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Abstract

I examine how investors utilize data, exploiting a setting in which investors design machine-

driven trading strategies under controlled yet realistic conditions. Investors disagree con-

siderably in how they interpret identical information, leading to widely dispersed trading

strategies and performance outcomes. Inexperienced investors underweight variables with

predictive power for returns, and instead exhibit a bias towards variables with which they

are more familiar. With experience, investors learn to overcome their bias, and benefit

substantially from additional data availability. Investors’ familiarity bias leads them to

mis-specify their models of the world, and is encoded by the machine traders they design.
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1 Introduction

Machine-driven funds account for a major fraction of both overall institutional trading volume

and of hedge fund assets under management.1 As data becomes more abundant, investors

may find themselves relying even more heavily on machines to make trading decisions. Will

they benefit? A growing literature finds that machines can detect asset return predictability

(Freyberger, Neuhierl, and Weber, 2020; Gu, Kelly, and Xiu, 2020), improve upon human

forecasts (Bianchi, Ludvigson, and Ma, 2022; van Binsbergen, Han, and Lopez-Lira, 2022; de

Silva and Thesmar, 2021; Cao, Jiang, Wang, and Yang, 2021), and deliver advice that combats

some human biases (D’Acunto, Prabhala, and Rossi, 2019). However, every machine must be

designed by a human, and we humans can be led astray by our cognitive heuristics and biases

(Barberis and Thaler, 2003; Tversky and Kahneman, 1974). It is quite possible that machines

might therefore encode our human biases and hold us back from attaining our goals.

This paper examines how investors (mis)specify machine-driven trading strategies, and

quantifies the extent to which they benefit from data as a result. I study the performance

and behavior of investors who use a trading platform to implement machine traders. Each

machine-driven trading strategy forms a portfolio based on a pre-defined set of current and

historical market prices and macroeconomic indicators available on the platform. Investors

seek to maximize their future performance based on these variables, and therefore face a pre-

diction problem (Martin and Nagel, 2022). The trading platform provides investors with access

to machine learning algorithms that they can incorporate into their trading strategies.

My analysis yields five main empirical findings on how investors fare in such a setting. First,

investors can indeed benefit substantially from implementing machine-based trading strate-

gies, but there is considerable performance dispersion in out-of-sample Sharpe Ratios; this holds

true even when comparing machine traders that utilize exactly the same information sets. Sec-

ond, the dispersion in outcomes stems in large part from dispersion in predictive models, as

opposed to e.g. differences in execution. Third, human experience positively impacts outcomes:

experienced investors design machine traders that perform better out-of-sample. Similarly,

model disagreement lessens among experienced investors (but remains considerable). Fourth,

inexperienced investors favor familiar signals over genuinely predictive ones: their trading strate-

gies react strongly to variables that are familiar to them, but only weakly to genuine predictors.

Experienced investors design machine traders that do trade upon the release of genuinely pre-

dictive information. Fifth, I confirm that this familiarity bias can prevent investors from benefit-

1With a third of all institutional trading, machine-driven hedge funds trade more than pension and mutual
funds combined, and more than human-managed hedge funds. Moreover, out of all assets allocated to hedge
funds, approximately 30% are managed by machine-driven hedge funds. (The Economist, “March of the ma-
chines”, Oct 5th 2019).
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ing from data altogether. Inexperienced investors favor some macro indicators without regard

to their predictive power, and thus fail to benefit from macro variables at all. Simultaneously,

more experienced investors who have learned how to overcome this behavioral bias benefit

substantially. I obtain this finding by exploiting a near-doubling in the available number of

predictive variables on the trading platform. Altogether, I find behavioral biases influence how

we humans design machine traders, and the extent to which we benefit from data as a result.

To come to these findings on the interplay between humans and machines, I exploit trad-

ing and performance records from a unique setting — a FinTech platform named Quantiacs

that runs futures trading contests for investors who implement machine-based trading strate-

gies using computer code. Unlike a laboratory setting, investors have weeks to formulate a

trading strategy, have access to a wide set of actual market prices and macroeconomic indi-

cators, and are strongly motivated by substantial financial incentives.2 They also enjoy access

to sophisticated machine learning and optimization packages that run (for free) on Quantiacs’

servers. As well as these realistic features, the contest setting imposes four sets of constraints

on participants that are convenient from my empirical perspective. First, participants have a

well-defined, common objective, as their rewards are based on maximizing their out-of-sample

Sharpe Ratios. Second, participants are prevented from interfering with their machine-based

trading strategies once a contest begins; they cannot conduct manual discretionary trades, nor

override machine trades. Third, participants in the same contest have identical information

sets: they are limited to a common, fixed set of predictive variables, with no ability to upload

any private data to the platform. Finally, a number of other potential confounders of portfo-

lio choice are implicitly controlled for, as I describe further in Section 2.1. Thanks to these

conditions, investors are driven to maximize their portfolio performance by designing machine

traders that use the available data to predict asset returns out-of-sample. And while contes-

tants’ code may be confidential, I am able to exploit variation in the availability of predictive

variables (across contests) and their release schedules on the Quantiacs platform to investigate

the contents of these black box predictive models.

I begin my empirical analysis by documenting substantial heterogeneity in investors’ perfor-

mance outcomes. In each of the dozen contests, the highest decile of Sharpe Ratios (SRs) that

investors attain out-of-sample are positive. In ten of these contests, the top-decile performers

consistently exceed 1.4 units of SR out-of-sample. I also document considerable dispersion in

performance: the interquartile range in a majority of contests is at least 2 units of SR wide,

and in many contests the median investor suffers a negative out-of-sample SR.

2These high-powered incentives are the offer of profit-sharing contracts on up to $1 Mln of investment pro-
vided by Quantiacs to top-ranked participants. It would be prohibitively costly to provide such significant financial
incentives to traders in a laboratory experiment.
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Model disagreement (Cookson and Niessner, 2020) may drive the high volume of machine-

initiated trading in financial markets. Comparing investors within the same trading contest

conditions on investors with a common information set: I find the mean pairwise correlation

between daily trading volume series is below 0.4 for each contest (far below the perfect agree-

ment yardstick of +1). Such heterogeneity is notable, given investors share the same goal,

horizon, technology and other conditions. I investigate whether this disagreement can be ex-

plained by different interpretations of the same information, rather than execution details.

My approach is to compare the reactions of machine traders to precisely the same predictive

information. To circumvent the fact that contestants’ (confidential) computer code cannot be

observed, I focus on trading responses triggered by macroeconomic variable releases. These

macro indicators are updated irregularly by the trading platform, which thus varies the infor-

mation content made available over time. I measure this variation by constructing an index of

the actual out-of-sample predictive power of the macro indicators that are updated: I estimate a

benchmark machine learning model that successfully detects out-of-sample return predictabil-

ity for the cross-section of investable assets, and use it to extract aggregate measures of the

predictive information content of each macro release day. I next measure the sensitivity of each

strategy’s (machine-driven) daily turnover to this index of predictive power. Comparing simi-

larities in trading activity to information sensitivity, I find that at least 34% of the heterogeneity

in trading patterns overall can be directly attributed to differential interpretations of the same

(macro indicator-derived) information. It is remarkable that so much of the machine-driven

trading activity can be precisely linked to model disagreement, especially since this analysis

excludes the impact of information conveyed through prices. For the same reason, the true

extent to which model disagreement drives trading in my setting is likely to be even higher.

Next, I identify an important driver of machine trader outcomes: human experience. Com-

plementing the literature on experience effects,3 I find that investors design machine traders

that attain higher SRs as they gain in experience; I establish the finding using panel regres-

sions with investor fixed effects that control for unobserved heterogeneity such as investor

skill. Investor experience positively impacts both in-sample (historical backtest) SRs and out-

of-sample SRs. Similarly, investor experience (gradually) resolves model disagreement; nev-

ertheless, model disagreement remains substantial in my sample: even among experienced

investors, the mean correlation between trading volume series does not exceed 0.4.

Why might the design of a machine-based trading strategy be influenced by human expe-

rience? In this paper’s setting, a crucial margin of adjustment for investors is in selecting and

3The related literature includes prior findings that experienced investors are less prone to various behavioral
biases and, relatedly, that performance improves with experience. This paper contributes evidence on the role of
investor experience in designing machine-driven trading strategies and in selecting predictive variables.
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combining the predictive variables available on the trading platform. As inexperienced hu-

mans are more prone to behavioral biases, I hypothesize that inexperienced investors design

trading strategies that sub-optimally use the predictive variables that are available to them. I

test this hypothesis by again measuring trading responses to the release of identical predictive

information embedded in macro variable releases. A variable that a human investor deems

more important when designing her algorithm should trigger larger trades when the input

variable’s value is updated. Variables are updated at different times, and this variation allows

me to tease apart the trades triggered by different variables. I construct two types of index.

The first measures how familiar the predictive variables updated on each macro release day are

to an inexperienced investor, using data on the frequency of their appearance in news articles

or published books;4 for example, indicators for Exports, Imports and the Unemployment Rate

are mentioned very frequently, so investors would be very familiar with these. The second is

the index of actual predictive power derived from my benchmark machine learning model.

I compare the responses of trading strategies’ daily trading volumes to variations in both

types of index. All investors’ trading strategies exhibit a positive relation between daily turnover

and the aggregate familiarity index. However, only experienced investors’ machine-driven

trades exhibit a highly significant and positive relation with the index of predictive informa-

tion content (the relation is only weakly significant for inexperienced investors). These results

suggest that inexperienced investors first reach for more familiar variables when designing

trading strategies, while underweighting genuinely predictive variables, or even ignoring them

entirely. With experience, investors make better use of genuinely predictive variables – even

though all investors have the same opportunity to detect out-of-sample predictability at any

given time. Underweighting genuinely predictive variables constitutes a behavioral bias.

I next show that investors’ bias towards familiar macro variables is serious enough that they

can fail to gain any benefit from access to macro indicators at all. I compare investors who have

access to macroeconomic variables to investors who do not, exploiting the addition of these

variables in between trading contests. Inexperienced investors do not obtain a net benefit from

having access to macroeconomic variables, which suggests that the mis-specification of their

machine-based trading strategies negates any potential gains. By contrast, more experienced

investors who have access to the macroeconomic indicators outperform similarly-experienced

investors who do not. This outperformance occurs out-of-sample, and its magnitude exceeds

4Macroeconomic indicators that are widely mentioned in books and news articles are especially likely to be
more familiar to the general population, yet it is important to note that my findings are not limited to such
variables. I focus on macro variables both for identification purposes (thanks to their irregular release schedule)
and because it is simple to proxy for general familiarity. It is likely that other groups of predictive variables will
be more or less familiar to investors. Since investors hesitate to adopt even well-established and long-running
macroeconomic variables that are gifted to them due to a lack of familiarity, it is possible that this familiarity bias
will be even stronger in the case of “alternative data,” for example.
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2 units of SR. Self-selection and competition effects do not explain this finding.

With data growing more abundant, investors may find it necessary to adopt machine-driven

trading strategies. This paper’s results show this is not sufficient to successfully exploit predic-

tive information. Investors who perceive some variables as unfamiliar may fail to incorporate

them into their trading strategies, independently of their information content. As a corollary,

this friction may impede the incorporation of unfamiliar information into prices. Furthermore,

inexperienced investors (who are more prone to behavioral biases overall) consistently under-

perform experienced investors, including when macro indicators are unavailable to both; this

implies that frictions that slow human investors from benefiting from the data they have to

hand are prevalent. Such frictions are likely to be stronger in less controlled settings, where

investors would in addition face information processing and acquisition costs.

My empirical results uncover a behavioral bias in how investors select among predictive

variables. Recent work by Martin and Nagel (2022) models investors who rationally use his-

torical data to form a predictive model of the world. I show how to incorporate behavioral

deviations from the rational baseline of an agent who uses historical data to form beliefs about

the expected return of a risky asset. Cao, Han, Hirshleifer, and Zhang (2011) interpret un-

familiarity as a fear of worst-case outcomes. Likewise, I capture the investor’s aversion to

unfamiliar predictive variables by injecting a fear of worst-case outcomes into her prediction

problem. This bias leads her to underweight unfamiliar variables, and even ignore them en-

tirely. Furthermore, I show an equivalence between this concise model of a biased investor’s

prediction problem and the well-known Lasso prediction problem (Tibshirani, 1996).

Exploiting this equivalence, I conduct Lasso estimations on daily portfolio returns that pro-

duce a proxy for the extent to which individual investors ignore predictive variables because of

a general familiarity bias.5 I find that all investors ignore some subset of available variables, and

the effect is strongest among inexperienced investors. Investors who gain a contest’s worth of

experience learn to incorporate around 25-50 additional predictive variables into their models

of the world. These semi-structural estimates complement my earlier findings on investor unfa-

miliarity and variable underweighting, in three ways. First, unfamiliarity can drive investors to

underweight variables in general, beyond macroeconomic signals. Second, the underweighting

can be severe enough that investors may discard predictive variables altogether. And third, this

general form of unfamiliarity bias also lessens with experience. This Lasso-based methodology

can be used in other settings to measure the extent of investors’ bias.

The remainder of this paper proceeds as follows. I first review the related literature. Section

2 details the institutional setting, Section 3 measures model disagreement, and Section 4 shows

that investor experience plays an important role. In Section 5, I find that investors are prone

5This empirical procedure is similar to Mullainathan and Obermeyer (2022)’s, with a different interpretation.
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to a familiarity bias in variable selection, and Section 6 shows inexperienced investors fail to

benefit from data availability as a result. In Section 7, I show how to incorporate biases into an

investor’s prediction problem. Section 8 concludes. The Appendix contains proofs, figures and

tables. An Internet Appendix contains further institutional details and supplementary analyses.

Related Literature

This study provides early empirical evidence on how investors make use of predictive models

(Freyberger, Neuhierl, and Weber, 2020; Gu, Kelly, and Xiu, 2020), and highlights a concern

that behavioral biases can lead them to mis-specify such predictive models. Biased algorithmic

objectives are a source of algorithmic unfairness (Cowgill and Tucker, 2020), and so this study

contributes to broad efforts to understand the potential risks of new predictive technologies,

including in the field of finance (Fuster, Goldsmith-Pinkham, Ramadorai, and Walther, 2022).

Relatedly, I contribute a new set of insights to the literature on machine-driven trading,

which has so far focussed on the commonality in machine traders’ actions (Khandani and Lo,

2011; Abis, 2020), the tendency for performance to degenerate out-of-sample (McLean and

Pontiff, 2016; Wiecki, Campbell, Lent, and Stauth, 2016; Falck, Rej, and Thesmar, 2022), and

the risk exposures of machine traders (Harvey, Rattray, Sinclair, and Van Hemert, 2017). My

results highlight the impact of human limitations on the design of machine traders.

This paper adds to recent empirical evidence that model disagreement is a key driver of

trading activity (Cookson and Niessner, 2020; Meeuwis, Parker, Schoar, and Simester, 2022).

Further, I identify the role of investor experience in (partially) resolving model disagreement,

controlling precisely for access to the same data. Recent studies by Cookson, Engelberg, and

Mullins (2023) and Faia, Fuster, Pezone, and Zafar (forthcoming) document behavioral bi-

ases in how investors acquire information; I find that behavioral biases can in addition lead

investors to under-utilize genuinely predictive information that they already have to hand, in-

dependently of its salience (Frydman and Wang, 2020). The familiarity bias that I uncover

afflicts agents who are equally endowed with access to a sophisticated prediction technology

(including machine learning tools) and ample time to implement their trading strategies; it is

thus likely that the cost of attending to variables (Aragones, Gilboa, Postlewaite, and Schmei-

dler, 2005; Hanna, Mullainathan, and Schwartzstein, 2014) is not a binding constraint.

