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Abstract

We investigate the impact of exogenous shocks on network and stability parameters

in public proof-of-work-based blockchains with clustered mining ecosystems, such

as the Bitcoin network. Intuitively, declining hashing power due to a shock should

weaken the network by lowering the costs of an attack. We demonstrate that par-

allel movement of important covariates (such as the coin price) can offset this effect

and keep the mining process incentive compatible. Our model extends the general

frameworks by Budish (2022) and Capponi et al. (2021) to formally describe the

proof-of-work consensus design with regards to exogenous shocks. We then provide

empirical evidence from two shocks to the Chinese Bitcoin mining ecosystem caused

by the Corona pandemic in October 2020 and grid disruptions in April 2021. Our

results show i) the key structural parameters affecting the robustness of the consen-

sus design against exogenous shocks and ii) how market participants incorporate

and value variations in the implied stability of the distributed ledger.
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1 Introduction

Distributed ledger technologies (DLT) promise to become the most substantial innovation

of the 21st century in terms of transparent, cost-effective, and intermediary-independent

coordination in economy and society. In most DLT, a blockchain replaces trusted third-

party intermediaries by combining a publicly accessible, decentralized database with a

permission-specific consensus algorithm. This structure facilitates exchange among a

(principally) unlimited number of anonymous and arbitrarily distributed individuals, in-

dependent of any existing trust relation. However, given the absence of a central author-

ity, maintaining consensus is a non-trivial endeavor. A consensus mechanism, designed to

ensure that initiated transactions are stored in the decentralized ledger in a tamper-proof

and externally verifiable format, is thus central to the operation of each permissionless

blockchain. Historically, proof-of-work consensus (PoW) has been dominant and, at the

time of writing, accounts for > 65 percent of total market capitalization.1 In this paper,

we seek to unfold the core architecture of the PoW mechanism by studying adverse ex-

ogenous shocks on the consensus ecosystem, such as the Corona pandemic, energy-supply

disruptions, cyberattacks or political and regulatory interventions. How do shocks im-

pair the transactional capability? Which determinants are instrumental for the system

to secure the formation of decentralized consensus? Do concentration patterns in the

ecosystem of contributors imply increased fragility? And how do market participants

respond to perceived stability fluctuations in the network? We provide a rigorous theo-

retical examination and empirical evidence from two natural experiments in the Bitcoin

network to address these questions.

PoW consensus encourages some nodes in the network (called ”miners”) to engage

in a competitive tournament for the right to update the ledger. Miners verify and settle

pending transactions in new block candidates and maintain the ledger’s integrity. Hence,

they form the backbone of any PoW-based network. Participation is incentivized by a

reward in the form of native currency units for the miner, who first appends a valid

1See Irresberger et al. (2020) and Stinner and Tyrell (2021) for alternative concepts of decentralized
consensus. The data was obtained from https://cryptoslate.com/cryptos/proof-of-work/ in June 2022.
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transaction candidate to the blockchain. In this process, a miner’s probability of success

is proportional to the ratio of computing power employed to solve the cryptographic

puzzle associated with block creation.2

By construction, PoW consensus intends to maintain a symmetric distribution of

hashing power among miners based on a competitive equilibrium (Nakamoto, 2008). Pre-

venting dominant actors or coalitions is critical for the stability of the consensus design

since a miner with a majority of hash-capacity can successfully attack the ledger (see,

among others, Budish (2022) and Nakamoto (2008) for theoretical and Shanaev et al.

(2020) for empirical work). However, looking at the most prominent implementation of

PoW consensus – the Bitcoin network – we observe recurring centralization based on

economic forces, technical characteristics, and strategic behavior of heterogeneous min-

ers. Because such patterns pose a systemic threat to the consensus protocol, a growing

body of academic research has addressed them (see section 2). We extend the litera-

ture by examining the implications of exogenous shocks on the robustness and incentive

compatibility of PoW consensus in a structurally concentrated mining ecosystem.

Concentration patterns are central to our analysis since they substantially influence

the consequences of exogenous shocks. This interdependence arises from two aspects:

First, miners sharing a particular characteristic (e.g., location) are simultaneously af-

fected by an exogenous disturbance that impinges on that quality. Second, a few large

miners are easier for a malicious party to corrupt or compromise than a symmetrically

distributed and dispersed network, in order to gain control over a relevant fraction of

computing capacity. Taken together, an exogenous shock is more likely to cause a severe

capacity decline and develop into a systemic crisis when the mining ecosystem is clus-

tered. Although essential for the long-term stability of decentralized PoW consensus, this

interaction has received little attention in the academic literature.

Our first contribution is a theoretical framework that captures the competition and

2Computing power exerted to PoW mining is generally interpreted as ”hash-rate” and expressed in
trillions of hashes or tera-hash (TH). The hash-rate reflects the estimated number of hash computations
performed to solve the cryptographic function underlying the PoW mechanism. See Naor and Yung
(1989) or Al-kuwari et al. (2011) for more information on hash functions, and Schär and Berentsen
(2020) for their application in PoW-based cryptocurrencies.
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industry dynamics of PoW consensus and studies its robustness to exogenous shocks.

Budish (2022) and Capponi et al. (2021) model the comparative statics and core in-

centive mechanism of the mining market in an equilibrium model for homogeneous and

heterogeneous miners, respectively. On this foundation, we sketch a model to stress the

consequences of the general frameworks in situations, where the network vulnerability is

exposed to particular pressure from exogenous shocks.

When assuming homogeneous miners and pure market competition, the base model

suggests a zero-profit condition for participants of the mining tournament and a linear

relationship between network stability and mining expenses (Budish, 2022). In this envi-

ronment, decreasing mining capacity during a shock intuitively lowers the cost associated

with a majority attack, thereby increasing the vulnerability of the decentralized ledger.

We demonstrate that whether the ledger remains immutable (i.e., the consensus mecha-

nism incentive compatible) depends not only on the aggregate volume of hashing capacity

in the network but also on the parameters affecting the economics of mining. The ra-

tionale behind this is straightforward: The opportunity costs of an attack proportionally

increase with the rents extracted from honest mining.

As we will show, the zero-profit condition typically does not hold when an exogenous

shock adversely affects the equilibrium hash capacity provided by miners. Instead, a shock

naturally reduces competition and increases transaction fees, which allows the remaining

miners to realize excess rents. Excess rents, in turn, modify the present value of operated

equipment. Parallel movements in the BTC-USD exchange rate may substantially amplify

or mitigate this effect.3 Hence, we identify the co-movement of revenue parameters as

a critical variable for the vulnerability of PoW consensus during an exogenous shock.

Although attack costs decline, increasing gains from honest mining may render malicious

actions economically unviable. Ideally, this mechanism preserves honest behavior, and

the blockchain system remains incentive-compatible against a majority attack during an

exogenous shock. If, however, a shock and decreasing mining gains coincide, we expect

to see instability signals.

3The terms ”Bitcoin price”, ”valuation”, and ”exchange rate” are used interchangeably in this paper
and always refer to the BTC-USD conversion rate.
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The competitive dynamics of the mining market turns into an oligopolistic structure

if we discriminate among (cost) heterogeneous miners based on varying technology stan-

dards. Consistent with the typical outcome of a Cournot-Nash equilibrium, the general

model indicates that the most cost-efficient miners provide the largest hash shares and

generate the highest returns. Only capacity constraints (e.g., limited access to cost-

efficient energy) prevent them from expanding their activities indefinitely (Capponi et

al., 2021). When the cost heterogeneity increases, so does the network concentration as

efficient miners expand their dominance. We argue that an exogenous shock attenuates

heterogeneity (conceptually equivalent to tightening the capacity constraint), which is

expected to result in a more decentralized network. Still, the shock may adversely affect

the network integrity if large miners are primarily constrained. In such a scenario, the

remaining miners benefit from temporarily increasing market shares. Especially miners

with relatively low economic returns (and thus low commitment) in equilibrium may

leverage the opportunistic moment to coordinate for an attack during the shock period.

Since the least efficient miners control only a small fraction of network capacity and coor-

dination costs increase with the number of coalition members, a subset of medium-sized

miners is most likely to consider an attack during an exogenous shock. Of course, whether

miners in this subgroup actually attack the network depends on their individual incentive

compatibility. Again, our model suggests that the co-movement of revenue determinants

is essential for the incentive compatibility and transaction stability in the presence of

exogenous shocks.

Our second contribution is an empirical analysis of transaction and stability param-

eters in the Bitcoin network – a PoW-based permisionless blockchain network with a

centralized mining industry. We exploit a comparative natural experiment setting to

provide evidence from two exogenous shocks to the Chinese Bitcoin mining industry in

autumn 2020 and spring 2021. The first event is associated with the regional distribution

of computing capacity in China, which typically followed a seasonal pattern over the last

decade: During the rainy season (June-October), numerous mining centers were located

in the southern Chinese provinces Sichuan and Yunnan to exploit cheap surplus energy
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from local hydropower plants. When hydro-energy became expensive during the win-

ter months, mining operators did relocate to the northern provinces Xinjiang and Inner

Mongolia – a distance of ≈ 3, 000 kilometers – to employ coal energy. However in au-

tumn 2020, physical transport of computing units was severely constraint by quarantine

restrictions following local Coronavirus outbreaks in Xinjiang. This significant constraint

represented an unexpected negative production shock for 3-4 weeks until the local author-

ities eased restrictions and accordingly miners could relocate relatively frictionless to the

northern provinces. The second event occurred in April 2021, when the flooding of a coal

mine in Hutubi county, Xinjiang province, trapped 21 coal miners. Safety inspections

following the accident led to the closure of the district’s commodity mines for about ten

days. At this time of the year, many cryptocurrency miners are still active in Northern

China. However, the limited energy access due to the blackout of the coal-based energy

infrastructure forced them to shut down facilities.

Both events are remarkably similar regarding their impact on settlement capacity and

transaction fees in the Bitcoin network: During October 2020 and April 2021, the global

hash-power exerted to mining declined by 32 and 34 percent, respectively.4 The observed

shocks thus constitute the sharpest capacity losses in Bitcoin’s history to that date. In

addition, the weekly block formation exhibits the lowest and second-lowest number of

blocks ever observed between January 2012 and May 2021. Various figures demonstrate

that the capacity squeeze adversely compromised transaction settlement: The average

block time increased to 15.01 and 15.25 minutes (compared to 9.5 minutes o.a.), the

number of unprocessed transactions peaked at 135K and 126K (compared to 17.8K o.a.),

and transaction fees grew by a factor of 4.02 and 4.24. Our findings reveal that i) exoge-

nous shocks substantially limit settlement capacity and inflate transaction fees by several

scales; ii) the relation between transaction fees and settlement congestion, as studied by

Easley et al. (2019) in an equilibrium model, holds during exogenous disturbances; iii)

miners not affected by the shock benefit from higher fees associated with the stringency

of settlement capacity.

4The shock-induced effect on the global hash-rate was observed for a 14-day interval, corresponding
to one period of global block difficulty.
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While Bitcoin’s transactional capability was similarly impaired during the observed

shocks, the robustness of the consensus protocol was not. As emphasized by our model,

the stability of the incentive design to exogenous shocks is conditional on the co-movement

of revenue parameters. During the described shocks, the BTC price shows an opposite

trajectory of approximately +50 percent in October 2020 and -20 percent in April 2021.

Given similar trends in other parameters, we argue that Bitcoin’s fragility declined from

pre-shock levels in October 2020 but significantly increased in April 2021. We leverage

this heterogeneity to study how market participants internalize information on Bitcoin’s

varying stability levels. To empirically quantify the market perception, we estimate bid-

ask spreads for 11 cryptocurrencies based on hourly trade data from Kraken.com, a major

cryptocurrency exchange. Generally speaking, bid-ask spreads have been shown to reflect

a market’s liquidity. Under distress or general uncertainty, market-makers impose higher

spreads to offset risks from providing a trading venue. Hence, bid-ask spreads are also

a suitable instrument to indicate the implied stability of the Bitcoin network. Some

cryptocurrencies in our dataset employ alternative consensus mechanisms (e.g., Proof-of-

Stake), which do not require relevant amounts of electricity; others simply appear not to

be affected by the shock. We cluster a control group from unaffected cryptocurrencies

and employ a differences-in-differences regression design to isolate the implications of the

shocks on Bitcoin. To the best of our knowledge, the analysis of DLT and cryptocurrencies

with decentralized consensus using multiple shock events is so far unique in the literature.

Our findings show that bid-ask spreads for trading Bitcoin in October 2020 are not

significantly different from currencies in the control group. However, in April 2021, we ob-

serve significant positive spreads between 58.4 and 13.9 percent compared to the control

group, as predicted by our hypotheses. Additional robustness checks confirm the result

from our baseline fixed-effects regression. Consistent with our intuition, bid-ask spreads

on Bitcoin trades widened considerably in April 2021, when the blockchain was compara-

bly vulnerable and the Bitcoin price depreciated, while we observe insignificant variation

in October 2020, when price appreciation of the Bitcoin compensated shrinking attacking

costs. Our results indicate that sophisticated market participants, such as cryptocurrency
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exchanges, carefully monitor Bitcoin’s stability level and price fluctuations accordingly.

Overall, we theoretically and empirically uncover the fragility parameters of PoW consen-

sus and demonstrate conditions under which the design remains robust when confronted

with exogenous shocks.

The paper proceeds as follows: Section 2 provides a literature review. Section 3 de-

scribes the theoretical framework of the mining market considering both homogeneous

and heterogeneous miners and assesses the implications of exogenous shocks for the con-

sensus formation. Section 4 discusses the relevance of the Chinese mining industry to

introduce the context of the empirical analysis. The section then provides descriptive

results, the econometric design and calibration, as well as a discussion of the findings.

