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Abstract

This paper documents a new transmission channel of monetary policy shocks

to equity premia: Monetary shocks can affect the probability of bad outcomes

for future macroeconomic growth and hence support equity prices beyond any

effect on expected mean growth rates. I estimate a monthly index of downside

risks to consumption growth. A loosening in the monetary policy stance can

significantly reduce consumption downside risks in crisis times. Increases in

downside risk predict higher future equity returns, in line with the disaster risk

hypothesis. Consumption downside risk predicts stock markets in the aggregate

and across a wide range of industry portfolios.
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1 Introduction

Much of the monetary policy communication during crisis times describes efforts to

mitigate “downside risks” and avert bad outcomes.1 If monetary policy can signifi-

cantly reduce macroeconomic downside risks, its interventions have an important

stabilization role for the economy. Changes in downside risk can also have important

asset pricing implications: A higher risk of bad macroeconomic outcomes leads risk

averse investors to demand higher future returns.2

This paper argues that the effect of monetary policy shocks on downside risks to

macroeconomic growth can drive equity prices. Even if expectations about mean

growth in the economy do not change dramatically following a monetary policy

shock, stock prices can rise strongly if investors believe the policy action has miti-

gated downside risk. This could particularly explain sudden stock market rebounds

following central bank interventions in crisis times. Monetary policy can have a

powerful effect on equity markets via the downside risk channel that goes unseen by

focusing on mean effects.

I study the downside risk channel empirically in three steps. First, I estimate a

model-free measure of downside risk to aggregate consumption growth. Consumption

most closely reflects the demand side of the economy and is intimately linked to

equity returns in consumption-based asset pricing models. In contrast to GDP,

consumption data is available at a monthly frequency, which allows for a detailed

analysis of the link between downside risk and monetary policy as well as equity

returns. Second, I study the effect of monetary policy shocks on downside risk to

consumption using vector autoregressions. Third, I analyze the predictive ability of

changes in downside risk for stock market returns.

The monthly index of downside risks to U.S. aggregate consumption growth is
1In a January 2009 article in The Economist, Olivier Blanchard famously explained how policy-

makers should respond to the financial crisis: “First and foremost, reduce uncertainty. Do so by
removing tail risks, and perceptions of tail risks.”

2This intuition is formalized in consumption-based asset pricing models with disaster risk, e.g.
Barro (2006), Gabaix (2012), Gourio (2012), and Nakamura et al. (2013).
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constructed based on an approximation of the conditional distribution of expected

U.S. consumption growth over the next year. To accurately estimate the growth

distribution, I pre-select variables from a large set of predictors and aggregate their

information via factor estimation to estimate conditional quantiles of the growth

distribution. Then, I fit a flexible skewed t-distribution over the estimated quan-

tiles to approximate the full conditional distribution of future consumption growth.

Based on the conditional distribution, I construct a measure for downside risks to

consumption growth. Loosely speaking, higher values in the downside risk index

indicate a higher probability of below-average outcomes for aggregate consumption

growth over the next year. Analogously, I estimate an index of upside potential to

consumption growth, which reflects the probability of above-average future growth

outcomes.

The index of consumption downside risk is the first contribution of my paper.

Downside risk exhibits substantial variation over time. Increases in consumption

downside risk coincide with major U.S. recessions. Downside risk and upside potential

have positive correlation but overall different time series behaviour. Downside risk is

more volatile over time and rises more strongly around recessions. During recessions,

the downside risk index comoves closely with common measures of economic risk or

uncertainty such as the VIX, the Economic Policy Uncertainty Index (Baker et al.

(2016)), the Jurado et al. (2015) macroeconomic uncertainty index, or credit spreads.

However, the series behaves markedly different in recovery periods, episodes of pure

financial stress, and non-crisis times.

Overall, the downside risk index contains information distinct from other indica-

tors of risk, uncertainty, or activity. The downside risk index does not conflate risk

and risk aversion into a composite index but provides a clean measure of macroe-

conomic risk on the consumer side. In contrast to existing risk measures based on

financial market data (e.g. Kelly & Jiang (2014)), it is not affected by pure financial

stress that does not spill over into the macroeconomy. Further, the index allows
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a distinction between upside and downside risks, which is an improvement over

symmetric measures of risk or uncertainty.

Importantly, the downside risk index is not designed to focus on extreme events in

the tail, but instead captures the much more frequent potential for good versus bad

consumption growth rates. This makes the downside risk index easier to estimate and

avoids any critique about the difficulty of estimating extreme tails with small samples

of macroeconomic data. An important result of this paper is that an asymmetry

between upside and downside risk exists, and that the transmission of monetary

policy to equity premia can be explained without having to concentrate on worst-

and best-case scenarios.

Given the index for consumption downside risk, I analyze the effects of monetary

policy shocks on downside risk. I estimate a vector autoregression (VAR) including

the downside risk index, a monetary policy indicator, and a set of controls. The

analysis is complicated by a simultaneity issue: While monetary policy can affect

consumption downside risk, policymakers may also take the most recent developments

in downside risk into account when making their policy decision.3 Imposing a naive

recursive structure on the system via short-run restrictions would not allow for this

simultaneous interaction. Instead, I identify the system using an external instruments

approach as in Gertler & Karadi (2015). This method uses high-frequency changes

in Fed funds futures around FOMC announcements to identify monetary policy

surprises. The approach yields a sufficient number of restrictions to estimate the im-

pulse responses to a policy shock without restricting any contemporaneous relations

between the variables. The instrument is adjusted to remove Fed information effects

using Jarociński & Karadi (2020)’s “poor man’s sign restrictions”.

The VAR analysis indicates a significant effect of monetary policy on downside
3For example, Fed Chairman Powell noted during the November 2020 FOMC press conference:

“In terms of the tail risks, I mean, I think clearly the tail risks we were worried about have, have
subsided. And, you know, we were worried about very negative potential outcomes. ... We don’t
just look at the most likely case. We, we ask ’How do you make policy in light of the risks?’ and
often it’s downside risks ... ” (FOMC (2020), p.17).
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risk to consumption. Following a 25bp surprise loosening in the monetary policy

stance, downside risk falls on impact and keeps decreasing, experiencing the strongest

decrease of around one third of a standard deviation after eight months. The effect

on downside risk reverts afterwards. A threshold VAR analysis confirms that these

effects are driven by the effect of monetary policy interventions on consumption risk

during recession periods. In contrast, monetary policy has little to no measurable

impact on downside risk during normal times. Further, monetary policy has no

significant effect on upside potential of consumption growth. This suggests a loosen-

ing in the monetary policy stance is a successful crisis mitigation tool but has not

reduced risks to economic growth during normal times over the sample period. The

effect of monetary policy on downside risk remains after controlling for measures

of risk aversion and macroeconomic uncertainty, supporting the idea of a distinct

downside risk channel.4

Lastly, I study the relation of downside risk and equity returns using predictive

regressions. Changes in the index of consumption downside risk have strong predic-

tive power for aggregate U.S. equity returns over a horizon of three to twelve months.

A one standard deviation rise in the downside risk index predicts equity returns to

increase by about 1.5 percentage points over the next three months, and by about

3 percentage points over the next six months. These results are strongly driven by

the predictive power of downside risk for returns in crisis times. The coefficients can

increase severely to 4 (three months) to 8.5 (six months) percentage points during

recessions, in line with strong stock market volatility of such periods. The predicted

effects are in line with the disaster risk hypothesis: A rise in downside risk causes

risk averse investors to require higher returns to hold equities. In contrast, down-

side risk shows no predictive ability during normal times. These results are robust

to including controls for risk aversion and uncertainty in financial markets, again
4In the Online Appendix, I show that including controls mean consumption, median consumption,

or the variance of consumption does not change the results. Downside risk captures information
about future consumption growth prospects that is different from the information content of any of
these measures.
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suggesting the existence of a downside risk channel distinct from overall uncertainty

and risk aversion concerns.

Downside risk not only predicts stock returns in the aggregate, but also across a

wide range of industry portfolios. In all cases, the predictive ability of downside risk

is concentrated in U.S. recessions. Industries which are conventionally thought of as

being procylical, for example manufacturing or durable goods consumption, show a

stronger sensitivity to changes in downside risk than less procyclical industries such

as utilities or healthcare. The differences across industries are quantitatively large.

A one standard deviation rise in consumption downside risk predicts an increase in

six-month returns by 1.9 percentage points for the non-durable goods sector, but an

increase by 5.6 percentage points for the durable goods industry.

The rest of the paper is structured as follows. Section 2 reviews the related

literature. I describe the methodology to construct the downside risk measure in

Section 3 and present results on its time series properties. Section 4 analyzes the

effect of monetary policy surprises on downside risk using vector autoregressions.

The predictive regressions to study the relation between downside risk and equity

returns are in Section 5. Section 6 concludes.

2 Related Literature

The theoretical motivation of the downside risk channel and the focus on risks

to aggregate consumption is rooted in the vast literature on consumption-based

asset pricing, see Cochrane (2017) for a review. More specifically, the downside

risk channel is connected to ideas from the disaster risk literature, which posits

that the Mehra-Prescott equity premium puzzle can be explained by the risk of

rare but very large declines in stock prices. This idea was originally proposed by

Rietz (1988) and subsequently reconsidered by Barro (2006), who estimates the

probability and severity of rare disasters from a panel of 20th century macroeconomic

crises. Gabaix (2012), Gourio (2012) and Wachter (2013) extend this literature by
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considering time-varying disaster risk in different model frameworks. These papers

give rise to the disaster risk hypothesis: An increase in the expected probability of a

bad economic outcome in the near future should decrease equity prices as investors

require larger compensation to hold risky assets. Nakamura et al. (2013) consider

consumption disasters with partial recoveries, finding smaller equity premia as a

significant share of the initial drop in consumption in a crisis is subsequently reversed.

In contrast to the disaster risk literature, my paper does not consider extreme

worst-case outcomes, but instead focuses on “moderate”disasters. This is in line

with recent empirical evidence (Beason & Schreindorfer (2022)), which suggests that

investors are mostly concerned with large but not huge declines in equity prices

(between −10 and −30 percent). Based on this evidence, disaster risk models rely

too much on events in the extreme left tail to achieve a realistic equity premium.

The empirical literature on the link between risk and equity premia finds that

different measures of (tail) risks or risk aversion can predict equity returns. Bollerslev

et al. (2009) and Bekaert & Hoerova (2014) demonstrate that the variance risk

premium – a measure of risk aversion – has predictive power for future stock returns

at short horizons.5 Kelly & Jiang (2014) show that tail risks can predict excess

stock market returns, where higher tail risk predicts higher stock returns at horizons

between one month and five years. Bollerslev & Todorov (2011b) and Bollerslev et al.

(2015) find that fear of negative tail events accounts for up to five percentage points

of the equity premium and explains much of the predictive ability of the variance

risk premium.

The existing literature usually derives risk (aversion) measures from financial

market data such as options, high-frequency stock returns, or individual firm returns.

This makes it hard to link the risk measure to macroeconomic fundamentals. Barro

& Liao (2021) is a recent attempt to build a consumption-based option pricing
5The variance risk premium is obtained from a decomposition of the VIX index into proxies for

risk and risk aversion, see for example Carr & Wu (2009). The VIX measures 30-day option-implied
expected volatility on the S&P 500 stock market index.
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model for far out-of-the-money options. Nevertheless, the evidence of Backus et al.

(2011) points towards difficulties in reconciling the empirical evidence from option

prices with existing consumption-based asset pricing models. To avoid concerns

about misspecification, my paper takes a different route and starts from a model-free

measure of consumption risk, which is then linked to equity premia. While the

downside risk index does not focus on tail events and hence avoids the usual estimation

problems associated with rare events, I find that it only exhibits predictive power

for future stock returns during crisis times, when downside risks are the strongest.

This lends support to the disaster risk hypothesis.

This paper relates to a growing literature on the effects of monetary policy on risks

to economic fundamentals or equity returns. Some papers indicate that monetary

policy decisions can reduce risks in equity markets (Bekaert et al. (2013), Hattori et al.

(2016), Cortes et al. (2020)) or corporate bond markets (Haddad et al. (2022)). The

main difference to these papers is that my analysis of the effect of monetary policy

shocks on downside risks uses a risk measure based on macroeconomic fundamentals

instead of financial market data, which also allows to cover a longer sample. Duprey

& Ueberfeldt (2020) and Ajello & Pike (2022) study the effect of monetary policy on

GDP tail risk and argue that loose policy reduces risks in the short run but increases

them over the medium term. In contrast, my work studies the downside risk channel

in the transmission of monetary policy shocks to equity markets at a short horizon.6

To measure (tail) risks in equity markets, the finance literature has relied on using

high-frequency returns (Bollerslev & Todorov (2011a)), firm-level stock returns (Kelly

& Jiang (2014)), or option prices (Backus et al. (2011)). While using financial market

data to construct risk measures directly reflects how investors value these risks and

may be most closely related to asset pricing, this approach also has disadvantages for
6Another difference between the papers is the empirical methodology: Duprey & Ueberfeldt

(2020) and Ajello & Pike (2022) use quantile regression and vector autoregression but their approach
rests on using coefficients estimated from quantile regressions to infer quantile impulse responses
from the mean impulse responses estimated in a VAR. In contrast, my paper stresses the importance
of using a very large dataset to estimate downside risks accurately, before using the downside risk
index as an input directly in a VAR.
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my application. First, high-frequency return data is often not available before the

late 1990s, which restricts the sample size and complicates studying the behaviour of

tail risk in a historical context. Second, the relation of market-based risk measures

to macroeconomic fundamentals is not necessarily clear, which makes it harder to

relate these measures to the intuition of consumption-based asset pricing models.

The goal of this paper is to construct a pure measure of macroeconomic risk, whereas

market-based measures my be driven by liquidity concerns or idiosyncratic firm

effects.

The approach of this paper is inspired by a recent literature in macroeconomics,

which aims to estimate quantiles of the underlying distribution of the variable of

interest and then construct risk measures based on the quantile estimates. Giglio

et al. (2016) use partial quantile regression to study systemic risk indices in their

ability to forecast negative shocks to macroeconomic outcomes out of sample. Adrian

et al. (2019) estimate the conditional distribution of GDP growth using a two-step

procedure. First, they predict certain quantiles of GDP growth using quantile

regression. Then, they recover the full distribution at each point in time by fitting a

skewed t-distribution across these quantiles. The authors find asymmetries between

upside and downside risks. My paper combines methodologies from both of these

works to improve the accuracy of the downside risk estimates. I am not aware of

any papers using this methodology to obtain a measure of consumption risk for the

purpose of studying the predictions of consumption-based asset pricing models.