A growing literature analyzes the consequences of various forms of model mis-specification,

in both asset pricing (Arthur et al., 1996; Barberis, Shleifer, and Vishny, 1998; Hong, Stein,

and Yu, 2007; Branch and Evans, 2010) and from an individual learning perspective (Gagnon-

Bartsch, Rabin, and Schwartzstein, 2018; Bohren and Hauser, 2021; Montiel Olea, Ortoleva,

Pai, and Prat, 2022). My results suggest that behavioral factors are important drivers of model
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mis-specification in practice, including when investors have access to a sophisticated prediction

technology and a high-dimensional set of predictors. This behavioral view complements studies

on how rational agents might specify predictive models (Brock and Hommes, 1997; Al-Najjar,

2009; Balasubramanian and Yang, 2021; Martin and Nagel, 2022).

Similarly, my paper contributes to a literature that studies the consequences of Big Data, and

which typically focuses on the equilibrium consequences of data growth (Dugast and Foucault,

2021; Farboodi, Singal, Veldkamp, and Venkateswaran, 2022). I take an empirical approach

and find that behavioral biases can prevent investors from fully exploiting an exogenous in-

crease in the number of predictive variables made available to them; i.e. Bigger Data.

My findings that inexperienced investors omit variables from their models of the world

are indicative of under-reaction. An extensive empirical literature documents under-reaction

in asset prices (e.g. Bernard and Thomas, 1990; Jegadeesh and Titman, 1993) and individual

expectations (e.g. Bouchaud, Krueger, Landier, and Thesmar, 2019), and I add to this evidence

by showing that machine trader actions also under-react to information. Further, I find that

inexperience-driven under-reaction (Mikhail, Walther, and Willis, 2003) is not necessarily due

to learning from more signal realizations, but can be due to behavioral heuristics.

This paper is related to three strands of the literature on experience effects. First, prior

work finds that investor experience counteracts a number of behavioral biases, including the

endowment effect (List, 2003), the disposition effect (Feng and Seasholes, 2005; Dhar and

Zhu, 2006; Da Costa Jr et al., 2013), home bias (Abreu, Mendes, and Santos, 2011), a ten-

dency to chase bubbles (Greenwood and Nagel, 2009), and under-diversification (Campbell,

Ramadorai, and Ranish, 2014). I find that investors benefit from experience by counteracting a

bias in the manner in which they utilize predictive signals. Second, a number of finance studies

examine individual trading records to conclude that human investors learn to attain higher per-

formance levels as they gain in experience, including work by Nicolosi, Peng, and Zhu (2009),

Seru, Shumway, and Stoffman (2010), Linnainmaa (2011) and Barber et al. (2020). I mea-

sure human experience precisely, and find it to be a key driver of performance outcomes even

when the day-to-day trading decisions are delegated to machines designed by the human in-

vestors.6 A third stream of literature considers how individuals’ lifetime experiences influence

their current beliefs (Malmendier and Nagel, 2011; Malmendier, Pouzo, and Vanasco, 2020).

Complementing these findings, I show that investor experience impacts their models of the

world even when fixing a common dataset, and that they may ignore part of this dataset.

My study joins a recent literature that uses machine learning techniques to understand in-

dividuals’ actions. In part of my analysis, I set up a benchmark machine learning model for

6This is consistent with recent evidence by Chen, Hshieh, Teo, and Zhang (2022) that human capital can have
a positive impact on the performance of systematic hedge funds.
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comparison, which parallels recent work by Bianchi, Ludvigson, and Ma (2022), van Binsber-

gen, Han, and Lopez-Lira (2022), de Silva and Thesmar (2021), and Cao, Jiang, Wang, and

Yang (2021), all of whom compare human predictions to machine predictions. I use machine

predictions to infer the informativeness of individual predictive variables. I then construct an

index of the informativeness of variable updates provided by the trading platform, which I

compare to machine trading activity to infer how machine trading models are (mis)specified.

This paper documents that investors are quick to incorporate familiar variables in their mod-

els of the world, and slow to incorporate genuine predictive variables. This tendency towards

the familiar constitutes a bias,7 and may stem from employing two closely-related psycholog-

ical heuristics. The availability heuristic suggests human investors may judge the strength of

out-of-sample predictive power based on mental association: since more familiar variables are

more likely to come to mind (i.e. be more “available”) to human investors when attempting

to specify a set of valid predictive variables, this may lead them to infer an “illusory correla-

tion” (Tversky and Kahneman, 1973, 1974) between more familiar macroeconomic variables

and asset returns out-of-sample. Alternatively, human investors may be following a simple

recognition heuristic (Goldstein and Gigerenzer, 1999, 2002) when choosing among variables.8

Since investors in my setting use a historical dataset to attain their objectives, a natural

approach is to model agents as econometricians, borrowing an analogy from Sargent (1993,

pp. 21-23). Martin and Nagel (2022) consider a risk-neutral agent who learns a model to

predict asset payoffs based on historical data; I similarly model an agent who learns how to

predict expected returns to attain her goal, this time incorporating the investor’s familiarity

bias as an aversion to worst-case error (Cao, Han, Hirshleifer, and Zhang, 2011). To do this,

I lean on results at the intersection of the machine learning & optimization literatures (Xu,

Caramanis, and Mannor, 2010; Tibshirani, 1996). Gabaix (2014, 2019) and Molavi, Tahbaz-

Salehi, and Vedolin (2021) model bounded rationality using notions of sparsity; my framework

also allows investors to ignore a subset of their environment, but stems from a different micro-

foundation. My approach also relates to, but is distinct from, models of ambiguity aversion

(Epstein and Schneider, 2008; Illeditsch, 2011; Garlappi, Uppal, and Wang, 2007).

Finally, I join other studies that tackle economic questions using data sourced from FinTech

settings, such as crowd-sourcing (Da, Huang, and Jin, 2021) or crowdfunding (Tang, 2019)

platforms. My institutional setting emulates realistic trading conditions.

7A literature on geographic home bias debates whether familiarity in portfolio choice is irrational or due to
rational information acquisition (Huberman, 2001; Grinblatt and Keloharju, 2001; Massa and Simonov, 2006;
Goetzmann and Kumar, 2008; Van Nieuwerburgh and Veldkamp, 2009). Investors in my setting fail to benefit
from predictive variables until gaining experience; this negative effect on performance indicates a behavioral bias.

8One psychological mechanism relates to making mental judgments of association (i.e. predictability, in this
setting), and the other relates to making choices. Typically (and in my setting), an investor’s choice among
predictive variables and her judgment about the relative strength of predictability are observationally equivalent.
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2 Institutional Setting and Data

This section describes the Quantiacs institutional setting. Among other features, this unique

setting allows me to measure two key aspects of the datasets available to trading strategies:

data availability (the presence or absence of predictive variables) and data releases (the addi-

tion of a new realization for a variable). I can thus infer how machine-driven trading strategies

make use of data. Furthermore, I can precisely measure performance and investors’ experience

levels to study the interplay between human and machine.

2.1 The Quantiacs Trading Platform and Trading Contests

Systematic trading9 is the act of implementing an algorithm that takes positions in various

financial assets based upon a trading strategy that its (human) designers have specified at the

outset. It has traditionally been associated with statistical arbitrage hedge funds (who buy

and short portfolios of stocks) and so-called “Commodity Trading Advisors” (who trade futures

contracts and other derivatives).

Quantiacs is a FinTech platform that runs simulated trading contests for investors with

the inclination to design a systematic trading strategy. The business model of Quantiacs is to

identify the best 3 contestants in each contest and allocate assets to them, thus building up

a portfolio of multiple delegated systematic trading strategies.10 Contestants upload code (in

Python or Matlab) to implement a strategy that takes long or short positions in futures con-

tracts, and each strategy’s performance is assessed based on its in-sample (“backtest”) Sharpe

Ratio prior to the start of the contest, and its out-of-sample (“live”) Sharpe Ratio during the

contest period. The official scores assigned to entries incorporate the out-of-sample Sharpe

Ratio, and so this incentivizes traders to perform well out-of-sample.11 In-sample performance

is determined from historical daily data, and this is visible to traders as they backtest and

fine-tune their strategy ahead of a contest launch. The Sharpe Ratios reported by the trading

platform include the effect of simulated transaction costs, which the investors also perceive.

Out-of-sample performance is calculated using market data that arrives after the launch of a

9I use the terms “systematic trading” and “systematic investing” interchangeably. Another equivalent term is
“quantitative” trading or investing. I avoid the terms “algorithmic” or “automated” trading because they are am-
biguous, and may refer instead to the algorithmic execution of human-initiated trades. In this study, by contrast,
all trades are initiated by machines, and the role of humans is to design these machines.

10Case studies by Fleiss, Kominers, and Ughetta (2017) and Zheng (2017) describe the business model further.
I emphasize that my sample is limited to entries to the open-entry trading contests in which investors are on an
equal footing, and does not include any observations from profit-sharing trades.

11An entry’s official score is defined to be the minimum of its in- and out-of-sample Sharpe Ratios. Since in-
sample Sharpe Ratios are known at the end of the Backtest period, the investor’s problem at the beginning of the
Live period is indeed to maximize the out-of-sample Sharpe Ratio. In Internet Appendix I, I check that results are
robust to using the official score instead of the out-of-sample SR.
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contest; i.e. during the Live period. During this Live period, contestants are unable to modify

their trading strategy in any way whatsoever. Each trading strategy updates portfolio positions

at a daily frequency. The Live period of each contest lasts for approximately 3 months, and the

12 contests in my panel thus cover a number of years in out-of-sample/live calendar time. Fig-

ure 1 illustrates the distinction between the in-sample/backtest and out-of-sample live periods

of a contest.

[Insert Figure 1 around here]

To make the institutional setting more concrete, Internet Appendix C presents screenshots

of the Quantiacs platform that illustrate the steps taken by an investor to code up, backtest and

then submit a trading strategy entry to a contest.

The Quantiacs setting is realistic in a number of ways that are difficult to achieve in a lab-

oratory. First, the platform uses actual market data throughout; experimental studies tend to

rely on simulations of simplified data-generating processes. Second, investors are granted ac-

cess to a sophisticated backtesting facility and software packages, and have weeks to design

and refine their trading strategies. Most importantly, participants are offered significant finan-

cial incentives: investors are incentivized by the offer of profit-sharing contracts of 10% of net

profits on an allocation of $1 Mln, $0.75 Mln & $0.5 Mln to the 3 best-performing investors in

each contest, respectively. These conditions ensure the relevance of this study’s findings.

At the same time, because I use data on trading contests, participants are constrained in

ways that ensure empirical comparisons between them are fair. First, the human investors are

required to implement trading strategies in the form of computer code that runs remotely on

the Quantiacs platform, and which they cannot modify during a contest. Beyond that, humans

play no role in the actions of their machines; for example, they do not review or approve

machine trades, nor can they make their own discretionary trades. Second, the contest setting

assigns all investors a common, well-defined goal (incentivizing them to maximize their trading

strategies’ out-of-sample Sharpe Ratios) and endows them with a common dataset of predictive

variables for use as inputs to the machine-based trading strategies; investors cannot upload

their own datasets. Furthermore, the contest setting fixes investors’ preferences (due to the

common goal), horizons (contest period) and other well-known drivers of portfolio choice that

might confound my analysis.12

12In addition to the commonly-enforced objective, investors are in a perfectly competitive setup because they
cannot affect each others’ payoffs through price impact or observability of actions, thus freeing them from the
usual strategic considerations. Background risk or other wealth effects do not enter into investors’ objectives,
either, since no payment or stake is required to enter into a contest. Investors are fully committed to following
their trading strategies during the out-of-sample phase of each contest, as it is no longer possible to modify a
contest entry’s computer code at that stage.
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It is possible for an investor to enter any contest that she pleases, and there is no entry

fee. Contest live periods are non-overlapping. I am able to observe individual investors’ per-

formance outcomes at an individual trading strategy level. For confidentiality reasons, I am

unable to observe the granular positions taken by trading strategies, or the code used to im-

plement them. The platform did not collect identifying information from contestants, and did

not require them to provide any demographic characteristics.

While investors share a common information set within a contest, the Quantiacs platform

widened the set of available variables in between contests: macroeconomic indicators were

added to investors’ historical and live trading datasets after the end of the 7th contest and

before the beginning of the 8th contest. Out of a total of 12 contests, investors in the first

7 therefore had narrower datasets than investors in the final 5. I exploit this variation in

the (common) information set across contests to measure the gains to investors from having

access to the additional predictive variables. Sections 2.2.4 and 2.3 provide further details, and

additionally describe the (irregular) release schedules of different macroeconomic indicators.

2.2 Data

2.2.1 Contest Leaderboard Panel

My leaderboard sample consists of 12 trading contests spanning a number of years. I can iden-

tify individual traders who may (and often do) take part in multiple contests over time in order

to measure performance dynamics. I can also exploit the panel structure of the leaderboard

dataset to incorporate fixed effects in my regressions to conduct within-investor analyses.

In reviewing the raw data, I identify as outliers two contestants who submitted an extremely

high number of entries (over 100) to a contest, and so exclude these two contestants from the

whole panel. Internet Appendix A contains details on frequency of participation.

2.2.2 Futures Contract Prices

The trading platform provides participants’ trading strategies with access to actual market

prices for the investable universe of 88 futures, throughout both the Backtest and Live periods

of contests. These market prices are also used to calculate trading strategies’ performance.

I assemble historical price data for the same universe of 88 futures, and later use these prices

in two ways: firstly, to construct a benchmark portfolio that I will use to compare contestants’

performance outcomes against, in order to enable valid comparisons between contestants at

different time periods in situations where panel time effects cannot be employed. And second,

I use signals derived from these prices to estimate a model of investor behavior, in order to
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measure the extent to which price-based predictive variables are ignored by investors.

Internet Appendix D provides full details of the universe of 88 futures contracts, the data

download procedure, and my procedure for constructing a benchmark portfolio using the fu-

tures’ historical prices.

2.2.3 Timeseries of Daily Returns and Volume for Trading Strategies

I supplement the comprehensive contest leaderboard panel with two additional datasets. Quan-

tiacs separately makes available the daily returns of trading strategies, which I merge with the

leaderboard panel. And, while granular portfolio positions and weights are not available, I

can observe two daily positioning indices per trading strategy, one for its aggregate long posi-

tioning and the other for its short positioning: for trading strategy j and day τ, I observe the

sequences {Long j,τ} and {Shor t j,τ}, respectively. The daily sum of these indices is bounded

between zero and one, 0≤maxτ(Long j,τ+Shor t j,τ)≤ 1, ∀ i, and these may be interpreted as

portfolio shares of each strategy’s assets under management allocated to aggregate long and

short positions. I use these measures to proxy for daily trading volume (or turnover) as

Volume j,τ =
�

�Long j,τ − Long j,τ−1

�

�+
�

�Shor t j,τ − Shor t j,τ−1

�

�. (1)

2.2.4 Macroeconomic Variables and Their Release Dates On the Trading Platform

The additional set of predictive signals added to the platform in between contests consists

solely of macroeconomic variables. Internet Appendix E provides a full listing.

I use the exact values of these macroeconomic variables as they were accessible to investors’

trading strategies when running on the Quantiacs platform. I am also able to identify precisely

which date each macroeconomic variable release was made available on the platform (for both

backtesting & live trading periods); I can therefore identify exactly which trading date return

is the first to incorporate the information contained in each set of macro variable updates.

[Insert Figure 2 around here]

Figure 2 is a stylized illustration of the two dimensions of time (t,τ) in the Quantiacs

institutional setting. Investors enter a trading contest, indexed by t. Macro indicators were

only accessible on the trading platform to investors and their trading strategies from contest

t ≥ 8 onward. The trading platform feeds each trading strategy with a set of daily input

predictive signals extending back to January 1990, and machine traders return a set of daily

portfolio weights in response to each. This trading strategy calendar time is indexed by τ, and

comprises both the backtest/in-sample and live/out-of-sample calendar periods.
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I later use the exact macroeconomic variable release dates to analyze the responses of

machine-driven trading strategies to this new information. Separately, I also estimate a model

of investor learning to measure how many predictive variables are ignored entirely by investors

and their trading strategies.