Finally, section 5 concludes by shortly summarizing the paper.

2 Literature Review

Our paper joins the growing academic literature studying the implications and economics

of blockchain technologies, digital currencies, and cryptoassets. Irresberger et al. (2020)

and John et al. (2020) study the efficiency, while Wang et al. (2019) provide a literature

review of various consensus algorithms. Prominent papers elaborating the mechanism

of cryptocurrency pricing and returns include Griffin and Shams (2020), Pagnotta and

Buraschi (2018), Pagnotta (2021), Biais et al. (2021), Liu and Tsyvinski (2021), Makarov

and Schoar (2020), and Li et al. (2018). A variety of authors address certain aspects of

PoW consensus, such as competitive dynamics, incentive compatibility, and stability, in

permissionless blockchains. Abadi and Brunnermeier (2019), Ma et al. (2019), Biais et

al. (2019), and Chiu and Koeppl (2017) provide equilibrium frameworks to formalize the

economic mechanism of the consensus design and study its properties. Leshno and Strack

(2020) use an axiomatic approach to formulate economic limits of decentralized consensus

in an impossibility theorem. Budish (2022) formally establishes the incentive compat-

ibility of mining, highlights its economic limits, and discusses several attack scenarios.

Shanaev et al. (2020) empirically analyze the value depreciation of 13 cryptocurrencies
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that have been exposed to a majority attack. Prat and Walter (2021) provide a structural

model of miners’ entry and exit decision based on variation in the Bitcoin price. Benetton

et al. (2021) point to negative externalities of organized mining activities. Garratt and

van Oordt (2020) highlight the relevance of fixed costs associated with the operation of

mining equipment for the robustness of PoW consensus. Easley et al. (2019), Basu et al.

(2021), Brown and Koeppl (2019), Huberman et al. (2021) and Auer (2019) examine

transaction fees. Lehar and Parlour (2020) suggests that colluding miners inflate fee lev-

els based on effective price discrimination against Bitcoin users. Surveys are provided by

Halaburda et al. (2021), who give an overview of the microeconomics of cryptocurrencies,

and by Chen et al. (2020), who discuss several strands of the literature.

We focus on the economic robustness (i.e., incentive compatibility) underpinning PoW

consensus. Related to our paper, several authors describe concentration patterns in the

mining ecosystem and study potential implications/threats to the consensus design:

Eyal and Sirer (2014) elaborate centralization by so-called ”selfish” miners. Slightly

simplified, selfish miners form a secret coalition and pool block rewards by repeatedly

creating private versions of the public blockchain. By strategically releasing blocks from

the private chain, selfish miners provoke honest participants working on the public chain

to waste their resources. Eventually, discouraged honest miners will leave the network

(or join the selfish miners), which increases the relative share of the selfish coalition and

allows for disproportionate earnings. In practice, recurrently publishing alternative chains

leads to forks in the assignment of the generally valid blockchain. This decreases users’

trust in the value of the cryptocurrency, which is not in any miners’ interest.

Cong et al. (2020) and Savolainen and Ruiz-Ogarrio (2020) examine the concentration

of computing power in mining pools and incentives for attacks on the network arising from

such constructs.5 Importantly, they suggest that economic barriers limit the size of pools

and their incentive to execute attacks. Moreover, the consensus design suggests a limited

expansion of individual pools: Since the PoW protocol dictates proportional returns equal

5Most miners are organized into mining pools to mitigate idiosyncratic risks and streamline revenues
from block creation. Typically, miners consolidate their capacity within a pool and distribute revenues
proportionally to the contributed computing power.
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to the ratio of individual and global hashing power, a miner gains the same amount of

rewards when working for a small or large pool. Consequently, increasing a single pool’s

size does not generate meaningful economic gains. In fact, honest miners will leave a pool

that becomes too large, as inflating size imposes a systemic risk to the stability of the

network, on which mining revenues critically depend. Pool formation by rational miners,

therefore, does not treat system stability.

Capponi et al. (2021) develop a Cournot-nash equilibrium of PoW-based mining. Akin

to Arnosti and Weinberg (2022), the willingness (or ability) of miners to invest in inno-

vative hardware creates heterogeneous hashing costs. While such cost variation explains

structural concentration in the mining ecosystem, the authors imply that large miners

do not inherently increase their advantage over small miners. In particular, capacity

constraints on access to low-cost energy prevent the most efficient miners from extending

their advantage indefinitely. Capponi et al. (2021) further show that increasing invest-

ment in hardware has two opposing effects on network immutability: On the one hand,

technology investments raise the level of computing capacity exerted to mining, which

intuitively makes it more costly to obtain a majority qualified for attacking the network.

On the other hand, operating innovative equipment decreases the cost-per-hash, which

mitigates the first effect. In equilibrium, the investment intensity is a function of min-

ing returns, which retains a certain level of robustness. As we will demonstrate later,

this mechanic is stressed during exogenous shocks when the total hash-capacity decreases

below the equilibrium rate.

Referring to the geographical distribution of the mining industry, Rauchs et al. (2019)

and Rauchs et al. (2022) locate ≈ 65 percent of the globally operating Bitcoin mining

farms in mainland China. In a recent paper, Makarov and Schoar (2021) exploit the

semi-transparent Bitcoin blockchain to study the distribution of mining rewards within

the 20 largest mining pools. Their analysis implies a large concentration in the mining

industry, with a minority of 10 percent of miners controlling more than 90 percent of the

total computing capacity. By tracking miners’ transaction flows to local cryptocurrency

exchanges, the authors reveal miners’ regional composition with significant geographic
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capacity clusters of 60 to 80 percent in China between 2015 and 2020. On the qualitative

side, Kaiser et al. (2018) analyze the role of the Chinese government as a looming threat

to the stability of the Bitcoin network. The authors are primarily concerned with cata-

loging motives and potential threat scenarios that might be in the interest of the Chinese

government but do not quantify the impact of these actions on the network. Finally,

and closest related to our empirical analysis, Scharnowski and Shi (2021) investigate the

shock event on the energy supply in the Chinese mining market in April 2021 to highlight

the effects of grid disruptions on market integration, i.e., volatility, transaction volume,

and transactions costs in the network. In contrast to their work, we primarily study the

fragility of the consensus design to exogenous shocks.

3 Theoretical framework

In this section, we outline the theoretical framework based on previous work, especially

Budish (2022) and Capponi et al. (2021). The framework elaborates the properties of

PoW consensus from a competition-theoretic perspective and aims to highlight its fun-

damental economic principles. Without loss of generality for PoW-based consensus, we

primarily refer to the Bitcoin network.

3.1 Free-entry equilibrium, homogeneous miners and fragility

of the blockchain

We start with the basic economic mechanisms with free market entry and homogeneous

miners, following the widely established model of Budish (2022). The model employs

the following notation: RB denotes the expected income of a miner who succeeds in the

mining competition and adds transaction block B to the chain.6 A miner succeeds if

she is the first to bundle an unspecified number of pending transactions with the solu-

tion of a computational problem into a block candidate that is accepted by the network.

From a miner’s perspective, the computational problem constitutes the major challenge

6Note that cost and revenue components are denoted per block.
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as she competes with other miners for the solution that, in probabilistic terms, solely

depends on the provided computational capacity. This computational tournament fol-

lows a winner-takes-it-all format, while the underlying consensus protocol rules that the

winning probability always remains proportional to the provided capacity. The amount

of computing power thus determines a miner’s likelihood to present the solution to the

network and earn the reward RB.

The reward consists of two components: First, the winning miner receives a freshly

minted amount S > 0 of Bitcoins, currently 6.25 BTC. Second the miner collects any

fees
∑

i∈B fi embedded in the transactions bundled to block B. All miners have equal

access to an identical mempool – a repository that contains unsettled transactions trans-

mitted by network participants. Easley et al. (2019) analyze the evolution of transaction

fees in a game-theoretic model and provide empirical evidence. They show that higher

transaction fees are driven by congestion, i.e., the number of unsettled transactions in

the mempool. More specifically, Bitcoin users compete for the limited block size to have

their transactions included in the blockchain. Because rational miners prioritize trans-

actions according to relative fees, some users are willing to pay higher fees to reduce

waiting times. It follows that increasing congestion, as indicated by a larger mempool,

inflates transaction fees. The total revenues are defined as RB = pB(S +
∑

i∈B fi), with

pB denoting the dollar value of Bitcoin at the arrival of block B. We expect
∑

i∈B fi

to increase with the size of mempool denoted by sizemp, i.e.,
∂(

∑
i∈B fi)

∂sizemp
> 0. The first

reward component currently accounts for the majority of total revenues, but the ratio

may change to the favor of fees in the future as the amount of fixed reward S halves in

a roughly 4-year sequence.

cB denotes the per block cost of one unit of computing capacity that miners deploy. We

assume that one unit of capacity requires both one ASIC chip and one unit of electricity as

complementary production factors. This means that the cost structure can be expressed

by cB = rC+ e, where C is the acquisition cost of the chip, r is the per block capital cost

(including depreciation) and e is the per block energy cost. For simplicity, we initially

assume that costs incur symmetrically to all market participants.
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Let H refer to the total number of units of hash capacity in the system. Given the

symmetric cost distribution, each unit has a probability of 1
H

to first find a valid block in

the mining competition. For example, a mining pool that controls a share of 50 percent

of the total hash-rate has a 50 percent probability of success. Assuming free market entry

and pure competition, the following condition derived by Budish (2022) arises:

H∗cB = RB (1)

Miners continue to invest in computing capacity until all profit opportunities are ex-

ploited. This is the typical result of a rent-seeking competition under free market entry

logic. The competition condition determines the system’s equilibrium hash-rateH∗ as the

outcome of competitive dynamics. However, what condition assures the reliability, credi-

bility, and stability of the decentralized architecture against attacks for a given level H∗?

To answer this question, we next study the incentive compatibility of market participants.

In simple terms, incentive compatible mining requires that a miner’s expected pay-

offs from honest behavior (as defined by the consensus protocol) must exceed those of

malicious activities (e.g., manipulation of transaction blocks). A manipulation scenario

generally occurs as follows: In the event of an attack, one or more manipulated block

candidates are settled and collectively accepted on the blockchain, containing transac-

tions that exclusively benefit the attacker. Network participants collectively agree that

the longest chain of blocks is considered valid. The attacker seeks to build an alterna-

tive chain that contains more aggregated blocks than the blockchain originally formed by

honest miners. If the attacker combines more than 50 percent of the system’s computa-

tional capacity, he is able to grow the manipulated chain faster than the honest miners.

After a certain time, it is necessarily considered valid by the network. The attacker thus

competes with the aggregate of honest miners. Constructing an alternative chain involves

costs for the attacker since a valid solution for the resource-intensive computational prob-

lem must be provided for each block on the alternative chain. It is essential to distinguish

whether the attack originates from inside or outside the system, i.e., whether or not the

computational capacity was already used for mining. Equation (1) indicates that there
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are H∗ units under the control of honest miners. An outside attacker must employ at

least H∗ + ϵ to form a larger alternative chain in purely probabilistic terms. In the case

of an insider attack, the attacker must control slightly more than half of the existing

computational capacity, H∗

2
+ ϵ.

The cost increases proportionally with the majority of hashing power controlled by

the attacker: A share of A > 1 that delivers a majority of A
A+1

imposes per-block costs

of A ·H∗cB on the attacker. To derive the full attack cost, we must further account for

i) the expected time an attacker needs to build a larger chain of tampered blocks, and

ii) the block rewards received from the alternative chain. If an attacker requires t blocks

to establish an alternative chain, the cost net of block rewards is At · H∗cB − At · RB,

which becomes At · H∗cB − At · H∗cB = 0 when competition condition (1) is included.

Without further frictions, the attack cost are zero and any expected positive attack

payoff Vattack > 0, which we discuss in more detail below, would lead to a collapse of

the decentralized consensus design. However, the attacker typically faces λ ≥ 0 cost

frictions compared to honest miners, resulting from, e.g., less efficient computing power

or operational costs associated with the execution of the attack. τ describes the fraction

of total cost frictions (τ < λ) that is specific to the execution of the attack, such as

start and stop costs, administrative costs (e.g., account management at exchanges), and

camouflage costs (e.g., laundering of illicit funds). Including λ into the cost function gives

(1+λ)At ·H∗cB −At ·H∗cB, which leads to λAt ·H∗cB. We can now derive the following

incentive compatibility condition:

λAt ·H∗cB > Vattack (2)

Equation (2) states that the costs of attacking the blockchain must exceed the expected

returns of doing so (Budish, 2022). If condition (2) holds, the attack is economically

unviable for a potential attacker, and system stability is maintained. It follows that the

computing capacity devoted to mining is an essential variable for generating trust in a

PoW-based decentralized transaction system, such as Bitcoin. Two aspects of condition

(2) are fundamental: First, the cost patterns refer to a pure flow quantity, namely the
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operating costs H∗cB for maintaining the system. Other variables, such as the level

of confidence in the overall system and the static value of mining equipment, are not

included. Thus, it is assumed that capital stocks will not be affected by the attack.

Second, the security of the decentralized ledger linearly depends on the mining costs

H∗cB. A sharp and unpredictable drop in the hash-rate, such as the exogenous shocks

we will discuss later, should immediately impact the network’s fragility.

Competition condition (1) in conjunction with incentive condition (2) dictates that

the total hash-rate follows from individual investments of mutually competing miners.