3 An Index of Consumption Downside Risk

This section introduces expected downside risk to U.S. aggregate consumption growth

as a measure of macroeconomic risk. The index for consumption downside risk is con-

structed based on the entire conditional distribution of expected future consumption

growth at a given point in time. The methodology follows the three-step procedure

of Adrian et al. (2019) to estimate the consumption growth distribution: Given time
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series data on consumption growth and a set of predictors, first forecast several

quantiles of the consumption growth distribution at each point in time. In a second

step, fit a flexible density function across the estimated quantiles to approximate the

full distribution at each point in time. Third, based on the conditional distribution,

construct a time series for the downside risk index.

Working with consumption growth data has several advantages. Since consump-

tion growth data is available at a monthly frequency, the downside risk index is

monthly as well. This facilitates the analysis of the effect of monetary policy shocks

on downside risk. It also allows to study the relation between downside risk and stock

returns at the monthly frequency, which yields more detailed insights than quarterly

regressions. Further, consumption risk directly captures risks to the demand side

of the economy, in contrast to many other measures of macroeconomic or financial

activity. Lastly, consumption-based asset pricing models suggest a close link between

consumption and asset prices. From this perspective, studying consumption risk is

the most natural way to identify a downside risk channel of monetary policy.

3.1 Forecasting U.S. consumption growth

Starting with a description of the forecasting model, let ct be the aggregate real

consumption growth in the U.S. and denote the k-dimensional vector of predictors at

time t by xt. An out-of-sample prediction of a quantile Q(θ) of consumption growth

for time t+h via quantile regression with data available at time t yields the following

(consistent) estimate for the regression coefficients:

β̂θ = argmin
βθ∈Rk

t∑
s=h+1

Ä
θ · I(cs≥x′s−hβθ)|cs − x′s−hβθ|+(1− θ) · I(cs<x′s−hβθ)|cs − x′s−hβθ|

ä
(1)

= argmin
βθ∈Rk

Ĉθ (βθ) , (2)
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where I denotes the indicator function and Ĉθ is the sample analog of the criterion

function which the quantile regression estimator of β aims to minimize.

In contrast to OLS, the coefficient estimates vary across estimated quantiles Q (θ).

This is because the objective function used in quantile regression differs from the

standard OLS case. First, we minimize absolute deviations between the predicted

value and the actual value instead of squared deviations. Second, the absolute

deviations are weighted depending on the quantile θ we are estimating. More weight

is applied to errors close to the quantile of interest.

Given the estimated coefficients β̂θ and the set of predictors at time t, the

predicted value for a θ-quantile of real consumption growth c at time t+ h is:

Q̂ct+h|xt(θ|xt) = xt
′β̂θ. (3)

This yields a time series of quantile forecasts for each θj-th quantile, where θj lies in

a set of targeted quantile indices Θ = {θ1, θ2, ..., θJ}.

To obtain good predictions for the consumption growth quantiles, it is desirable

to combine a wide range of information about various parts of the economy to

increase the forecasting performance. The set of predictors used here comes from

the FRED-MD database by McCracken & Ng (2016). The dataset contains 128

macroeconomic time series at a monthly frequency starting in January 1959. The

variables cover information about output and income, the labor market, consumption

and orders, inventories, money and credit, interest and exchange rates, prices, and

the stock market. Apart from comprising a large set of possibly useful predictors,

the dataset is also updated continuously to take care of changing variable definitions

or data revisions. I use the April 2021 vintage, as most data for December 2020 only

becomes available with a lag or may be subject to revisions.7

7The values for April 2020 were missing for the 3-month AA Financial Commercial Paper Rate
(CP3Mx) and 3-month Commercial Paper Rate minus Fed Funds rate (COMPAPFFx). This
is because there was insufficient trading data in that month. I replaced the values by linearly
interpolating between March and May 2020.
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However, the standard quantile regression estimator in equation (1) may no

longer be consistent if the number of regressors is large relative to the sample size,

see e.g. Belloni & Chernozhukov (2011). Including a large set of predictors may

also overfit the data and weaken the forecasting performance. To address these

problems, I use factor estimation to reduce the number of predictors while keeping

their information content rich.

The construction of the independent variables proceeds in two steps. First, an

algorithm pre-selects a subset of regressors from the FRED-MD dataset. Since some

variables in the dataset are highly correlated (for example, the sample includes 13

different measures of industrial production), directly estimating factors from the

entire set of predictors may overemphasize certain features of the data. In addition,

shrinking the number of predictors each period provides the factor estimation proce-

dure with more flexibility to adapt to changes in parameters over time (Bai & Ng

(2008a), p. 314). Pre-selecting a subset of variables from the entire sample before

estimating the factors can therefore improve forecasting performance.

I pre-select a subset of predictors using `1-penalized quantile regression (Belloni

& Chernozhukov (2011)). All predictor series are standardized to have zero mean

and unit variance. For a given quantile index θ, the `1-penalized quantile regression

coefficients β̃θ satisfy

β̃θ = argmin
βθ∈Rk

Ĉθ (βθ) + λ
√
θ(1− θ)
n

k∑
i=1

σ̂i|βi|, (4)

where Ĉθ is the sample analog of the criterion function and n is the sample size. σ̂i is

the sample variance of predictor xi. The penalty term λ
√
θ(1− θ) depends on the

quantile index θ and a penalty level λ.8 `1-penalized quantile regression applies the

logic of LASSO regression to a quantile regression setting. The penalty restricts the

sum of absolute values of the coefficients to be below a fixed value, thus shrinking the
8The penalty level is chosen as described in Belloni & Chernozhukov (2011), p.86.
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coefficient values for variables with little explanatory power towards zero. For each

quantile in the targeted set Θ, the algorithm selects the k̃ = 40 predictors with the

largest absolute coefficients. The number of selected predictors is based on results by

Boivin & Ng (2006), who find that factors constructed from 40 pre-screened variables

can yield better forecasting performance than factors estimated from a large dataset

with over 100 macroeconomic time series.9

In a second step, the information from the subset of regressors is condensed into

a factor estimate. Given the subset of k̃ predictors, I combine those predictors using

partial quantile regression (Giglio et al. (2016)). This approach constructs a single

factor to predict the dependent variable. In constructing the factor, the individ-

ual predictors are weighted depending on their predictive power for the dependent

variable. This contrasts partial quantile regression (PQR) from factor estimation

via principal components, which aims to construct factors that describe the most

variation in the set of predictors. Instead, PQR aims to construct a factor with the

best predictive power for the variable of interest.

Assume that a scalar ft contains all relevant information for a conditional quantile

of consumption growth. Constructing a factor for each quantile via PQR follows

a two-step procedure. First, run univariate quantile regressions of ct+h on each

predictor xi,t for i = 1, ..., k̃. The slope estimates are γ̂θ,i. Second, compute the

cross-sectional covariance of xi,t with i’s first stage slope estimate in each period

t: f̂θ,t =
∑k̃
i=1 (xi,t − x̄i,t)

(
γ̂θ,i − ¯̂γθ,i

)
, where ·̄ denotes the sample average. The

covariance estimate f̂θ,t serves as an estimate of the latent factor realization. It is a

weighted average of individual predictors with weights determined by their predictive

strength for Qct+h(θ) from the first step.

Given these factors, we obtain the predicted quantiles from the quantile regres-

sions of ct+h as given in equation (1), where the predictors are the second stage

factor estimates f̂θ,t. Appendix A contains further information on an out-of-sample
9I generally find that more than 40 predictors have non-zero coefficients, hence selecting 40

variables does not include any predictors which would otherwise have been excluded by the `1-penalty.
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forecasting comparison against nineteen alternative factor model specifications. The

results demonstrate that the forecasting approach presented here strongly outper-

forms its competitors.

The goal is to forecast the 5, 25, 50, 75 and 95 percent quantiles of consumption

growth over the next twelve months at a monthly frequency.10 For a given month, I

define year-over-year consumption growth as the percent change in U.S. aggregate

real personal consumption expenditures (excluding durables) over the past twelve

months. The sample period covers January 1960 to December 2020. At a given point

in time, I pre-select the predictors and apply PQR to forecast out-of-sample with a

horizon of 12 months. The first out-of-sample prediction is for January 1980, and I

extend the sample each month with the new data available.

Figure 1 plots the predicted median (black) as well as 5, 25, 75 and 95% quantiles

(grey) versus the realized year-over-year growth rate of U.S. aggregate consumption

(blue dashed). Precisely, at a given point in time, the blue dashed line is the realized

growth rate of consumption over the past twelve months. The values for the quantiles

are the values predicted over the next twelve months, using the information available

until the given point in time. While one-year ahead forecasts are generally hard,

the model does a decent job of capturing the main business cycle movements of

the consumption growth rate. Most realizations of the growth rate fall within the

predicted 5 to 95% range. The Covid crisis was virtually impossible to forecast one

year in advance, but given the new information arriving in March and April of 2020

the model quickly adjust its predictions for future consumption growth, albeit with

a slight lag.
10Predictive quantile regressions can lead to quantile crossings (e.g. the 5% quantile being

predicted above the 10% quantile). To address this issue, I estimate a fine grid of quantiles with
θ ∈ {0.05, 0.06, ..., 0.94, 0.95} and use the Chernozhukov et al. (2010) rearrangement method to
ensure monotonicity of the quantile function. In evaluating the forecasting performance, I only focus
on the five targeted quantiles. To save computation time, I pre-select the predictors via `1-penalized
regression only for θ ∈ {0.05, 0.15, 0.35, 0.5, 0.65, 0.85, 0.95}.
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Figure 1: Predicted Quantiles vs Realized Consumption Growth

1960 1970 1980 1990 2000 2010 2020
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Note: The blue dashed line is the realized year-over-year rate of consumption
growth. The black line is the estimated median. The grey areas correspond to
the quantiles estimated for 5, 25, 75, and 95%. The sample period is 1:1980-
12:2020.

3.2 Approximating the consumption growth distribution

Given the estimated quantiles, the goal is to estimate the downside risk to consump-

tion growth based on the full conditional distribution of real consumption growth for

each point in time. I approximate the conditional distribution by fitting a skewed

t-distribution by Azzalini & Capitanio (2003) across the targeted quantiles in a given

period:

f(c;µ, σ, α, ν) = 2
σ
t
(c− µ

σ
; ν
)
T

(
α
c− µ
σ

√
ν + 1

ν +
( c−µ

σ

)2 ; ν + 1
)
, (5)

where t(·) and T (·) are the probability density function and cumulative distribution

function of the Student-t distribution, respectively. Denote the PDF of the skewed

t-distribution as f(·) and its CDF as F (·).
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Figure 2: Conditional Distribution of Consumption Growth

Note: The figure plots the density of the skewed t-distribution fitted across the
estimated quantiles of consumption growth for each month. Low density values have
a blue color, high values are red. The color scale is nonlinear to reflect that only few
density values lie above one. The sample period is 1:1980-12:2020.

Figure 3: Moments of Conditional Consumption Growth Distribution

Note: The moments are derived from the fitted skewed t-distribution. The sample
period is 1:1980-12:2020.

The skewed t-distribution allows to capture key properties of the consumption

growth distribution without imposing too much structure on the data. It is governed

by the parameters µ (mean), σ (variance), α (shape) and ν (thickness). As in the
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case of the standard t-distribution, we can account for changes in the location, scale,

and size of the tails of the distribution. However, the standard t-distribution is

symmetric. In contrast, the skewed t-distribution can capture asymmetries by using

the cumulative distribution function to shape the probability density function. The

skewed t-distribution can therefore capture different behaviour of upper and lower

quantiles, which can reflect differences between risks on the upside and the downside

of the conditional distribution. The shape parameter α governs to which extent the

CDF is used to skew the PDF. For α = 0, the distribution is symmetric. For ν →∞,

the skewed t-distribution converges to a skewed Gaussian distribution.

The skewed t-distribution in a period t is fitted by choosing {µt, σt, αt, νt}

to minimize the sum of squared differences between the estimated quantiles for

{θ1, θ2, ..., θJ} and the values implied by the skewed t-distribution:

{µ̂t, σ̂t, α̂t, ν̂t} = argmin
µ,σ,α,ν

∑
θ

Ä
Q̂ct+h|xt(θ|xt)− F

−1(θ;µ, σ, α, ν)
ä2
. (6)

Figure 2 shows the conditional distribution of consumption growth over time.

The color scale indicates the level of the density curve at a given point in time. Blue

colours indicate low values, and red indicates high density. The distribution exhibits

substantial variation over time. Upper quantiles are more stable over time than lower

quantiles, suggesting that downside risks are varying more over time than upside risk.

Especially recessions can be characterized by strong asymmetries between upper

and lower quantiles, whereas the conditional distribution is more symmetric during

normal times. The Volcker disinflation of the early 1980s and the 2008 financial

crisis show decreases in the median and long left tails in the conditional distribution.

The distribution is markedly slimmer during the 1990s and early 2000s, reflecting

the Great Moderation. After the financial crisis, the growth distribution keeps a

lower mean and larger variance, in line with lower growth prospects after the crisis.

The Covid recession is associated with long left tails but only a moderate shift in

the median of the expected distribution: While tail risks were perceived to be large,
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the most likely outcome for growth over the next year was not expected to be as

severe as for the Great Recession.

Figure 2 also stresses the importance of using a flexible density function to

capture the complex changes in the conditional distribution function. While crisis

periods are often characterized by a lower mean and higher variance, skewness and

kurtosis adjust in non-trivial ways. Figure 3 plots the first four moments of the

conditional consumption growth distribution over time. The behaviours of mean and

variance are easy to interpret. The mean of the consumption growth distribution falls

sharply during the early 1980s, the recession of 2008, and the Covid shock. Following

the global financial crisis, the mean does not fully recover to past levels, indicating

slower growth dynamics after the crisis. Recessions are associated with increases

in the variance of consumption growth. Particularly the global financial crisis and

the Covid shock show strong spikes in variance. The time series for skewness and

kurtosis are harder to interpret and we cannot identify a clear pattern related to the

business cycle. This in line with Plagborg-Møller et al. (2020), who make similar

findings for the GDP growth distribution.

3.3 Estimating the downside risk measure

Given the conditional distribution of consumption growth, I estimate downside risk

taking the entire probability mass below the median into account. This poses an

advantage over value at risk approaches, which are constrained to a certain quantile

(e.g. 5%) and thus only consider a certain point on the distribution. As in Adrian

et al. (2019), I use relative entropy to describe downside and upside risks to the

economy.

Relative entropy defines downside risk as the excess probability mass below a

certain π-quantile of the conditional distribution relative to the probability mass that

the unconditional density ĝct+h(c) assigns to those same values. Relative entropy

therefore summarizes the probability that the conditional distribution assigns to
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Figure 4: A Measure of Consumption Downside Risk

Note: The blue solid line is the downside entropy of the predicted distribution of consumption
growth over the next twelve months relative to the unconditional distribution. The red dashed line
shows the upside entropy. The shaded grey areas indicate NBER recessions. The sample period is
1:1980-12:2020.