2.3 Institutional Variation in Macro Release Day Informativeness

When the Quantiacs platform updates the values of the macroeconomic variables that are avail-

able as inputs to trading strategy code, they are done so on a single calendar date per month;

thus, these release dates do not necessarily correspond to macro variable announcements by

statistical agencies. Not all variables are updated every month, and this is particularly true for

early periods in the backtest history, when a number of variables were not backfilled. Figure

3 illustrates the variation in the number of macroeconomic variables that are released by the

Quantiacs platform to trading strategies running on the platform, in trading strategy calendar

time τ.

[Insert Figure 3 around here]

This institutional variation in the timing of macroeconomic variable releases allows me

to measure how strongly machine-driven trading strategies react to informative variables; on

some days, more predictive information is released, and on other days, less predictive informa-

tion is released. If a trading strategy makes use of informative variables, it should turn over its

positions more on more informative macro release days than on less informative release days.

Consistent with trading activity revealing machine traders’ responses to information re-

leases, Internet Appendix F shows that investors’ trading strategies exhibit significantly differ-

ent responses on macro release days when compared to non-macro release days. As a placebo,

I repeat the analysis for strategies entered into early contests, when macro predictive variables

were unavailable, and as expected find no significant response.

3 Model and Performance Heterogeneity

3.1 Differences in Performance

Table 1 summarizes investors’ in-sample and out-of-sample performance during all twelve trad-

ing contests. When entering a trading strategy into a contest, most investors will have imple-

mented a strategy that has performed well over the recent backtest period: the contest-level

median in-sample Sharpe Ratio (SR) ranges from +0.38 to +1.19 units of SR. Most investors
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therefore appear to benefit from machine-driven trading strategies when their performance is

assessed on past market data alone.

[Insert Table 1 around here]

However, their performance degenerates out-of-sample – i.e. during contest Live periods

– when trading strategies can no longer be modified by investors. During those periods, the

contest-level median SR ranges from only -1.21 to +1.00 units of SR. Furthermore, the me-

dian is positive for only a third of all contests, suggesting that most investors typically do not

benefit from adopting machine trading strategies. Better-performing investors can benefit con-

siderably: the top quartile of performance in contest Live periods is typically positive, and this

upper quartile level can range as high as 2.07 units of SR. Similarly, the top decile performers

in each contest Live period always succeed in attaining a positive SR out-of-sample; in ten of

the contests, these top performers consistently exceed 1.4 units of SR.

Comparing investors over the same periods reveals that the dispersion in investor perfor-

mance is substantial. For the out-of-sample SRs obtained during contest Live periods, the

inter-quartile range for these is typically 2 to 3 units of SR. That is, the 75th-percentile in-

vestor typically obtains a SR that exceeds the 25th percentile investor’s by over 2 units during

the same contest Live period. Sharpe Ratios vary over time, being (scaled) returns, and yet

this dispersion persists over much of the 2014-2019 period, in which contest Live periods run.

[Insert Figure 4 around here]

Figure 4 shows that trading activity is also heterogeneous. I compute the pairwise correla-

tion between the daily aggregate turnover series of every contestant’s best live entry in every

contest and the equivalent turnover series for every other contestant’s best live entry in the

same contest, excluding self-comparisons: I label this ρi, j,t for trading strategies i, j in the same

contest t. The figure displays the contest-level means of these pairwise correlations in trading

activity. The yardstick of perfect agreement would correspond to a mean pairwise correlation

of +1 in each contest; instead, the levels never exceed 0.4. This alternative characterization of

disagreement based on trading activity also suggests that investors disagree strongly.

3.2 Differences of Opinion

The observed within-contest dispersion in performance has an important implication: trading

strategies with access to precisely the same dataset still vary widely in their attained perfor-

mance. When conditioning on any one contest index, investors have access to exactly the

same set of predictive variables and their historical realizations; therefore, conditioning on the
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contest also conditions on investors’ information sets. Since investors in the same contest are

symmetrically informed, their disagreement is likely to stem from different interpretations of

exactly the same data. Cookson and Niessner (2020) term this phenomenon “model disagree-

ment,” to distinguish it from disagreement that is due to heterogeneous information.

I now show that model disagreement is indeed considerable by measuring how investors

react to identical predictive signals. My analysis takes advantage of institutional variation in

the information content of macro release days.

3.2.1 Measuring Variable Informativeness

To make a comparison between turnover and macro variable informativeness, I require a mea-

sure of the predictive information content of different macro release days τ. To do so, I use

a methodology from the literature on interpretable machine learning that allows individual

variable informativeness to be measured and then aggregated to groups of variables.

Benchmark predictive model I begin by defining a benchmark machine learning model to

detect out-of-sample return predictability. I use the Random Forest algorithm (Breiman, 2001)

as my estimation technology; this algorithm has proven successful in detecting out-of-sample

equity return predictability (Gu, Kelly, and Xiu, 2020), and is a suitable benchmark to compare

human behavior to (van Binsbergen, Han, and Lopez-Lira, 2022). As this empirical literature

shows, a Random Forest can capture flexible and nonlinear predictive relationships, and is

capable of incorporating the full set of high-dimensional macroeconomic predictive variables in

my setting without overfitting. I set up the following cross-sectional return prediction problem,

where i indexes a futures contract and τ a month:

ri,τ+1 = Et[ri,τ+1] + εi,τ+1, (2)

with the conditional prediction for each next-month return

Eτ[ri,τ+1] = f (xτ) (3)

given by a flexible nonparametric mapping f estimated by the Random Forest algorithm, and

which uses a vector xτ of predictive variables available as of the end of month τ.

I define the predictive variables xτ as the last 3 lags (on a monthly basis) of all 54 macroe-

conomic predictive variables available on the Quantiacs platform. Missing values are imputed

with the historical median and each series is standardized to have zero mean and unit standard

deviation. Both imputation and standardization only use data up to 2013 to avoid introduc-
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ing any look-ahead bias to the OOS (out-of-sample) predictions that are generated for 2014

onwards (the period in which Quantiacs contest Live periods fall). In addition, one dummy

variable for each futures contract is included in the set of input variables xτ. This is somewhat

analogous to including fixed effects in a regression but allows much more flexibility: including

these dummies allows an estimated Random Forest to nest up to one predictive sub-model per

futures contract if necessary.

As I will be making implicit comparisons between the performance of machine traders and

my benchmark algorithm, it is important to note that this comparison is a fair one, by design.

First, the benchmark machine learning algorithm that I construct uses only data xτ that is

accessible on the Quantiacs platform to contestants. Second, I use a software package that

was available to Quantiacs participants to conduct my estimation (scikit-learn (Pedregosa

et al., 2011)); in principle, therefore, participants could have conducted exactly the same

analysis I do. Third, the Random Forest algorithm I use is well-known and appears in many

introductory articles and books on applied machine learning;13 it is not an obscure algorithm

that Quantiacs participants would be unlikely to use. Finally, I take care to avoid look-ahead

bias, as I describe next.

My Random Forest estimation and tuning procedure is similar to that of Gu, Kelly, and Xiu

(2020). I estimate predictive models at an annual frequency: for example, to predict futures

returns for any month in 2014, I use a model that has been trained up to the end of 2013.

The training procedure involves using a validation set for the 5 year period preceding the test

set – for example, to produce 2014 forecasts, the validation set would run from 2009 to 2013.

Multiple models are estimated for various sets of hyperparameters,14 and evaluated on the

validation set. After picking the optimal set of hyperparameters, the model is then re-estimated

for the period 1990 up to the year before the test set – for example, to produce 2014 forecasts,

the model has been estimated from 1990 to 2013. This ensures that the test set forecasts (for

example, 2014) are true OOS predictions. For the next year of the test set (for example, 2015),

the entire procedure is repeated with an expanded training set and a validation set that has

rolled forward by one year.

In this manner, monthly OOS predictions are generated for the period 2014-2019. The

Quantiacs platform prevents models from improperly using OOS data in order to avoid look-

ahead bias. This careful procedure is therefore necessary to accurately capture genuine OOS

predictability, which a Quantiacs contestant must try to exploit in order to achieve her objective

of maximizing her OOS Sharpe Ratio.

13As one example out of many, an article on Coursera titled “7 Machine Learning Algorithms to Know: A Begin-
ner’s Guide” introduces the Random Forest algorithm.

14Refer to Gu, Kelly, and Xiu (2020, Internet Appendix Table A.7) for further details.
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My procedure for constructing a benchmark predictive model that uses all the macroeco-

nomic predictors available on the Quantiacs platform successfully estimates a model that de-

tects out-of-sample return predictability. As one example of how this predictability can translate

into portfolio choice, I cross-sectionally rank predicted returns and form a monthly-rebalanced

portfolio that goes long futures contracts in the highest quintile of predicted next-month re-

turns and short the lowest quintile of predicted next-month returns, with equal weightings

to futures contracts. Figure 5 plots the cumulative out-of-sample returns of following such a

trading strategy. This example strategy earns a cumulative OOS return of 40.91% and an OOS

Sharpe Ratio of 0.57 over the period (assuming a zero riskless rate for simplicity).15

[Insert Figure 5 around here]

Informativeness of individual macro variables I next measure the informativeness of in-

dividual variables in the predictive model input xτ using SHAP values (Lundberg and Lee,

2017).16 These measures are computed at an individual variable level. Define SHAP(k, m) as

the SHAP value of individual predictive variable k for data sample m; a sample consists of the

futures contract and prediction month. The SHAP value of a variable k measures the predictive

power of variable k for the individual prediction indexed by m; like the prediction, the SHAP

value is in units of return. Note that the SHAP value depends on the estimated model used,

and these will be matched according to the contest taken part in, making sure to avoid any

look-ahead bias.

Information content of macro release days SHAP values have a crucial property for my

purposes: they are additive (Lundberg and Lee, 2017). Recall that each macro release day τ

is associated with a set of simultaneously-released variables R(τ) (and a complementary set

of variables that are not updated during that macro release day). Thanks to the additivity of

SHAP values, a single SHAP value per macro release day τ and data sample m can be computed

15It is possible that these results serve as a lower bound to the extent of macroeconomic variable-based pre-
dictability, since the input variables consisted solely of the (lags of) the levels of these variables, and so constructing
further variables out of these may increase the level of measured OOS predictability. Similarly, more sophisticated
machine learning methods could be employed for the task of measuring the extent of return predictability using
these variables. It is not the goal of this study to examine OOS predictability among futures contracts, but my
findings suggest such a study could be informative; prior work by Freyberger, Neuhierl, and Weber (2020), Gu,
Kelly, and Xiu (2020), and others has mostly focused on the cross-section of US stocks.

16“SHAP” stands for “Shapley Additive Explanations.” SHAP values are a popular technique for explaining
predictive variable importance for estimated machine learning models, with a number of desirable properties. In
the finance literature, Abis (2020) uses SHAP values to compare the relative importance of predictive variables.
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by summing up the SHAP values of the variables released that day:

SHAP(τ, m) =
∑

k∈R(t)

SHAP(k, m). (4)

I then compute an informativeness index for each macro release day τ as the mean absolute

SHAP value across all M data samples:

Informativenessτ =
1
M

∑

m

�

�SHAP(τ, m)
�

�. (5)

Equation (5) measures the extent to which the set of variablesR(τ) released on a macro release

day τ have predictive power across the entire cross-section of futures contracts, irrespective of

sign, and for all historical dates.

3.2.2 Explaining Trading Heterogeneity with Model Disagreement

Armed with my index (5) of the predictive informational content of macro release days, I mea-

sure the sensitivity of different trading strategies to identical predictive signals. Using Equation

(1), I compute the daily trading volumes of individual strategies i on historical calendar days

τ. I then standardize this volume within-strategy, so that these z-scores are in comparable

units across strategies. Then, for each strategy i, I conduct the following individual time series

regression over the subset of macro release days τ:

Volumei,τ = αi + βi × Informationτ + εi,τ (6)

Each estimated coefficient bβi captures the sensitivity of trading strategy i to the release of the

predictive information contained in macroeconomic indicators.

Next, I conduct a cross-sectional analysis of the extent to which different interpretations

of the same signals can explain heterogeneity in trading strategies’ overall trading patterns. I

conduct pairwise regressions that are variants of the specification

−ρi, j
︸︷︷︸

Trading
dissimilarity

= γ × δ(bβi, bβ j)
︸ ︷︷ ︸

Disagreement
about macro

predictive info.

+ φt + εi, j, (7)

where ρi, j measures the correlation between the daily turnover series of two trading strategies

i, j that are matched based on being entered into the same trading contest t; self joins are

excluded (i ̸= j). The negative of this pairwise correlation therefore measures the dissimilarity
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in trading activity between i, j. The trading response coefficients bβi, bβ j are estimated according

to Equation (6).

It remains to measure the dissimilarity in trading response coefficients, δ(bβi, bβ j), which

captures how much a pair of trading strategies i, j disagree about the predictive content of

the same macroeconomic indicators. I begin by computing the absolute distance |bβi − bβ j|
between coefficient values. Since this produces a skewed measure, I specify three log-like

transformations: the natural logarithm (of non-zero absolute values), the log of one plus the

absolute value, and the inverse hyperbolic sine (arcsinh) of the absolute value.

[Insert Table 2 around here]

Table 2 presents regression results for each of the variants of Eqn. (7). As might be ex-

pected, the bγ coefficient estimates are positive (and significant), suggesting that disagreement

in trading activity tracks differential interpretations of the same information. Importantly, the

fractions of variation explained by all specifications (i.e. R2 values) are substantial. Specifica-

tions without contest fixed effects (in columns 1, 3 & 5) all explain just over a third of total

variation in trading activity. The fraction increases even further when contest fixed effects are

added (in columns 2, 4 & 6), and within-R2 values are of a similar magnitude to the overall

fractions of variance explained.

These results confirm that a substantial portion of the heterogeneity in machine-initiated

trading activity is due to different interpretations of the same information; i.e. model disagree-

ment (Cookson and Niessner, 2020), or differences in opinion. The true extent to which model

disagreement drives trading activity is most likely even higher, since this analysis excludes

differential responses to price-based informational content (which is more challenging to mea-

sure). It follows that, in the setting studied by this paper, investors specify widely different

predictive models of the world. I shortly examine the process by which they do so.

3.2.3 In Search of a Behavioral Explanation

From the standpoint of a rational Bayesian updating benchmark, the extent to which investors

disagree in their interpretations of the same signals is puzzling. Assume each investor places

some weight on each predictive variable when forming her beliefs and, since she is a Bayesian,

assigns a prior to each weight, which may differ across investors. The group of investors who

enter the 8th trading contest (the first in which macro indicators were available) did so in

2017, and have thus observed monthly macro indicator realizations over the previous 27-year

backtest period. If investors update their posterior weightings after observing each of the

(over 300) realizations, one might expect their models of the world to have converged more
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closely to one another by that point. Instead, the differences of opinion that I document remain

substantial.

Furthermore, the need to produce out-of-sample forecasts is not a satisfactory explanation

for the extent of model disagreement. When specifying a predictive model of the world, in-

vestors possess sufficient historical data to retain a hold-out sample to assess their model’s

out-of-sample performance. This procedure is common in the empirical literature, including in

recent work (Freyberger, Neuhierl, and Weber, 2020; Gu, Kelly, and Xiu, 2020) and indeed, in

the present study (Section 3.2.1). Investors are capable of following a similar procedure in the

Quantiacs setting, and thus have an (equal) opportunity to detect out-of-sample predictability.

Nevertheless, they disagree about how to specify predictive models.

The remainder of the paper studies whether and how investor behavior influences the mod-

els of the world that they specify.

4 Role of Experience

Motivated by the well-accepted link between behavioral biases and investor (in)experience

(e.g. List, 2003), I investigate whether experience plays a role in the present setting. If in-

experienced investors are indeed prone to behavioral biases when specifying their models of

the world, their performance is likely to suffer as a result. Furthermore, more experienced

investors who succeed in specifying a more accurate model of the world should agree more,

and thus trade more similarly to one another. This section tests these hypotheses.