By investing in mining capacity, miners aim to extract rents, which is only possible if the

system proves to be stable in the future. In such an environment, the equilibrium condi-

tion, as derived by Budish (2022), results from competition condition (1) and incentive

compatibility constraint (2) as follows:

RB >
Vattack

λAt
. (3)

In equilibrium, the one-off rewards of an attack must be small relative to the per-block

proceeds of honest behavior to maintain stability. From a miner’s perspective, profit

expectations from employing mining power to valid blocks exceeds returns from an attack,

if condition (3) is satisfied. It follows that block revenues must be high to maintain

incentive compatible, limiting the operating conditions and scalability of PoW consensus.

But what are the potential proceeds of an attack? The answer depends on the at-

tacker’s possible actions, which we describe below. An attacker, controlling a majority

of hash-power, is able to generate an alternate chain faster than the aggregate of honest

miners. The attacker can harness this private chain to replace the blockchain created by

honest miners at a strategically opportune moment. This allows the attacker to control

which transactions are included in the ledger and – more importantly – to remove trans-

actions settled on the public blockchain. Technically, the attacker starts an alternative

chain with different transaction blocks based on the most recent public history, while

honest miners continue to append blocks to the public blockchain. Sooner or later, the

attacker’s chain evolves into the longest chain, depending on the majority of computing
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capacity the attacker controls. Once the alternative surpasses the public chain, honest

miners accept the attacker’s chain following the consensus protocol.

An attacker’s proceeds contain all block rewards from the alternative chain. However,

since rewards are allocated proportional to processing capacity, he could earn equal payoffs

by mining on the public blockchain. The main incentive for an attack stems from the

ability to select the transactions that are executed on the decentralized ledger. This

opportunity is not unlimited: An attacker, for instance, cannot manipulate accounts on

the blockchain or transfer Bitcoins owned by other network participants to addresses

under his control. To initialize such transactions, the attacker would need to impair the

cryptographic fundamentals or gain access to a users’ private key. What the attacker can

perform is a so-called ”double-spending attack”.

In a first step, the attacker spends his Bitcoins in exchange for goods, assets, or other

(crypto-)currencies. The record in the public blockchain validates the transaction, and

the counterparty delivers the goods or assets. After a short lock-up period, the seller con-

siders the payment irrevocable through the entry in the blockchain.7 In a second step, the

attacker reverses the payment after obtaining the countervalue by creating an alternative

chain that no longer contains the payment transaction underlying the trade. Given the

attacker’s majority of processing power, the alternative chain eventually exceeds the pub-

lic chain and is considered valid by the network. This approach undermines the finality

of transactions on the decentralized ledger, as the attacker reverses the payment process

while retaining the goods and assets. Conceptually, the attacker can employ his cryp-

toassets multiple times by repeatedly performing the manipulation approach. Therefore,

it is not strictly a ”double-spending” but rather a ”multiple-spending problem”.

Based on the double-spending approach, we can specify the value of a majority attack:

Assume that a typical block B contains kB individual transactions, each worth vi of

Bitcoins with i = {1, 2, 3...k}. The attacker can create a manipulated block by bundling

k transactions from different addresses that he controls into a block and append it to the

public blockchain. Note that the attacker is restricted to the typical size of both k and

7The lock-up/escrow period considerably varies among cryptocurrencies (see Irresberger et al., 2020).
Concerning Bitcoin, the escrow period is typically set to 2-3 blocks or 20-30 minutes on average.
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∑k
i=1 vi in order to avoid the network’s attention. Let Block 1 represent the manipulated

bundle of transactions and the previous Block 0 the state of the blockchain before the

attack. Further, we suppose for now that the attack does not affect the Bitcoin value but

only incurs costs and revenues in the form of flows.8 Under these assumptions, the value

of an attack corresponds to the sum of transactions in Block 1, i.e., Vattack =
∑k

i=1 vi.

We can ease the equilibrium constraint by assuming that the system’s perceived value

and thus its native coin will be severely affected by a successful attack.9 This reflects

the more realistic scenario of market participants losing trust in the stability of the

decentralized system after an attack. To formally integrate this aspect into condition

(2), we follow Budish (2022) and let ∆attack = pB−pA
pB

denote the proportional loss in the

native coin’s value in response to an attack with pA as the price after the attack. If the

attacker holds native coins equal to a manipulable block (Vattack) and we further assume

that mining hardware can be deployed for other purposes than mining, the modified

equilibrium condition is as follows:

RB >
1−∆attack

At(λ+∆attack)
Vattack (4)

We conclude that the loss of value in the native coin increases the cost of the attack and

reduces the potential value available for double-spending. A collapse of the ecosystem

(∆attack = 1) renders a double-spending attack worthless. Thus, a higher ∆attack implies

lower returns of an attack that is supposed to generate additional income for the attacker.

This relationship reverses when an attack is instead intended to sabotage the blockchain,

which Budish (2022) refers to as a sabotage attack. Such an attack becomes more success-

ful as the anticipated loss in value of the native coin increases. The expected coin depre-

ciation following the attack thus affects the miners’ incentives to attack the blockchain,

depending on the specific motivation. Low coin depreciation makes double-spending at-

tacks attractive, while high depreciation entails a higher risk of sabotage attacks.

Analyzing only flow components of costs and revenues without including other (stock)

8This (strict) assumption will be critically discussed in the next paragraph.
9Including a value depreciation can be interpreted as a first element of stock costs as it relates to the

fixed amount of coins an attacker maintains for double spending.
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variables is adequate if the mining technology is unspecific to the blockchain. However,

this cannot be generalized to all forms of cryptocurrencies. For example, the diffusion of

specialized single-purpose hardware (so-called ”Application-Specific Integrated Circuits”

or ”ASICs”), which can be used exclusively for mining, is obligatory in the Bitcoin mining

industry. When a blockchain collapses entirely after an attack (∆attack = 1), its native coin

and employed specialized equipment are rendered worthless. The incentive compatibility

condition then changes to

H∗C > Vsabotage. (5)

Compared to incentive condition (2), condition (5) is less strict, at least with respect

to the left-hand side of the inequality. cB = rC + e is typically smaller than C. This

highlights that highly specialized mining technology reduces the vulnerability to sabotage.

The theoretical framework provides several insights into the mechanics of PoW-based

blockchains. Pure competition and free market entry dictate that miners cannot extract

surplus profits in the long run. Instead, profit potentials stimulate market entry and

investment in mining technology, which escalates competition and reduces payoffs from

participation. The system’s stability is conserved by the same dynamics in equilibrium.

However, exogenous shocks that abruptly alter one of the system’s core variables may

severely affect the stability of the network, as we will discuss in section 4. Before turning

to the empirical examination, we extend our analysis to a game-theoretical model of

miners’ strategic behavior. In subsection 3.2, we sketch a model based on Capponi et al.

(2021) to analyze competition between cost-heterogeneous miners.

3.2 Cryptocurrency mining, heterogeneous miners, and fragility

of the blockchain

Using the framework of Capponi et al. (2021) we construct a game between miners, who

compete for rewards from solving the computationally costly hashing problem. N ≥ 2

miners decide on their individual hash-rate commitment during the mining competition.

ci denotes the cost-per-hash of miner i, and we assume differences in the cost efficiency of
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miners because of varying individual investment levels βi in new hardware.10 Accounting

for these differences of the initial cost-per-hash across miners, we can sort the miners in

order of increasing cost-per-hash, i.e., ci ≤ ci+1. In the following analysis, we consider

the investment level βi in new hardware as given and exogenous. Since more efficient

hardware lowers the cost of mining, the investment level is also a strategic variable that

impacts the outcome of the mining game. hi denotes the hash-rate of miner i exerted at

the mining stage for i = 1, · · · , N . Of course, the individual hash-rate depends on the

miner’s investment profile in hardware. Similar to Capponi et al. (2021), we assume that

miners have limited hashing capacity, which is captured by a quadratic cost term (γ/2)h2
i .

This capacity constraint originates from a bounded supply of low-cost electricity, with

larger values of γ corresponding to smaller capacity. However, it is a soft constraint due

to the convex cost function, i.e., the hash-rate can be raised at increasing marginal costs.

H =
∑N

j=1 hj is the aggregate hash-rate of all miners.

R > 0 denotes the total revenues from mining, which are defined similar to subsec-

tion 3.1. Now the objective function of miner i is given by

πi(βi, hi; β−i, h−i) =
hi

H
R− cihi − (γ/2)h2

i . (6)

In the game-theoretic setting, miners compete for the revenues generated from adding

blocks to the blockchain by solving the computationally costly hashing problem. In the

first step, following Capponi et al. (2021), we determine the equilibrium hash-rate and

equilibrium profits of miners. Since we treat the cost-per-hash (ci)1≤i≤N of all miners as

exogenous, we can define c(n) =
∑n

i=1 ci as the cumulative cost of the first n most efficient

miners. Capponi et al. (2021) show that a Nash equilibrium hash-rate profile exists

for any investment profile β of the miners h∗(β) = (h∗
i (β))1≤i≤N with n miners active in

equilibrium (see their proposition 4.1). The first-order condition of the objective function

(6) provides the equilibrium hash-rates from equating marginal gains and marginal cost.

10Cost differences also reflect the quality of the old and less efficient hardware stock. State-of-the-art
hardware decreases the cost-per-hash. Typically large miners have lower costs per hash than small miners.
They are able to invest more in new hardware and may receive discounts due to greater bargaining power
and larger quantities. Note that the cost c in this section is reported per hash to reflect the competitive
dynamics of the mining market (in section 3.1, the cost was expressed per block).
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This condition is given by

R

H∗ (1−
h∗
i

H∗ ) = ci + γh∗
i . (7)

solving for h∗
i provides the equilibrium hash-rate for active miner i

h∗
i =

H∗(R− ciH
∗)

R + γ(h∗
i )

2
. (8)

The equilibrium aggregate hash-rate H∗ is determined by summing over all individual

equilibrium hash-rates of active miners. For the realistic case of limited hashing capacity

(γ > 0), the aggregate hash-rate is given by

H∗ =

√
(c(n))2 + 4(n− 1)Rγ − c(n)

2γ
. (9)

Not surprisingly, the aggregate equilibrium hash-rate increases with rewards R and de-

creases with smaller hashing capacity, i.e., larger value of γ. Higher cumulative costs of

the active miners c(n) also decrease the aggregate hash-rate H∗. Only the n most efficient

miners with marginal gains at least as large as marginal costs for positive hi are active in

equilibrium. As we can see from (8), miners with lower costs ci have higher hash-rates.

The least efficient miner n controls the smallest nonzero hash-rate. We can observe from

(7) that the equilibrium revenue-per-hash R/H∗ is larger than the marginal gain because

the marginal probability of earning the reward is decreasing in the exerted hash-rate. The

marginal cost of miner i is given by MC∗
i = ci + γh∗

i , with (MC∗
i )1≤i≤N as an increasing

sequence. Since MC∗
i < R/H∗ implies that ci < R/H∗, a miner is active only if its

cost-per-hash is lower than the return-per-hash.

Except for the marginal miner n, all other active miners make positive profits in

equilibrium. The profit-per-hash of an active miner i is given by

π∗
i

h∗
i

=
R

H∗ − ci −
γ

2
h∗
i =

R

H∗ − (ci + γh∗
i ) +

γ

2
h∗
i . (10)

Because ci + γh∗
i is increasing in i and h∗

i is decreasing in i, profit-per-hash must be

decreasing in i. The largest miners in terms of exerted hash-rate are also most profitable.
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Therefore, the equilibrium mining profits (π∗
i )1≤i≤N and the profits-per-hash (

π∗
i

hi∗
)1≤i≤N

form a decreasing sequence. The oligopolistic competitive pattern and the heterogeneity

of miners are the main drivers of these results (Capponi et al., 2021). Miners exploit their

individual cost advantages to generate profits, which is the typical outcome of a Cournot-

Nash equilibrium. Homogeneous cost structures would drive miners’ profits toward zero

since an infinite number of identical miners would operate with total costs equal to total

revenues in equilibrium.

The number of active miners is given by the largest number n which satisfies the

following condition (see their Proposition 4.4.):

cn <
c(n) +Rγ/cn

n− 1
(11)

We know that miners are only active in equilibrium if the expected rewards-per-hash

R/H∗ are greater than the associated costs ci. This means, R−H∗ci must be greater than

zero. Inserting condition (9) for H∗ we get 2Rγ
ci
+c(i) >

√
(c(i))2 + 4(i− 1)Rγ. Solving for

ci and simplifying results in condition (11) for n = i shows, that the equilibrium number

of active miners is the largest value still satisfying this equation. Miner i+ 1, who faces

higher costs than miner i cannot be active if miner i is not active.

Inspecting condition (11) delivers some interesting insights. For instance, higher av-

erage cost of the first n− 1 miners ( c
(n−1)

n−1
) weakens the participation constraint for miner

n. Thus, a miner’s decision to become active depends on the relation of its costs to those

of other miners. Increased cost heterogeneity leads to lower average costs of the first

n−1 miners and a smaller number of active miners in equilibrium. Full cost homogeneity

would imply that all miners are active regardless of their costs. Even more interesting is

the impact of γ – the hash capacity constraint. The number of active miners, n, increases

with a tighter capacity constraint. To understand this effect, it is instructive to first

analyze condition (11) without imposing a capacity constraint (γ = 0). Then equation

(11) becomes cn < n
n−1

c(n)

n
. The cost of the marginal miner can only be slightly higher

(more precisely, by the factor n
n−1

) than the average cost of all active miners, c(n)

n
. This

means that the mining competition is highly vulnerable to centralization, which might
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undermine the system’s security. If miners have unbounded capacity, the most efficient

one will dominate the market. In the case of γ > 0, the capacity constraint prevents

the efficient miners from expanding their activities indefinitely. Their marginal cost of

hashing increases with the exerted hash-rate hi. Therefore, the number of active miners

is increasing in γ. A higher mining reward R increases the number of active miners,

whether it results from a higher Bitcoin price p or from higher transaction fees
∑

i∈B fi.