“downside events” in relative terms. If the conditional distribution assigns a high

probability to its low realizations of the consumption growth rate relative to the

probability that the unconditional distribution assigns to those values, relative

entropy is high. Skewness in the unconditional distribution affects relative entropy as

it changes the difference in probability masses that the conditional and unconditional

distribution attribute to downside events.

Relative entropy is a one-sided measure and can be computed for both the

downside and the upside. Downside entropy is:

LDt (π) = −
∫ F̂−1

ct+h|xt
(π|xt)

−∞

Ä
logĝct+h(c)− logf̂ct+h|xt(c|xt)

ä
f̂ct+h|xt(c|xt)dc. (7)

Downside entropy measures the probability mass starting from a quantile with

index π all the way into the left tail of the conditional distribution, relative to the

probability mass that the unconditional distribution assigns to those values. During
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a recession, we should expect stronger downside risks to growth reflected in more

probability mass in the left side of the conditional distribution, which raises downside

entropy. The analog for the right side is called upside entropy, where we integrate

from a quantile with index π to infinity:

LUt (π) = −
∫ ∞
F̂−1
ct+h|xt

(π|xt)

Ä
logĝct+h(c)− logf̂ct+h|xt(c|xt)

ä
f̂ct+h|xt(c|xt)dc. (8)

For upside and downside risk, I choose a value of π = 0.5. Downside entropy

then describes the excess probability in the conditional distribution below the

median relative to the unconditional distribution. This is a natural choice to study

asymmetries in downside versus upside risk as it splits the distribution of possible

outcomes for consumption growth exactly in half.11

For the purpose of this paper, constructing the index of consumption downside risk

based on the conditional distribution of consumption growth has several advantages

over existing measures of risk or uncertainty. First, it does not conflate risk and risk

aversion into a composite index. Instead, it clearly identifies risk without any risk

aversion component. This stands in contrast to some newspaper-based uncertainty

indices (e.g. Baker et al. (2016)) or the widely used stock market volatility index

VIX. Second, it allows to distinguish between upside and downside risk – in contrast

to symmetric measures such as the aforementioned uncertainty indices. Third, unlike

risk measures constructed from financial returns, the index of consumption downside

risk isolates risk associated with a macroeconomic variable. Consumption downside

risk reflects risks to the consumer side of the macroeconomy and allows to distinguish

macroeconomic recessions from pure financial stress. The downside risk index has

a clear interpretation in the context of a consumption-based asset pricing model,
11Downside risk is different from negative tail risk as it considers all the probability mass below

the median instead of focusing on the extreme tail. Estimating extreme tails of macroeconomic
variables suffers from large estimation uncertainty since macroeconomic disasters are rare. In
contrast, the measure of downside risk is easier to compute and not reliant on extreme properties of
the consumption growth distribution.

19



whereas market-based risk measures may be affected by idiosyncratic firm effects

(Kelly & Jiang (2014)) or are based on high-frequency market movements with

unclear relations to macroeconomic fundamentals (Bollerslev & Todorov (2011a)).

Fourth, since the downside risk index does not rely on estimates for the extreme

tails, it avoids common issues of high estimation uncertainty for rare events with

limited macroeconomic data available.12

The time series behaviour of the downside risk measure is shown in Figure 4 as

the blue solid line. Downside risk was elevated during the Volcker disinflation period,

then declined during the 1980s. The index peaks again in September 1990, in the

middle of the next U.S. recession, and reaches a trough with the end of the recession

period. The subsequent peak in consumption downside risk coincides with the height

of the Asian financial crisis of 1997. Downside risk did not rise considerably during

the burst of the dot-com bubble and the following recession in the early 2000s. While

stock markets suffered heavy losses, the macroeconomic implications were relatively

gentle. In contrast, the global financial crisis of 2008/2009 had severe macroeconomic

implications and is associated with an all-time high in the downside risk index. The

index provides a granular picture of the Great Recession: Downside risk started

to increase in the mid-2000s and experienced a first peak in February 2007, well

before the recession officially started. The index then sharply declines in line with

the Fed interest rate cuts and Bush tax stimulus of the time. Following the collapse

of Lehman Brothers in September 2008, the measure starts a steep climb and peaks

in January 2009. After the Great Recession, downside risk remains elevated the

start of 2015, before declining even further. This decline follows the end of the Fed’s

large-scale asset purchases under QE3.

The Covid crisis caused only a moderate increase in the downside risk measure.

While the initial impact of the Covid shock was large, the recession was short-

lived and one-year ahead predictions were not as dramatic as during the 2008
12Further, in contrast to risk measures based on high-frequency market data, the downside risk

index can be computed using a widely available macroeconomic dataset such as FRED-MD.
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financial crisis. If I compute the downside risk measure based on one-quarter ahead

predictions of consumption growth instead, there is a strong sudden rise in downside

risk surmounting even the peak of the Great Recession, but an equally fast decline

back to normal levels towards the end of 2020, which is in line with the results

reported here. This result is reported in the Online Appendix. The weak rise in

downside risk following the Covid shock is not because the model is unable to pick

up existing downside risks, but instead because the predictions suggest the extreme

downside risks will have subsided by the end of the twelve month forecasting horizon.

The dashed red line in Figure 4 is upside entropy. Downside and upside entropy

move in the same direction during some times such as the early 1980s and much

of the 1990s. Upside entropy can rise during recessions, reflecting the potential for

economic recovery after a shock. However, both measures have overall different time

series behaviour and do move in opposite directions during important times such

as the lead-up to the Great Recession. The correlation between downside risk and

upside potential is 0.51. Downside risk shows stronger variation over time than the

upside counterpart and rises more strongly during crisis times. This reflects that

upper quantiles of the consumption growth distribution are more stable than lower

quantiles, see Figure 2.

3.4 Further results on consumption downside risk

How does the downside risk index compare to other measures of risk, uncertainty,

or economic and financial activity? Figure 5 plots the downside risk index (blue

dashed line, left scale) against six common indicators of risk/activity (orange line,

right scale). The top left panel compares the downside risk index against the U.S.

unemployment rate. Rises in downside risk are usually accompanied by rises in

unemployment, although unemployment rises slower and often peaks only after the

peak in downside risk. The decline in unemployment after a recession is usually also

slower. The top right panel shows the Baker et al. (2016) index of economic policy
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Figure 5: Downside Risk Index vs Other Variables
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Note: The sample period for the downside risk index is 1:1980-12:2020. The unemployment rate
and macroeconomic uncertainty index are plotted over the same period. The data for the Economic
Policy Uncertainty index starts in 1:1985. The VIX data starts in 1:1990. Data for the TED spread
is available from 1:1986, and data on the AAA corporate bond spread goes back to 1:1983.

uncertainty. Both series have a similar pattern during the late 1980s and 1990s.

Economic policy uncertainty is more susceptible to policy-related events, however,

and shows occasional upticks that are not reflected in downside risk. Examples

include the 9/11 terrorist attacks and the Brexit referendum. Interestingly, policy

uncertainty declines around the start of the Great Recession, supporting the idea

that policy interventions around that time reduced economic uncertainty. The index

also remains elevated for several years after the global financial crisis, similar to the

downside risk measure.

The middle left panel plots the VIX stock market volatility index versus downside

risk. While the VIX index rises during economic crises, the responses are often

sharp and short-lived. The VIX is also more susceptible to stress originating in

the financial markets, even if these do not (fully) spill over into the real economy.

Examples include the Long Term Capital Management collapse and the series of U.S.
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corporate scandals in the early 2000s. The middle right panel contains the Jurado

et al. (2015) macroeconomic uncertainty index for a forecasting horizon of twelve

months. The index averages the volatility in the unforecastable component of future

values across a range of macroeconomic variables. The uncertainty index shows low

to modest levels of economic uncertainty for most periods, and only rises significantly

in the recessions of the early 1980s, the global financial crisis of 2007-2009, and the

Covid crisis. The comparison between both measures following the Covid shock

demonstrates that while one-year ahead forecasting uncertainty was high (as also

indicated by the predicted variance in Figure 3), one-year ahead macroeconomic

downside risks increased considerably less than during other recessions.

The bottom panels compare the downside risk index with two yield spreads

commonly used to gauge stress in the bond market. The left panel shows the

TED spread, which is the difference between the 3-month LIBOR rate and 3-month

Treasury yields. During times of economic distress, lending to commercial banks

becomes more risky and the TED spread increases. The TED spread is strongly

affected by financial stress and peaked both during Black Monday in October 1987

and at the height of the credit crunch in October 2008. The TED spread rose

significantly less during the Covid crisis than during the previous financial crisis,

in line with the observation that the Covid turmoil in March 2020 did not lead to

widespread financial stress. The right panel compares downside risk to the spread

between the yield on Moody’s AAA-rated seasoned corporate bonds and the yield

on 10-year Treasuries. The spread rises mostly following financial turmoil in the

corporate bond sector, for example during the early 2000s. The measure also rises

sharply during the global financial crisis and remains at elevated levels for several

years thereafter, similar to the measure of downside risk.

While the downside risk index moves similarly to the other measures during

times of economic stress, the time series can be quite different outside of peak crisis

times. This is reflected in low contemporaneous correlations between downside risk
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and the other variables. The correlation with the TED spread is slightly negative at

a value of −0.05. The correlations with the VIX and Economic Policy Uncertainty

are 0.17 and 0.10, respectively. Downside risk also has low correlation with the

AAA corporate bond spread (0.25). The downside risk index shows the highest

correlations with the unemployment rate (0.26) and macroeconomic uncertainty

(0.31). This is encouraging since these two measures are those most closely reflecting

macroeconomic conditions, whereas the other variables either partly or fully reflect

financial conditions. Nevertheless, these correlations remain low. A regression of

downside risk on the six variables yields a R-squared of 17.3 percent. Downside risk

is a distinct measure of macroeconomic risk and not well explained by existing risk,

uncertainty, or activity indicators.

In summary, the index of downside risk shares certain commonalities with many of

the existing measures of risk, uncertainty, or economic/financial stress. All measures

rise during recessions periods before returning to their long-term average. However,

the speed and size of the rise and recovery can differ strongly between the different

variables, as well as between recessions. Downside risk has a time series behaviour

that is not easily explained by any of the other variables discussed. Its relation to

monetary policy and equity markets may therefore be distinct from that of existing

measures of risk or uncertainty.

4 Monetary Policy and Consumption Downside Risk

I study the effect of a monetary policy shock on the index of consumption downside

risk with vector autoregressions. The first subsection discusses the identification of

the monetary policy shock using high-frequency federal funds futures data as an

external instrument. The subsequent subsection discusses the main results. The

section next discusses state-dependent effects of the monetary policy shock. I close

with an analysis of the effects of policy shocks to downside risk when controlling

both risk aversion and uncertainty.
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4.1 External instrument VAR methodology

To study how monetary policy surprises affect macroeconomic downside risk, I

estimate the effect of a monetary policy shock on the risk measure using a structural

vector autoregression. Let Yt be the vector of (macroeconomic and financial) variables,

Aj the matrix of coefficients for the vector autoregessive lags, and Φ the matrix of

contemporaneous coefficients. I denote the vector of structural shocks as εt to get:

ΦYt = µ∗ +
p∑
j=1

AjYt−j + εt. (9)

The monetary shock is identified using a high-frequency instrument as proposed

by Gertler & Karadi (2015). This approach circumvents the simultaneity problem

between the monetary policy indicator and the downside risk index: While downside

risk may respond contemporaneously to changes in monetary policy, central bankers

may also take current developments in downside risk into account when setting the

policy rate. The shock is identified by looking at changes in a monetary policy

instrument within a tight (usually intra-day) window around monetary policy shifts.

The identifying assumption is that no other shocks affect the monetary instrument

within this window. This allows to identify monetary policy surprises using an external

instrument and does not impose any further restrictions on the contemporaneous

relation between the variables. Since we are only interested in the effect of a monetary

policy shock, this yields the required number of restrictions to estimate dynamic

responses of all variables in our VAR to a monetary shock.13

The monetary policy instrument is constructed from changes in the interest

rate implied by three-month federal funds futures around FOMC announcements.

These assets measure the expected average federal funds rate over the third calendar

month from the contract.14 Since the futures are forward-looking, they do not
13See Online Appendix D for details on the approach.
14For example, a three-month federal funds future in June 2021 measures market expectations

about the average effective federal funds rate in September 2021.

25



only reflect changes in the current short rate but also capture short-term forward

guidance.15 This is especially useful in a low-rate environment in which forward

guidance has become an important tool to steer the monetary policy stance. While

short-rate surprises may be small during the ZLB period, considering a slightly

longer horizon guarantees enough variation in the surprises to allow for a meaningful

analysis of the policy shocks. I follow the standard approach in the literature and

consider the change in three-month federal funds futures prices 10 minutes before

the announcement relative to 20 minutes after the announcement for all FOMC

meetings between February 1990 and December 2020 (see e.g. Gürkaynak et al.

(2005), Nakamura & Steinsson (2018)).

The raw monetary policy shock series may be contaminated by Fed information

effects. Market participants may interpret a change in the monetary policy stance not

only as a pure policy shock, but also as new information about the Fed’s assessment

of the future state of the economy. To separate the policy shock from the information

shock, I use the “poor man’s sign restrictions” of Jarociński & Karadi (2020). This

approach sets the Fed funds rate change to zero if the stock market and the interest

rate do not move in opposite directions over the event window. If the stock market

interprets a surprise loosening of the policy stance as expansionary, we would expect

stock prices to rise. If, however, the loosening in the policy stance is interpreted as a

sign for a bad economic outlook, stock prices fall. The goal of the sign restrictions is

to only keep the surprise changes from FOMC decisions which were not interpreted

as information events. Online Appendix E details the construction of the shock

series.16 To obtain a monthly shock series, I sum up all high-frequency Fed funds

rate surprises in a given month after having applied the sign restrictions.
15Jarociński & Karadi (2020) point out that usually six weeks elapse between two subsequent

FOMC meetings such that the response of the three-month federal funds future price on an FOMC
meeting day reflects the expected change in the federal funds rate following the next policy meeting.

16This appendix also describes how I construct the monetary policy shock series of Miranda-
Agrippino & Ricco (2021b), which aims to remove information effects using Greenbook projection
data. I use this alternative shock series for a robustness exercise.
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4.2 Main results

I estimate the VAR for monthly data covering the period February 1984 until

December 2019.17 The Covid period is not part of the baseline specification since

there is no clear guidance on how to interpret the Covid shock in a VAR setting.18

Since the data on the monetary policy instrument only dates back to February 1990, I

estimate the lag coefficients of the VAR for the longer sample and obtain the residuals.

