan

et al. (2013)

In this appendix, we first discuss the results of our methodology over the same

sample period as in Kozhan et al. (2013). We show that we match the results very closely

and, therefore, this analysis serves as a validation of our methodology. Afterward, we

extend the sample period of Kozhan et al. (2013) by six years and show that the results

continue to hold.

The results are shown in Table 4 and correspond to Panel A of Table 1 of Kozhan

et al. (2013), where

xvt,T =
rvt,T
vst
− 1 and xst,T =

rst,T
st
− 1

correspond to realized returns on monthly S&P 500 variance and skewness swaps.29 Note

that, with these definitions, the negative of the respective swap return corresponds to

how we defined the variance and skewness premiums. We also dropped the superscript

i, because in the following we discuss the results for the S&P 500 only). Furthermore,

rskewt,T is defined as follows:

rskewt,T =
rst,T(
vst

) 3
2

.

29Our definition in the main text follows Bollerslev et al. (2009) and corresponds to receiving the fixed
leg of the variance swap, leading to a positive variance premium. The definition in Kozhan et al. (2013)
corresponds to receiving the floating leg, leading to a negative risk premium.
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Table 4: The table shows descriptive statistics of the variance and skewness swap with the S&P 500
as underlying. Sample period is from 01-1996 to 12-2011.

Variable Mean SD 25% Median 75%

vs× 100 0.476 0.450 0.234 0.363 0.552

rv × 100 0.365 0.590 0.108 0.207 0.377

xv -0.273 0.663 -0.591 -0.437 -0.207

S -1.302 0.422 -1.550 -1.291 -1.012

rskew -0.685 1.148 -0.679 -0.375 -0.241

xs -0.442 0.981 -0.815 -0.699 -0.432

Similar to Kozhan et al. (2013) we focus on the sample period from 1996 to

2012. Overall, we match the results of Kozhan et al. (2013) on the components of the

variance premium and skewness premium of the S&P 500 closely. Small differences in the

distribution can be driven by the fact that Kozhan et al. (2013) only consider one swap

each month, whereas our data allows us to consider one swap each trading day. Further,

from Table 4 it follows that our methodology underestimates the risk-neutral skewness

S and realized skewness rskew of the S&P 500. This underestimation is likely driven by

that fact that our extrapolation is not able to fully capture the steep volatility smile of

S&P 500 options. The effect of this underestimation is the same in the calculation of the

risk-neutral skewness S and realized skewness rskew, and, therefore, we do match the

return on the skewness swap xs closely. The correlation between the return on a variance

swap xv and skewness swap xs equals 0.858 and is similar to the correlation reported

Kozhan et al. (2013), which is 0.897.

We now extend the sample period from Kozhan et al. (2013) by six years and

show that it yields similar results, which we present in Table 5.

72



Table 5: The table shows descriptive statistics of the variance and skewness swap with the S&P 500
as underlying. Sample period is from 01-2012 to 12-2017.

Variable Mean SD 25% Median 75%

vs× 100 0.206 0.105 0.141 0.178 0.244

rv × 100 0.122 0.108 0.055 0.090 0.158

xv -0.395 0.546 -0.668 -0.523 -0.285

S -2.002 0.448 -2.255 -1.965 -1.706

rskew -0.797 1.423 -0.837 -0.450 -0.284

xs -0.594 0.751 -0.852 -0.762 -0.555

The realized returns on the variance and skewness swap over the period 01-2012

to 12-2017 are lower than those for the sample period of Kozhan et al. (2013). This makes

sense as realized returns are large during periods of large volatility and the sample period

of Kozhan et al. (2013) includes the financial crisis and the tech bubble. The correlation

between the realized returns on variance swaps and skewness swaps is similar as in the

early sample period: 0.868.
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