Higher rewards are an incentive for active miners to expand their capacity as the marginal

gain increases. However, this effect is limited by the capacity constraint.

R and γ are crucial determinants of mining centralization, which, as discussed above

with reference to the model of the Budish (2022), is an enormous threat to the security of

the system. Since miners are only active if their cost ci are lower than R/H∗, larger values

of R and γ increase the mining decentralization. In turn, it becomes more expensive to

attack the network.

3.3 Testable implications for exogenous shocks

The theoretical framework provides a number of implications, which we relate to the

occurrence of exogenous shocks in this subsection. We begin by examining the incentive

compatibility of homogeneous miners to exogenous shocks.

By definition, adverse exogenous shocks, such as the events described in section 4,

constrain the total hash-rate exercised in the system. For the course of the shock, com-

petition condition (1) changes to H(s)c < RB, where H(s) denotes the exogenously con-

strained hash-rate during the shock with H(s) < H∗. Under Budish (2022), a decreasing

hash-rate lowers the costs of a majority attack and increases the system’s vulnerability.

However, this development might be offset by countervailing effects. While pure com-

petition ruled out mining profits in equilibrium, the exogenously constrained hash-rate

allows the remaining participants to extract rents. With this in mind, we examine how

exogenous shocks affect the incentive compatibility of PoW mining under two scenarios,

assuming (i) the coin price exhibits no attack-specific decline (first scenario), and (ii) a

price collapse to pA = pB − pB ·∆attack in response to the attack (second scenario).
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Replacing RB by pB(S +
∑

i∈B fi), the adjusted (discounted) incentive compatibility

condition in the first scenario is given by

t∑
B=0

(1 + λ)AH(s)cB − pB(S +
∑

i∈B fi)

(1 + r)B︸ ︷︷ ︸
Mining costs net of rewards

+
t∑

B=0

(λ− τ)AH(s)cB
(1 + r)B︸ ︷︷ ︸

Opportunity costs

>
∑

i∈B=0

pBvi︸ ︷︷ ︸
Vattack

,
(12)

which by collecting terms leads to

t∑
B=0

(1 + 2λ− τ)AH(s)cB − pB(S +
∑

i∈B fi)

(1 + r)B︸ ︷︷ ︸
Mining costs net of rewards + Opportunity costs

>
∑

i∈B=0

pBvi︸ ︷︷ ︸
Vattack

.
(13)

Where pB corresponds to the native coin price (e.g., BTC) at the arrival of block B, t to

the expected duration of a double-spending attack, and vi to the value of transaction i (in

BTC) an attacker is able to double spend. Again, inequality (13) states that the expected

cost of an attack (i.e., the left-hand side) must exceed the benefits Vattack, for the system

to remain robust during an exogenous shock. Since H(s) < H∗, the mining costs net of

rewards decrease ceteris paribus compared to the equilibrium state. However, mining on

the public chain for t blocks generates higher mining profits (since the attacker saves the

attack-specific cost share (λ−τ)AH(s)cB), which must be recognized as opportunity costs.

Equation (13) shows that an attacker’s cost frictions, particularly the execution-related

share τ , are central to the stability of the network during an exogenous shock.

We can further specify the economic limit with respect to the severity of the exogenous

shock as follows: Condition (2) states that, in equilibrium, the cost proportion related

to frictions must surpass Vattack for the system to be robust against attacks. During a

shock, the attacker’s friction-related costs become (1 + 2λ − τ)AH(s)cB − AH(s)cB =

(2λ− τ)AH(s)cB. Including excess returns of ∆HRB (with ∆H = H∗−H(s)

H∗ ) generated by

miners and hence the attacker during the shock period κ, the stability condition in terms

of the exogenous constraint ∆H is given by

t∑
B=0

(2λ− τ)AH(s)cB −∆HpB(S +
∑

i∈B fi)

(1 + r)B
−

∑
i∈B=0

pBvi > 0. (14)
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The mining process is incentive compatible for any ∆H that satisfies equation (14). For

the marginal ∆H (with (14) = 0), the attacker is indifferent between attacking and

contributing honestly to the network. Note that despite κ > t (as discussed below), we

only need to consider the period t in equation (13) and (14), since an attacker would

either execute ⌊k
t
⌋ attacks or contribute for κ blocks.

Using a similar framework, we turn to the assumption that the system’s native coin pB

depreciates by ∆attack after an attack on the network’s core structure (second scenario).

With ∆attack =
pB−pA

pB
, the adjusted incentive compatibility condition becomes

t∑
B=0

(1 + 2λ− τ)AH(s)cB − pB(S +
∑

i∈B fi)

(1 + r)B︸ ︷︷ ︸
Mining costs net of rewards

+

E

[
κ∑

B=t+1

pB−pA
pB

pB(S +
∑

i∈B fi)− (1 + λ− τ)AH(s)cB

(1 + r)B

]
︸ ︷︷ ︸

Opportunity costs for t+ 1 → κ

>
∑

i∈B=0

(1− pB − pA
pB

)pBvi︸ ︷︷ ︸
Vattack

.

(15)

This can be simplified to

t∑
B=0

(1 + 2λ− τ)AH(s)cB − pB(S +
∑

i∈B fi)

(1 + r)B
+

E

[
κ∑

B=t+1

(pB − pA)(S +
∑

i∈B fi)− (1 + λ− τ)AH(s)cB

(1 + r)B

]
> pA

∑
i∈B=0

vi.

(16)

Contrary to (13), the attacker has to weight the net present value of pending profits

that arise from the difference of aggregated mining costs and rewards beyond the attack

period. However, rents cannot be extracted indefinitely. Rather, κ restricts profitable

mining to the period until the exogenous constraint is relieved (or ∆p < ∆H for ∆H < 0)

and a new equilibrium emerges. The set of blocks with excess returns B{1, 2, 3, ..., κ} is

driven by the expected duration of the shock. Notably, the severity of the exogenous

constraint ∆H dictates the cost decline to H(s)c, which both lowers mining costs and

increases expected net rents (i.e., opportunity costs). Moreover, expected post-attack

profits depend on pB, which collapses to pA after an successful offense. The opportunity

costs from future mining returns therefore increase with ∆attack. Since (16) depends
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substantially on the parallel movement of reward variables (p, S and f), we further need

to consider attack-independent price volatility during κ. In fact, we next demonstrate

that the covariation of pB during the shock is crucial for the stability of the network.

The Bitcoin price pB simultaneously affects costs and gains from an attack in equa-

tion (16) and is subject to significant volatility. Importantly, this price volatility has

an asymmetric impact on the adjusted incentive compatibility constraint. To be more

specific, consider the partial derivative of (16) with respect to pB, as denoted by

∂(16)

∂p
: −

t∑
B=0

S +
∑

i∈B fi

(1 + r)B
+ E

[
κ∑

B=t+1

S +
∑

i∈B fi

(1 + r)B

]
> 0. (0 < t < κ) (17)

Equation (17) provides the net marginal costs and gains for a double-spending attack

during the shock when the BTC price changes by one unit. Provided κ > t, the incentive

compatibility condition (16) increases for ∆pB > 0, and decreases for ∆pB < 0. This

is an important observation: Exogenous shocks have varying consequences on network

stability depending on the evolution of the cryptocurrency price during the shock period.

If the BTC price increases during the shock, positive marginal attack costs (partially)

counteract the decreasing robustness of the network. However, if the price declines, the

negative marginal attack costs lower the network robustness beyond the magnitude of

the exogenous shock. Therefore, we argue that the price movement is critical for the

vulnerability of PoW-based consensus during an exogenous shock.

Two properties of equation (17) require careful examination. First, the shock duration

must exceed the time required for an attack (κ > t) to maintain the conclusions described

above. The duration of the attack depends on the majority of computing power an

attacker controls (A), and any escrow period imposed by vendors or exchanges before the

asset or good is delivered. Budish (2022) provides simulation results of t for all major

parameter specifications (see Table 1). Estimates with reasonable parameters for the

Bitcoin network and an escrow period of six blocks show a maximum attack period of

45.06 blocks (or ≈7.51 hours).11 The shocks elaborated in section 4.2 suggest a typical

11The observed escrow period from cryptocurrency exchanges trading Bitcoin has declined in recent
years and is meanwhile well below six blocks (see Irresberger et al. (2020) Table A.1). Therefore, the
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duration of at least 1-4 weeks, or the equivalent of 1008 to 4032 blocks. Consequently,

κ > t is satisfied by several orders of magnitude. Second, the coin price pB may follow

a predetermined response to the hash-rate decline (i.e., it is not truly exogenous to the

shock). In line with Biais et al. (2021), we argue that the fundamental value of Bitcoin

corresponds to its future stream of expected net transaction benefits. Since these benefits

depend on the future BTC price, equilibrium prices reflect not only fundamentals but also

sunspots. BTC prices thus fluctuate even when the fundamentals are constant. Biais et al.

(2021) empirically demonstrate that a large fraction of variation in BTC returns seems

to reflect extrinsic volatility. Moreover, Liu and Tsyvinski (2021) and Fantazzini and

Kolodin (2020) demonstrate a unidirectional causality from the Bitcoin price to the hash-

rate, i.e., miners cannot influence the price of a PoW-based cryptocurrency by choosing

a certain production level. We conclude that pB cannot be endogenized in our framework

and shows no determined relation to exogenous shocks. In addition, we provide empirical

examples of the price and hash-rate development during shocks in the Bitcoin network

in section 4. Overall, if the price shows an increasing tendency during an exogenous

shock event, we principally expect a positive impact on mining profits. As shown above,

this increases the stability of the system. On the other hand, a decreasing BTC price

trend lowers profits. As a result, the adjusted incentive compatibility constraint becomes

tighter, which decreases the system’s stability.

The mining reward R consists of three additional components that we briefly discuss:

First, the per-block reward S is exogenously specified by the protocol underlying Bit-

coin’s consensus mechanism. Hence, S varies only about every four years in the cause of

the prescribed halvings and can be considered constant in the vast majority of shocks.

Second, the evolution of transaction fees depends on the congestion in the network, as

reflected by the mempool size. If transaction fee levels increase because of higher con-

gestion during the shock, rewards from mining are positively influenced. We generally

expect such a positive relation and empirically verify it in subsection 4.4. However, since

transaction fees still exhibit a small proportion of total rewards, the overall effect is rel-

relevant escrow period for Bitcoin is between 1 and 6 blocks. The corresponding maximum t with A=1.05,
the smallest estimated majority, amounts to an average of 29.77 and 45.06 blocks (or 4.9 and 7.5 hours).
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atively small. Third, a shock to the aggregate hash-rate should temporarily reduce the

arrival rate of blocks for up to 14 days, until the difficulty of solving the computational

problem adjusts commensurately with ∆H. When the attacker enters the network with

AH(s), the arrival rate increases until the difficulty adaption. However, since this effect

occurs on both the public and private chains, it does not affect the incentive compati-

bility condition. Drawing on the above reasoning, we expect little to no impact on the

network’s vulnerability to attacks when an exogenous shock co-occurs with a significant

price appreciation. This is because positive mining profits counter the negative influence

of the lower aggregate hash-rate. However, when an exogenous shock and declining coin

prices coincide, we expect to see signals of increasing instability.

The framework of Capponi et al. (2021) delivers further predictions concerning the

distribution of miners’ individual hash-rates and profits which, in principle, can be tested

with appropriate data. The sensitivity of a miner’s hash-rate to its own cost-per-hash

parameter depends on a direct and an indirect effect. The direct effect on the individual

hash-rate h∗
i is always negative when the marginal costs of mining increase with ci. Since

the indirect effect measures the sensitivity of a miner’s hash-rate to the cost-per-hash of

other miners, it accounts for the strategic reactions in an oligopolistic market environ-

ment. The outcome of the indirect effect is as follows: First, the aggregate hash-rate

H∗ changes with h∗
i , which alters the equilibrium marginal gain of hashing and therefore

affects the strategic decision of other active miners. Of course, these miners react, and

the miner subject to the cost shift, considers the reactions of other miners. If the cost-

affected miner controls less than a majority of the total hash-rate (i.e.,
h∗
i

H∗ < 1/2, which

is typically the case), the indirect effect is positive and (partially) alleviates the negative

direct effect. However, the net effect is still a decreasing h∗
i if the miner’s cost-per-hash

increases, regardless of its hash-rate share.

Concerning the security of the system, the effects of exogenous shock events on the

hash-rate allocation are particularly interesting. The vulnerability of the system depends

on the mining concentration. Higher capacity concentrations typically increase the prob-

ability of an attack. If the exogenous shock affects the cost-per-hash in a heterogeneous
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manner, the resulting shares of the active miners are informative with respect to the

stability of the entire system. The theoretical framework also provides some answers

to these questions. It can be shown that miner i′s hash-rate share
h∗
i

H∗ decreases if her

cost-per-hash ci increase. The sensitivity of miner i′s hash-rate share to an increasing

cost-per-hash of miner j is always positive. The share of miner i increases in case of a

cost-per-hash increase of miner j. Moreover, mining profits are affected similarly: Miner

j becomes less competitive with increasing cost-per-hash, and when j′s profit decreases,

all other miners benefit and increase their profits.

If the exogenous shock event increases the homogeneity of miners in terms of cost

efficiency, decentralization increases similarly, even if the set of active miners is fixed.