4.1 Performance Outcomes and Experience

I begin by testing whether experience drives improved performance. I measure two types
of performance outcome: the in-sample (backtest period) best Sharpe Ratios and the out-of-
sample (live period) best Sharpe Ratios of the contestants i for each contest period t. An
investor’s experience is measured by the number of contests she has participated in so far. I
conduct regressions that are variants of the specification

SRBest
i,t = β ×Contests experiencedi,t +πi +φt + εi,t , (8)

where πi denotes investor (contestant) fixed effects and φt denotes time (contest) fixed ef-

fects. Controlling for these two dimensions of unobserved heterogeneity allows me to exclude

their effect on observable performance outcomes; for example, unobserved investor-specific

attributes (including demographic characteristics or skill levels) are taken into account.

[Insert Table 3 around here]
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Table 3 displays the results of regressing performance outcomes against the experience lev-

els of the contestants. In both OLS and panel specifications, the positive (and significantly

non-zero) coefficient β on investor experience indicates investors perform better with expe-

rience.17 OLS and panel regressions both detect this learning dynamic; furthermore, the ob-

served magnitude of this effect strengthens once fixed effects are included in columns (2) &

(4). The dependent variable in columns (1)-(2) is the in-sample (backtest period) performance

outcome, so the positive estimates for β in those columns suggest that investors make use of

the historical data that is available to them – they are more able to increase their observed per-

formance outcomes before entering the Live period of each contest. The dependent variable

in columns (3)-(4) is the out-of-sample (Live period) performance outcome, so the positive

estimates for β in those columns are consistent with previous studies that find a learning with

experience effect for the (different) setting of retail investors who trade stocks (e.g. Nicolosi,

Peng, and Zhu, 2009; Seru, Shumway, and Stoffman, 2010).

4.2 Model Disagreement and Experience

I now test whether model disagreement lessens with experience, concurrently with the im-
provement in investors’ performance. For this, I rely on the pairwise correlations between the
aggregate daily turnovers of trading strategies i, j matched to the same trading contest t (the
means of which were shown in Figure 4). I perform an additional matching/filtering step: I
retain only individual pairwise correlations ρi, j,t for which contestants i and j have the same
level of experience. I then conduct variants of the following panel regression:

ρi, j,t = β ×Contests experiencedi, j,t +πi +φt + εi, j,t . (9)

Since a linear regression produces a conditional mean, this simple procedure allows me to

relate average changes to the pairwise correlations between entries (LHS) to the (equalized)

changes in the experience levels of the contestants who implemented the trading strategies

(RHS). The fixed effects allow me to progressively control for two of the three dimensions

along which the panel varies: the contest index t and one of the contestant indices i.

[Insert Table 4 around here]

Table 4 displays the regression results. The simplest specification in column (1) produces an

easily-interpretable measure of the mean pairwise correlation between the (machine-initiated)
17Note that this channel of learning with experience is distinct from a statistical effect of using additional

samples to form more accurate forecasts: while the number of contests a single investor participates in does
increase with calendar time (i.e. length of historical samples), investors with equal levels of experience may have
participated in different contests with different lengths of historical datasets available at the time the contests
occurred. Time/contest fixed effects control for this statistical effect.
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daily trading volumes of all participants with the same experience level. This proxy for model

agreement ranges from 0.3 to 0.4.

Across all specifications (1)-(3), an increase in the number of contests experienced by

(both) contestants i and j is associated with an increase in the correlations of their trading

strategies’ daily turnover, of around 6 to 9 percentage points. Experience thus resolves model

disagreement, albeit gradually. This is consistent with experienced investors converging on a

more accurate model of the world.

5 Data Usage

In this study’s institutional setting, the role that human investors play is limited to designing

machine traders.18 To understand more deeply why experience drives performance, I examine

how investors design machine trading strategies, and how this varies with investor experience.

As all machine traders are constrained to use the same set of input predictive signals, a crucial

margin of adjustment is along the weights assigned by the human designers to the different

predictive signals ingested by their machine trading strategies. Investors have a lot of leeway in

how they make use of the available data; for example, they may implement machine learning

models as part of their trading strategies, or they might manually specify portfolio weights that

depend on a subset of available variables.

In order to quantify how these input predictive signals are used, I examine how the observed

actions taken by machine traders vary in response to changes to the input signals that the

machines receive from the trading platform.19 Using my index of the time-varying predictive

power of macroeconomic indicators, I test whether these genuine predictors are used by both

inexperienced and experienced investors when designing machine traders. Next, and in a

similar manner, I test whether investors make use of variables that are familiar to them –

independently of the variables’ predictive power.

18As described in Section 2.1 and Internet Appendix C, human investors write computer code to design a
systematic trading strategy, submit the strategy to enter into a trading contest, and then simply wait for the
contest’s Live period to end (with no further ability to affect the outcome).

19This approach is analogous to how one typically studies the behavior of human investors in response to
market conditions or specific events. In empirical studies of investor trading or portfolio choice behavior, one
typically cannot interrogate the investors in question on their trading motives (or peer into their thoughts) to
understand the drivers of their actions. I face a similar situation in studying the operation of machine trading
strategies, as I cannot observe the (confidential) computer code that drives their actions. In both cases, however,
inferences can successfully be drawn from observed actions.
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5.1 Usage of Genuine Predictive Variables

Given my measure of the information content of macro release days (5), I now analyze the

responses of machine trading strategies to this predictive information content. Following Eqn.

(1), I calculate daily turnover measures for investors’ best live trading strategies. I standardize

these volume values within the strategy level; i.e. each strategy i has a mean turnover of zero,

and units in daily standard deviation. I then select the subset of daily turnovers that correspond

to macro release days; i.e. I analyze days τ when the values of (one or more) macroeconomic

predictive variables were updated on the Quantiacs platform. Using this sample, I conduct

regressions of the following form:

Volumei,τ = β1 × Experiencedi,t + β2 × Informativenessτ

+ β3 × Experiencedi,t × Informativenessτ +φt + εi,t,τ (10)

As the daily volume standardization step includes demeaning each strategy’s daily turnover,

this is similar to including strategy fixed effects that control for any trading strategy-level un-

observed variables (including unobserved investor skill) that might confound an analysis. An-

other benefit to the standardization step is that turnover magnitudes are made to be compa-

rable across strategies – in units of strategy turnover standard deviations (i.e. z-scores) – and

thus data from multiple strategies can be pooled together in a single regression. The aggregate

informativeness of macro release days, Informativenessτ, is calculated according to Eqn. (5). I

take care to compute the informativeness index using only data up to the end of the year before

the beginning of the live period of the current contest t. This ensures the informativeness mea-

sure does not contain information that was unavailable to Quantiacs participants at the time

of the contest. Model year fixed effects φt control for different mean values of the informa-

tiveness measure that correspond to such different endpoints. A dummy for experience takes

the value 1 if the human investor who implemented the strategy is taking part in her third (or

higher) contest at that point.

[Insert Table 5 around here]

Table 5 presents regression results for (standardized) daily turnover on macro release days

against the aggregate information content of these macro release days. The first two columns

show baseline results. Column (1) shows a positive and significant value for the β1 coefficient

when it is estimated alone, indicating that experienced investors design trading strategies that

trade more than usual on macro release days. Column (2) shows a positive and significant

coefficient for the β2 coefficient when it is estimated alone, indicating that investors design
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trading strategies that tend to respond more strongly to the release of more informative macro

variables; this estimate does not break out experienced and inexperienced investors.

The estimates from the full specification in column (3) show that experienced and inex-

perienced investors’ trading strategies respond differently to the information content of macro

release days. The estimate of bβ2 = 0.6348 suggests that inexperienced investors design trading

strategies that respond more to more informative macro release days, but the effect is only sig-

nificantly different to zero at the 90% level. As for experienced investors, the estimates for the

baseline coefficient of bβ1 = −0.3229 and interaction effect of bβ3 = +1.025 suggest that experi-

enced investors respond less strongly to completely uninformative macro variable release days,

and more strongly the more informative a macro release day is. That is, the trading volumes

of machine-driven strategies designed by experienced investors are much more sensitive to the

information content of macro release days than of those designed by inexperienced investors.

The near-insignificance of the bβ2 estimate for inexperienced investors even calls into question

whether inexperienced investors respond at all to informative macro variable releases; there

is no such ambiguity for the subset of experienced investors.

I conclude that experienced investors make better use of informative predictive variables

than inexperienced investors do when specifying their models of the world. This occurs despite

both groups of human designers sharing an identical opportunity to detect such informative

predictive variables (thanks to the controlled Quantiacs setting).

5.2 Usage of Familiar Variables

If inexperienced investors do not use genuinely predictive macroeconomic indicators – or re-

spond only weakly to their release – then what variables do they favor?

Among the prior studies on (in)experience and behavioral biases, Abreu, Mendes, and San-

tos (2011) find that inexperienced investors are prone to one form of familiarity bias: a home

bias in their portfolio choices. It is possible that a familiarity bias such as this can influence

how investors specify their models of the world. I therefore hypothesize that inexperienced

investors use variables with which they are familiar – rather than determining which variables

are more informative. If this familiarity bias holds investors back from maximizing their per-

formance outcomes, and lessens with experience, this mechanism may explain why investor

experience drives improved performance outcomes. I now test this hypothesis.

5.2.1 Measuring Variable Familiarity

To proxy for how familiar a macroeconomic indicator k is perceived to be by participants, I

count how frequently it is mentioned in different forms of media. Specifically, I count its fre-
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quency of appearance in (i) news articles indexed by the Factiva database, and (ii) published

books indexed in the Google Books database. Both these databases allow me to search for

occurrences of specific phrases in specific time periods, and I conduct annual searches for each

of the 54 macroeconomic variables provided by the Quantiacs platform. These two compre-

hensive sources result in different (but correlated) counts for the number of mentions of each

macroeconomic variable.

To calculate an aggregate familiarity index for each macroeconomic release date τ, fixing

a data source and search period, I compute the total familiarity of each macroeconomic indi-

cator k among the set of macroeconomic indicators R(τ) released together on date τ by the

Quantiacs platform:

Familiarityτ =
1

Total mentions

∑

k∈R(t)

Mentions(k). (11)

Equation (11) measures the total share of media mentions of the macroeconomic variables

released by the Quantiacs platform at date τ. As described shortly, I match the annual period

over which shares are computed to the corresponding trading contest when conducting my

analyses.

Unlike my measure of macro release day informativeness, these aggregate familiarity in-

dices are empirically concentrated, with the most familiar macroeconomic variables accounting

for a large fraction of total media mentions; further details are provided in Internet Appendix

A. Despite the distinct sources, the two familiarity indices that I construct using Equation (11)

are highly correlated with one another, with a magnitude of 0.79. The familiarity indices co-

vary much less strongly with the index of macro release day informativeness, which has a

correlation of only 0.15 and 0.21 with the familiarity indices derived from news articles and

books, respectively. I use both macro release day familiarity indices in the subsequent analyses

to ensure my results are not sensitive to any one source.

5.2.2 All Investors Rely on Familiar Macro Variables

I now analyze the responses of machine trading strategies to investors’ total familiarity with

the variables released on macro release days. I prepare standardized daily trading strategy

turnover values on macro release days, similar to Section 5.1. Where i denotes a trading

strategy, τ a macro release day, and t a trading contest, I conduct regressions of the following
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form, for each type of familiarity index:

Volumei,τ = β1 × Experiencedi,t + β2 × Familiarityτ

+ β3 × Experiencedi,t × Familiarityτ +φt + εi,t,τ (12)

When calculating familiarity indices using Equation (11), I take care to restrict my search of

news article or book mentions to the year in which the end of the backtest/in-sample period

of the corresponding trading contest t falls; this ensures that I am measuring the familiarity of

macro variables at the time investors are designing their trading strategies. Fixed effects for

these benchmark periods φt absorb any variation in the annual means of familiarity indices.

Note that daily volume is standardized (i.e. a z-score) as before, which once again implicitly

controls for strategy-level (and investor-level) unobserved heterogeneity, and allows samples

to be pooled across strategies.

[Insert Table 6 around here]

Table 6 presents regression results of daily strategy turnover against the aggregate famil-

iarity of those macroeconomic indicators being released to investors. The estimated coefficient
bβ2 takes approximately the same value across all specifications; that is, whether an interaction

with investor experience is incorporated or not, and whether the measure of aggregate familiar-

ity is computed based on news article or book mentions. All estimates for bβ2 are significantly

non-zero at the 99% level. By contrast, none of the estimates for bβ3, the interaction effect

between familiarity and experience, are significantly different to zero. Therefore, all trading

strategies respond more strongly to an increase in the familiarity of the macroeconomic indi-

cators being released. This result is consistent with my hypothesis that investors first reach for

more familiar variables when specifying their models of the world.

Table IA.2 in Internet Appendix B augments the previous regressions to include the index

of macro release day predictive informativeness, as well as an interaction with experience.

All estimates are of a similar sign and significance to those in the separate informativeness

regressions (Table 5) and familiarity regressions (Table 6). Neither index drives out the other,

and results are similar across both familiarity measures.

6 Gains from Access to (Bigger) Data

Inexperienced investors respond only weakly to informative macro predictive variables, and

tend to rely on familiar macro predictive variables. On net, do they benefit from macro predic-

tive variables at all? I answer this question by comparing investors who have access to macro
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predictive variables to investors who do not. I find that inexperienced investors do not benefit,

on net, from having access to macro predictors. This finding is consistent with the presence of

a behavioral bias that afflicts these inexperienced investors.

6.1 Performance Gains Due to Macro Predictive Variables

To cleanly measure the benefits that investors derive from data, I define two groups. The

Control group consists of investors during contests 1-7, when the additional macro predictive

variables were not available to them. The Treatment group consists of investors who only

traded from contest 8 onward; that is, in the environment when the additional macro predictive

variables were available to them. To be able to include fine-grained experience level dummies,

I focus on investors who have experienced 1-4 contests.

[Insert Table 7 around here]

The Quantiacs institutional setting implicitly controls for a variety of potential confounders

by enforcing identical goals, horizons, and other common conditions upon the investors in my

sample. In addition, Table 7 verifies that contestants are balanced across the Treatment and

Control groups with respect to their observable characteristics: Panel A displays the means of

a contestant’s experience level, and a contestant’s relative ranking in the previous contest she

took part in (for contestants who participate in multiple contests). The differences are not

statistically different to zero (even at a low significance level of, say, 90%). Similarly, Panel

B compares contest-level participation attributes; namely, the average level of experience of

contestants per contest, the fraction of first-time participants, and the fraction of last-time

participants. The relevant differences are also not statistically different to zero (including at

low significance levels such as 90%). The combination of implicit controls by the institutional

setting and groups that are well-balanced across observables allows me to attribute changes to

investors’ performance outcomes to the availability of the macroeconomic predictive variables.

[Insert Table 8 around here]

The regressions in Table 8 analyze the relationship between investor experience and the

availability of additional predictive signals (as covariates) and the out-of-sample performance

outcomes (as the response) using various specifications. The dummy variable named “New

variables availablet” indicates whether investors compete after the introduction of the ad-

ditional macroeconomic indicators to the common parts of investors’ information sets; i.e.

whether investors belong to the Treatment group. All regression specifications in Table 8 take

performance outcomes to be the excess of the out-of-sample SR over the SR from holding the
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benchmark index (equally-weighted buy-and-hold positions in contestants’ tradeable universe

of futures contracts) in order to permit valid comparisons across time periods.20

The regression results in Panel A of Table 8 are variants of the following linear specification:

Excess Live SRBest
i,t

= β1 + β2 ×Contests experiencedi,t + β3 ×New variables availablet

+ β4 ×Contests experiencedi,t ×New variables availablet + εi,t . (13)

The estimate bβ4 = 0.908 of the incremental effect of data availability on performance is positive

and significant. This indicates that experience and deriving a benefit from Bigger Data are

complements. The availability of the additional macro predictive variables is associated with a

steepening in investors’ performance dynamics, over and above the positive slope captured by

the estimate bβ2 = 0.589 for the baseline; in this case, the baseline represents the performance

dynamics of investors without access to the new data.
To allay any concerns about assuming a linear relationship between experience and perfor-

mance, I also relax the functional form by incorporating a dummy for every experience level,
and find the effect continues to hold. The regression results in Panel B of Table 8 are variants
of the following specification:

Excess Live SRBest
i,t

= β1 +
4
∑

k=2

�

βk ×1{Contests experiencedi,t = k}
�

+ γ1 ×New variables availablet

+
4
∑

k=2

�

γk ×1{Contests experiencedi,t = k} ×New variables availablet

�

+ εi,t . (14)

In Panel B column (3), the treatment indicator is interacted with dummies for investor expe-

rience to capture the incremental effects γk of the availability of the new predictive variables

on the performance outcomes of investors with comparable levels of experience k between

groups. In column (3), the interaction between the dummy variable for treatment and dum-

mies for investor experience have positive (and significantly non-zero) coefficients bγ3 and bγ4

for higher levels of experience, in particular. For lower levels of experience, however, bγ1 and

bγ2 are not statistically significantly different to zero, confirming that inexperienced investors

fail to derive a net benefit from gaining access to the set of macro predictive variables.