I then identify the effect of monetary policy shocks using the high-frequency data and

residuals from February 1990 until the end of the sample, which yields an estimate

of vector s. I choose 12 lags for the baseline specification.19

The baseline specification includes industrial production as an indicator of real

economic activity, the consumer price index to measure prices, the excess bond

premium (EBP) by Gilchrist & Zakraǰsek (2012), the one-year U.S. Treasury yield

as a monetary policy indicator, and the indices of consumption downside as well as

upside risk.20 The excess bond premium measures investors’ attitude towards risk in

the U.S. corporate credit market. It outperforms many other financial variables in

terms of forecasting power for real activity and can hence serve as a proxy for the

financial information relevant to predict macroeconomic indicators.21

17Jarociński & Karadi (2020) choose February 1984 as the starting date for their VAR since it
coincides with the end of the Volcker disinflation period.

18Lenza & Primiceri (2022) and Ng (2021) make two different proposals on how to deal with the
Covid period in a VAR setting.

19Across all of my model specifications, the corrected Akaike Information Criterion (AICc) usually
suggests an optimal lag length between six and 12 months. A robustness check shows the results are
very similar for six lags.

20To ensure stationarity, industrial production and the CPI are in year-over-year growth rates.
The monetary policy indicator is in monthly changes, and the downside and upside risk index are
in year-over-year absolute changes. The EBP is in levels. Data for the EBP is from an updated
version of the Favara et al. (2016) data, the other macro time series are from FRED. I formally test
for stationarity using the Augmented Dickey-Fuller test with 12 lags (results not reported).

21I choose the one-year U.S. government bond yield as the monetary policy indicator since, relative
to the federal funds rate, the one-year rate contains some information about the effect of forward
guidance. It can therefore serve as a measure of the monetary policy stance even when the federal
funds rate is constrained by the zero lower bound. The empirical evidence of Gertler & Karadi
(2015) suggests that combining the one-year Treasury yield as a policy indicator and three-month
federal funds futures as a policy instrument allows to identify monetary policy shocks that affect
market interest rates and spreads in a sensible way.
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Figure 6 shows the impulse responses to a monetary policy shock that lowers the

1-year government bond yield by 25bp, which equals about a one standard deviation

impact. In line with economic theory, the policy loosening leads to a rise in industrial

production and the inflation rate. The excess bond premium decreases on impact

and remains below its steady state value for several months, indicating a loosening

in financial conditions. The downside risk index falls on impact, and the effect is

strongest after eight months, when the index falls by almost 0.1 points. This is in line

with the idea of transmission lags in the effect of monetary policy. The significant

effect on changes in downside risk persists for about one year, before returning to

zero. In contrast, the effect on downside risk is consistenly insignificant. Monetary

policy changes appear able to reduce downside risks, but are not found to be effective

in improving upside risks to the economy.

The heteroskedasticity-robust F-statistic from the first-stage IV regression

Figure 6: Main VAR results

The sample period is 1984:2-2019:12. The controls included are industrial production, the CPI, and
the excess bond premium (EBP). The monetary policy indicator is the first-differenced one-year
government bond yield, instrumented by the Jarociński & Karadi (2020) shocks. All data at a
monthly frequency, lag length is 12 months. Dashed lines are 95% confidence bands from a wild
bootstrap with 5,000 replications.
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is 10.03. Following the Staiger & Stock (1997) rule of thumb, this indicates the

instrument for the monetary policy shock is potentially weak as the F-statistic is only

marginally above ten. The impulse responses may be biased. Appendix G reports

results from a VAR estimated with the federal funds rate as the policy indicator

and high-frequency changes in the 3-month federal funds futures rate as the policy

instrument (see Figure 19a). This yields a strong instrument (F-statistic of 35.3).

The results are very similar, suggesting that the baseline results are not driven by a

weak policy instrument.

Appendix G also shows that the results are robust to using different combinations

of policy indicator and instrument, including the Covid period in the sample, using

a different monetary policy indicator, to only using six lags instead of twelve, to

including various other controls, and to using alternative measures of macroeconomic

downside risk. Lastly, the results are neither sensitive to non-invertibility concerns

nor potential model misspecification (see the discussion in Appendix F).

4.3 State-dependent results

Do monetary policy shocks have different effects on macroeconomic downside risk

depending on the state of the economy? During a recession, we may expect monetary

policy to have a stronger effect on downside risk than during normal times, when

the realization of negative macroeconomic outcomes is not a major concern. To test

this hypothesis, I allow for state dependence by estimating a threshold VAR:

Yt = I (rect−1) [µrec +
p∑
j=1

Brec,jYt−j ] + I (1− rect−1) [µnorec +
p∑
j=1

Bnorec,jYt−j ] + ut,

(10)

where I (rect−1) is an indicator function indicating whether the economy is in a

recession when the monetary shock hits the economy at the start of period t. All

coefficients are allowed to be state-dependent, including the impact effects s of the

monetary shock.
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The start of a recession is defined following the NBER’s Business Cycle Dates.

Since only using the official NBER recession months would yield too few recession

states for the VAR, I additionally define all months with an unemployment rate above

6.5% as recession months. Instead of only defining recession periods based on the

unemployment rate, this combined approach allows to more accurately capture the

start of a recession. Since the unemployment rate may only rise with a lag following

the start of a recession but monetary policy actions aimed at crisis mitigation often

occur at the onset of a downturn, only using a high unemployment rate to define

recessions could miss important policy events.

Figures 7 and 8 show the results for recession states and non-recession states,

respectively. Monetary policy has significant effects on consumption downside risk for

several months during a recession. The impulse response of downside risk is similar in

shape and larger in size to the main result. The measurable effect of monetary policy

on downside risk are particularly strong in recessions. The confidence bands are

wider than for the baseline specification. This is both due to the smaller sample size

and the larger volatility in recession periods. Nevertheless, the response of downside

risk is still borderline significant in the recession state, even at a 95% confidence

level. In contrast, there is no clear effect on upside risk.

In non-recession states, policy shocks have no clear effect on downside risk.

The results from the previous section are therefore largely driven by the effect of

monetary policy interventions in recessions. Loosening the monetary policy stance

can have an important short-term macroeconomic stabilization role during crisis

times but has little to no measurable effect on downside risk in other times.22

22Estimating state-dependent effects complicates the identification of impact responses due to a
weak instrument. Since strong monetary policy shocks occur mostly during crisis times, this can
especially harm the identification in the non-recession state. The robust F-statistic is 16.9 for the
recession state, but only 4.8 for the non-recession state. The results in Figure 8 should therefore be
interpreted with care. However, the results are almost idential when using a combination of policy
indicator and instrument that yields a strong instrument during normal times (F-statistic of 17.6),
see Figure 19b in Appendix G.
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Figure 7: State-dependent VAR results (Recession states)

The sample period is 1984:2-2019:12. The controls included are industrial production, the CPI, and
the excess bond premium (EBP). The monetary policy indicator is the first-differenced one-year
government bond yield, instrumented by the Jarociński & Karadi (2020) shocks. All data is at a
monthly frequency, the lag length is 12 months. Dashed lines are 95% confidence bands from a wild
bootstrap with 5,000 replications.

4.4 Risk Aversion and Uncertainty

This section demonstrates that the effect of monetary policy on downside risk is

not explained by a risk aversion or uncertainty channel. The downside risk index

is an asymmetric index of macroeconomic risk and is designed to not capture risk

aversion or symmetric uncertainty. Therefore, the results of this chapter should be

robust to controlling for measures of risk aversion or uncertainty. To make this point

clear, this section adds measures of risk aversion and uncertainty to the vector of

variables from the main VAR. The uncertainty measure is the Jurado et al. (2015)

index of macroeconomic uncertainty for a forecasting horizon of twelve months. The

risk aversion measure comes from Bekaert et al. (2021).23 Figure 9 shows that even
23The authors estimate the risk aversion coefficient for a representative agent in a no-arbitrage

asset pricing model. Since asset prices and risk premia are functions of the risk aversion coefficient
and other model parameters, risk aversion can be backed out from a set of observed financial
variables and the model restrictions. The authors provide data for risk aversion from 1986:6 onwards.
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Figure 8: State-dependent VAR results (Non-recession states)

The sample period is 1984:2-2019:12. The controls included are industrial production, the CPI, and
the excess bond premium (EBP). The monetary policy indicator is the first-differenced one-year
government bond yield, instrumented by the Jarociński & Karadi (2020) shocks. All data is at a
monthly frequency, the lag length is 12 months. Dashed lines are 95% confidence bands from a wild
bootstrap with 5,000 replications.

after controlling for both of these variables, the effect of a monetary policy shock on

downside risk remains very similar.

In summary, this section shows that monetary policy has a significant impact

on downside risk to consumption growth. Following a 25bp loosening in the policy

stance, downside risk declines significantly for about one year. This effect of monetary

policy shocks is driven by crisis periods, whereas monetary policy has little to no

measurable effect on downside risk in normal times. Policy shocks do not change

upside potential to consumption growth. These results persist when controlling

for risk aversion and macroeconomic uncertainty since downside risk is a distinct

measure of macroeconomic risk.
This restricts the VAR sample to 1986:6 - 2019:12.
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Figure 9: VAR Results - Including Risk Aversion and Uncertainty

The sample period is 1987:6-2019:12. The controls included are industrial production, the CPI, the
excess bond premium (EBP), the Jurado et al. (2015) macro uncertainty index, and the Bekaert
et al. (2021) risk aversion index. The monetary policy indicator is the first-differenced one-year
government bond yield, instrumented by the Jarociński & Karadi (2020) shocks. All data is at a
monthly frequency, the lag length is 12 months. Dashed lines are 95% confidence bands from a wild
bootstrap with 5,000 replications.

5 Consumption Risk and Equity Returns

This section studies if downside consumption risk predicts stock market returns in

the aggregate and across industries. Let rt,t+s be the aggregate stock market return

between period t and t+ s. For a given forecasting horizon s, the predictive return

regression then is

rt,t+s = as + b′sxt + ut,t+s, (11)

where xt is the vector of predictors. The dependent variable is the excess return on

the Fama-French market portfolio, where the safe rate is the one-month Treasury

bill return. The possible predictors are the consumption downside risk index, the

VIX volatility index, the variance risk premium (VRP), and the log price-dividend
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ratio.24 As in the VAR analysis, the risk measure is in year-on-year changes. The

other variables are in levels, as is common in the empirical literature.

Dividend yields have been extensively studied as a predictor of stock returns,

Table 1: Market return predictability regressions - Baseline results

Horizon h = 3 Horizon h = 6
Risk 1.61 1.51 1.61 1.37 1.25 3.04 2.84 3.04 2.78 2.55

(0.80) (0.83) (0.83) (0.64) (0.68) (1.71) (1.61) (1.64) (1.54) (1.49)
[0.72] [0.72] [0.72] [0.71] [0.71] [1.25] [1.25] [1.25] [1.23] [1.23]

log(PD) -1.13 -1.32 -2.42 -2.64
(0.70) (0.71) (1.29) (1.35)
[0.77] [0.76] [1.39] [1.38]

VIX 0.33 0.06 1.05 0.80
(0.84) (0.58) (0.95) (0.74)
[0.84] [0.90] [1.13] [1.13]

VRP 1.99 2.10 2.18 2.29
(0.34) (0.31) (0.74) (0.62)
[0.72] [0.78] [0.86] [0.83]

Constant 2.07 18.49 1.21 0.5 19.31 4.08 38.91 1.37 2.39 38.26
(0.67) (10.04) (2.01) (0.58) (10.16) (1.41) (18.26) (2.59) (1.20) (20.14)
[0.66] [10.98] [2.03] [0.86] [10.75] [1.32] [19.71] [2.69] [1.38] [20.07]

R2 4.3 6.3 4.2 11.0 13.5 7.6 12.3 8.3 11.4 17.2
The dependent variable is the excess return on the S&P 500 index over the next 3 or 6 months. Risk is the downside

entropy of the consumption growth distribution, in year-over-year growth rates. The log price-dividend ratio is taken
from Robert Shiller’s website. The VIX is the monthly level of the VIX index, constructed as the within-month average
of daily adjusted closing prices. The variance risk premium is from Hao Zhou’s website. The sample period is 01/1990
until 12/2019. All data is at a monthly frequency. Hodrick (1992) and Newey-West standard errors in parentheses and
brackets, respectively. R2 is adjusted for the number of predictors.

especially over longer horizons (e.g. Fama & French (1988)). Crucially, consumption-

based asset pricing models such as Campbell & Cochrane (1999) suggest a close link

between price-dividend ratios and aggregate consumption. To the extent that these

two measures co-move, the price-dividend ratio serves as a gauge of the forecasting

power of aggregate consumption for stock returns. If the consumption downside risk
24Data on the S&P 500 and the VIX is from Yahoo Finance. The time series for the safe rate

is from Kenneth French’s Data Library. Data on the variance risk premium is from Hao Zhou’s
personal website (https://sites.google.com/site/haozhouspersonalhomepage/). Data on the
price-dividend ratio is from Robert Shiller’s website (http://www.econ.yale.edu/˜shiller/data.
htm).
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Table 2: Market return predictability regressions - State-dependent

Horizon h = 3 Horizon h = 6
Risk 0.32 0.33 0.39 0.35 0.45 0.52 0.53 0.68 0.54 0.79

(0.43) (0.40) (0.39) (0.43) (0.42) (0.81) (0.63) (0.66) (0.71) (0.58)
[0.67] [0.67] [0.68] [0.67] [0.68] [1.15] [1.15] [1.17] [1.15] [1.18]

Recession -3.24 -4.07 -4.2 -3.58 -5.97 -5.06 -6.75 -7.40 -5.34 -10.71
(2.49) (2.29) (2.56) (2.12) (1.94) (3.95) (4.39) (5.69) (3.48) (5.65)
[3.04] [3.03] [3.14] [3.08] [3.17] [5.37] [5.42] [5.84] [5.38] [5.83]

Rec*Risk 4.74 4.35 4.48 3.90 2.95 9.31 8.52 8.67 8.60 6.58
(0.96) (0.94) (0.94) (1.07) (0.89) (2.73) (2.21) (2.43) (2.61) (1.92)
[1.94] [1.96] [1.95] [1.96] [1.97] [2.90] [2.94] [2.90] [2.94] [2.99]

log(PD) -1.12 -1.53 -2.32 -2.92
(0.61) (0.63) (1.12) (1.09)
[0.78] [0.80] [1.45] [1.42]

VIX 0.59 0.76 1.45 1.97
(0.79) (0.57) (1.08) (1.02)
[0.90] [0.97] [1.26] [1.19]

VRP 1.66 1.81 1.41 1.66
(0.55) (0.37) (1.22) (0.80)
[0.74] [0.76] [0.88] [0.84]

Constant 2.42 18.78 0.99 1.15 21.38 4.65 38.18 1.15 3.58 40.91
(0.56) (8.76) (1.88) (0.65) (9.08) (1.10) (16.05) (2.44) (1.28) (15.82)
[0.65] [11.14] [2.13] [0.80] [11.08] [1.27] [20.51] [2.87] [1.28] [20.40]

R2 14.7 15.4 13.7 18.9 21.3 24.1 28.1 25.1 25.4 32.5
The dependent variable is the excess return on the S&P 500 index over the next 3,6,12,36 months. Risk is the downside

entropy of the consumption growth distribution, in year-over-year growth rates. Recessions are as defined by the NBER.
The log price-dividend ratio is taken from Robert Shiller’s website. The VIX is the monthly level of the VIX index,
constructed as the within-month average of daily adjusted closing prices. The variance risk premium is from Hao
Zhou’s website. The sample period is 01/1990 until 12/2019. All data is at a monthly frequency. Hodrick (1992) and
Newey-West standard errors in parentheses and brackets, respectively. R2 is adjusted for the number of predictors.

index reflects information other than that contained in aggregate consumption, we

should expect the predictive power of the risk index to be robust to the inclusion of

the price-dividend ratio.