This mechanic enhances the system’s robustness. The same intuition can be applied to

the capacity constraint: An exacerbating capacity constraint due to an exogenous shock

increases decentralization. Smaller miners gain market shares at the expense of larger

miners. A larger mining reward R has a similar effect since it increases the marginal gain

of hashing. Even though the hash-rate of each miner increases, small miners can increase

their hash-rate disproportionately to large miners. This amplifies the decentralization

of shares within the network if the expansion of hash capacity is not systematically

constrained for exogenous reasons.

How do exogenous shocks affect the hash-rate allocation of heterogenous miners and

consensus stability? Given the relevance of cost-efficiency for the capacity and profit al-

location, miners gravitate towards areas with the most cost-effective production factors.

As we will describe carefully in section 4, mining clusters emerged in areas such as the

Xinjiang province in Mainland China with particularly low energy fees (see Figure 1).

Makarov and Schoar (2021) analyze the distribution of mining capacity in the context

of an exogenous shock in Xinjiang (referred to as Event [2] in chapter 4). Their results

suggest that most mining companies closed between 20 and 50 percent of mining capacity

during the shock, but only a small fraction lost 100 percent. The reason for this obser-

vation is that large (and most efficient) miners are diversified across multiple locations.

Therefore, we argue that the exogenous shocks impaired the most efficient miners. As
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large miners temporarily lost the most cost-effective energy source, we expect that miner

homogeneity increased with respect to cost-effectiveness. Following the mechanic of the

mining game presented in section 3.2, the shock principally facilitates network stability.

However, we argue that the exogenous shock creates a temporary window of oppor-

tunity for miners with medium cost-per-hash efficiency. Temporarily, the market share

of these miners increases until the exogenous constraint fades. While (previously) large

miners are significantly constrained and less cost-efficient, medium-efficient miners face

less competition, apply larger capacities, and generate higher profits-per-hash due to the

oligopolistic nature of the mining competition. Nevertheless, they are well aware of the

temporary nature of this position: Once the external restriction eases, profit potentials

will drop significantly.

In such an environment, active miners may act honestly, i.e., process transactions and

validate blocks adherent to the fundamentals of the consensus protocol. They temporarily

earn windfall gains since the block rewards surpass hashing costs. As argued above, the

magnitude of windfall gains is tied to the Bitcoin price trend and shock duration. This

option becomes attractive in the event of a rising price trajectory. Instead, the remaining

miners may consider an attack when the opportunity to (collectively) control a capacity

share of > 50 percent becomes feasible and economically attractive. In particular, the

subset of miners whose marginal profits barely exceed marginal costs during the shock

might try to coordinate for an attack. The long-term prospects and commitment of such

miners are low (i.e., they do not have much ”skin in the game”), as they are doomed

to low (or even negative) profits once the equilibrium is restored. However, the least

efficient miners control only a tiny fraction of the network capacity, and coordination

costs increase with the number of coalition members. Therefore, we expect coordination

for an attack from the medium-efficient miners that gained relevant market shares due

to the drop of the global hash-rate. Of course, whether these miners decide for honest

or malicious behavior depends on their individual incentive compatibility condition. As

demonstrated above, a decreasing Bitcoin price trajectory during the shock tightens the

condition and thus increases the vulnerability of the ledger. Therefore we predict a higher
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fragility of the system if the exogenous shock and a decreasing Bitcoin trend coincide.

The rationale developed in this chapter provides testable predictions if the impact of

an exogenous event on the cost-per-hash, capacity constraint, and rewards parameters

can be accurately captured. In the next section, we analyze two events to illustrate the

impact of exogenous disturbances on network and stability parameters in PoW consensus.

4 Empirical results

This section provides empirical evidence from two shocks to the Bitcoin mining ecosystem

that were exacerbated by geographic concentration.

4.1 Background

The framework described in subsection 3.2 shows that cost variation in the provision of

hash capacity (ci) determines both profits and market shares of miners. Due to the design

of the PoW competition, absolute mining rewards are independent of mining capacity,

as the adaptive block difficulty guarantees a constant block arrival. Economies of scale,

however, are the dominant force in the organization of cost-effective mining and greatly

influence the distribution of mining revenues. When the cryptocurrency mining sector

matured, this dynamic inevitably led to a geographical concentration in countries with

the most economical production factors. The proliferation of ASICs accelerated the

concentration since it ruled out semi-professional miners and favored the organization in

data centers (Küfeoğlu & Özkuran, 2019; Song & Aste, 2020; Stinner, 2021).

With the emergence of ASICs, the People’s Republic of China developed into the

dominant location for operators of mining centers over the past decade. China proved an

ideal environment since it offered low-cost and rapid access to the essential production

factors energy and hardware, as well as loose regulation (e.g. tax incentives).12 Similar to

large industrial customers, mining companies benefited from globally competitive energy

12By June 2021, the Chinese Government imposed a strict ban on cryptocurrency mining activities
with the argument that the industry jeopardizes China’s pursuit of carbon neutrality. Thus, after June
2021, mining capacities have been shifted to Kazachstan, the United States of America, and other
countries (K Wan et al., 2021).
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prices in China’s subsidized energy infrastructure (Hileman & Rauchs, 2018). In addition,

farm operators were able to quickly adopt innovative mining hardware from the world’s

leading Chinese manufacturers (e.g., Bitmain). Based on data from three major mining

pools (BTC.com, Poolin, and ViaBTC), Rauchs et al. (2022) identify an average share

of 63.7 percent of Bitcoin miners in China between September 2019 and April 2021

(see Figure 1).13 In a recent paper, Makarov and Schoar (2021) investigate the reward

distribution within the 20 largest mining pools by analyzing the transaction flow from the

pool operator to individual contributors on the Bitcoin blockchain. By further tracking

miners’ transaction flows to local cryptocurrency exchanges, the authors estimate miners’

regional composition between 2015 and 2020 with a significant geographic capacity cluster

of 60-80 percent in mainland China. It follows that a majority of computing power

dedicated to Bitcoin mining was localized in mainland China during the last decade.

[Figure 1 about here]

4.2 Event Description

We next describe two shocks on the Chinese mining ecosystem in October 2020 and April

2021. Shocks are identified endogenously from the global hash-rate (H) and defined as a

decline of ∆H < −0.25 within 14 days (i.e., one period of global block difficulty).

The first event is closely linked to the regional allocation of mining capacity within

China, which exhibits a strong seasonal component. During the rainy summer months,

numerous mining operators relocate their computing capacity to the southern Chinese

provinces of Sichuan and Yunnan, where surplus energy from hydro-power plants is avail-

able at uniquely cheap conditions. The energy surplus is a result of structurally inade-

quate grid expansion, as revealed by data on the regional power generation and demand

from the China National Bureau of Statistics (NBS, 2021). Between 2015 and 2020,

Sichuan and Yunnan jointly supplied 42.7 percent of the nation-wide hydropower energy.

Electricity generation periodically spikes by about 50 percent during the rainy summer

13Mining pools typically tag their block candidates with an identifier in the Coinbase transaction.
Between September 2019 and April 2021, BTC.com, Poolin, and ViaBTC accounted for an aggregate of
29.7 percent of all blocks.
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from June to October compared to the dry winter and spring. On average, the provinces’

overall electricity generation exceeded local demand by about 55.6 percent between 2011

and 2020, with the surplus increasing by 4.7 percent annually. The expansion of grid

infrastructure to the energy-intensive eastern China has so far been inadequate to cope

with this growth, resulting in immense excess power during the summer (Sichuan Gov-

ernment, 2019). Bitcoin miners have effectively monetized this structural oversupply by

utilizing the overage for energy-intensive PoW mining.

Once the rainy season ends, miners return to Xinjiang and Inner Mongolia to use the

relatively cheap coal power during the winter months. Based on data from Rauchs et al.

(2022) and Stinner (2021), the logistics between the two most relevant regions Xinjiang

and Sichuan comprised at minimum 400,000 units, or 46 percent of the domestic capacity,

between April and September 2020 (see Figure 1). Although the distance between the

provinces is about 3,000 kilometers, transporting the specialized computer equipment

appears economically viable in the light of the industry’s enormous energy demand.

The cyclical capacity transition in the Bitcoin mining industry was unexpectedly in-

terrupted in autumn 2020 when the northern regions Xinjiang and Inner Mongolia were

classified as high-risk areas following regional outbreaks of the Coronavirus. Such an

intervention was not anticipated during the summer since the official figures from Chi-

nese authorities and the World Health Organization suggested deficient infection levels.

Weekly new infections declined from 31,300 in February 2020 to a moderate level of 120 to

250 cases in September and October, following drastic infection control measures (WHO,

2021; Zhong & Mozur, 2020). However, the infection activity in late summer 2020 was

particularly concentrated in northern provinces. To prevent a resurgence of infections,

the Chinese authorities imposed extensive social restrictions, even when a few infected

individuals were identified (Reuters, 2020; Xinjiang Government, 2020). For example, on

October 25, 2020, 138 new infections were detected in the city of Kashgar, Xinjiang, which

triggered extensive testing of all 4.7 million residents in the region and massive restric-

tions (BBC, 2020; Hernández, 2020). Comments from mining facility and pool operators

on the Chinese platform Weibo show that the unexpected situation severely disrupted
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transportation and operational processes (Zhao, 2020). As a result, mining centers in

Xinjiang could not operate efficiently for about 3-4 weeks. In addition, a considerable

amount of mining equipment was stalled on its transit to the northern provinces.

The impact of the Corona pandemic exhibits an unanticipated negative production

shock to the Chinese mining industry in fall 2020, manifested by a 34 percent plunge of

the global hash-rate.Figure 2 illustrates the trajectory of the global hash-rate and block

difficulty from September 2020 to May 2021. We label this shock as ”Event [1]” and

define its period from October 16 to November 23, 2020.

[Figure 2 about here]

The second exogenous shock occurred in April 2021, when the flooding of a major

coal mine in the Xinjiang province disrupted the power supply to local Bitcoin miners.

On April 10, 2021, 21 workers were trapped in the Fengyuan coal mine in Hutubi county

after flooding cut off parts of the facility and disrupted communications (CNN, 2021).

In response to the accident, the local government ordered to shut down the region’s

coal mines (and thus its power supply) in the context of safety inspections starting from

April 16. As described earlier, miners migrate to Xinjiang to avoid high electricity tariffs

during the dry season in southern provinces. At this time of year, Xinjiang, and Hutubi

County were a magnet for Bitcoin miners, who took advantage of the abundant coal-fired

electricity. The drastic 32 percent drop in global Bitcoin mining capacity during the post-

accident shutdown is a testament to the importance of the region (see Figure 2). Once

production resumed and electricity was made available, a rapid return to pre-incident

capacity levels can be observed. We refer to the exogenous shock caused by the Xinjiang

coal mine accident as ”Event [2]” and specify its duration from April 16 to April 26, 2021.

4.3 Data and Summary Statistics

We construct our data set by examining various sources with an observation horizon from

July 2020 to May 2021. First, we exploit all 46,637 blocks appended in the period from the

publicly accessible Bitcoin blockchain to generate relevant block-level information, such
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as block-time, difficulty, transaction fees, transfer volume, and miner remuneration. Sec-

ond, we derive the daily BTC-USD conversion ratio from Coindesk.com, which provides

a market-representative value based on the average across multiple major cryptocurrency

exchanges.14 Third, we use estimates from Blockchain.com and Bitinfocharts.com to

specify the global hash-rate for any of the involved PoW cryptocurrencies.15 The pro-

vided hash data constitute retrospective estimates based on the respective historical block

difficulty and observed arrival rate. In some illustrations and analyses, we thus calcu-

late the 3-day moving average of the daily figure to balance the probabilistic element.

Fourth, we use median confirmation times for a transaction to be settled on the public

blockchain from Blockchain.com.16 As an additional measure of transaction capacity and

demand, we obtained the number of unconfirmed transactions (mempool-transactions)

from BTC.com, using web-scraping techniques.17 Table 1 contains descriptive statistics

of the daily aggregated parameters of the variables listed above.

[Table 1 about here]

Eventually, to derive a proxy parameter for cryptocurrency fragility, we exploit hourly

data on open, high, low, and close market prices from Kraken.com for a total of 11 cryp-

tocurrencies with varying consensus algorythms.18 For each cryptocurrency, we collected

data on both the USD and EUR conversion rate and weighted figures derived on this

data according to the respective trading volume. As we will explain in the next section,

this approach eliminates potential confoundings in our estimates from covariation in a

single fiat currency. Kraken, a major crypto exchange headquartered and regulated in

the US, is considered among the most liquid and well-established exchanges in the crypto

universe (Dimpfl & Peter, 2021). Regarding trading volume, Kraken ranks among the

top 10 of ≈ 310 listed crypto exchanges throughout the observation period and is thus

adequate to supply representative metrics.19 Table 3 presents some summary statistics

14See https://www.coindesk.com/price/bitcoin
15See https://www.blockchain.com/de/charts/hash-rate and https://bitinfocharts.com/de/comparison/bitcoin-

hashrate.html3y for more information.
16See https://www.blockchain.com/charts/median-confirmation-time
17See https://btc.com/stats/unconfirmed-tx
18See https://docs.kraken.com/rest/ for a description of the Kraken REST API.
19See https://coinmarketcap.com/de/rankings/exchanges/
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for the variables obtained from Kraken.com. We conclude the data sourcing by adding

the overall trading volume and market capitalization for each cryptocurrency from Coin-

marketcap.com.20

[Table 3 about here]

We begin our analysis by exploring the determinants making the combination of our

observed shocks unique in the history of the Bitcoin network. Figure 2 relates the capacity

decrease during the events to the endogenous block difficulty, which adjusts at a rate of

roughly 14 days. Given this rigidity, declines that occur within a shorter time are expected

to impact block formation considerably. Figure 3 (a) illustrates the weekly number of

blocks registered on the Bitcoin blockchain for an 8-week window centered upon each

event. In addition, the graph depicts the population average from January 2012 to June

202121 of 1080 blocks and the relevant difficulty adjustments on November 3, 2020, and

May 01, 2021, respectively. Both events show a substantial drop in block attachment

with weekly minimum values of 787 and 817 – the lowest values ever observed to this

date. This circumstance also becomes evident from Figure 3 (b), which plots the density

function for the equivalent interval (with all blocks included). Again, the observed shocks

are clear outliers from the (fairly) normally distributed block count.