To sum up, across both functional forms I find evidence that more experienced investors

20Note that since contestants are divided into two groups, I cannot identify individual-level fixed effects. Sim-
ilarly, since the dummy for the availability of new predictors is time-invariant on a per-contest level, I can no
longer identify contest-level fixed effects either; I therefore control for market conditions using the benchmark
portfolio’s performance.
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are successful in making use of the additional macroeconomic indicators to better attain their

objective. By contrast, inexperienced investors do not derive any incremental benefit from

having access to these newly-added macro variables.

6.2 Potential Alternative Explanations for the Effect

My tightly controlled institutional setting is the primary means by which I identify investor

performance dynamics. In this section, I address potential alternative explanations so as to

rule them out as the main drivers of my observed results.

6.2.1 Participation Bias

Having found that experienced individual investors derive a benefit from the availability of the

macro predictive variables, I now examine the robustness of this finding to a possible selec-

tion bias between investors’ experience levels and their performance outcomes. Unlike Seru,

Shumway, and Stoffman (2010) and Linnainmaa (2011), modeling participation and selection

is not a primary object of my study; however, attrition exists in my panel of investors, and it is

therefore important to understand what direction any bias might introduce to OLS regression

specifications. I therefore re-estimate the magnitude of experience effects using a Heckman

(1976) two-stage model, with standard errors computed according to Greene (1981).

[Insert Table 9 around here]

The first stage of the procedure consists of a probit model for the participation of the con-

testants in the next contest, based upon a number of covariates that I specify. I argue that two

of the covariates that I make use of in the first-stage selection equation satisfy an exclusion

restriction: the mean of the Google Search Index for “Quantopian”21 and the relative num-

ber of entries that the contestant has made in the prior contest compared to the mean. The

first-stage coefficients are shown in the top section of Table 9, and the estimates indicate that

contestants are less likely to participate in the next contest as they gain in experience and as

the rival trading platform (Quantopian) gains in attention. Contestants are also more likely to

participate again if they have recently participated more intensively compared to others.

21Quantopian was one of Quantiacs’ rival FinTech platforms for running trading contests (Fleiss, Kominers, and
Ughetta, 2017; Zheng, 2017). The logic of my exclusion restriction is that the contestants on each platform may
exhibit substitutability in which platform they participate in. It seems implausible to argue that search interest in
and attention to a rival platform (Quantopian) could affect performance outcomes in my focal setting (Quantiacs)
through any channel other than an effect on participation. Note that the rival Quantopian platform is now defunct
(as announced on 29 October 2020) but was active throughout my sample period.

29



The second-stage coefficients represent the outcome equation of interest, and these are

shown in the middle section of Table 9. The coefficient on experience is positive throughout,

and statistically significant both overall (in column 1), and when conditioning on the availabil-

ity of the new predictive variables (column 3). These findings are reassuring that the earlier

results on learning with experience are not in fact driven by selection/attrition bias or, as Seru,

Shumway, and Stoffman (2010) framed it, an investor learning about her type.

More importantly, when conditioning on the availability of the new predictive variables in

column (3), the estimate of the ρ parameter in the second stage of the Heckman (1976) model

is negative, and therefore so is the corresponding coefficient on the Inverse Mills Ratio, which is

also statistically significant. This indicates the presence of negative selection in an OLS estimate

of the magnitude of the effect of learning with experience. To put it differently, uncorrected

OLS estimates of the magnitude of the experience effect would be biased downwards for the

investors with access to the additional predictive variables. The direction of this effect is in

agreement with the intuition of Linnainmaa (2011). Furthermore, since the negative selection

is concentrated among the investors who had access to the additional predictive variables,

this suggests that the incremental steepening in performance dynamics due to additional data

availability is likely to be even steeper than that detected by the earlier OLS regressions (Table

8 Panel A).

6.2.2 Competition Effects

I also test whether competition (to win one of the top 3 places in a contest) can explain my

empirical findings on how investors make use of additional predictive variables.22 Dugast

and Foucault (2021) highlight that, while data abundance may benefit investors, the effect of

competition may work in the opposite direction. In Internet Appendix H, I measure competitive

intensity and analyze to what extend it impedes investors’ ability to benefit from the additional

macro predictive variables. The results of this analysis suggest that competition effects do not

explain my findings.

7 Investor Behavior When Solving a Prediction Problem

This section introduces a model of investor behavior that allows me to measure investors’ usage

of individual predictive variables. The framework that I introduce allows investors to express

a bias against predictive variables, and shows that this bias can lead investors to completely

ignore a subset of variables that are available to them. I also estimate this behavioral model.
22One advantage of the Quantiacs institutional setting is that investors have no price impact, which eliminates

other channels for them to engage in strategic behavior.
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7.1 Portfolio Choice with Historical Data

Since investors are incentivized by the contest setup to maximize their single-period out-of-

sample Sharpe Ratios, the investor’s objective for a particular contest is defined as

max
w

µT w
p

w TΣw
, (15)

that is, to maximize the Sharpe Ratio of a portfolio of weights w on all tradable futures con-

tracts given a vector µ of expected returns of those futures contracts and a variance-covariance

matrix Σ. There are no shorting constraints, and I omit any discussion of transaction costs.

In my institutional setting, investors all aim to maximize the Sharpe Ratio of their portfolios

during the Live period that the trading contest is active, so their common objective can be

analyzed by appealing to the single-period mean-variance framework of Markowitz (1952).23

To solve this portfolio choice problem and attain her objective, the investor needs to know the

first two moments of the returns of her tradable assets during that future period.

In reality, a prediction problem arises because the out-of-sample moments of asset returns

are not known. To make progress, let us assume thatΣ is known and so the investor must there-

fore estimate the unknown parameter vector µ in order to achieve her objective.24 Investors

in the Quantiacs setting behave consistently with this assumption: the results in Internet Ap-

pendix G suggest they draw their performance improvements primarily from improved mean

returns, rather than decreases in their strategies’ return volatilities.

Considering just one of those futures contracts, the investor must predict the (unknown)

expected return µ in order to solve her portfolio choice problem (and to repeat the exercise

for all other tradable futures contracts). She receives m signals s1, s2, . . . , sm that can be used

to produce a prediction µ̂. I begin by assuming that she is aware of the true functional form of

the relationship and that it is some linear combination of the predictive signal values,

µ=
m
∑

i=1

bisi = s b, (16)

collecting the predictive signal values in a row vector s and linear coefficients in a column

23Note that, under relatively mild assumptions on feasible portfolios and constraint sets, the solution to the
Sharpe Ratio maximization problem is simply the tangency portfolio solution to the classical Markowitz (1952)
mean-variance portfolio choice problem (Cornuéjols, Peña, and Tütüncü, 2018, pp. 102-103), so there is a direct
analytical link between the solutions of the Sharpe Ratio maximization problem and of the mean-variance portfolio
choice problem.

24Empirically, it is well known that the first moment of asset returns is more difficult to estimate than the
second moment. Theoretically, an asset’s volatility can even be calculated exactly from continuously-observed
returns. Merton (1980) discusses these empirical and theoretical considerations in detail.
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vector b.

Despite knowing the true functional form, the parameters b themselves are unknown to

the investor, so she must proceed by learning or estimating them based on the historical data

of similar futures contracts. Recall that all futures contracts mature at predefined dates; for

example, there are four S&P500 E-mini futures contracts traded on the CME that mature each

year (at predefined dates in March, June, September and December). Therefore an investor

who wishes to predict the expected return µ of a specific futures contract before it matures can

make use of historical return data for similar futures contracts that have matured in the past.

More formally, to estimate these unknown parameters b, the investor collects t previous

realizations, each of which relates to the realized return v of some past futures contract and

the corresponding prior signals available s1, s2, . . . , sm at the time. Let us arrange these t sets

of historical samples in t-dimensional column vectors v and s1, s2, . . . , sm, respectively. For

convenience, define the t ×m data matrix S := [s1 s2 . . . sm]. Then the investor’s predic-

tion problem requires her to determine the values of these unknown parameters based on the

historical data that she observes. Defining Err : R×R→ [0,+∞) as some measure of error or

deviance between its scalar arguments, her objective during the model estimation process will

be to minimize the error between the observed historical realized returns v and her predictions

based on the historical signal values S:

min
b∈Rm

Err(v ,Sb) (17)

Minimizing the errors in the predictions of these historical realized returns (17) directly im-

proves the investor’s ability to attain her objective: in fact, Best and Grauer (1991) showed an-

alytically that both over- or under-estimating assets’ expected returns can lead to large changes

in the mean or variance of the solution to the closely-related Markowitz (1952) portfolio choice

problem. In my setting, then, both over- and under-estimates of the expected returns may lead

to sub-optimal Sharpe Ratios. Knowing this, an investor who is learning to predict expected

returns should seek out a functional form for the error/deviance function in (17) that penal-

izes both over- and under-estimates. Minimizing the root-mean-square error fulfills this goal. I

therefore define this to be the (unbiased) investor’s baseline prediction model. In what follows,

|| · ||1 and || · ||2 denote the ℓ1/taxicab and ℓ2/Euclidean norms of a vector, respectively.

Definition 1. An unbiased investor determines the unknown parameters b by minimizing the

historical prediction error

min
b∈Rm
||v − Sb||2. (18)

The (well-known) solution to the above problem is for the investor to run an OLS regression

on historical values to compute bb, and then predict the expected return according to Eqn. (16).
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7.2 Incorporating Irrationality Into the Investor’s Prediction Problem

In my characterization, the investor has well-defined preferences relating to Sharpe Ratio max-

imization, as required by the Quantiacs institutional setting. Much like the scenario analyzed

by Martin and Nagel (2022), she faces a prediction problem, in predicting futures contracts’

expected returns from historical data. I now show how notions of irrationality can be incorpo-

rated into this scenario by adding a key deviation from the rational baseline.

I continue to maintain the baseline functional form for the futures contract’s expected return

(16), and the assumption that the investor has access to a dataset of historical signals and

their realizations for similar futures contracts. I now assume, in addition, that the investor

falls victim to a form of familiarity bias by expressing an aversion to unfamiliar variables.

In a similar spirit to Cao, Han, Hirshleifer, and Zhang (2011), I capture this aversion to the

unfamiliar as a fear of worst-case outcomes.

Definition 2. A biased investor determines the unknown parameters b by considering the worst-

case error that may result for any given choice of parameter values,

min
b∈Rm

max
U∈U
||v − (S+U)b||2, (19)

where U is a matrix of signal-wise perturbations that maximizes the ℓ2 norm-based error for any

choice of b and is constrained by an uncertainty set

U :=
�

[u1 u2 . . . um] : ||u i||2 ≤ δi ∀ i = 1, . . . , m
	

(20)

that is characterized by a set of variable-specific upper bounds δi ≥ 0, perceived by the investor,

on the ℓ2 norm of each possible signal-wise disturbance u i.

Definition 2 frames the biased investor’s prediction problem as her attempting to minimize

the worst-case prediction error while a malevolent opponent (Nature) conspires to maximize it

up to the constraints permitted by U . The higher the variable-specific bounds δi perceived by

the investor, the worse the worst-case error and the more conservative she will be. An investor

who is averse to some unfamiliar variable indexed by x will act as if she expects Nature to

introduce disturbances up to magnitude δx to the historical values s x of this variable in exactly

such a way that it would maximize the investor’s overall prediction error.

I will shortly describe a simplified version of this setup that delivers a closed-form solution

and the intuition for why the biased investor will underweight – and may even ignore – current

signal values, even though they determine the asset’s expected return by definition (Eqn. 16).

An investor who behaves according to Definition 2 is thus consistent with this paper’s empirical

findings that investors may choose to underweight even genuine predictive variables.
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Incorporating worst-case scenarios into the investor’s objective function (19) has a paral-

lel with the setup of a zero-sum game, or indeed the well-established literature on ambiguity

aversion. Notably, Epstein and Schneider (2008) and Illeditsch (2011) model the behavior of

an investor responding to a (single) signal of unknown precision. Another related work by

Garlappi, Uppal, and Wang (2007) models ambiguity aversion in portfolio choice as a con-

straint on the investor’s perceived (squared) confidence interval of the expected return of an

asset. There are also important differences between my approach and this literature. First, the

investor’s prediction problem in my case specifically incorporates a (crucial) role for historical

data. Second, I do not rely on any probabilistic assumptions – not even the existence of a ran-

dom variable. Third, as I will show shortly, investor behavior in my setup can easily be taken

to the data thanks to strong connections with the machine learning literature.

I now show that, given an investor-specific penalization parameter, the biased investor’s

problem is analogous to that of running the well-known Lasso machine learning technique on

the historical data that she possesses.

Assumption 1. Assume that δi = δ ∀ i = 1, . . . , m.

Proposition 1. Under Assumption 1, a biased investor solves her original problem (19) by solving

an equivalent formulation

min
b∈Rm

1
2
||v − Sb||22 +λ||b||1, (21)

where λ≥ 0 is a scaling of δ in (20).

The Lasso prediction problem (21) has been studied extensively in the machine learning

literature. As a model of investor behavior, it connects the magnitude of the investor’s famil-

iarity bias λ with the extent to which she underweights genuine predictive variables. I now

make a further assumption that delivers closed-form predictive variable weights to make this

point clearly.

Assumption 2. Assume that the data matrix S is orthonormal: ST S = I .

Proposition 2. Under Assumption 2, the biased investor will solve her prediction problem (21)

by predicting

bµ= sbb, (22)

where s is an m-dimensional row vector consisting of the m predictive signals to the currently

traded asset’s expected return µ, and bb is an m-dimensional column vector of weights whose ele-

ments are defined by
bbk = sign(s T

k v)max
�

|s T
k v | −λ, 0
	

. (23)
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Figure 6 illustrates the functional form given by Equation (23). Over the region |s T
k v | ≤ λ of

the input domain, a biased investor will entirely ignore a predictive variable k by choosing the

weighting parameter bbk = 0. The larger the magnitude of the investor’s bias λ, the more likely

that she will ignore any predictive signals. This simplified setting corresponds to an investor

who applies her familiarity bias equally to all predictive variables, although all variables k will

differ in their historical predictive contributions s T
k v and so will still be treated differently by

the investor.

[Insert Figure 6 around here]

7.3 Consequences of Investor Bias

Under-reaction & model mis-specification One interpretation of the biased investor’s model

of the world (23) is to note that s T
k v would simply be the parameter value that the decision-

maker would have specified if she had used OLS regression to solve her problem, under As-

sumption 2. Therefore, the investor specifies parameter values bb that are “shrunken” in com-

parison to what they would have been had she used OLS regression; this is an example of

“soft-thresholding,” as illustrated in Figure 6. Even when predictive variables are not ignored

entirely, the soft-thresholding effect reduces their magnitudes in comparison to the correctly-

specified model of the world (Definition 1) in which the investor would have simply run an OLS

regression on her historical dataset. The investor’s familiarity bias thus leads her to under-react

to predictive signals.