The VIX is a measure of option-implied expected volatility of the S&P 500 index.

While the index formally contains information about risk and investors’ risk attitude

(risk aversion), it is often considered a measure of uncertainty more generally (e.g.

Bloom (2009)). Since the consumption downside risk index is not constructed as a
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Table 3: Market return predictability regressions - Industry portfolios

Linear State-Dependent
Risk Recession Risk ∗ Recession

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Non-Durable Goods 1.91 1.01 0.00 0.99 1.10 4.28 7.12 2.08
Utilities 1.97 1.04 0.18 1.00 -7.54 4.59 6.54 2.45
Healthcare 2.26 1.21 0.86 1.25 -1.04 4.96 5.22 2.55
Wholesale 2.44 1.19 0.76 1.21 1.59 4.95 6.30 2.54
Energy 2.53 1.45 0.44 1.60 -8.70 5.28 7.65 2.80
Chemicals 2.95 1.20 0.48 1.12 -1.20 5.47 9.16 2.98
Computers 2.99 1.55 -0.26 1.56 -5.47 7.09 11.99 3.35
Telecommunication 3.32 1.35 1.15 1.23 -10.23 5.99 7.89 3.14
Manufacturing 3.99 1.66 0.69 1.39 -5.08 7.18 12.21 4.24
Finance 4.13 1.72 0.88 1.48 -5.38 7.63 11.99 4.49
Durable Goods 5.55 2.44 1.19 1.88 -2.34 10.66 16.19 6.80

The dependent variable is the return on the industry portfolio over the next 6 months. Risk is the downside entropy of the
consumption growth distribution, in year-over-year growth rates. Recessions are as defined by the NBER. All regressions
include a constant but the coefficient on the constant is not reported to conserve space. The sample period is 01/1990 until
12/2019. All data is at a monthly frequency. The standard errors are based on Hodrick (1992).

measure of uncertainty in financial markets but of downside risks to the macroecon-

omy, we should expect both measures to contain different information for predicting

stock market returns.

The variance risk premium aims to proxy investor risk aversion and can be

obtained from a decomposition of the VIX index into a risk component and a residual

associated with risk aversion. The VRP has been shown to be a good short-horizon

predictor of aggregate stock market returns (Bollerslev et al. (2009)). However, a

large part of its predictive ability may be due to investor aversion of tail risk (extreme

negative outcomes) instead of overall risk (Bollerslev et al. (2015)). In this sense, the

VRP also serves as a (noisy) measure of tail risk aversion. Since the consumption

downside risk index does not contain information about (tail) risk aversion, we should

expect its predictive ability to be robust to controlling for the VRP.

The sample period for the baseline regressions is January 1990 until December

2019. All regressions are estimated at a monthly frequency with a forecasting horizon
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of 3 or 6 months. For these forecasting horizons, the monthly returns are overlap-

ping. I use Hodrick (1992) standard errors to account for this feature of the data.

Since Hodrick (1992) standard errors are constructed for the null hypothesis of no

predictability by any predictor, using them in regressions with multiple predictors

makes them hard to interpret and formally invalid (see Bollerslev et al. (2015)). To

address this issue, the main tables report Newey-West standard errors as well.

Table 1 contains the results. All predictors are standardized such that the coeffi-

cients indicate the change in excess market returns following a one standard deviation

change in the predictor. Changes in downside risk are associated with significant

stock market movements, even after controlling for the alternative predictors. A

one-standard deviation increase in the downside risk measure predicts an increase in

aggregate excess returns of around 1.5 percentage points for the three-month horizon,

and of around 3 percentage points for the six-month horizon. The positive sign on

the coefficient is in line with the prediction of disaster risk models: Since a rise in

downside risk poses an additional source of risk for risk averse stock investors, the

risk premium required to hold stocks increases. The multivariate regressions indicate

that the downside risk index captures information distinct from the information

about risk and risk aversion contained in the VIX or VRP. The risk index also

contains information about aggregate consumption beyond the information about

the mean contained in the price-dividend ratio.

Is the predictive power of the downside risk index for stock returns largely driven

by crisis times? I introduce a recession indicator I (rec), which equals one during

NBER recession months. This allows to consider state-dependent effects of the

downside risk index in the predictive regressions:

rt,t+s = as + bsI (rect) + csRiskt + dsI (rect) ∗Riskt + e′sxt + ut,t+s, (12)

where xt is now the vector of other predictors.

The results for the state-dependent regressions are in Table 2. Again, the co-
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efficients indicate the expected change in stock returns following a one standard

deviation rise in the predictor. The predictive ability of downside risk for excess

returns is concentrated in recession periods. During recessions, the downside risk

indicator predicts future stock market returns for both horizons. A one standard

deviation rise in the downside risk measure predicts excess return increases around 4

percentage points for the three-month horizon, and around 8.5 percentage points

for the six-month horizon. These magnitudes are economically meaningful when

considering that stock markets can easily move by more than 20 percentage points

over the course of six months during recessions. For example, the excess return

on the market portfolio between September 2008 and February 2009 was −50.8%,

while the downside risk index increased by multiple standard deviations. The results

are again robust to including the price-dividend ratio, the VIX, and the VRP as

additional predictors. Appendix H shows that the results are robust to allowing for

state dependence of the other predictors, using different sample periods, controlling

for median or realized consumption growth.

We can also expect downside risk to have varying predictive power across in-

dustries. If investors are averse to downside risk, sectors with a stronger exposure

to downside risk should command higher returns following an increase in risk. To

test this hypothesis, I run predictive regressions for the excess returns of the twelve

Fama-French SIC industry portfolios.25

Table 3 reports the results for the regressions with a forecasting horizon of 6

months. The left column contains the results for univariate regressions with only the

downside risk measure as a predictor. Industries that can be thought to have little

exposure to downside risk such as non-durable goods, utilities, and healthcare show

lower coefficients, between 1.91 and 2.26. In contrast, sectors more closely following

the business cycle such as manufacturing, financial services, and durable goods

consumption all have higher coefficients. For example, a one standard deviation
25The return data comes from Kenneth French’s website. I omit the portfolio “Other”, leaving

eleven portfolios.
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rise in downside risk predicts 4.13% higher returns in the financial services sector

over the next six months. While downside risk is a significant predictor across many

industries, it has quantitatively stronger predictions for sectors with higher downside

risk exposure.

The differences across industries remain largely unchanged if we allow for state-

dependent effects as given in equation (12). Healthcare and the wholesale sector still

have the low sensitivity to downside risk, whereas manufacturing and durable goods

show the highest sensitivities. As for the aggregate market return, the predictive

power of the downside risk index is virtually entirely concentrated in recession times,

but the coefficient sizes for the interaction term Risk ∗ Recession now vary from 5.22

(healthcare) to 16.19 (durable goods). In summary, downside risk predicts excess

stock returns for the aggregate market and across a wide range of industries. More

procyclical industries have higher sensitivities to downside risk.

6 Conclusion

This paper documents the existence of a downside risk channel of monetary policy. I

start by estimating a model-free index of downside risks to aggregate consumption

growth. Higher index values indicate an increased probability of low realizations of

consumption growth. Rises in downside risk coincide with major U.S. recessions,

but downside risk does not reflect pure financial stress. The index of downside

consumption risk is directly related to the series of consumption growth and admits

a natural interpretation in the context of a consumption-based asset pricing model.

The index shows similar but nevertheless distinct time series behaviour relative to

several existing measures of risk or uncertainty.

The main result is that monetary policy shocks have asymmetric effects on

consumption growth risk. A loosening of the monetary policy stance reduces macroe-

conomic downside risks during crisis times. This effect persists for about one year.

Monetary policy has little to no impact on downside risk during normal times.
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The results also document that policy shocks yield no significant change in upside

potential. Importantly, these results are not driven by Fed information effects, the

Covid period, shifts in the median of the consumption growth distribution, or by

risk aversion and uncertainty.

Changes in downside risk are associated with sizeable changes in future stock

market returns. Increases in downside risk can predict high future returns especially

during crisis times, when the downside risk index can move by multiple standard

deviations in a short time. Industry-sorted portfolios have varying sensitivities to

changes in downside risk. Sectors such as healthcare and utilities are less sensitive

to changes in downside risk than manufacturing or finance.

My findings support the idea that central banks can avert macroeconomic dis-

asters in crisis times. By loosening the policy stance, the probability of negative

outcomes can decrease significantly. However, the results suggest monetary policy

has little opportunity to increase the growth potential of the economy in normal

times. The downside risk channel of monetary policy may also explain the strong

reaction of stock markets following policy interventions in recessions. If investors

perceive that a rate cut has lowered macroeconomic risks, valuations should increase

following the decision. This gives monetary policy a powerful lever on stock prices

that goes beyond its effects on realized growth rates of macroeconomic variables.
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FOR ONLINE PUBLICATION

Appendix A Consumption forecasting comparison

To find the best out-of-sample forecasting model for consumption growth quantiles,

I compare the out-of-sample forecasting accuracy across a range of different model

alternatives. The goal is to forecast the 5, 25, 50, 75 and 95 percent quantiles of the

distribution of consumption growth over the next year at a monthly frequency.26 In

a given month, I define year-over-year consumption growth as the percent change in

U.S. aggregate real personal consumption expenditures (excluding durables) over

the past twelve months.

I consider twenty different forecasting models. All models condense the infor-

mation from a large set of predictors into factor estimates and use these factors

as predictors in quantile regressions as in equation (1). The data comes from the

FRED-MD database by McCracken & Ng (2016), which contains 128 monthly

macroeconomic and financial variables. The sample period covers January 1960

to December 2020. The first out-of-sample forecast is made in January 1970 for

year-over-year consumption growth in January 1971. With each new month, I extend

the sample by the additional information from the new month and re-estimate the

factors.

The first eight models use as predictors the first one, two, ..., eight principal

components of the data.27 I call these models PC1, PC2, ..., PC8. The method

of principal components estimates factors to explain the variation among the set
26Predictive quantile regressions can lead to quantile crossings (e.g. the 5% quantile being

predicted above the 10% quantile). To address this issue, I estimate a fine grid of quantiles with
θ ∈ {0.05, 0.06, ..., 0.94, 0.95} and use the Chernozhukov et al. (2010) rearrangement method to
ensure monotonicity of the quantile function. In evaluating the forecasting performance, I only focus
on the five quantiles mentioned.

27The Bai & Ng (2002) PCp2 criterion indicates eight significant factors for the vast majority of
periods.
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of predictors.28 Following Bai & Ng (2008b), we write for observations ait with

i = 1, ...N and t = 1, ..., T

ait = λ′iFt + eit, (13)

where λi is a w × 1 vector of factor loadings, Ft is a w × 1 vector of (static) factors,

and eit is the idiosyncratic error term. Let At = (a1t, a2t, ..., aNt)′ be a N × 1 vector,

Λ = (λ1, ..., λN )′ a N × w matrix, and et = (e1t, ..., eNt)′. Then, we have

At = ΛFt + et. (14)

Further, if we define the T ×N matrices A = (A1, ..., AT )′ and e = (e1, ..., eT )′, and

the T × w matrix F = (F1, ..., FT )′, we obtain the matrix expression

A = FΛ′ + e. (15)

Let F̃w be a T ×w matrix collecting the estimated factors for all periods, and Λ̃w be

a N ×w matrix of corresponding factor loadings. As described in Bai & Ng (2008b),

I obtain Λ̃w =
√
Neigw (A′A), where eigw(·) collects the eigenvectors corresponding

to the w largest eigenvalues of the N × N matrix A′A. Under the normalization

Λ̃w′Λ̃w/N = Iw, we estimate the factors as F̃w = AΛ̃w/N . The factors can then be

used as predictors in the quantile forecasting problem.

The method of principal components ensures that the w factors selected are those

that describe the most variation of the data A. This allows to capture much of the

information in the set of predictors with a considerably smaller number of factors.

However, when constructing the factors, this method does not take into account

the extent to which individual predictors have predictive power for the variable

of interest. In forecasting, we may instead wish to construct factors by explicitly
28Before estimating the factors from the FRED-MD data set, I use the transformations suggested

in McCracken & Ng (2016) to make all series stationary. This loses the first two observations since
some series are second differenced. I also remove outliers and remove all series with missing values,
which loses up to five variables.
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acknowledging that certain variables are good predictors for the variable of interest

while others are not, and apply different weights accordingly.

As described in the main text, partial quantile regression (PQR) by Giglio et al.

(2016) constructs a single factor to predict the dependent variable. The factor is a

weighted average of the predictors with weights determined by their predictive power

from a univariate quantile regression of the dependent variable on the predictor in

question. Model 9 applies PQR on the entire FRED-MD sample. Since using so

many predictors in the PQR may be too noisy, an alternative model estimates a

factor via PQR using as input data the eight factors estimated via the method of

principal components. I call this model PQR-PC.

Since some variables in the FRED-MD dataset are highly correlated, estimating

factors from the entire set of predictors may lead to an unwanted overweighting of

certain features of the data. Further, with a large number of ’noisy’ time series in the

data, the average size of the common component can be small and the cross-correlation

of idiosyncratic error terms can be large. Since the asymptotic theory of the method

of principal components requires a large size of the common component and weak

cross-correlation in idiosyncratic errors, pre-selecting the number of variables can

improve the factor estimation and lead to a more precise forecasting model. Boivin

& Ng (2006) find that factors constructed from 40 pre-screened variables can yield

better forecasting performance than factors estimated from a large dataset with over

100 macroeconomic time series.

Models 11 to 18 pre-select 40 variables from the entire sample before estimating

the 1, 2, ..., 8 factors. I denote these models as PC1∗, PC2∗, ..., PC8∗. The variables

are chosen via `1-penalized quantile regression, see equation (4) in the main text.

Model 19 estimates a single factor using partial quantile regression from the pre-

selected set of 40 predictors (PQR∗). Model 20 estimates a single factor from the

eight factors of model 18 (PQR-PC∗).