[Figure 3 about here]

To formally specify our event periods, we conduct weekly one-sample t-tests on the

difference in observed block number against the two-tailed alternative of the population

average and the observed hash-rate against its mean over the three-week interval pre-

ceding the interventions. The results are reported in Table 4. Event [1] and Event [2]

deviate on a statistically highly significant level from the expected block number and

hash-rate. Therefore, we consider weeks with significant divergence in either variable to

specify our event periods quantitatively. Interestingly, hashing capacity was restored fast

20See https://coinmarketcap.com/api/ for information about the Coinmarketcap API.
21The period before 2012 and earlier shocks (e.g., price bubbles or reward halving) have been removed

from the calculation of the population average to provide a figure of stable periods.
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when electricity became available during the second event. Thus, the difficulty adjust-

ment following the abrupt capacity drop caused a statistically significant above-average

block arrival after May 01, 2021.

[Table 4 about here]

While a comparable decline of mining capacity characterizes both events, they differ

substantially in the parallel trajectory of underlying determinants. Prat and Walter

(2021) and Garratt and van Oordt (2020) demonstrate that the supply of mining capacity

can be modeled as a function of the Bitcoin price. Under sufficient competition and for

a given level of short-term production costs, price volatility encourages market entry or

exit. Figure 4 contrasts the relative evolution of the hash-rate and Bitcoin price clustered

for 20 days around each of the observed minimum values during the four most significant

shocks between January 2012 and May 2021 (with t0 = 1). The key finding is that the

variables show the expected coherent structure in the first two shocks (i.e., the hash-rate

decline is endogenous to the price), a weak co-movement in April 2021, and opposite

development in October 2020.22 The shock in October 2020 differs substantially as the

endogenous determinants display an opposite trajectory: In November 2018 and March

2020, the Bitcoin price dropped by about 50 percent, driven by a waning cryptocurrency

hype and the global dispersion of the Corona pandemic. During the shock in April 2021,

we observe a moderate decline of 20 percent. In contrast, Bitcoin appreciated by about

50 percent in October 2020, parallel to the falling hash-rate.

[Figure 4 about here]

It follows that endogenous market conditions cannot explain the declining supply of

mining capacity especially during Event [1], which corroborates our argumentation of ex-

ogeneity.23 Moreover, we leverage this quasi-natural experiment in our further analysis:

As discussed in subsection 3.3, the network fragility during shocks depends not only on

22We decided not to include the halving period in May 2020 into our estimation since it was anticipated
by market participants and is not related to concentration patterns.

23Note that the recession in April 2021 is disproportional compared to the co-movement of earlier
shocks, i.e., the decrease in capacity is much larger than the price decline.
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the magnitude of affected mining capacity but also on the evolution of reward parameters.

Event [1] and [2] allow us to study Bitcoin’s fragility under two circumstances that are

widely similar in the shock’s magnitude but substantially deviate in the price develop-

ment. Since the BTC price markedly affects the economic viability of mining (and thus

miners’ incentive compatibility), attacking the network in October 2020 remained expen-

sive, given that the net present value of engines increased. In contrast, the interaction of

a capacity shock and BTC price depreciation severely decreased the costs of a majority

attack in April 2021. A graphical representation of the relative change in mining capacity

and miners’ gross revenue during the events is given by Figure 5. We take advantage of

this heterogeneity to test the hypotheses formulated in subsection 3.3 and investigate

how market participants incorporate information on varying security levels of the Bitcoin

blockchain. We next study the market and fragility dynamics during the two events.

[Figure 5 about here]

4.4 Blocktime, Congestion and Transaction Fees

This subsection examines the evolution of transaction capacity and fees during the de-

scribed exogenous interferences. We limit the examination to a descriptive analysis in

this version of the paper.

Several theoretical and empirical articles demonstrate that transaction fees in the Bit-

coin network depend fundamentally on impatient users, interested in a fast settlement,

rather than determinants associated with miners’ revenues (e.g., block rewards) (Auer,

2019; Easley et al., 2019; Huberman et al., 2021; Möser & Böhme, 2015). Since block

size exogenously dictates settlement capacity, fees typically increase with demand, which

becomes transparent in the number mempool transactions and the median confirmation

time.24 As described earlier, the difficulty of the cryptographic function underlying the

PoW consensus mechanism endogenously adapts to the exerted processing power in a

24In the history of Bitcoin, various technical improvements gradually increased the block capacity or
established second-layer solutions to expand the settlement capacity (see Divakaruni and Zimmerman
(2020) and Brown and Koeppl (2019) among others). However, none of these adjustments were applied
during our observation period, and therefore we treat block capacity as constant.
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bi-weekly interval. Because of this rigidity, block settlement must decrease significantly

when mining capacity suddenly plunges, but block difficulty remains unchanged. Hence,

we expect sharply decreasing transaction settlement, paired with rising mempool trans-

actions and fee levels during the described events.

Figure 6 depicts daily figures for the average block time (in seconds), number of

unprocessed transactions, and transaction fees per block (in BTC), each centered for ±20

days around the observed shocks. Since both periods show a widely similar magnitude,

we use the average across Event [1] and Event [2] in most of the following calculations

(as not stated otherwise) and compare them to the population average based on all non-

shock intervals between January 2012 and May 2021.25 As expected, the arrival rate

of blocks increased to > 15 minutes during the events, or by 59.5 percent compared to

the population average of 9.5 minutes. Following the bottleneck in block creation, the

number of transactions settled on the blockchain decreased by about 75.000 per day. In

turn, the number of unprocessed transactions accumulated to 130,000 – an increase by

factor 7.3 and a value only surpassed by the Bitcoin hype in December 2017. Eventually,

the median confirmation time increased to 21.6 minutes for a transaction with average

fees to be settled on the blockchain. This corresponds to an increase of 122 percent

compared to the population average of 9,69 minutes.

Since transaction fees are subject to a generally increasing trend (see Easley et al.

(2019)), we compare the movement during our shocks to the average in stable periods

from January 2019 to May 2021. As predicted by our model, per block transaction fees

jumped from an average of 0.59 BTC to a peak of 2.46 BTC during the event periods,

corresponding to a factor of 4.16. Again, comparable fee levels are observed when the BTC

price reaches a new historic all-time high, resulting in a massive increase in transaction

volume. This interaction signifies that a short-term drop in computing capacity leads to a

similar increase in transaction fees as we would expect from a short-term multiplication of

the Bitcoin price. Event [1] and [2] show a widely similar development of executed hashing

power, settlement capacity, and transaction fees. However, we observe a countervailing

25Non-schock intervals exclude the Bitcoin hype in December 2017, the price shock in December 2018,
and Event [1] and [2].
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price trend between the shocks, which we exploit in the following subsection to examine

the network vulnerability.

[Figure 6 about here]

4.5 Blockchain Fragility and Mining Shocks

Our primary interest in this subsection is to investigate the impact of temporary restric-

tions in the Chinese mining industry on the fragility of the Bitcoin network.

As argued in subsection 3.3, the parallel trajectory of mining returns essentially deter-

mines the fragility of the consensus mechanism during an exogenous shock. On the one

side, plunging mining capacity lowers the costs associated with a majority attack. On

the other side, excess rents from reduced competition, increasing transaction fees, and

price movements may establish significant opportunity costs. Which evolution dominates

depends on the interaction of variables in a specific shock. Considering the evolution

parameters in our observation period, we argue that the network’s fragility remained

comparably equal during Event [1] but significantly increased during Event [2].

Unfortunately, the robustness of a decentralized ledger cannot be directly observed by

any standard continuous metric. Irresberger et al. (2020) develop a measure of implied

security across multiple cryptocurrencies from the escrow period installed by exchanges

before considering a payment in a given currency irreversible. This figure reflects the

perceived risk for a particular cryptocurrency of being compromised. However, it is not

available in a continuous format that would allow us to decompose its variation. Instead,

we propose a proxy in the form of bid-ask spreads to empirically examine network stability.

Bid-ask spreads have been shown to be closely related to the stability of a market,

as they implicitly reflect its liquidity. This interrelation arises as the market maker’s

ability to enforce a specific spread level depends on market conditions. For example, in

relatively illiquid markets, market makers impose wider spreads to offset risks associated

with holding less liquid assets. By providing a venue for buyers and sellers, liquidity

providers in such markets can extract higher rents, given that fewer alternatives exist for
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trading the asset. In times of distress or general uncertainty, market-making becomes

riskier, resulting in higher spreads and reduced exposure of liquidity providers even if

markets are otherwise fairly liquid (Anand & Venkataraman, 2016). With risk-averse

participants, market liquidity decreases during periods of high uncertainty (Muranaga &

Shimizu, 1999). Thus, we expect bid-ask spreads to expand when sophisticated market

participants, such as a major cryptocurrency exchange, evaluate market conditions as

unstable (e.g., during an exogenous shock to the mining industry).

Several academic papers employ data on bid-ask spreads from cryptocurrency ex-

changes (Koutmos, 2018; Scharnowski, 2021; Scharnowski & Shi, 2021). We exploit data

from Kraken.com on open, close, high, and low trade prices for eight cryptocurrencies

in US-Dollar and Euro and weight our results according to the trading volume in the

respective fiat currency. Since the seminal work of Roll (1984), spread estimation from

trade prices has seen considerable advances (Abdi & Ranaldo, 2017; Corwin & Schultz,

2012). In this paper, we use the Efficient Discrete Generalized Estimator (EDGE) pro-

posed by Ardia et al. (2021) to estimate effective spread data from hourly open, close,

high, and low trade prices. Compared to previous work, the EDGE-estimator relies on

the most general conditions (e.g., includes non-frequent trade), encloses most information

from discrete prices to minimize the estimation variance and produces fewer negative re-

sults. We aggregate daily effective spread estimates from hourly price data and zero-set

negative results, as it is standard practice (Ardia et al., 2021).

Based on the argumentation above, we expect significant positive spreads during

Event [2] compared to our baseline group of unaffected cryptocurrencies, while Event [1]

exhibits no significant effect. To formally test this hypothesis, consider the unobserved

structural model

ln(Yit) = βDit + γln(Zit) + δtdt+ ...+ δTdT + αi + ϵit, t = 1, ..., T ; i = 1, . . . , I, (18)

where i identifies the cryptocurrency and t denotes each day in the observation interval

t, . . . , T . Dit is a binary intervention indicator equal to 1 if a cryptocurrency is affected

by the exogenous intervention at day t. In our baseline regression, the treatment group
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consists solely of Bitcoin, while seven cryptocurrencies are integrated as control groups.

We examine the case of multiple affected currencies in subsection 4.6. Zit is a vector

of control variables, including total trading volume (in all currencies), closing price in

USD, and an indicator of volatility, calculated as the standard deviation of the closing

price over the last three days. Each control variable has been identified as functional

for the magnitude of bid-ask spreads (McInish & Wood, 1992). Standard panel unit

root tests imply that closing prices are integrated by order I(1) (see table 6) (Dickey

& Fuller, 1979). However, first-differenced closing prices appear stationary. We thus

integrate closing prices using first differences and generally take the natural logarithm

of all figures to interpret results as elasticities. Eventually, αi denotes fixed effects to

eliminate unobserved static heterogeneity among cryptocurrencies, and δtdt represents

an exhaustive set of time-period dummies for each t ∈ T .

[Table 6 about here]

Although we integrate relevant control variables and time-period dummies, the ob-

served correlation patterns may potentially be influenced by the simultaneous variation of

unobserved covariates. We apply a quasi-experimental (comparative) identification strat-

egy to address this concern. To allow for a causal interpretation, we use a set of seven

control cryptocurrencies with various consensus algorithms and differentiate the varia-

tion between treatment and control observations. The set of control entities includes

Ethereum, Ethereum Classic, and Z-Cash (PoW), Algorand, Cardano, and Tezos (PoS),

as well as EOS (DPoS). We only consider reasonably large cryptocurrencies in our control

group with an average market capitalization of USD> 500M during the event periods.26

Since Proof-of-Stake (PoS) and Delegated Proof-of-Stake (DPoS) consensus generally do

not involve mining (and thus do not rely on large amounts of electricity), the respec-

tive currencies cannot be affected by our shocks. Moreover, the hash-rate evaluation of

Ethereum, Ethereum Classic, and Z-Cash demonstrates that they were not affected by

the intervention in Event [1] and [2] (see Figure 7). Notably, the currencies in our con-

26We exclude Dogecoin from the control group because the USD/DOGE exchange ratio and market
capitalization multiplied by factor 10 between April 08 and May 05, 2021. This trajectory led to extensive
volatility, which is significantly different from all other observed cryptocurrencies.
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trol group belong to the same asset class and trade on similar crypto-exchanges but are

not affected by the shock. Therefore, we can isolate the intervention effect by comparing

spreads from trading Bitcoin against US-Dollar and Euro to those of the cryptocurrencies

in the control group.