Market (in)efficiency & return predictability The familiarity bias that I investigate in this

section has implications for market efficiency. In the most striking case, Proposition 2 im-

plies that any signal sk to the asset’s expected return may not find its way into the price if

the historical signals s k contributed to predicting (historical) expected returns by an amount

that falls below some threshold. Even when all variables are incorporated, market inefficiency

may result — to see this, consider the case of a single representative investor with a λ pa-

rameter that captures her bias. This representative agent setup corresponds closely to Martin

and Nagel (2022)’s model of a Bayesian learner who has a prior that is parameterized by an

equivalent λ parameter. Martin and Nagel (2022, Proposition 6) argue that a prior that is

incorrectly specified – i.e. with a value of λ that is excessively high – “should show up in

the data as out-of-sample predictable returns” to an econometrician, since the representative

agent under-weights predictive information. A familiarity bias in how investors make use of

data can therefore impede market efficiency, and is a potential explanation for the existence
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of out-of-sample return predictability in the empirical asset pricing literature.25 According to

my empirical findings in Section 6 and in my next analysis, Bigger Data does not resolve this

inefficiency.

Sparsity & overconfidence Since a biased learner may ignore valid predictive signals (Propo-

sition 2), she effectively adopts a simplified and sparse model of the world. This lends itself to

an alternative behavioral interpretation: Montiel Olea, Ortoleva, Pai, and Prat (2022) argue

that economic agents who ignore valid predictive variables exhibit a form of overconfidence in

how they specify their model of the world.

7.4 Empirically Measuring the Extent of Investor Bias

I now take the predictive model (21) to the data. By optimizing for the best fit at the individual

investor-contest level, I estimate which predictive variables are used by each investor in each

contest. The objectives of this analysis are threefold. First, it allows me to detect whether

investors underweight predictive variables severely enough that they are ignored altogether.

Second, it allows me to measure individuals’ usage of all predictive variables, beyond the subset

of macroeconomic predictive variables analyzed in Section 5. And third, counting the estimated

number of predictive variables employed produces a simple measure of how strongly investors

are biased; I can therefore test whether investors’ familiarity bias lessens with experience, as

hypothesized earlier.

7.4.1 Estimation Procedure

My estimation procedure is built upon that of Friedman, Hastie, Höfling, and Tibshirani (2007),

who provide a coordinate-wise descent algorithm that numerically solves the investor’s pre-

diction problem (21) without the need for an orthonormality assumption: given a fixed bias

parameter value λ, their algorithm estimates the optimal value of b in Eqn. (21).

It remains to estimate the optimal value of λ. To achieve this, I define the following proce-

dure. First, prepare a grid of possible values for λ, lower-bounded at zero, and estimate bb for

each of these possible values bλ. Secondly, for each pair (bb, bλ), predict expected returns for each

of the historical returns in the investor’s dataset as bv = Sbb. Compare these predicted values

bv to the actually observed historical returns v by calculating the element-wise mean-squared

error (MSE) between these two vectors. Finally, pick the optimal pair (bb
∗
, bλ∗) to be the pair

(bb, bλ) that minimizes this MSE.

25A variety of studies including Freyberger, Neuhierl, and Weber (2020) and Gu, Kelly, and Xiu (2020) find
evidence of out-of-sample return predictability for US stocks. I find similar evidence for futures contracts.
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Operationalizing this procedure requires me to supply empirical values for v and S. I there-

fore apply my estimation procedure to the timeseries of daily portfolio returns earned by the

investor in place of v ,26 and define a corresponding matrix of predictive signals S that the

investor had access to at the time of forming her daily portfolio. For contests in which macroe-

conomic predictive variables were not available, the 880 columns of S are defined to contain

the latest available 5 daily returns (i.e. lags 1 to 5) and their squares (proxying for a histori-

cal volatility signal), for each of the 88 futures contracts in the investor’s tradeable universe.

For contests in which macroeconomic predictive variables were available, the 934 columns

of S include, in addition, the latest available values (i.e. lag 1) for each of the 54 macroe-

conomic predictive variables. Predictive variables are standardized to a common scale. The

high dimensionality of the signals matrix S illustrates the challenges investors face when mak-

ing predictions in a Big Data environment (Martin and Nagel, 2022) but does not pose any

practical difficulties to the procedure of Friedman, Hastie, Höfling, and Tibshirani (2007).

I perform this estimation procedure for all contest entries of all investors who take part

in more than one contest. To enable valid comparisons,27 I report the estimated number of

predictive variables that each investor entry uses; that is, the number of non-zero elements in

the corresponding vector of parameter solutions bb
∗
.

7.4.2 Results and Discussion

Figure 7 displays the mean number of estimated variables used by an investor according to

experience level (i.e. number of contests participated in so far), split into the Treatment and

Control groups that I defined in Section 6.1.

[Insert Figure 7 around here]

These estimates of bb
∗

indicate that investors make use of more predictive variables in the

information environment in which more were available (Treatment) compared to the baseline

environment (Control). However, investors of all experience levels ignore a subset of the pre-

dictive variables that are available to them. The ignored variables include both price-based

and (in the Treatment group) macroeconomic predictive variables, suggesting that investor

underweighting of predictive variables is a general phenomenon that extends beyond the set

of macroeconomic indicators (Section 5).

26In this regard, I follow a very large literature in empirical asset pricing that uses ex post returns to proxy for
ex ante return expectations; for example, when testing factor models or other asset pricing models.

27As Lemma 2 in the Appendix makes clear, estimates for λ are only comparable if the dataset used is fixed
throughout, which is not the case. The estimated number of predictive variables, on the other hand, is always
comparable.
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Within each of the information environments, my estimates of bb
∗

indicate that less expe-

rienced investors ignore more predictive variables than more experienced investors. This is

consistent with the core of my hypothesized mechanism: that, as investors gain in experience,

they learn to overcome their familiarity bias, and they therefore make better use of the predic-

tive variables that are available to them. According to these results, one way in which investors

make better use of predictive variables is by ignoring fewer of them: Figure 7 illustrates that

each contest’s worth of experience is associated with an additional 25-50 predictive variables

being incorporated into investors’ models of the world.

8 Conclusion

Using a unique panel of systematic investor outcomes and daily turnover from an institutional

setting that controls investors’ preferences, horizons and (crucially) the information they can

use to make trading decisions, I study how investors specify machine-driven trading strategies

that make use of predictive variables. The controlled conditions allow me to interpret these

algorithms as models of the world defined by investors.

I find that investors perform better with experience, and (gradually) alleviate their model

disagreement. Delving into investors’ usage of macroeconomic predictive variables, I find that

inexperienced investors appear to underweight genuine predictive variables, in favor of vari-

ables that they perceive to be more familiar. This bias holds inexperienced investors back from

benefiting from Bigger Data.

I also contribute an empirical framework that can be used to measure investors’ usage

of predictive variables. I find that investors of all experience levels ignore a subset of their

information environments, but learn to incorporate additional signals into their models of the

world with experience.

My findings shed light on the role of human limitations in the design of machine traders.

The familiarity bias that investors exhibit in their use of available information is likely to be

prevalent in other settings, and is a driver of model disagreement.
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Appendix

Proofs

To show Proposition 1 requires two lemmas. The first is by Xu, Caramanis, and Mannor (2010),

and the second also relies on results by Tian, Loftus, and Taylor (2018).

Lemma 1 (Xu, Caramanis, and Mannor (2010) Theorem 1). The optimization problem

min
b∈Rm

max
U∈U
||v − (S+U)b||2 (24)

with uncertainty set U defined by

U :=
�

[u1 u2 . . . um] : ||u i||2 ≤ δi ∀ i = 1, . . . , m
	

(25)

is equivalent to the optimization problem

min
b∈Rm
||v − Sb||2 +

m
∑

i=1

δi|bi|. (26)

Proof. See Xu, Caramanis, and Mannor (2010) Theorem 1.

Lemma 2. The optimization problem

min
b∈Rm
||v − Sb||2 +δ||b||1 (27)

is equivalent to the optimization problem

min
b∈Rm

1
2
||v − Sb||22 +λ||b||1 (28)

with the one-to-one change of parameters

λ=
δa1
p

1−δ2a2

⇔ δ =
λ
p

λ2a3 + a4

, (29)

in which each of λ,δ are monotonically increasing in the other, and where a1, a2, a3, a4 > 0 and

are constant for any fixed dataset (S, v) and common parameter estimates b∗.

Proof. Xu, Caramanis, and Mannor (2010, Appendix A) show that the two problems are equiv-

alent up to a change of λ,δ parameters. Tian, Loftus, and Taylor (2018, Lemma 2) derive the

mapping between δ and λ in terms of b∗,S, v . It is simple to show that a1, a2, a3, a4 > 0 in

their formulation and that ∂ λ∂ δ , ∂ δ∂ λ > 0 for λ,δ > 0.
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The proof of Proposition 1 now follows.

Proposition 1. Under Assumption 1, a biased investor solves her original problem (19) by solving

an equivalent formulation

min
b∈Rm

1
2
||v − Sb||22 +λ||b||1, (21)

where λ≥ 0 is a scaling of δ in (20).

Proof. Applying Lemma 1 to the optimization problem in Definition 2 with δi = δ ∀i shows

that (19) is equivalent to the following optimization problem:

min
b∈Rm
||v − Sb||2 +δ||b||1. (30)

By Lemma 2, (30) is equivalent to (21), with the mapping between λ,δ given by the lemma.

The optimization problems (19) and (21) are thus equivalent.

The result in Proposition 2 is due to Tibshirani (1996), who did not provide a proof. For

completeness, a brief proof follows.

Proposition 2. Under Assumption 2, the biased investor will solve her prediction problem (21)

by predicting

bµ= sbb, (22)

where s is an m-dimensional row vector consisting of the m predictive signals to the currently

traded asset’s expected return µ, and bb is an m-dimensional column vector of weights whose ele-

ments are defined by
bbk = sign(s T

k v)max
�

|s T
k v | −λ, 0
	

. (23)

Proof. I start from the formulation (21). As the ℓ1 norm is not differentiable, I follow Lee,

Sun, Sun, and Taylor (2016) in writing the (necessary and sufficient) Karush–Kuhn–Tucker

conditions for a solution in terms of the subdifferential ∂ (||b||1):

0 ∈ ST (Sbb− v) +λ∂ (||b||1) (31)

The orthonormality assumption ST S = I then simplifies it to

0 ∈ bb− ST v +λ∂ (||b||1). (32)

Note that each element bbk of bb does not depend on other elements of bb:

0 = bbk − s T
k v +λbzk, (33)
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where bzk = sign(bbk) when bbk ̸= 0 and the set [−1,+1] otherwise. The result (23) then follows.

Figures

Figure 1: Contest Backtest vs. Live periods. Stylized illustration of how the Backtest period expands
with each new contest, whereas the (disjoint) Live period rolls forward from one contest to the next.

Calendar
time

t − 2 t − 1 t t + 1

Backtest period
(in-sample Sharpe Ratio)

Live period
(out-of-sample Sharpe Ratio)

Figure 2: Stylized distinction between macro variable release days and macro variable availability.
Contestants take part in one or more trading contests t by entering trading strategies that run over
an extended calendar period. The historical periods of all contests overlap in calendar time, so each
historical calendar day τ can be matched to multiple trading strategies entered into various contests t:
this allows entries to be compared for the same days τ. The values of macro indicators are updated by
the Quantiacs trading platform on a subset of these calendar days (highlighted in solid colors) but only
accessible to trading strategies entered into later contests (highlighted in red).

Macro
variable
release

Contest dates
t = 1

. . .

t = 7

t = 8

. . .

t = 12

Calendar time τ

Macro
variables

unavailable

47



Figure 3: Variation in the number of variables released on macro release dates. This chart counts
the number of macro variables that were released to trading strategies on the Quantiacs platform, in-
cluding both in-sample/Backtest and out-of-sample/Live periods. Variables were released in monthly
batches, but not every variable was made available or updated by the platform. The historical calendar
dates on which one or more macro variables were updated are termed “macro release days.”
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Figure 4: Cross-sectional mean correlation in trades. For each contest index t, this chart displays
the cross-sectional mean of the pairwise correlations ρi, j,t in daily turnovers for all best live entries in
the contest. Self-correlations are excluded.
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Figure 5: Out-of-sample cumulative predicted returns using the macro predictive variables. This
chart plots the cumulative return of an example trading strategy based on the benchmark Random Forest
cross-sectional return prediction model. The machine learning model uses only the macroeconomic
predictive variables available on the Quantiacs platform as its inputs, to predict returns for the full
universe of futures contracts.
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Figure 7: Investors’ estimated usage of predictive variables. This chart shows the number of pre-
dictive variables used by investors. These are measured according to the model of investor behavior in
Section 7.2, based on investors’ daily portfolio returns and a set of predictive variables. A total of 934
variables are tested, including both return-based and macroeconomic predictive variables. The positive
slopes indicate that both groups of investors make use of more predictive variables as they gain in ex-
perience. The offset indicates investors with access to more predictive variables use more of them. The
split into groups of investors with and without access to macro predictive variables is the same as for
the main regression specifications. Bars represent standard errors.
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Tables

Table 1: Trading contests. Summaries of each of the 12 contests in the leaderboard sample. “OOS” denotes out-of-sample, “IQR” denotes the
inter-quartile range, and “SD” denotes the cross-sectional standard deviation. The Entries columns summarize entries per contestant.

Backtest/In-Sample Sharpe Ratios Live/OOS Sharpe Ratios

Entries Percentile Dispersion Percentile Dispersion Variables

Index Live/OOS Period Contestants Median Mean 25 50 75 IQR SD 10 25 50 75 90 IQR SD Price Macro

1 2014-12-01 – 2015-01-31 13 1.00 1.31 0.72 0.94 1.03 0.31 0.49 -3.85 -2.33 0.00 0.44 1.95 2.77 2.99 ✓

2 2015-07-01 – 2015-09-30 16 2.00 3.62 0.38 0.59 1.38 1.00 0.83 -2.41 -2.07 -1.18 0.74 3.03 2.81 2.12 ✓

3 2015-10-01 – 2015-12-31 23 1.00 1.17 0.09 0.39 0.46 0.37 1.24 -1.97 -0.63 0.26 0.98 1.63 1.61 1.55 ✓

4 2016-01-01 – 2016-03-31 30 1.00 3.53 0.15 0.86 2.38 2.22 2.22 -1.66 -1.20 0.09 1.70 3.11 2.90 2.18 ✓

5 2016-04-01 – 2016-06-30 38 2.50 4.05 0.43 0.76 1.92 1.49 1.41 -2.72 -1.49 -0.21 1.16 2.50 2.65 2.46 ✓

6 2016-08-01 – 2016-10-31 87 1.00 3.02 0.33 0.64 2.24 1.91 1.62 -2.95 -2.13 -0.75 -0.22 0.75 1.91 1.57 ✓

7 2017-01-01 – 2017-03-31 125 1.00 2.54 0.25 0.39 1.53 1.28 1.79 -2.45 -1.38 -1.03 0.67 1.44 2.05 1.69 ✓

8 2017-04-15 – 2017-07-31 92 1.00 3.50 0.38 1.19 2.36 1.98 2.63 -1.46 -0.48 0.68 1.41 1.93 1.89 1.67 ✓ ✓

9 2017-10-01 – 2018-01-31 163 1.00 2.31 0.30 0.38 1.90 1.60 5.57 -2.07 -0.35 1.00 2.07 2.90 2.42 2.04 ✓ ✓

10 2018-02-01 – 2018-05-31 63 1.00 3.73 0.40 1.61 4.92 4.52 4.19 -2.67 -1.50 -0.24 0.23 1.56 1.73 2.09 ✓ ✓

11 2018-07-01 – 2018-10-31 95 1.00 2.88 0.38 0.69 2.50 2.12 5.12 -2.16 -1.65 -0.89 -0.58 0.42 1.06 1.46 ✓ ✓

12 2019-01-01 – 2019-04-30 129 1.00 3.13 0.36 0.55 2.27 1.91 3.27 -2.90 -2.56 -1.21 1.65 3.43 4.21 2.61 ✓ ✓

Overall: 874 1.00 2.92
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Table 2: Relating differences in trading activity to differential interpretations of information. OLS
& panel regressions of pairwise dissimilarity in trading activity against pairwise differences in the re-
sponse to identical predictive information releases. The outcome variable is the negative of the pairwise
correlation of the daily trading volume of two machine-driven trading strategies (i, j). Trading strate-
gies i, j are matched by trading contest index t to ensure they have access to identical information sets.
The covariates each measure the distance between daily trading volume responses to the predictive
information content of macro release days (bβi , bβ j), as measured using individual regressions for i, j.