To compare the out-of-sample forecasting performance across the different models,
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I compute the Koenker & Machado (1999) R1, which transfers the logic of the

standard R2 measure used in OLS to quantile regression. For the θ-th quantile, R1(θ)

compares the sum of weighted prediction errors between an unconstrained model

(our forecasting model) and a constrained model (the historical sample average):

R1(θ) = 1−
∑
t ρθ
Ä
ct − x′tβ̂θ,t

ä
∑
t ρθ

(
ct − 1′β̄θ,t

) , (16)

where ρθ (z) = z (θ − I (z < 0)) is the quantile loss function, β̂θ,t are the coefficients

estimated using the data available in period t, and 1′β̄θ,t is the historical sample

average of the θ-th quantile. For in-sample estimations, R1 is bound to lie between 0

and 1. For out-of-sample estimations, R1 will take a negative value if the forecasting

model performs worse than the historical sample average.

The results from the out-of-sample forecasting exercise are in Table 4. The value re-

ported forR1 is the average across the targeted quantiles Θ = {0.05, 0.25, 0.5, 0.75, 0.9}.

The first column contains the results for the entire sample, from January 1980 until

December 2020. The principal component models generally perform poorly and have

negative R1, except for the model with only one factor. Including additional factors

as predictors seems to overfit the data. The PQR model has a considerably higher

R1 value of 17.5. The best model is the PQR with pre-selection (R1 of 21.1). The

second column considers the sample starting in February 1984, which coincides with

the start of the VAR sample and excludes the turbulent 1970s and early 1980s. The

PQR model with pre-selection also outperforms all other models over this shorter

sample.

The third column compares the model fit using only the 5, 25 and 50% quantiles,

which are most relevant for constructing the measure of downside risk. The PQR

model again demonstrates the best fit when combined with pre-selecting the predic-

tors. All models generally perform poorer for the lower quantiles than for the upper

quantiles, which is evident from lower R1 values in the third column. This could re-
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flect the higher variability and existence of stronger feedback loops/nonlinearities for

the lower quantiles, and stresses the importance of choosing an accurate forecasting

model. The diffusion index models (PC1 to PC8 and PC1∗ to PC8∗), which are

popular choices for mean forecasts, can dramatically underperform relative to the

sample average and lead to misguided conclusions.

Table 4: Forecasting Model Comparison

Full sample Shorter sample Lower quantiles
PC1 5.0 4.9 7.2
PC2 -6.4 -4.8 -10.5
PC3 -16.1 -15.6 -25.0
PC4 -14.1 -13.6 -23.2
PC5 -10.9 -11.9 -18.9
PC6 -9.7 -8.8 -19.2
PC7 -7.2 -6.0 -17.0
PC8 -8.1 -6.4 -18.4
PQR 17.5 15.6 7.8
PQR-PC -4.5 -2.3 -11.3
PC1∗ 6.1 3.9 8.2
PC2∗ -9.1 -10.0 -14.9
PC3∗ -10.5 -11.4 -17.0
PC4∗ -8.7 -9.2 -14.9
PC5∗ -6.1 -7.1 -11.8
PC6∗ -5.5 -6.3 -11.3
PC7∗ -4.8 -5.9 -11.1
PC8∗ -3.5 -4.7 -9.5
PQR∗ 21.1 19.7 13.0
PQR-PC∗ -2.0 -2.4 -6.3

The value in the table is the average value of R1 across the targeted
quantiles, in percent. The highest value of each column is in bold face. The
full sample is 01/1980-12/2020. The shorter sample starts in 02/1984 to
coincide with the start of the VAR sample. The third column contains
results for the average fit over the 5, 25 and 50% quantiles.
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Appendix B Selected predictors for consumption fore-

casting

Which predictors are particularly useful in predicting quantiles of the consumption

growth distribution? Table 5 lists the ten most frequently selected predictors from

the pre-selection via `1-penalized quantile regression. The left column considers

the most frequently chosen predictors for the 5% quantile. Real personal income

(RPI), the ratio of inventories to sales among all business (ISRATIOx), and the

short-term Treasury spread (TB3SMFFM) are included in the set of predictors most

often. Three labor market measures also seem to contain useful information for the

lower consumption quantiles: the U.S. unemployment rate (UNRATE), the number

of civilians unemployed 27 weeks or more (UEMP27OV), and the average weekly

overtime hours in the manufacturing industry (AWOTMAN). The list is completed by

housing starts in the South (HOUSTS), the US-Canadian exchange rate (EXCAUSx),

and two credit spreads. The first is the spread between the 3-month commercial

paper rate and the federal funds rate (COMPAPFFx), and the second is Moody’s

Baa corporate bond yield over the federal funds rate (BAAFFM).

The results for the median and the 95% quantile include similar variables, although

the ranking can differ and some additional variables are among the most frequent

predictors. For example, the S&P 500 price-earning ratio and several indicators of

housing starts (PERMITS, PERMITMW, PERMITW) make the list for the median.

The top ten for the 95% quantile includes three foreign exchange rates (US-Canada,

US-Japan, and US-Switzerland). Additional variables are the ratio of nonrevolving

consumer credit to personal income (CONSPI), the amount of consumer motor

vehicle loans outstanding (DTCOLNVHFNM), and the amount of unfilled orders for

durable goods (AMDMUOx).

Two qualifications are in order. First, the `1-penalty usually selects only one

variable out of a group of highly correlated variables and disregards the rest. However,
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the estimator does not care which variable exactly is chosen (Bai & Ng (2008a),

p. 307). Therefore, taking the list of selected predictors literally is not advisable.

Instead, each predictor should be viewed as being replaceable by another highly

correlated variable representing similar information about the economy. Second, the

frequency with which a predictor is included in the subset of 40 targeted predictors

only provides indirect information about the importance of that predictor for a

consumption quantile. The strength of a predictor is ultimately given by the weight

it obtains in the factor estimation step of the partial quantile regression.

To provide a more thorough picture of the type of variables useful for predicting

different quantiles of consumption growth, I first categorize the set of predictors

into eight groups following McCracken & Ng (2016). The groups are 1) output and

income, 2) labour market, 3) housing, 4) consumption, orders, and inventories, 5)

money and credit, 6) interest and exchange rates, 7) prices, and 8) stock market.

Given these groups, for each month I compute the share of the 40 selected predictors

which fall into each of the eight groups. The results are shown in Figures 10, 11 and

12 for the 5% quantile, median, and 95% quantile, respectively.

Interest and exchange rates as well as indicators of money and credit play a

prominent role as predictors for the 5% quantile (especially in the first half of the

sample), which is in line with this paper’s results on the effect of monetary policy

on downside risk to consumption. Labour market variables also feature frequently

as selected predictors. The overall composition of the selected subset of predictors

varies strongly over time for the 5% quantile but is more stable for the median

and the 95% quantile. Interest and exchange rates are selected less frequently as

predictors for the higher quantiles, whereas output and income play an increasing

role. Housing market variables are picked rarely as predictors for the 95% quantile

but more often for the median and 5% quantile. In contrast, prices are picked rarely

as predictors for the 5% quantile but more often for the median and the 95% quantile.

Variables representing consumption, orders, and inventories represent only a minor
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share of predictors across all quantiles. This casts doubt on any approach trying to

predict the consumption growth distribution using exclusively information about

consumption itself. However, note that individual variables out of any of these groups

may still be selected frequently as a predictor even if the group only represents a

small share of the selected predictors. For example, while consumption, orders, and

inventories only account for a small share of predictors, the inventories-to-sales ratio

features prominently as a predictor for all quantiles, see Table 5.

Overall, the results from this chapter demonstrate that the consumption growth

distribution is best predicted using a wide range of predictors capturing information

about different aspects of economic conditions. This validates the estimation approach

taken in this paper, which starts from a large data set to consider as many potential

predictors as possible. It also means that the transmission channel from monetary

policy to downside risk is not immediately clear: While interest rates feature strongly

as predictors of the consumption growth distribution, the analysis also demonstrates

that many other factors, with which monetary policy may interact, forecast future

consumption growth quantiles. More research is necessary to disentangle these

components.
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Table 5: Most frequently selected predictors

5% Quantile Median 95% Quantile
Name Frequency Name Frequency Name Frequency

1 ISRATIOx 99.8 ISRATIOx 94.3 RPI 84.4
2 RPI 98.4 EXCAUSx 92.5 CONSPI 83.7
3 TB3SMFFM 94.1 PERMITMW 84.5 EXCAUSx 82.5
4 EXCAUSx 92.9 PERMITS 83.5 DTCOLNVHFNM 77.9
5 COMPAPFFx 84.2 S&P PE ratio 81.7 EXJPUSx 76.0
6 UNRATE 83.7 HWIURATIO 81.3 EXSZUSx 75.4
7 HOUSTS 78.7 CES1021000001 78.7 ISRATIOx 73.1
8 AWOTMAN 75.2 PPICMM 77.2 CES1021000001 72.0
9 UEMP27OV 73.8 CONSPI 77.0 AMDMUOx 70.1
10 BAAFFM 68.5 PERMITW 75.8 PERMITS 67.9

Legend: AMDMUOx – Unfilled orders for Durable Goods. AWOTMAN – Average weekly overtime hours: manufacturing.
BAAFFM – Moody’s Baa Corporate Bond Minus Fed Funds. CES1021000001 – All employees: mining and logging:
mining. COMPAPFFx – 3-month commercial paper minus federal funds rate. CONSPI – Nonrevolving consumer
credit to personal income. DTCOLNVHFNM – Consumer motor vehicle loans outstanding. EXCAUSx – Canada/US
foreign exchange rate. EXJPUSx – Japan/US foreign exchange rate. EXSZUSx – Switzerland/US foreign exchange rate.
HOUSTS – Housing Starts, South. HWIURATIO – Help wanted to number of unemployed. ISRATIOx – Total business:
inventories to sales. PERMITMW – New private housing permits, Midwest (SAAR). PERMITW – New private housing
permits, West (SAAR). PERMITS – New private housing permits, South (SAAR). PPICMM – PPI: Metals and metal
products. RPI – Real personal income. S&P P/E Ratio - P/E ratio on S&P composite index. TB3SMFFM – 3-month
treasury yield minus federal funds rate. UEMP27OV – Civilians Unemployed for 27 weeks and over. UNRATE –
Civilian unemployment rate.
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Figure 10: Composition of selected predictors - 5% Quantile

Note: For each month, the figure plots the share of the 40 selected predictors for the 5% quantile
coming from different variable groups. The group definitions are as in the appendix of McCracken
& Ng (2016).

Figure 11: Composition of selected predictors - Median

Note: For each month, the figure plots the share of the 40 selected predictors for the median coming
from different variable groups. The group definitions are as in the appendix of McCracken & Ng
(2016).
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Figure 12: Composition of selected predictors - 95% Quantile

Note: For each month, the figure plots the share of the 40 selected predictors for the 95% quantile
coming from different variable groups. The group definitions are as in the appendix of McCracken
& Ng (2016).

55



Appendix C Details on the consumption growth distri-

bution and downside risk

Figure 13 provides further evidence on the accuracy with which the skewed t-

distribution approximates the estimated quantiles. The solid blue lines are the 5,

50, and 95% quantiles estimated in the out-of-sample forecasting exercise. The red

dashed lines are the corresponding values for those quantiles implied by the skewed

t-distribution fitted to the estimated quantiles at a given point in time. As described

in the main text, I fit the distribution to the estimated quantiles based on the 5,

25, 50, 75, and 95% quantiles. I only plot the 5, 50, and 95% quantiles here to

keep the figure simple. The implied quantiles closely track the estimated quantiles.

The skewed t-distribution is flexible enough to fit the different quantiles closely in

each period, irrespective of the behaviour of the quantiles. This supports the use of

the skewed t-distribution to approximate the conditional distribution of expected

consumption growth.

Figure 14 shows the change in the downside and upside risk index relative to the

value 12 months ago. Since the risk index in levels does not always yield stationarity

in the VAR, I use these 12-month differences in the VAR analysis. For consistency,

this transformation is also used in the predictive regressions.

Figure 15 shows the downside and upside entropy for a forecasting horizon of 3

months as opposed to 12 months. Similar to the downside risk index for a 12-month

forecasting horizon, the 3-month index spikes during the early 1980s recession and

the Great Recession. The index is mostly muted between the mid-1980s and the

mid-2000s, reflecting the Great Moderation. The index starts to rise before the

Great Recession and then falls with the start of the Great Recession after the Fed

rate cuts, even though this increase and subsequent decline are less pronounced than

for the 12-month index. The index spikes following the Lehman collapse and then

starts a persistent decline with the end of the Great Recession. The biggest contrast
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with the 12-month index is the steep rise and decline of the 3-month downside risk

index around the Covid recession. The steep and sudden increase in short-term

downside risk reflects the fear about lockdown measures and the initial drop in

aggregate consumption growth. The forecasting model is flexible enough to pick up

this dramatic change in economic outlook. At the same time, short-term downside

risk falls strongly after its peak in April 2020, supporting the information contained

in the 12-month index: While short-term downside risk was very high, the one-year

outlook was not as bad as during other recessions.

Figure 13: Estimated vs Implied Quantiles

Note: The blue lines are the 5, 50 and 95% quantiles of year-over-year con-
sumption growth from the one-year ahead forecasting exercise. The red dashed
lines are the corresponding values for the quantiles implied by the skewed
t-distribution fitted across the estimated quantiles. The sample period is 1:1980-
12:2020.
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Figure 14: 12-month changes of Downside/Upside Risk

Note: The blue line shows the year-over-year difference in downside entropy for
U.S. consumption growth. The red line shows the year-over-year difference in
upside entropy. The sample period is 1:1981-12:2020.

Figure 15: Downside/Upside Risk for three-month horizon

Note: The blue line shows the downside entropy for U.S. consumption growth
with a forecasting horizon of three months. The red line shows the corresponding
upside entropy. The sample period is 1:1980-12:2020.
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Appendix D Details on external instrument VAR

Given an instrument for the monetary policy shocks, we can estimate the effect

of a monetary policy shock on downside risk using the external instruments VAR

approach of Gertler & Karadi (2015). In the following, I provide an overview of their

methodology. Consider a reduced form VAR(p) with shock ut = Sεt, where εt is the

structural shock and S ≡ Φ−1. We let Bj = SAj be the matrix of coefficients and

µ = Sµ∗ such that

Yt = µ+
p∑
j=1

BjYt−j + ut. (17)

We decompose the structural shock into the monetary policy shock εpt and all other

shocks εqt such that εt =
î
εpt , ε

q
t
′ó′. Analogously, we can decompose the reduced-form

errors ut =
î
upt , u

q
t
′ó′. Focusing on the impulse responses to a monetary shock εpt , we

write

Yt = µ+
p∑
j=1

BjYt−j + sεpt (18)

where s is the column of matrix S that determines the effect of εpt on ut. Let Zt be

a vector of instrumental variables such that E [Ztεpt ] = Ω (instrument relevance) and

E
î
Ztε

q
t
′ó = 0 (instrument exogeneity). In my case, the instrumental variable used

is the high-frequency change in the implied interest rate from three-month federal

funds futures around FOMC announcements.