We estimate equation (18) for a two-panel structure. Each panel contains the event

period as specified in subsection 4.2 and the same amount of days preceding the inter-

vention to balance shock and non-shock periods. Table 5 reports the coefficients with

cluster-robust standard errors in parentheses, obtained from estimating equation (18)

using currency fixed-effects regression. Regarding the first panel (Event [1]), column (1)

shows the estimates without control and time-period variables, column (2) integrates the

controls, and column (3) contains the estimates of the fully specified model. Results for

the second panel (Event [2]) under the same reporting format are presented in columns

(4), (5), and (6), respectively.

Consistent with our intuition, the coefficientDit is insignificant on all common levels of

statistical inference in the first panel. In contrast, the coefficient is of relevant magnitude

and statistically significant in the second panel. This finding corroborates our hypothe-

sis: Bid-ask spreads on Bitcoin expanded between 58.4 and 13.9 percent compared to the

control group during Event [2] when the vulnerability of the Bitcoin blockchain was rela-

tively high. In contrast, spreads show no significant variation during Event [1], when price

increases counterbalanced shrinking attacking costs. Table 5 further reveals that smaller

cryptocurrencies exhibit significantly wider spreads. When considering the substantially

smaller transaction volumes of those currencies as documented in Table 3, this result

confirms the presumed connection between trade liquidity and spread magnitude. We

conclude our analysis by performing additional robustness checks in the next subsection.

[Table 5 about here]

4.6 Robustness Checks

Our basic regression approach in subsection 4.5 employs a limited treatment group re-

stricted solely to Bitcoin. However, Chinese miners targeting alternative PoW-based
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cryptocurrencies may have been simultaneously subject to constraints after the Covid-19

outbreak and coal mining accident in Xinjiang. Figure 7 illustrates the relative hash-rate

evolution for a set of 7 PoW-based cryptocurrencies in the relevant period around each

exogenous shock. In autumn of 2020, the mining activity of Bitcoin Cash (BCH), Litecoin

(LTC), and Ripple (XMR) appears to be constrained parallel to Bitcoin. Interestingly,

only Bitcoin Cash is subject to a similar decline in hash capacity as Bitcoin in April 2021.

Our theory suggests that the vulnerability of a decentralized network during a shock is

substantially influenced by the covariation of its native coin price. Hence, we expect to

observe abnormal spreads only if the coin price depreciates parallel to the shock. Figure 8

visualizes the correlation structure of coin prices during the shock periods for all identi-

fied PoW currencies. For the period covered in Event [1], price movements of Litecoin

and Bitcoin Cash are positively correlated with Bitcoin, while Ripple shows a relevant

negative pattern. We therefore expect no significant deviation in the bid-ask spreads of

Bitcoin, Litecoin, and Bitcoin Cash, but significant positive spreads for Ripple. During

Event [2], we observe a positive correlation between the coin depreciation of Bitcoin and

Bitcoin Cash, thus, we expect significant positive spreads for both currencies.

[Figure 7 about here]

[Figure 8 about here]

To detect systematic spread variation, we utilize a similar econometric strategy as de-

scribed in section 4.5. The unobserved structural model is given by

ln(Yit) = β1Dit + β2ηit + γln(Zit) + δtdt+ ...+ δTdT + αi + ϵit, (19)

with t = 1, ..., T ; i = 1, . . . , I. Affected cryptocurrencies with a similar price trend

as Bitcoin are consolidated in the binary treatment dummy Dit, while those showing a

controversial trend are categorized by the binary variable ηit. More precisely, Dit refers to

Bitcoin, Bitcoin Cash, and Litecoin during Event [1], whereas abnormal spreads of Ripple

are identified by ηit. During Event [2], Dit covers Bitcoin and Bitcoin Cash and ηit is equal

to zero as no alternative PoW cryptocurrency shows both a decline of hash capacity and
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a contrary price trend to Bitcoin. Results from estimating equation (19) for both shock

periods are reported in Table 7 with cluster-robust standard errors in paratheses. All

coefficients show the expected sign and statistical significance. Overall, the robustness

diagnosis lends further support to our interpretation that the vulnerability of PoW-based

consensuses to exogenous shocks is fundamentally influenced by covariation in the price

of the proprietary coin.

[Table 7 about here]

5 Conclusion

This paper studies the robustness of PoW-based permissionless blockchains with struc-

turally concentrated mining ecosystems against exogenous shocks. Based on existing lit-

erature, we theoretically characterize the mining game and formally describe the economic

incentive compatibility underlying PoW consensus with homogeneous and heterogeneous

miners. Moreover, we demonstrate that the stability of the incentive design to exogenous

shocks is conditional on the co-movement of revenue parameters. The empirical section

studies two exogenous shocks to the Chinese mining ecosystem in October 2020 and April

2021. The analysis reveals that the structural parameters, such as the hash-rate, settle-

ment capacity, and transaction fees, were indeed exceptional. Our empirical analysis

further demonstrates that the impact of exogenous shocks on the stability of PoW-based

consensuses substantially depends on fundamental parameters, such as covariation in the

price of the cryptocurrency’s native coin. Moreover, we show that market participants

incorporate and price variations in the implied stability of the distributed ledger.
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Küfeoğlu, S., & Özkuran, M. (2019). Energy Consumption of Bitcoin Mining. Cambridge

Working Papers in Economics. https://doi.org/https://doi.org/10.17863/CAM.

41230

Lehar, A., & Parlour, C. A. (2020). Miner Collusion and the BitCoin Protocol. SSRN

Electronic Journal. https://doi.org/10.2139/ssrn.3559894

Leshno, J. D., & Strack, P. (2020). Bitcoin: An Axiomatic Approach and an Impossibility

Theorem. American Economic Review: Insights, 2 (3), 269–286. https://doi.org/

10.1257/aeri.20190494

Li, T., Shin, D., & Wang, B. (2018). Cryptocurrency Pump-and-Dump Schemes. SSRN

Electronic Journal. https://doi.org/10.2139/ssrn.3267041

Liu, Y., & Tsyvinski, A. (2021). Risks and returns of cryptocurrency. Review of Financial

Studies, 34 (6), 2689–2727. https://doi.org/10.1093/rfs/hhaa113

47

https://doi.org/10.1093/restud/rdab014
https://doi.org/10.2139/ssrn.3592849
https://doi.org/10.2139/ssrn.3592849
https://papers.ssrn.com/sol3/papers.cfm?abstract%7B%5C_%7Did=3750467
https://papers.ssrn.com/sol3/papers.cfm?abstract%7B%5C_%7Did=3750467
https://www.bloomberg.com/news/articles/2021-09-24/china-deems-all-crypto-related-transactions-illegal-in-crackdown
https://www.bloomberg.com/news/articles/2021-09-24/china-deems-all-crypto-related-transactions-illegal-in-crackdown
https://www.bloomberg.com/news/articles/2021-09-24/china-deems-all-crypto-related-transactions-illegal-in-crackdown
https://doi.org/1810.02466
https://doi.org/10.1016/j.econlet.2018.08.041
https://doi.org/https://doi.org/10.17863/CAM.41230
https://doi.org/https://doi.org/10.17863/CAM.41230
https://doi.org/10.2139/ssrn.3559894
https://doi.org/10.1257/aeri.20190494
https://doi.org/10.1257/aeri.20190494
https://doi.org/10.2139/ssrn.3267041
https://doi.org/10.1093/rfs/hhaa113


Ma, J., Gans, J. S., & Tourky, R. (2019). Market Structure in Bitcoin Mining. SSRN

Electronic Journal. https://doi.org/10.2139/ssrn.3103104

Makarov, I., & Schoar, A. (2020). Trading and Arbitrage in Cryptocurrency Markets.

Journal of Financial Economics, 135 (2), 293–319. https://doi.org/10.1016/j.

jfineco.2019.07.001

Makarov, I., & Schoar, A. (2021). Blockchain Analysis of the Bitcoin Market. NBER

Working Paper Series, 29396. https://doi.org/10.3386/w29396

McInish, T. H., & Wood, R. A. (1992). An Analysis of Intraday Patterns in Bid/Ask

Spreads for NYSE Stocks. The Journal of Finance, 47 (2), 753. https://doi.org/

10.2307/2329122
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Figure 1: Global and provincial hash-rate distribution (Sep.2019-Aug.2021). Panel (a) shows the
monthly percentage composition of the global hash-rate by country. ”Other” summarizes countries
contributing < 5 percent during the observation period (e.g., Iran, Canada, Germany, and Ireland).
Panel (b) displays the percentage hash-rate distribution localized in China, classified by provinces and
months. Provinces contributing < 5 percent during the observation period are summarized (e.g., Gansu,
Zhejiang, and Beijing). Both plots are based on data from Rauchs et al. (2022).
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Figure 2: Global hash-rate and block difficulty (Sep.2020-May.2021). This figure shows the 3-day
moving average of the estimated global hash-rate and the standard block difficulty. Event periods from
October 16 to November 23, 2020 and April 16 to April 26, 2021, are highlighted by dashed vertical
lines.
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Table 1: This table contains descriptive statistics on daily transaction and network parameters. Figures
are constructed from 44,204 blocks (i.e., block 637091 to 681295) that were appended to the Bitcoin
blockchain between July 2020 and May 2021. See subsection 4.3 for further details.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Hash-rate (EH/s) 304 140.5 17.5 97.9 127.2 153.6 186.4
Block Difficulty (Trillion) 304 19.4 2.2 15.8 17.3 21.4 23.6
Mean Block Time (Seconds) 304 601.0 69.4 469.6 555.6 627.2 915.2
Block Number 304 145.4 14.8 91 138 156 185
Transaction Number (100K) 304 310.4 34.1 194.6 290.4 333.8 404.8
Transaction Volume (M BTC) 304 1.91 0.66 0.59 1.45 2.28 4.19
Sum of Block Rewards (BTC) 304 909.0 92.7 568.8 862.5 975.0 1,156.2
Sum of Transaction Fees (BTC) 304 109.0 49.9 24.6 75.8 134.6 301.8
BTC Price (1K USD) 304 27.2 18.3 9.1 11.4 46.7 63.3
Mempool Transactions (1000) 417 34.7 28.0 0.4 12.7 47.8 135.9
Confir. Time (Minutes) 304 12.7 3.4 5.0 10.2 14.4 25.2
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Figure 3: Weekly block number during two shocks and overall block density. Panel (a) shows the
decrease of weekly blocks during two exogenous shocks together with the population average (red line)
and the block difficulty adjustments (yellow line). Panel (b) displays the overall density of weekly blocks,
including the population mean (red line). The block creation during the two shocks is highlighted (red).
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Table 2: This table provides daily descriptive statistics on effective bid-ask spreads, closing prices,
trading volume (in all currencies), and volatility (defined as the standard deviation of the closing price
in a 3-day period) for nine cryptocurrencies and an observation period from January 2020 to October
2021. See subsection 4.3 for further details.

Variable Levels N Mean St. Dev. Min Pctl(25) Pctl(75) Max
Bid-Ask Spread (%) ADA 638 0.4 0.2 0.0 0.3 0.5 2.4

ALGO 617 0.7 0.4 0.0 0.5 0.8 4.1
BTC 638 0.1 0.1 0.0 0.1 0.1 0.8
EOS 638 0.4 0.2 0.0 0.3 0.5 2.1
ETC 638 0.6 0.3 0.0 0.4 0.7 3.2
ETH 638 0.2 0.1 0.0 0.1 0.2 0.9
XMR 638 0.4 0.2 0.0 0.3 0.5 2.2
XTZ 638 0.5 0.2 0.0 0.3 0.6 3.0
ZEC 638 0.6 0.3 0.0 0.4 0.7 2.4
all 5721 0.4 0.3 0.0 0.2 0.6 4.1

Closing Price (USD) ADA 638 0.6 0.8 0.0 0.1 1.2 3.0
ALGO 638 0.6 0.5 0.1 0.3 1.0 2.4
BTC 638 25389.0 17903.9 4970.8 9512.5 40621.8 63503.5
EOS 638 3.7 1.6 1.8 2.6 4.3 14.4
ETC 638 20.9 24.3 4.0 6.0 33.6 134.1
ETH 638 1170.6 1122.3 110.6 236.4 2077.8 4168.7
XMR 638 155.2 97.0 33.0 68.3 229.6 483.6
XTZ 638 3.2 1.3 1.2 2.3 3.6 7.5
ZEC 638 94.6 56.9 24.5 55.0 126.6 318.9
all 5742 2982.1 9930.0 0.0 2.3 202.3 63503.5

Trading Volume ($M) ADA 638 2318.9 2987.4 20.8 211.9 3533.6 19142.0
ALGO 638 222.9 358.6 17.0 60.5 255.8 4812.1
BTC 638 40915.1 21730.5 12252.6 27186.0 49062.1 350967.9
EOS 638 2907.8 2020.1 673.6 1682.1 3521.0 20328.7
ETC 638 2103.3 2986.8 373.3 765.8 2233.6 42721.4
ETH 638 20978.4 11776.3 5109.0 12743.5 25825.4 84482.9
XMR 638 580.5 1793.0 41.8 111.8 738.2 28959.1
XTZ 638 290.5 300.2 30.5 119.1 359.3 2721.4
ZEC 638 609.7 993.5 90.8 283.4 620.5 12719.4
all 5742 7880.8 15673.4 17.0 229.3 5868.1 350967.9

Volatility ADA 638 0.0 0.0 0.0 0.0 0.0 0.3
ALGO 638 0.0 0.0 0.0 0.0 0.0 0.5
BTC 638 688.5 782.6 6.9 125.8 1031.6 4397.8
EOS 638 0.2 0.3 0.0 0.0 0.2 2.7
ETC 638 1.1 2.6 0.0 0.1 1.0 32.6
ETH 638 44.7 63.1 0.6 5.3 66.1 505.0
XMR 638 5.7 7.4 0.2 1.6 6.7 81.1
XTZ 638 0.1 0.2 0.0 0.0 0.2 1.1
ZEC 638 4.3 5.3 0.1 1.3 5.3 56.6
all 5742 82.7 338.3 0.0 0.0 6.2 4397.8
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Table 4: This table provides results from one-sample t-test against the two sided alternative of the
sample mean or population mean for the number of blocks and network hash-rate. The test calculation
includes population mean and standard deviation for the block number, whereas tests on the hash-
rate deploy sample figures. Test periods cover the relevant weeks around the presumed shocks (see
subsection 4.2).