Dependent Variable: −ρi, j
(1) (2) (3) (4) (5) (6)

log
�

|bβi − bβ j |
�

0.0486∗∗∗ 0.0508∗∗∗

(0.0030) (0.0026)

log
�

1+ |bβi − bβ j |
�

0.2423∗∗∗ 0.2866∗∗∗

(0.0225) (0.0362)

arcsinh
�

|bβi − bβ j |
�

0.1952∗∗∗ 0.2307∗∗∗

(0.0170) (0.0258)

Intercept ✓ ✓ ✓
Contest FEs ✓ ✓ ✓

Observations 19,640 19,640 21,512 21,512 21,512 21,512
R2 0.343 0.380 0.338 0.420 0.345 0.428
Within R2 0.371 0.416 0.424

Note: standard errors (in parentheses) are clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Performance outcomes and experience, in- and out-of-sample. OLS & panel regressions of
in-sample (Backtest) & out-of-sample (Live) performance outcomes against experience.

Dependent variable:

Backtest SRBest
i,t Live SRBest

i,t

(1) (2) (3) (4)

Contests experiencedi,t 1.161∗∗∗ 1.338∗∗∗ 0.445∗∗ 1.261∗∗∗

(0.055) (0.505) (0.178) (0.456)

Intercept ✓ ✓
Contest FEs ✓ ✓
Contestant FEs ✓ ✓

Observations 874 874 874 874
R2 0.156 0.024 0.035 0.040

Note: standard errors (in parentheses) are clustered by
contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4: Model agreement and experience. OLS & panel regressions for pairwise correlations of the
daily turnover series of best live trading strategies indexed by i, j that have been matched by experience
and by trading contest index t.

Dependent Variable: ρi, j,t

(1) (2) (3)

Contests experiencedi, j,t 0.0625∗∗∗ 0.0640∗∗∗ 0.0929∗

(0.0176) (0.0182) (0.0436)

(Intercept) 0.3087∗∗∗

(0.0207)

Contest FEs ✓ ✓
Contestant i FEs ✓

Observations 25,829 25,829 25,829
R2 0.00112 0.00939 0.30492

Note: standard errors (in parentheses) are clustered by
contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Trading strategy responses to released macro signal informativeness. Standardized daily
turnover of best live trading strategies on macro release days, regressed against a measure of release
days’ predictive information content, interacted with an indicator for investor experience.

Dependent Variable: Volumei,τ

(1) (2) (3)

Experiencedi,t 0.0673∗∗ -0.3229∗

(0.0184) (0.1208)

Informativenessτ 0.6774∗∗ 0.6348∗

(0.2132) (0.2362)

Experiencedi,t × Informativenessτ 1.025∗∗

(0.2357)

Intercept ✓
Model Year FEs ✓ ✓

Observations 142,332 142,332 142,332
R2 0.00014 0.00034 0.00054

Note: standard errors (in parentheses) are clustered by
contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Trading strategy responses to released macro signal familiarity. Standardized daily
turnover of best live trading strategies on macro release days, regressed against two indices of macro
release day familiarity, interacted with an indicator for investor experience. Familiarity measures are
based on news article mentions in columns (2) and (3), and book mentions in columns (4) and (5).

Dependent Variable: Volumei,τ

Familiarity Index: News Articles Books

(1) (2) (3) (4) (5)

Experiencedi,t 0.0673∗∗ -0.3381 -0.1500
(0.0184) (0.3085) (0.2425)

Familiarityτ 0.0027∗∗∗ 0.0026∗∗∗ 0.0026∗∗∗ 0.0026∗∗∗

(0.0003) (0.0003) (0.0005) (0.0005)

Experiencedi,t × Familiarityτ 0.0043 0.0023
(0.0031) (0.0024)

Intercept ✓
Benchmark Year FEs ✓ ✓ ✓ ✓

Observations 142,332 142,332 142,332 142,332 142,332
R2 0.00014 0.00019 0.00034 0.00014 0.00029

Note: standard errors (in parentheses) are clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: Investor balance across information environments. Balance of investor populations across
the Control & Treatment groups, as defined in Section 6.1: investors in the Control group have no
access to macroeconomic predictive variables, and investors in the Treatment group do. Panel A shows
participation attributes of individual contestants i at contests t. Panel B shows participation attributes
aggregated at the contest level (t). The comparisons are of observable attributes before vs. after the
additional macroeconomic indicators were made available to contestants by the trading platform.

Panel A: Individual-level balance
Control (N=289) Treatment (N=502)

Mean Std. Dev. Mean Std. Dev. Diff. in Means p value

Contests experiencedi,t 1.0796 0.3183 1.1058 0.3985 0.0262 0.3108
Percentile(ScoreBest

i,t−1) 0.6445 0.2570 0.7102 0.2588 0.0657 0.3592

Panel B: Contest-level balance
Control (N=6) Treatment (N=4)

Mean Std. Dev. Mean Std. Dev. Diff. in Means p value

Meant (Contests experiencedi,t ) 1.2092 0.0544 1.2191 0.0810 0.0099 0.8389
Fraction of first-time contestants at t 0.8415 0.0534 0.8580 0.0396 0.0165 0.5914
Fraction of last-time contestants at t 0.7813 0.0778 0.8542 0.0567 0.0729 0.1263

Note: the reported p-values are from two-sided t-tests. For mechanical reasons, in Panel B the first contest is
excluded (because its fraction of first-time contestants would be 1.0) and the last contest is excluded (because its

fraction of last-time contestants would be 1.0).
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Table 8: Benefiting from macro data availability, and the interaction with experience. Regressions
of investors’ out-of-sample performance against macro data availability interacted with experience. The
dependent variable is the excess best live Sharpe Ratio over the Sharpe Ratio of the benchmark index
during that out-of-sample period, which effectively controls for time periods/contests. In all specifi-
cations, the dummy “Macro variables availablet” indicates whether the contestant is a member of the
Treatment group, defined in Section 6.1, or the Control group.

Panel A: Linear relationship

Dependent variable:

Excess Live SRBest
i,t

(1) (2) (3)

(Intercept) −2.181∗∗∗ −1.959∗∗∗ −1.470∗∗

(0.566) (0.525) (0.626)

Contests experiencedi,t 1.030∗∗∗ 1.003∗∗∗ 0.589∗∗∗

(0.263) (0.240) (0.186)

Macro variables availablet −0.318 −1.352
(0.609) (1.069)

Contests experiencedi,t × Macro variables availablet 0.908∗∗

(0.439)

Observations 830 830 830
R2 0.048 0.053 0.063

Panel B: Indicator variables

Dependent variable:

Excess Live SRBest
i,t

(1) (2) (3)

(Intercept) −1.162∗∗∗ −0.970∗∗ −0.899∗∗

(0.341) (0.425) (0.451)

1{Contests experiencedi,t = 2} 1.332∗∗∗ 1.293∗∗∗ 1.044∗∗∗

(0.266) (0.257) (0.271)

1{Contests experiencedi,t = 3} 1.673∗ 1.654∗ −0.004
(0.914) (0.896) (0.459)

1{Contests experiencedi,t = 4} 3.021∗∗∗ 2.918∗∗∗ 2.245∗∗∗

(0.433) (0.421) (0.507)

Macro variables availablet −0.311 −0.428
(0.614) (0.659)

1{Contests experiencedi,t = 2} × Macro variables availablet 0.478
(0.504)

1{Contests experiencedi,t = 3} × Macro variables availablet 2.973∗∗

(1.491)

1{Contests experiencedi,t = 4} × Macro variables availablet 2.221∗∗∗

(0.527)

Observations 830 830 830
R2 0.050 0.055 0.067

Note: standard errors (in parentheses) are clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Ruling out selection effects. Heckman (1976) (i.e. Type II Tobit) two-stage selection mod-
els for implementing selection bias corrections to the regression of out-of-sample performance against
experience. The first stage models the probability of participation, while the second stage models the
outcome of interest.

All contests Contests 1-7 Contests 8-12

Stage Live SRBest
i,t Live SRBest

i,t Live SRBest
i,t

1. Selection (Intercept) 1.95∗∗∗ 2.38∗∗∗ 1.50∗∗∗

(0.18) (0.29) (0.34)

Contests experiencedi,t −0.88∗∗∗ −1.22∗∗∗ −0.77∗∗∗

(0.05) (0.10) (0.05)

Quantopian search indext −0.01∗∗ −0.00 −0.00

(0.00) (0.00) (0.00)

Ratio of entries to contest meani,t−1 0.23∗∗∗ 0.24∗∗∗ 0.22∗∗∗

(0.04) (0.08) (0.04)

2. Outcome (Intercept) −0.42∗∗∗ −0.79∗∗ −0.04

(0.13) (0.32) (0.17)

Contests experiencedi,t 0.84∗∗∗ 0.55 0.86∗∗∗

(0.17) (0.39) (0.20)

Inverse Mills Ratio −0.83∗∗∗ 0.33 −1.27∗∗∗

(0.32) (0.54) (0.41)

σ 2.13 1.89 2.31

ρ −0.39 0.17 −0.55

R2 0.04 0.07 0.04

Num. obs. 1482 482 1000

Censored 621 163 458

Observed 861 319 542

Standard errors (in parentheses) computed according to Greene (1981). ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

56



Internet Appendix

A Additional Figures

Cross-sectional dispersion in OOS performance outcomes Figure IA.1 illustrates the cross-

sectional dispersion in the Live/out-of-sample Sharpe Ratios of machine-driven trading strate-

gies in all 12 contests in the contest leaderboard sample. These are conditioned by the contest

index, and thus depict the time-varying conditional distribution of investor performance out-

comes. Immediately, it is evident that this distribution is widely dispersed. Some investors

are able to benefit substantially by implementing machine-based trading strategies, with high

empirical SR, while others experience negative SRs. The median empirical out-of-sample SR

is negative for many contests, indicating that a large fraction of machine trading strategies do

not benefit their human investor designers, when measured out-of-sample. Since contestants

within the same contest have exactly the same information set, this figure also illustrates the

extent of model disagreement.

Participation and attrition Figure IA.2 shows that a high proportion of contestants in each

contest are first-time participants and that, furthermore, many participate only once. The latter

fact is consistent with the prior literature and intuition discussed by Linnainmaa (2011). One

important conclusion from this chart is that investors do not appear to be noticeably more

or less willing to participate in contests just before or after the new predictive variables were

introduced in between contests 7 & 8; i.e. the introduction of the additional predictive variables

does not appear to be a structural break in terms of participation.

Informativeness vs. familiarity at the individual macro variable level Figure IA.3 illus-

trates to what extent the aggregate individual macro variable informativeness and familiarity

indices are concentrated among the top 3 and top 10 ranked individual variables each year.

Familiarity is highly concentrated, while informativeness is more evenly-spread. Figure IA.4

displays the correlations of individual macroeconomic variables’ rankings of informativeness

and familiarity, recomputed each year. Both familiarity measures are highly correlated at the

individual variable level. Variables’ informativeness and familiarity are only weakly correlated

with one another; still the correlation is typically positive.

1



Figure IA.1: Cross-section of out-of-sample performance outcomes. Box-and-whisker plots of the
distributions of Live (out-of-sample) trading strategy entry Sharpe Ratios, conditioning by contest index.
The LHS plot shows all available entries; the RHS plot shows the best live entries per contest. Boxes
cover the 25th and 75th percentiles of the empirical distribution; black dots denote the median value.
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Figure IA.3: Concentration measures of individual macro variable informativeness and familiar-
ity. Percentages of the total annual macro variable informativeness, and of the total annual macro
variable mentions in news articles and books (i.e. familiarity), that are attributed to the top 3-ranked
(LHS) and top 10-ranked (RHS) individual macro variables, for each year.
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Figure IA.4: Rank-correlations of individual macro variable informativeness and familiarity. Cor-
relations between macro variable informativeness and familiarity rankings. For both familiarity mea-
sures, rankings are computed each year using article and book mentions for that year. The informa-
tiveness measures are computed according to a benchmark machine learning model that uses historical
data up to the end of the prior year.
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B Additional Tables

Informativeness and familiarity at the individual macro variable level Table IA.1 lists the

top 20-ranked macro variables by informativeness and by each familiarity measure, aggregated

over the benchmark period.

Turnover responses to both aggregate informativeness and familiarity Table IA.2 com-

bines the regression specifications of Tables 5 and 6 to jointly analyze the responses of turnover

to macro release day informativeness and macro release day familiarity. The estimates in this

joint specification are consistent with earlier findings from individual specifications.

Table IA.1: Mean macro variable rankings. Top-20 ranked macroeconomic predictive variables, by
informativeness and familiarity, utilizing the means of annual 2014-2019 rankings.

Rank By Informativeness By Familiarity (News) By Familiarity (Books)

1 Export Prices Exports Exports

2 Imports Imports Imports

3 Producer Prices Change Unemployment Rate Unemployment Rate

4 Inflation Rate Industrial Production Industrial Production

5 Import Prices Business Confidence Inflation Rate

6 Capacity Utilization Inflation Rate Capital Flows

7 Exports Consumer Credit Consumer Credit

8 Balance of Trade Capacity Utilization Balance of Trade

9 Core Inflation Rate Export Prices Capacity Utilization

10 ADP Employment Change Producer Prices Job Offers

11 Government Payrolls Import Prices Export Prices

12 Consumer Price Index CPI Capital Flows Import Prices

13 Industrial Production Consumer Price Index CPI Labor Force Participation Rate

14 Unemployment Rate Job Offers Business Confidence

15 Non Farm Payrolls Manufacturing Production Producer Prices

16 Philadelphia Fed Manufacturing Index Non Farm Payrolls Manufacturing Production

17 Manufacturing Payrolls Pending Home Sales Average Hourly Earnings

18 Housing Index Average Hourly Earnings Average Weekly Hours

19 Average Weekly Hours Durable Goods Orders Business Inventories

20 Manufacturing Production Business Inventories Core Inflation Rate
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Table IA.2: Trading strategy responses to both released macro signal familiarity and informa-
tiveness. Standardized daily turnover of best live trading strategies on macro release days, regressed
against the index of macro release day informativeness, as well as one of two indices of macro release
day familiarity. The familiarity and informativeness indices are interacted with an indicator for investor
experience. Familiarity measures are based on news article mentions in columns (1) and (2), and book
mentions in columns (3) and (4), respectively.

Dependent Variable: Volumei,τ

Familiarity Index: News Articles Books

(1) (2) (3) (4)

Familiarityτ 0.0016∗∗ 0.0016∗∗ 0.0017∗∗ 0.0017∗∗

(0.0006) (0.0006) (0.0005) (0.0005)

Informativenessτ 0.5714∗ 0.5282∗ 0.6089∗∗ 0.5646∗

(0.2219) (0.2462) (0.2137) (0.2378)

Experiencedi,t -0.3047 -0.4709 -0.1192 -0.3483
(0.3103) (0.3715) (0.2448) (0.3374)

Experiencedi,t × Familiarityτ 0.0039 0.0016 0.0019 0.0002
(0.0031) (0.0027) (0.0024) (0.0020)

Experiencedi,t × Informativenessτ 1.006∗∗∗ 1.037∗∗∗

(0.1402) (0.1944)

Benchmark/Model Year FEs ✓ ✓ ✓ ✓

Observations 142,332 142,332 142,332 142,332
R2 0.00055 0.00060 0.00054 0.00059

Note: standard errors (in parentheses) are clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C Entering a Trading Contest

To make the institutional setting of Section 2.1 more concrete, I review the steps necessary to

participate in a contest from the point of view of an individual investor, and include screenshots

to illustrate the process.