We obtain the impulse responses as follows. First, estimate the reduced form

VAR via OLS to get estimates for all Bj and the residuals upt and uqt . Let sq be the

response of uqt to monetary policy shock εpt such that uqt = sqεqt . Then, perform a

two-stage least squares regression of uqt on upt using instrument Zt:

uqt = c+ sq

sp
ûpt + ξt, (19)

where ûpt is the fitted value from the first stage regression of upt on Zt. As explained

in Gertler & Karadi (2015), the first stage isolates the variation in the reduced form
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residual for the policy indicator upt that is due to the structural policy shock. The

second stage splits uqt into a part driven by the policy shock (sqεpt ) and a residual

(ξt), and replaces εpt with the fitted value from the first stage (ûpt ≈ spε
p
t ⇒ εpt ≈

ûpt
sp ).

Gertler & Karadi (2015) show how to isolate sq and sp from equation (19) using

the reduced-form variance-covariance matrix. Given estimates for sp, sq and Bj , we

obtain the impulse responses to a monetary policy shock using the reduced-form

VAR in equation (18).
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Appendix E Details on monetary policy shocks

To construct the monetary policy shock series, I follow the standard approach in the

literature and consider the change in three-month federal funds futures prices 10

minutes before the announcement relative to 20 minutes after the announcement.29

I consider two alternative measures: The “poor man’s sign restriction” shocks of

Jarociński & Karadi (2020) and the shocks of Miranda-Agrippino & Ricco (2021b).

Both approaches aim to identify the policy shock after having removed any Fed

information effects that may pollute the information contained in high-frequency

Fed funds futures returns.

For the Jarociński & Karadi (2020) approach, I obtain a series of high-frequency

changes in federal funds futures and the S&P 500 for the period February 1990 until

December 2017, which was kindly provided to me by Refet S. Gürkaynak. From

January 2018 until December 2020, I construct the high-frequency changes myself

using 1-minute price data on electronically traded futures from FirstRateData. I

obtain the FOMC meeting dates and times from a file kindly shared with me by

Marek Jarociński.30 The meeting dates include intermeeting decisions such as the

announcements of asset purchases.

For each announcement, I identify the change in the price of the federal funds fu-

tures contract that expires in the third month after the FOMC announcement. Denote

the price of this contract 10 minutes before the announcement as ft,t+3 and 20 minutes

after the announcement as ft+∆,t+3. The implied rate (in percent) of a Fed funds fu-

tures contract is 100 minus the current price. The implied interest rate change around

the announcement is then ∆it = (100− ft+∆,t+3)− (100− ft,t+3) = ft,t+3− ft+∆,t+3.

To account for Fed information effects, Jarociński & Karadi (2020) propose to

use sign restrictions: If interest rate cuts are perceived as expansionary policy shocks,
29Three-month federal funds futures measure the expected average federal funds rate over the

third calendar month ahead. This horizon captures surprises to the short rate and forward guidance.
30The FOMC meeting time is the time of the press release. For the period 2018-2020 I take the

press release times from the Federal Reserve Board website.
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they should be associated with rises in stock markets such that the interest rate

and stock prices move in opposite directions. The “poor man’s sign restrictions”

set policy surprises equal to zero if the implied rate change and stock prices do

not move in opposite directions around FOMC announcements. To implement this

approach, I obtain the changes in the S&P 500 index value in the same 30-minute

window around FOMC announcements as for federal funds futures, and apply the

sign restrictions accordingly. The data for S&P 500 prices until 2017 comes from the

dataset provided by Refet S. Gürkaynak. The data for 2018-2020 is at a 1-minute

frequency and comes from FirstRateData. Lastly, to obtain a time series of policy

shocks, I sum up the interest rate changes within the same month. Months without

a FOMC announcement have a value of zero. This yields a sample covering February

1990 until December 2020.31

For the Miranda-Agrippino & Ricco (2021b) shocks, I start from the same high-

frequency changes in federal funds futures rates around FOMC announcements.

Instead of using stock market information, the authors propose to cleanse the high-

frequency shocks from information effects by projecting it on the Fed’s private

assessment of the macroeconomic outlook and the lags of the shock series. Similar

to Romer & Romer (2004), the Fed’s private information is proxied by the latest

Greenbook projections before the FOMC decision.32 Data on the Greenbook projec-
31Jarociński & Karadi (2020) aggregate the individual shocks to a monthly frequency first and

then apply the sign restrictions, whereas I apply the sign restriction at the level of each FOMC
meeting and then aggregate to a monthly frequency. I choose the latter approach since it allows
for a more granular distinction between “true” monetary policy shocks and Fed information effects.
Especially during months with multiple Fed decisions my approach allows for the presence of both
a monetary policy and a Fed information effect, whereas the original Jarociński & Karadi (2020)
effect restricts one of the effects to be zero. My approach also proves to be more flexible during the
recent Covid-19 crisis: While I get a strongly expansionary effect using my approach, the Jarociński
& Karadi (2020) approach restricts the monetary shock to be zero since the S&P 500 overall fell
following the March 2020 Fed announcements.

32While Romer & Romer (2004) only focus on scheduled FOMC meetings, Miranda-Agrippino &
Ricco (2021b) also consider intermeeting decisions. They acknowledge that the Greenbook projections
do not fully capture the Fed’s information before intermeeting decisions because Greenbook forecasts
are only made prior to scheduled FOMC meetings, whereas the arrival of new information between
scheduled meetings is likely to have caused the intermeeting session. I do not resolve this issue in
my work.
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tions is from the Philadelphia Fed’s Greenbook Data Set. To obtain the component

of the high-frequency federal funds futures rate change around a certain FOMC

meeting (∆im) that cannot be forecast by the Fed’s private information, I regress

the high-frequency change on the latest Fed’s Greenbook projections:

∆im = α+
3∑

k=−1
βk∆ỹm,k +

2∑
k=−1

γk (∆ỹm,k −∆ỹm−1,k)

+
3∑

k=−1
λkπ̃m,k +

2∑
k=−1

ϕk (π̃m,k − π̃m−1,k)

+
3∑

k=−1
θkũm,k +

2∑
k=−1

ψk (ũm,k − ũm−1,k) +MPIm,

(20)

where ∆ỹm,k is the Greenbook projection before FOMC meeting m for real GDP

growth k quarters ahead. Analogously, π̃m,k denotes the forecast for the inflation

rate and ũm,k for the unemployment rate. Note that the unit of observation for

this regression is FOMC meetings, not months or days. The residual MPIm is the

unforecastable change in the federal funds futures rate around FOMC meeting m. I

sum all residuals for FOMC meetings that occur within the same month to obtain a

monthly series. All months without a FOMC decision are assigned a value of zero.

Let MPIt denote the value of this new time series in a given month t.

With imperfect information, markets can be slow in absorbing new information

from policy shocks. Therefore, changes in market prices can be autocorrelated as

prices not only respond to information about the current, but also to past shocks.

To purge the shock series from this autocorrelation, Miranda-Agrippino & Ricco

(2021b) regress the policy shock in a given period on its past lags:

MPIt = φ0 +
12∑
j=1

φjMPIt−j +MPIt (21)

The regression uses only observations corresponding to non-zero values of the de-

pendent variable MPIt. The residual MPIt is the final policy shock. Since the
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Greenbook projections are published with a lag of five years, the shock series is only

available until 2015. Correcting for slow information absorption loses the first twelve

non-zero observations of the series since we use twelve lags in the autoregression.

The sample period is then February 1991 until December 2015. Figure 16 compares

the Jarociński & Karadi (2020) and the Miranda-Agrippino & Ricco (2021b) shock

series.

Figure 16: Monetary Policy Shock Series over Time
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Note: The sample period for the Jarociński & Karadi (2020) shocks is February
1990 until December 2020. The sample period for the Miranda-Agrippino &
Ricco (2021b) shocks is February 1991 until December 2015.

To check the quality of the monetary policy shock series, I analyze them along

several dimensions. First, I check the quality of the raw high-frequency changes in

federal funds futures. For the data until 2017, my paper uses the high-frequency

changes from an updated version of the Gürkaynak et al. (2005) dataset, which is also

used by Jarociński & Karadi (2020). These changes are constructed using tick-by-tick

data. However, for the period 2018-2020, I use minute-by-minute data to construct

the changes myself. To see if the minute-by-minute data yields comparable results
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to tick-by-tick data, I construct high-frequency changes from the minute-by-minute

data for the period October 2008 until December 2017, which goes as far into the

past as my data allows. I then compare the series to the original Gürkaynak et al.

(2005) data. The series are similar and I cannot reject the null hypothesis that

the mean difference between my shocks and the Gürkaynak et al. (2005) shocks is

different from zero for the period October 2008 until December 2017.

I also compare my version of the Miranda-Agrippino & Ricco (2021b) shocks to

the original shock series constructed by the authors. When comparing the overlapping

sample from February 1991 until December 2009, I find no statistically significant

average difference between the two series. Both shock series are very similar, even

though I ran the autoregressive regression in the last step of constructing the shocks

using data from 1991 until 2015, whereas the authors’ sample stopped in 2009.

Next, I verify that my updated versions of the Jarociński & Karadi (2020) and

Miranda-Agrippino & Ricco (2021b) series have zero mean and no autocorrelation for

up to twelve lags. For the Jarociński & Karadi (2020) shocks I also check whether

they can be predicted by the same Greenbook variables used in constructing the

Miranda-Agrippino & Ricco (2021b) shocks. That is, I run equation 20 with my

version of the Jarociński & Karadi (2020) shocks as the dependent variable. I can

reject the joint null hypothesis that all coefficients are equal to zero at the 5% level.

However, if I re-run the regression using only data for scheduled FOMC meetings,

I cannot reject the joint null hypothesis that all coefficients are zero, even at the

10% level. Since Greenbook forecasts are only published prior to scheduled meetings,

this provides additional support for the poor man’s sign restrictions in removing

information effects.
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Appendix F Non-invertibility and misspecification

SVAR analysis implicitly makes the assumption of (partial) invertibility. Since we

are only interested in a monetary policy shock, partial invertibility is a sufficient

condition to identify the correct dynamic responses to a monetary shock. Under

partial invertibility, the shock of interest can be recovered from current and past

macro variables such that knowing the true shock series would not provide additional

information to the researcher (Plagborg-Møller & Wolf (2021), p.966 and Stock &

Watson (2018), p.919). If this assumption is violated, the estimated IRFs are biased

across all horizons (Plagborg-Møller & Wolf (forthcoming), Appendix B.4).

As a robustness check, I estimate an internal instrument VAR, which identifies

the correct impulse responses even under non-invertibility (Plagborg-Møller & Wolf

(2021)). The internal instrument SVAR orders the policy instrument first in a

recursively identified SVAR.33 The ordering of the variables is (Instrument, CPI,

Production, Policy Rate, EBP, Downside Risk, Upside Risk). With this order, the

monetary policy indicator has contemporaneous effects on the excess bond premium

and the downside risk index. The policy instrument is not contemporaneously

affected by any of the other variables but has impact effects on all other variables.

The results are in Figure 17. The impact effect on downside risk is almost

identical, despite the different identification scheme. After that, downside risk falls

even lower than in the baseline regression and declines by up to 0.2 points, which is

almost one standard deviation. This effect may be partly influenced by the overall

slightly different dynamics of the internal IV VAR system relative to the baseline

VAR. By construction, a shock to the monetary policy instrument lowers the 1-year

rate by 25bp on impact. However, in the internal IV VAR the response of the 1-year

rate does not revert to zero as quickly as in the external instrument approach, and

the rate also loosens again by over 10bp after 6 months. This additional loosening
33In population, this approach estimates the same impulse responses as the Local Projection

Instrumental Variable (LP-IV) approach estimated via two-stage least squares, see Plagborg-Møller
& Wolf (2021).
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is associated with a stronger rise in industrial production and the CPI, as well as

a stronger fall in the excess bond premium. It may also explain the additional fall

in downside risk. In any case, the internal IV approach suggests an even stronger

response of downside risk to a monetary shock than suggested by the main results.

To address potential concerns about model misspecification, I re-estimate the

Figure 17: VAR Robustness Exercise - Estimating Internal IV VAR

The sample period is 1990:1-2019:12. The controls included are industrial production, the CPI, and
the excess bond premium (EBP). The monetary policy indicator is the first-differenced one-year
government bond yield, instrumented by the Jarociński & Karadi (2020) shocks. All data is at a
monthly frequency, the lag length is 12 months. Dashed lines are 95% confidence bands for the
proxy SVAR from a wild bootstrap with 5,000 replications.

impulse responses of the baseline model from local projections identified via the

external instrument approach.34 While local projection and vector autoregression

estimate the sample impulse responses in population (Plagborg-Møller & Wolf (2021)),

LPs can have lower bias in empirical applications (Li et al. (2022)).35 Even if the

VAR is misspecified, we should expect very similar IRFs up to a horizon equal to lag
34Since VAR and LP estimate the same system for a one-step ahead forecast, the identification of

the two systems is identical when using external instruments (Miranda-Agrippino & Ricco (2021a)).
35However, the simulation study by Li et al. (2022) also shows that LPs usually have higher

variance. The authors conclude that researchers will generally prefer the VAR approach unless they
put a strong weight on bias reduction in the bias-variance trade off.
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length p. For horizons larger p, the IRFs may differ markedly. Figure 18 compares

the IRFs from the baseline specification with those estimated using local projection.

I find that the IRFs are overall very similar, even after horizon p.

Figure 18: VAR Robustness Exercise - Estimating Local Projections

The sample period is 1984:2-2019:12. The controls included are industrial production, the CPI, and
the excess bond premium (EBP). The monetary policy indicator is the first-differenced one-year
government bond yield, instrument by the Jarociński & Karadi (2020) shocks. All data is at a
monthly frequency, the lag length is 12 months. Dashed lines are 95% confidence bands for the
proxy SVAR from a wild bootstrap with 5,000 replications.
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Appendix G VAR robustness exercises

This section presents several robustness exercises in support of the main VAR result.

To save space, I often only report the impulse response of the downside entropy

measure and omit the impulse responses for the standard set of controls.

To address concerns about a weak instrument in the main specification, I replace

the monetary policy indicator and instrument to obtain a strong instrument. The

new policy indicator is the first difference of the effective federal funds rate. The

instrument is the high-frequency change in the 3-month federal funds rate, without

any adjustments to remove information effects. The first-stage F-statistic is 23.8,

well above the rule-of-thumb threshold of 10. Figure 19a shows the results. Figure

19b uses the same combination of indicator and instrument and estimates the

impulse responses for the non-recession state. The first-stage F-statistic is 17.6.