Panel 1

Week
Sum of
Blocks

t-Value
(Blocks)

p-Value
(Blocks)

Average
Hash-Rate

t-Value
(Hash-Rate)

p-Value
(Hash-Rate)

1 2020-09-25 1021 -1.72 0.1366 140.95 -0.12 0.905
2 2020-10-02 1028 -1.52 0.1798 140.33 -0.27 0.799
3 2020-10-09 1040 -1.18 0.2842 142.62 0.47 0.655
4 2020-10-16 968 -3.23 0.0179** 138.65 -0.53 0.617
5 2020-10-23 817 -7.54 3e-04*** 118.55 -3.31 0.016**
6 2020-10-30 890 -5.45 0.0016*** 115.16 -6.34 0.001***
7 2020-11-06 1077 -0.12 0.9081 127.37 -5.69 0.001***
8 2020-11-13 1054 -0.78 0.467 130.31 -3.20 0.019**
9 2020-11-20 1099 0.51 0.6301 137.73 -0.81 0.447
10 2020-11-27 1011 -2.00 0.092* 133.03 -2.85 0.029**

Panel 2

Week
Sum of
Blocks

t-Value
(Blocks)

p-Value
(Blocks)

Average
Hash-Rate

t-Value
(Hash-Rate)

p-Value
(Hash-Rate)

1 2021-03-26 1054 -0.78 0.467 165.26 -0.71 0.505
2 2021-04-02 1008 -2.09 0.0817* 167.70 0.18 0.866
3 2021-04-09 1047 -0.98 0.3667 168.61 0.29 0.785
4 2021-04-16 787 -8.39 2e-04*** 134.58 -4.97 0.003***
5 2021-04-23 941 -4.00 0.0071*** 160.65 -2.08 0.083*
6 2021-04-30 1154 2.08 0.0832* 170.61 0.82 0.444
7 2021-05-07 1214 3.79 0.0091*** 182.92 4.71 0.003***

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Nov−Dec 2018 Mar−Apr 2020 Oct−Nov 2020 Apr−May 2021

R
elative H

ashrate
R

elative B
T

C
−

price

19
−

N
ov

26
−

N
ov

03
−

D
ez

10
−

D
ez

17
−

D
ez

24
−

D
ez

02
−

M
rz

09
−

M
rz

16
−

M
rz

23
−

M
rz

30
−

M
rz

06
−

A
pr

12
−

O
kt

19
−

O
kt

26
−

O
kt

02
−

N
ov

09
−

N
ov

16
−

N
ov

05
−

A
pr

12
−

A
pr

19
−

A
pr

26
−

A
pr

03
−

M
ai

0.7

0.8

0.9

1.0

1.1

0.75

1.00

1.25

1.50

Figure 4: Evolution of Bitcoin price and global hash-rate during four shocks (2018-2021). This figure
shows four shocks to the Bitcoin mining industry (upper panel) and the corresponding change in the
BTC price (lower panel). Shocks are defined as significant short-term recessions in the global hash-rate
of > 25 percent within 14 days. All Variables are standardized with t0 = 1 and a period centered ±20
days around the observed hash-rate minimum values.
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Figure 5: Evolution of miners’ gross revenues and global hash-rate for two mining shocks. This figure
depicts miners’ gross revenues and the global hash-rate for two exogenous shocks in October 2020 and
April 2021. Gross revenues are the product of block rewards, transaction fees, and daily USD/BTC
conversion rates. Figures are standardized with t0 = 1.
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Figure 6: Effects of exogenous shocks on transaction parameters. This chart illustrates the average of
block time (in seconds), number of mempool transactions, and transaction fees (in BTC per block), with
t = 0 corresponding to the observed minimum hash-rate of each shock.
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Table 5: Currency fixed-effects regression: Effect of shock treatment dummy (Dit) on ln(Average
Spread). This table reports regression results from estimating equation (18).
Figures are specified as follows: The log average spread denotes the estimated mean bid-ask spread
from trading the respective cryptocurrency against USD and EUR (weighted by volume), log volume
the overall trading volume in all currencies, the change of log closing price denotes the first difference
of the daily closing price in USD, and log volatility the moving standard deviation of the closing price
in a 3-day period. The shock treatment dummy (Dit) is equal to one if a cryptocurrency at day t was
affected by a shock and zero otherwise. The sample period of Panel 1 (September 9 to November 23,
2020) and Panel 2 (April 6 to April 26, 2021) contains 600 and 176 observations, respectively, for a total
of 8 cryptocurrencies. The base currency for the fixed-effects coefficients is Cardano (ADA).

Dependent variable:

Ln(Average Spread)

Panel 1 Panel 2

(1) (2) (3) (4) (5) (6)
Treatment (Dit) 0.16 0.19 0.32 0.46∗∗∗ 0.33∗∗∗ 0.13∗∗∗

(0.23) (0.17) (0.21) (0.00) (0.01) (0.04)
ln(Volume) 0.24∗∗∗ 0.17∗∗∗ 0.39∗∗∗ 0.30∗∗∗

(0.07) (0.03) (0.12) (0.10)
ln(Volatility) 0.08∗∗∗ 0.01 0.07 0.03

(0.02) (0.05) (0.04) (0.07)
∆ln(Closing Price) −0.60 1.20 −1.61∗∗∗ −0.30

(0.58) (1.03) (0.31) (0.49)
ALGO 0.58∗∗∗ 0.95∗∗∗ 0.92∗∗∗ 0.51∗∗∗ 1.39∗∗∗ 1.21∗∗∗

(0.00) (0.13) (0.12) (0.00) (0.30) (0.25)
BTC −1.80∗∗∗ −3.61∗∗∗ −2.66∗∗∗ −1.63∗∗∗ −3.32∗∗∗ −2.60∗∗∗

(0.12) (0.51) (0.50) (0.00) (0.33) (0.74)
EOS −0.19∗∗∗ −0.66∗∗∗ −0.39∗∗∗ 0.44∗∗∗ 0.30∗∗∗ 0.39∗∗

(0.00) (0.12) (0.11) (0.00) (0.10) (0.16)
ETC 0.62∗∗∗ 0.37∗∗∗ 0.60∗∗∗ 0.85∗∗∗ 0.81∗∗∗ 0.87∗∗∗

(0.00) (0.08) (0.18) (0.00) (0.19) (0.25)
ETH −1.04∗∗∗ −2.39∗∗∗ −1.64∗∗∗ −0.71∗∗∗ −1.99∗∗∗ −1.54∗∗

(0.00) (0.33) (0.35) (0.00) (0.24) (0.52)
XTZ 0.02∗∗∗ 0.12 0.24 0.73∗∗∗ 1.33∗∗∗ 1.25∗∗∗

(0.00) (0.10) (0.18) (0.00) (0.30) (0.27)
ZEC 0.22 −0.28 0.09 0.74∗∗∗ 0.95∗∗ 1.03∗∗

(0.12) (0.22) (0.35) (0.00) (0.39) (0.45)
Time Per. D. NO NO YES NO NO YES
R2 0.78 0.80 0.84 0.79 0.84 0.90
Adj. R2 0.77 0.79 0.82 0.78 0.83 0.88
Num. obs. 600 600 600 176 176 176
RMSE 0.41 0.39 0.37 0.41 0.35 0.30
N Clusters 8 8 8 8 8 8
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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Figure 7: PoW-based cryptocurrencies and mining shocks. This chart illustrates the standardized
hash-rate of seven Pow-based cryptocurrencies during the exogenous shocks in October 2020 and April
2021. All figures are standardizes with t0 = 1; vertical (red) lines indicate shock periods.
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Figure 8: Price correlation between PoW-based cryptocurrencies during shocks. This chart shows the
correlation between the coin price of Bitcoin (BTC), Litecoin (LTC), Bitcoin Cash (BCH), and Ripple
(XMR) during Event [1] (Oct. 16 to Nov. 23, 2020) and Event [2] (Apr. 16 to Apr. 26, 2021).

Table 6: This table reports results from the Augmented Dickey-Fuller test (ADF-test) for unit roots in
panel data structures (Dickey & Fuller, 1979).

Variable Unit root test Test statistic p-value

In levels:

log(Average Spread) ADF (LP=17) -8.244 0.0000
log(Trading Volume) ADF (LP=17) -3.9455 0.0116
log(Closing Price) ADF (LP=17) -1.691 0.7092
log(Volatility) ADF (LP=17) -8.0129 0.0000

In first-differences:

∆log(Closing Price) ADF (LP=17) -15.762 0.000
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Table 7: Currency fixed-effects regression: Effect of shock treatment dummies (Dit and ηit) on
ln(Average Spread). This table reports regression results from estimating equation (19).
Figures are specified as follows: The log average spread denotes the estimated mean bid-ask spread
from trading the respective cryptocurrency against USD and EUR (weighted by volume), log volume
the overall trading volume in all currencies, the change of log closing price denotes the first difference of
the daily closing price in USD, and log volatility the moving standard deviation of the closing price in
a 3-day period. The shock treatment dummy (Dit) is equal to one if a PoW currency was affected by a
shock and shows a similar price trend as Bitcoin, and zero otherwise. The binary variable ηit is equal to
one, if an affected PoW currency shows a contrary price trend compared to Bitcoin. The sample period
of Panel 1 (September 9 to November 23, 2020) and Panel 2 (April 6 to April 26, 2021) contains 825 and
231 observations, respectively, for a total of 11 cryptocurrencies. The base currency for the fixed-effects
coefficients is Cardano (ADA).

Dependent variable:

Ln(Average Spread)

Panel 1 Panel 2

(1) (2) (3) (4) (5) (6)
Treatment (Dit) 0.21 0.10 0.27 0.51∗∗∗ 0.29∗∗∗ 0.09∗∗

(0.13) (0.15) (0.15) (0.08) (0.02) (0.04)
Negative treatment (ηit) 0.07∗∗∗ −0.01 0.16∗∗

(0.00) (0.02) (0.06)
ln(Volume) 0.18∗∗∗ 0.09∗∗ 0.40∗∗∗ 0.36∗∗∗

(0.05) (0.04) (0.09) (0.11)
ln(Volatility) 0.09∗∗∗ 0.02 0.06 0.00

(0.02) (0.03) (0.04) (0.05)
ln(Volatility) −0.80 0.65 −1.44∗∗∗ −0.23

(0.53) (0.83) (0.28) (0.40)
ALGO 0.58∗∗∗ 0.82∗∗∗ 0.76∗∗∗ 0.48∗∗∗ 1.40∗∗∗ 1.34∗∗∗

(0.00) (0.10) (0.11) (0.00) (0.23) (0.26)
BCH −0.53∗∗∗ −1.32∗∗∗ −0.77∗∗∗ 0.12∗∗∗ −0.24 0.22

(0.07) (0.19) (0.22) (0.04) (0.26) (0.34)
BTC −1.83∗∗∗ −3.43∗∗∗ −2.38∗∗∗ −1.65∗∗ −3.20∗∗∗ −2.47∗∗∗

(0.07) (0.32) (0.28) (0.04) (0.29) (0.54)
EOS −0.19∗∗∗ −0.62∗∗∗ −0.32∗∗∗ 0.40∗∗∗ 0.32∗∗∗ 0.43∗∗∗

(0.00) (0.09) (0.07) (0.00) (0.09) (0.11)
ETC 0.62∗∗∗ 0.33∗∗∗ 0.58∗∗∗ 0.84∗∗∗ 0.84∗∗∗ 0.97∗∗∗

(0.00) (0.08) (0.11) (0.00) (0.16) (0.18)
ETH −1.04∗∗∗ −2.29∗∗∗ −1.44∗∗∗ −0.72∗∗∗ −1.93∗∗∗ −1.48∗∗∗

(0.00) (0.25) (0.20) (0.00) (0.21) (0.39)
LTC −0.39∗∗∗ −1.10∗∗∗ −0.62∗∗∗ 0.16∗∗∗ −0.35∗ −0.04

(0.06) (0.16) (0.17) (0.00) (0.18) (0.27)
XMR −0.06∗∗∗ −0.68∗∗∗ −0.24 0.26∗∗∗ 0.64 0.87∗∗

(0.00) (0.16) (0.19) (0.00) (0.35) (0.37)
XTZ 0.02∗∗∗ 0.01 0.11 0.72∗∗∗ 1.39∗∗∗ 1.43∗∗∗

(0.00) (0.10) (0.13) (0.00) (0.24) (0.26)
ZEC 0.30∗∗∗ −0.25 0.22 0.73∗∗∗ 1.03∗∗ 1.27∗∗∗

(0.00) (0.16) (0.20) (0.00) (0.33) (0.35)
Time Per. D. NO NO YES NO NO YES
R2 0.73 0.75 0.81 0.74 0.81 0.88
Adj. R2 0.73 0.75 0.78 0.73 0.80 0.86
Num. obs. 825 825 825 231 231 231
RMSE 0.40 0.38 0.36 0.39 0.34 0.29
N Clusters 11 11 11 11 11 11
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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