This confirms that monetary policy shocks have little to no measurable impact on

downside consumption risk during normal times.

Figure 19c uses year-over-year differences in the one-year Treasury yield instead

of month-over-month differences. The impulse response for downside entropy is

similar to the baseline case. However, the robust F-statistic with a value of 6.0

indicates a weak instrument.

Instead of using the Jarociński & Karadi (2020) policy shocks, Figure 19d shows

the impulse responses to a policy shock identified via the Miranda-Agrippino & Ricco

(2021b) shocks. The construction of these shocks is detailed in Appendix E. The

results are again similar to the main result. Overall, the choice of policy indicator

and instrument therefore seems to make no difference to the main message of the

VAR analysis: A loosening monetary policy shock reduces downside consumption

risk over the short to medium run.

Figure 20a uses the Jarociński & Karadi (2020) instrument but restricts the

sample used for identifying the impact effects to end in December 2007. This excludes

the ZLB period, during which the short rate showed little variation. Identifying
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the policy shock during the ZLB period is complicated, and excluding the period

may change the impact effects. However, the impulse responses are unchanged. The

first-stage robust F-statistic is 10.7.

Next, I consider two alternative sample periods for the VAR. Figure 20b extends

the sample for both the macroeconomic variables and the policy instrument until

December 2020, which includes the Covid shock. Including the Covid period does not

change the conclusions about the effect of monetary on consumption downside risk.

Figure 20c uses a sample from January 1990 until December 2019 to estimate the

VAR coefficients. The sample for the instrument is February 1990 until December

2019, which is the same as in the main VAR. Using this shorter sample excludes the

entire 1980s, during which a structural break may have occured at some point. The

results support the conclusions from the main specification.

Figure 20d uses six instead of twelve lags in the VAR. The impact effects are

very similar. The impulse responses now have a smoother path back to zero, but

the policy shock still has a significant negative effect on downside risk for about ten

months.

Figure 21 shows the impulse responses to a monetary shock from a large-scale

VAR with eleven variables. The macro variables are the monetary policy indicator,

industrial production, the U.S. employment rate, aggregate real personal consumption

expenditures, the PCE deflator, real orders, the real wage, average hours worked,

the S&P 500, money stock M2, and the downside risk index of consumption. This

is a variation of the macroeconomic VAR in Christiano et al. (2005) inspired by

Jurado et al. (2015), who study the effect of uncertainty shocks in a recursively

identified macroeconomic VAR. In contrast, I use the VAR to study the effect of a

monetary policy shock, which I identify using the Jarociński & Karadi (2020) shocks.

This imposes no restrictions on the contemporaneous responses of the variables to a

policy shock. The policy shock still has a significant effect on downside risk upon

impact, even though the confidence bands are now wider. This may be because of
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the large number of coefficients to be estimated relative to the sample size. Further,

the identification may suffer from a weak instrument as the first-stage F-statistic is

only 8.15.

The next four robustness checks consider alternative controls for consumption

risk. Figure 22 uses the predicted median from the fitted skewed t-distribution

for consumption growth with a forecasting horizon of twelve months. Since the

downside entropy measure is computed for all below-median values of the conditional

distribution, changes in the median of the conditional relative to the unconditional

distribution will be reflected in downside entropy. The goal of the robustness check

is to demonstrate that the effect of monetary policy on downside risk is not simply

driven by the median of the distribution. Similarly, Figure 22b shows the impulse

response of downside entropy when controlling for the expected mean of consumption

growth (again taken from the fitted skewed t-distribution). Figure 22c reports the

results when controlling for the expected variance. This is particularly relevant since

one aim of this paper is to demonstrate the importance of asymmetries between

upside and downside risk, which cannot be captured by the variance. In all three

cases, the effect of monetary policy on downside consumption risk prevails and is

very similar to the main specification.

Figure 22d uses a different measure of downside risk to illustrate the results are

not specific to the choice of measuring risk via relative entropy. Given the fitted

skewed t-distribution described in the main text, I estimate downside risk as the

expected value of all potential outcomes below the median. This risk measure is

called expected shortfall and given by

SFt+h(π) = 1
π

∫ π

0
F̂−1
ct+h|xt(θ|xt)dθ, (22)

where π = 0.5 in our case and F̂ct+h|xt is the conditional distribution of 12-month

ahead consumption growth ct+h given the set of predictors xt. While relative entropy

measures the asymmetry of the conditional distribution in excess of the asymmetry
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exhibited by the unconditional distribution, expected shortfall summarizes downside

risk in absolute terms. During a recession, we should expect a higher probability of

negative events such that expected shortfall rises. The VAR uses the year-over-year

difference in expected shortfall to make the time series stationary. The impulse

response for expected shortfall confirms that a loosening in the monetary policy

stance raises expected shortfall, thereby lowering downside risk. This effect reverts

after about twelve months.

Figure 19: VAR Robustness Exercise - Different monetary policy indicators and
instruments

(a) Strong instrument (b) Strong instrument (non-recession state)

(c) Different policy indicator (d) Different policy instrument

For panels (a) and (b), the monetary policy indicator is the first difference of the effective federal
funds rate, instrumented by the raw high-frequency change in the 3-month federal funds rate. For
panel (c), the monetary policy indicator is the year-over-year difference in the one-year government
bond yield, instrumented by the Jarociński & Karadi (2020) shocks. In panel (d), the monetary
policy indicator is the first-differenced one-year government bond yield, instrumented by the Miranda-
Agrippino & Ricco (2021b) shocks. The sample period is 1984:2-2019:12. The controls included
are industrial production, the CPI, and the excess bond premium (EBP). All data is at a monthly
frequency, the lag length is 12 months. Dashed lines are 95% confidence bands from a wild bootstrap
with 5,000 replications.
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Figure 20: VAR Robustness Exercise - Different sample periods and lag lengths

(a) Excluding ZLB period in IV regression (b) Including the Covid period

(c) Shorter VAR sample (d) Using only six lags

For panel (a), the sample period for the IV regression is 1990:2-2007:12. In panel (b), the sample
period for the VAR is 1984:2-2020:12. For panel (c), the sample period is 1990:1-2019:12. For
panel (d), the lag length is six months. Unless stated otherwise, the sample period for the VAR is
1984:2-2019:12 and the sample period for the IV regression is 1990:2-2019:12. The controls included
are industrial production, the CPI, and the excess bond premium (EBP). All data is at a monthly
frequency. Unless stated otherwise, the lag length is 12 months. Dashed lines are 95% confidence
bands from a wild bootstrap with 5,000 replications.
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Figure 21: VAR Robustness Exercise - 11-variable VAR

The sample period is 1984:2-2019:12. The controls included are industrial production, the U.S.
employment rate, aggregate real personal consumption expenditures, the PCE deflator, real orders,
the real wage, average hours worked, the S&P 500, and money stock M2. The monetary policy
indicator is the first-differenced one-year government bond yield, instrumented by the Jarociński &
Karadi (2020) shocks. All data is at a monthly frequency, the lag length is 12 months. Dashed lines
are 95% confidence bands from a wild bootstrap with 5,000 replications.
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Figure 22: VAR Robustness Exercise - Consumption risk controls

(a) Controlling for expected median (b) Controlling for expected mean

(c) Controlling for expected variance (d) Using expected shortfall

In panel (a), the VAR includes the expected median of consumption growth as a control. Panel (b)
controls for the expected mean of consumption growth. In panel (c), the additional control is the
expected variance of consumption growth. For panel (d), the downside risk measure is the expected
shortfall considering all values below the median. The sample period is 1984:2-2019:12. The variables
included are the monetary policy indicator, industrial production, the CPI, and the excess bond
premium (EBP). All data is at a monthly frequency, the lag length is 12 months. Dashed lines are
95% confidence bands from a wild bootstrap with 5,000 replications.
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Appendix H Return prediction robustness exercises

This appendix shows that the results from the predictive stock market return

regressions are robust to several other specifications. To conserve space, I focus

on six month-ahead excess market returns unless stated otherwise. I first allow for

state dependence of the VIX, variance risk premium and price-dividend ratio. The

results are in the left column of Table 6. None of these controls except the variance

risk premium has significant predictive power once we include the interaction term

of downside risk and the recession indicator. Interestingly, the interaction term

between the VRP and the recession indicator has a negative sign, precisely opposite

to economic intuition: Investors should demand higher risk premia when risk aversion

rises.

The results remain similar when we extend the sample until December 2020,

which includes the Covid turmoil from March 2020 (middle column). Market returns

show an even stronger sensitivity to downside risk during recession times. Conditional

on being in a recession, a one standard deviation rise in downside risk predicts an

increase in excess market returns of 7.53 percentage points over the next six months.

The variance risk premium also has significant state-dependent effects, although

these are quantitatively weaker and again appear with a negative sign. The right

column considers a sample going back to February 1984, which is equivalent to the

baseline VAR sample. Since the data for the VIX and the VRP does not extend that

far into the past, the regression only contains the price-dividend ratio and downside

risk as predictors. Again, the downside risk measure is strongly significant.

Table 7 considers alternative measures of consumption growth. The top panel

considers the linear case without state dependence. The bottom panel reports the

regression results under state-dependent effects. The left column adds realized

year-over-year consumption growth as an additional control. Realized consumption

growth is a poor predictor of six-month ahead stock market returns over the sample

period. Therefore, the results for downside risk are not driven by its association with
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realized consumption growth.

The middle column adds expected median consumption as a control. Expected

median consumption is defined as the 50% quantile of the estimated conditional

consumption growth distribution. Since downside entropy is constructed as the excess

probability mass below the median of the conditional relative to the unconditional

distribution, shifts in the median could be correlated with the downside risk measure.

In this case, the effects for downside entropy might turn out to simply capture

changes in the median of the consumption growth distribution, which would not

support the downside risk hypothesis. The results indicate that the predictive ability

of downside risk is robust to controlling for the expected median.

The right column reports results when controlling for the expected variance. Since

the downside risk hypothesis stresses asymmetry and the importance of downside

risk versus symmetric uncertainty, we should expect the results to go through

when including the expected variance. The expected variance is estimated based

on the fitted skewed t-distributions in each month. The regression results show

that the coefficient on downside risk is still significant during recessions, which is

where its predictive ability is concentrated. While the coefficient on the interaction

term between the recession indicator and the expected variance is also statistically

significant, its sign points in the opposite direction: Conditional on a given level

of downside risk, increases in the expected variance are associated with lower risk

premia, not higher risk premia.

Table 8 studies if upside entropy has similar predictive ability as downside entropy.

The results indicate that both upside and downside risk can predict future excess

returns. However, in terms of the downside risk channel of monetary policy, it is

important to keep in mind that monetary policy has a strong effect on downside

risk during recessions, but not on upside risk. The transmission of monetary policy

shocks to equity premia is therefore occuring via the reduction in downside risk, even

though upside risk may serve as a predictor for returns as well.
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Table 6: Market return predictability regressions - Different Samples

Baseline Sample Sample: 1990-2020 Sample: 1984-2019
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Risk 0.70 0.56 0.79 0.58 0.12 0.62
log(PD) -2.65 1.75 -2.73 1.75 -1.77 1.16
VIX 1.06 1.19 1.59 1.22 – –
VRP 2.37 0.79 3.26 1.22 – –
Recession -11.59 67.32 -14.01 67.60 23.98 45.76
Recession ∗ Risk 6.08 2.26 7.53 2.23 8.00 2.11
Recession ∗ log(PD) -0.44 4.44 0.35 4.30 -2.67 4.16
Recession ∗ VIX 2.24 1.76 0.77 2.05 – –
Recession ∗ VRP -0.54 1.36 -3.76 1.33 – –
Constant 38.63 24.67 39.37 25.14 24.84 12.87
R2 32.4 29.9 24.0

The dependent variable is the excess return on the Fama-French market portfolio over the next 6
months. Risk is the downside entropy of the consumption growth distribution, in year-over-year growth
rates. Recessions are as defined by the NBER. The log price-dividend ratio is taken from Robert
Shiller’s website. The VIX is the monthly level of the VIX index, constructed as the within-month
average of daily adjusted closing prices. The variance risk premium is from Hao Zhou’s website. The
sample period for the baseline case is 01/1990 until 12/2019. All data is at a monthly frequency.
Standard errors are Newey-West. R2 is adjusted for the number of predictors.
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Table 7: Market return predictability regressions - Different consumption measures

Realized Consumption Median Consumption Consumption Variance
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Linear

Risk 2.98 1.75 2.29 1.34 2.37 1.52
Consumption -0.76 1.53 -2.70 1.02 1.88 0.71
Constant 5.48 3.48 9.80 1.78 1.55 1.81
State Dependent

Risk 0.48 0.50 0.25 0.50 0.30 0.73
Consumption -1.58 1.24 -2.21 1.19 1.28 0.73
Recession -9.27 5.14 -22.18 4.64 4.75 5.92
Recession ∗ Risk 9.86 1.87 13.65 2.96 14.05 4.39
Recession ∗ Cons. 3.50 2.36 7.97 2.77 -6.49 3.35
Constant 7.77 2.35 9.31 2.13 2.95 1.60

The dependent variable is the excess return on the Fama-French market portfolio over the next 6 months. Risk
is the downside entropy of the consumption growth distribution, in year-over-year growth rates. Recessions
are as defined by the NBER. Realized consumption is the year-over-year growth rate of U.S. aggregate real
personal consumption expenditures excluding durables. Median consumption is the predicted 50% quantile of
the consumption growth distribution. The last column uses as a risk measure the variance estimated from the
fitted distribution of consumption growth. The sample period is 01/1990 until 12/2019. All data is at a monthly
frequency. Standard errors are Newey-West.
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Table 8: Market return predictability regressions - Including
upside risk

h = 3 h = 6
Coeff. Std. Err. Coeff. Std. Err.

Linear

Downside 1.44 0.69 2.69 1.52
Upside 0.67 0.65 1.40 1.17
Constant 2.05 0.66 4.05 1.38
State Dependent

Downside 0.29 0.46 0.44 0.86
Upside 0.15 0.53 0.37 0.90
Recession -4.53 2.12 -7.47 2.46
Recession ∗ Down 2.96 0.58 5.97 1.49
Recession ∗ Up 4.35 1.15 8.08 1.79
Constant 2.42 0.55 4.65 1.05

The dependent variable is the excess return on the Fama-French market
portfolio over the next 3 or 6 months. Downside is the downside entropy
of the consumption growth distribution, and Upside is the upside entropy.
Both variables are in year-over-year changes. Recessions are as defined
by the NBER. The sample period is 01/1990 until 12/2019. All data is
at a monthly frequency. Standard errors are Newey-West.
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