Figure IA.5 shows an example of how to write (in Python) a systematic trading strategy

that simply takes equally-weighted long positions in all available futures contracts. This code

is presented as a default template to the contestant by the Quantiacs web platform. More

sophisticated strategies are, of course, encouraged.

After coding up such a systematic trading strategy, the systematic investor can then use the

Quantiacs platform to run a backtest of the strategy using historical market data. Figure IA.6

shows the output of such a backtest, for the long-only strategy of my above example. Various

performance metrics are provided, but all are calculated on historical data, and I refer to this

pre-contest period as the in-sample/backtest period.

The systematic investor may then decide to officially submit this trading strategy to a con-

test: if so, I term this the contestant’s “entry.” Once a contest has begun (i.e. during the

live/out-of-sample period), entries can no longer be modified, and the contestant has effec-

tively committed to following that systematic trading strategy for the duration of the live/out-

of-sample period. The distinction between the in-sample/backtest and out-of-sample/live pe-

riods for a single contest is illustrated by Figure 1 in the manuscript.

After the contest ends, the out-of-sample Sharpe Ratios are made available, the contestants

are ranked, and results are displayed in a leaderboard, as in Figure IA.7.
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Figure IA.5: Coding up a contest entry. Example of writing code (in Python) while logged into
the trading platform in order to define a systematic trading strategy, ahead of possible entry into a
trading contest. This code is presented as a default template to the contestant by the Quantiacs web
platform. Lines 17-18 define a simple long-only equally-weighted portfolio, with no use of market data
or macroeconomic variables. Note that uncommenting line 6 loads the scikit-learn (Pedregosa et
al., 2011) machine learning software package.
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Figure IA.6: Backtesting prior to contest entry. Example of in-sample backtest results for a systematic
trading strategy, before an entry is submitted. At this point, a trading contest has not (yet) begun.
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Figure IA.7: Contest outcomes once Live period ends. Excerpt from a contest leaderboard, showing
both in-sample and out-of-sample Sharpe Ratios, after a trading contest has ended. The “live test”
performance metrics were calculated once the contest period (1 January to 30 April 2019, in this case)
had ended.
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D Futures Contracts and the Benchmark Portfolio

D.1 Market Data for Futures Contracts

As discussed in Section 2 of the paper, the Quantiacs trading platform allowed investors to

take positions in 88 futures contracts, provided investors with historical market data for this

investment universe, and used live market data during the out-of-sample evaluation period for

each contest. For each future, the trading platform selected a single contract maturity that was

available for trading at each point in time.

Like the platform, I use actual market data for the same universe of futures contracts, with

the exception of the Russell 2000 index future, for which I simply use the daily index level.28 I

source the data from Bloomberg, stitching together multiple actively-traded futures contracts

in a contiguous ratio-adjusted daily price series; this standard methodology ensures that return

calculations are accurate. The futures (and their Bloomberg identifiers) are listed in Table IA.3.

Table IA.3: Universe of futures. Futures instruments available on Quantiacs for contestants’ trading
strategies to take daily positions in. These are also the instruments I used to construct the benchmark
index.

Quantiacs

ticker

Name Type Matching Bloomberg

base code

1 F_AD Australian Dollar Currency AD Curncy

2 F_AE AEX Index Index EO Index

3 F_AH Bloomberg Commodity Index Index DN Index

4 F_AX DAX Index GX Index

5 F_BC Brent Crude Oil Energy CO Comdty

6 F_BG Gas Oil Energy QS Comdty

7 F_BO Soybean Oil Agriculture BO Comdty

8 F_BP British Pound Currency BP Curncy

9 F_C Corn Agriculture C Comdty

10 F_CA CAC40 Index CF Index

11 F_CC Cocoa Agriculture CC Comdty

12 F_CD Canadian Dollar Currency CD Curncy

28I use the Russell 2000 index itself to proxy for the series of Russell 2000 index futures contracts because I am
unable to source and combine price data for these futures contracts: the Russell 2000 index future has changed
its listing multiple times between the ICE and CME exchanges and I do not have access to older historical data. I
judge it more useful for my benchmark to possess a long timeseries of the underlying index over the full backtest
and live periods. The downside is that the absence of the “basis” between the derivative price and underlying price
means that contango/backwardation effects will be omitted, but I expect these to be negligible on the most-active
contract of a non-commodity future — such as this one.
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Quantiacs

ticker

Name Type Matching Bloomberg

base code

13 F_CF 10y Swiss Note Bond SWC Comdty

14 F_CL WTI Crude Oil Energy CL Comdty

15 F_CT Cotton Agriculture CT Comdty

16 F_DL Milk Class III Agriculture DA Comdty

17 F_DM MDAX Index Index MF Index

18 F_DT EURO Bond Bond RX Comdty

19 F_DX US Dollar Index Currency DX Curncy

20 F_DZ TechDAX Index DP Index

21 F_EB 3-Month EuriBor Interest Rate ER Comdty

22 F_EC Euro FX Currency EC Curncy

23 F_ED Eurodollars Interest Rate ED Comdty

24 F_ES E-mini S&P 500 Index Index ES Index

25 F_F 3-Month EuroSwiss Interest Rate ES Comdty

26 F_FB DJ Stoxx Bank 600 Index BJ Index

27 F_FC Feeder Cattle Agriculture FC Comdty

28 F_FL Chicago Ethanol Energy CUA Comdty

29 F_FM Stoxx Europe Mid 200 Index SXR Index

30 F_FP OMX Helsinki 25 Index OT Index

31 F_FV 5-year Treasury Note Bond FV Comdty

32 F_FY Stoxx Europe 600 Index SXO Index

33 F_GC Gold Metal GC Comdty

34 F_GD Goldman Sachs Commodity Index Index GI Index

35 F_GS 10-Year Long Gilt Bond G Comdty

36 F_GX Euro BUXL Bond UB Comdty

37 F_HG Copper Metal HG Comdty

38 F_HO Heating Oil Energy HO Comdty

39 F_HP Natural Gas Penultimate Energy ZA Comdty

40 F_JY Japanese Yen Currency JY Curncy

41 F_KC Coffee Agriculture KC Comdty

42 F_LB Lumber Agriculture LB Comdty

43 F_LC Live Cattle Agriculture LC Comdty

44 F_LN Lean Hogs Agriculture LH Comdty

45 F_LQ Newcastle Coal Energy XW Comdty

46 F_LR Brazilian Real Currency BR Curncy

47 F_LU Rotterdam Coal Energy XA Comdty

48 F_LX FTSE 100 Index Index Z Index

49 F_MD E-mini S&P 400 Index FA Index

50 F_MP Mexican Peso Currency PE Curncy

51 F_ND New Zealand Dollar Currency NV Curncy

52 F_NG Natural Gas Energy NG Comdty

53 F_NQ E-mini Nasdaq 100 Index Index NQ Index
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Quantiacs

ticker

Name Type Matching Bloomberg

base code

54 F_NR Rough Rice Agriculture RR Comdty

55 F_NY Nikkei 225 Index NI Index

56 F_O Oats Agriculture O Comdty

57 F_OJ Orange Juice Agriculture JO Comdty

58 F_PA Palladium Metal PA Comdty

59 F_PL Platinum Metal PL Comdty

60 F_PQ PSI20 Index PP Index

61 F_RB Gasoline Energy XB Comdty

62 F_RF EURO FX/Swiss Franc Currency RF Curncy

63 F_RP EURO FX/British Pound Currency RP Curncy

64 F_RR Russian Ruble Currency RU Curncy

65 F_RU Russell 2000 Index RTY Index

66 F_RY EURO FX/Japanese Yen Currency RY Curncy

67 F_S Soybeans Agriculture S Comdty

68 F_SB Sugar Agriculture SB Comdty

69 F_SF Swiss Franc Currency SF Curncy

70 F_SH Swiss Mid Cap Index S1 Index

71 F_SI Silver Metal SI Comdty

72 F_SM Soybean Meal Agriculture SM Comdty

73 F_SS 3-Month Short Sterling Interest Rate L Comdty

74 F_SX Swiss Market Index SM Index

75 F_TR South African Rand Currency RA Curncy

76 F_TU 2-year Treasury Note Bond TU Comdty

77 F_TY 10-year Treasury Note Bond TY Comdty

78 F_UB EURO Bobl Bond OE Comdty

79 F_US 30-year Treasury Bond Bond US Comdty

80 F_UZ EURO Schatz Bond DU Comdty

81 F_VF 5-Year Euro Swapnote Bond T Comdty

82 F_VT 10-Year Euro Swapnote Bond P Comdty

83 F_VW 2-Year Euro Swapnote Bond RW Comdty

84 F_VX Volatilty Index Index UX Index

85 F_W Wheat Agriculture W Comdty

86 F_XX Dow Jones STOXX 50 Index VG Index

87 F_YM E-mini Dow Jones Industrial Average Index DM Index

88 F_ZQ 30-Day Fed Funds Interest Rate FF Comdty

12



D.2 Benchmark Portfolio to Adjust for Market Conditions

The trading platform does not formally judge contestants against a benchmark, though it

does provide each contestant with an example systematic trading strategy that takes equally-

weighted long positions in each of the 88 futures contracts available on the platform (Figure

IA.5). Benchmark indices exist for certain sectors – such as the 24-contract Goldman Sachs

Commodity Index (GSCI) – but I am not aware of any benchmark for futures as an overall

asset class. I therefore construct the benchmark similarly to the simple default trading strategy

suggested by Quantiacs to new users: based on daily-rebalanced equally-weighted returns of

long positions in the most-active contracts of the underlying 88 futures (or, in the special case

of the Russell 2000 index, the future’s underlying index itself). A timeseries of returns for the

benchmark portfolio is displayed in Figure IA.8.

Besides the fact that this benchmark portfolio is the default presented to new users, the

methodology has additional merits. The use of long-only positions (similar to the GSCI com-

modity index methodology) is justified because the buyers of futures contracts receive delivery

of the underlying physical/cash asset at maturity. The use of equally-weighted positions is

justified by the absence of any alternative for weighting derivatives in such diverse underlying

assets: unlike stocks or bonds, there is no fixed supply that limits the open interest that is

possible in futures contracts.

Figure IA.8: Benchmark portfolio. Cumulative return of the benchmark portfolio over the years in
which contest Live periods took place.
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E Macroeconomic Variables Added in Between Contests

On 22 March 2017, Quantiacs announced in a blog post that 54 macroeconomic data series

would be made available to all contestants from the 8th contest onwards, for use in both

backtesting and live trading. The variables are listed in Table IA.4.

Table IA.4: Macroeconomic indicators. Macroeconomic variables added to the Quantiacs platform
from the 8th trading contest onwards, which could be used as input predictive variables for all contes-
tants’ trading strategies from that contest onwards.

Macroeconomic variable Quantiacs identifier

1 ADP Employment Change USA_ADP

2 Average Hourly Earnings USA_EARN

3 Average Weekly Hours USA_HRS

4 Balance of Trade USA_BOT

5 Business Confidence USA_BC

6 Business Inventories USA_BI

7 Capacity Utilization USA_CU

8 Capital Flows USA_CF

9 Challenger Job Cuts USA_CHJC

10 Chicago Fed National Activity Index USA_CFNAI

11 Chicago Pmi USA_CP

12 Consumer Credit USA_CCR

13 Consumer Price Index CPI USA_CPI

14 Core Consumer Prices USA_CCPI

15 Core Inflation Rate USA_CINF

16 Dallas Fed Manufacturing Index USA_DFMI

17 Durable Goods Orders USA_DUR

18 Durable Goods Orders Ex Transportation USA_DURET

19 Export Prices USA_EXPX

20 Exports USA_EXVOL

21 Factory Orders Ex Transportation USA_FRET

22 Foreign Bond Investment USA_FBI

23 Government Budget Value USA_GBVL

24 Government Payrolls USA_GPAY

25 Housing Index USA_HI

26 Import Prices USA_IMPX

27 Imports USA_IMVOL

28 Industrial Production USA_IP

29 Industrial Production Mom USA_IPMOM

30 Inflation Rate USA_CPIC

31 Inflation Rate Mom USA_CPICM
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Macroeconomic variable Quantiacs identifier

32 Job Offers USA_JBO

33 Labor Force Participation Rate USA_LFPR

34 Leading Economic Index USA_LEI

35 Manufacturing Payrolls USA_MPAY

36 Manufacturing Production USA_MP

37 Nahb Housing Market Index USA_NAHB

38 Net Long Term Tic Flows USA_NLTTF

39 NFIB Business Optimism Index USA_NFIB

40 Non Farm Payrolls USA_NFP

41 Non Manufacturing PMI USA_NMPMI

42 Nonfarm Payrolls Private USA_NPP

43 NY Empire State Manufacturing Index USA_EMPST

44 Pending Home Sales USA_PHS

45 Philadelphia Fed Manufacturing Index USA_PFED

46 Producer Prices USA_PP

47 Producer Prices Change USA_PPIC

48 Retail Sales MoM USA_RSM

49 Retail Sales YoY USA_RSY

50 Retail Sales Ex Autos USA_RSEA

51 Richmond Fed Manufacturing Index USA_RFMI

52 Total Vehicle Sales USA_TVS

53 Unemployment Rate USA_UNR

54 Wholesale Inventories USA_WINV
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F Response to Macroeconomic Variable Releases

This appendix analyzes the responses of investors’ trading strategy turnovers to the release/update

of macroeconomic variables on the platform. As a placebo test, I repeat this analysis for trading

strategies that did not actually have access to these macroeconomic indicators (see Figure 2 in

the paper).

I regress the standardized daily trading volumes of investors’ best Live-period entries against

various indicators for experience, the occurrence of macro release days, the availability of

macro data in the current contest, and their interactions, and present the results in Table IA.5.

The first two columns focus on investors in the Treatment group, who could access the macroe-

conomic predictive variables and use their realizations to make systematic trading decisions.

The coefficient on the interaction in column (2) captures the interaction between experience

and the timing of macro variable releases. Its value is positive and significant, which suggests

that investors with access to the macro predictive variables trade significantly more than their

own daily average on the days when new releases of these macro variables were updated on

the Quantiacs trading platform.

To complete the placebo test, the second two columns in Table IA.5 focus on investors in

the Control group, who did not have access to the macro predictors. The coefficient on the

interaction in column (4) is not significantly different to zero: there was no significant above-

or below-average change to Control group investors’ daily trading volumes on the days the

macro variables would have been released to the platform (in the counterfactual situation of

them entering that trading strategy to a later contest).

This analysis suggests that investors’ trading strategies respond to the release of macroeco-

nomic predictive variables. There is also a differential response based on the human investors’

experience. For the placebo in which macroeconomic indicators were not available, there was

no discernible response by the trading strategies implemented by either experienced or inex-

perienced human investors on macro release days.
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Table IA.5: Daily trading volume and macro release days. Regressions of the daily volume (stan-
dardized) of investors’ best live trading strategies against an indicator for the daily release of macro
variables to contestants interacted with an indicator for experienced investors (who are taking part in
their 3rd or 4th contest). Columns (1) and (2) are for the sub-sample of Treated investors, for whom
the macro variables were accessible. Columns (3) and (4) are for the sub-sample of Control investors,
who could not access the macro variables via their trading strategies.

Volumei,τ

Treated investors Control investors

(1) (2) (3) (4)

(Intercept) 0.002∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.0004) (0.0001) (0.001) (0.001)

New variables availablet −0.009∗∗∗ −0.011∗∗∗ 0.0002 0.0002
(0.003) (0.002) (0.012) (0.012)

Experiencedi,t −0.009 0.0001
(0.007) (0.001)

Macro releaseτ × Experiencedi,t 0.076∗∗ 0.001
(0.036) (0.017)

Observations 3,234,115 3,234,115 2,059,615 2,059,615
R2 0.00000 0.00001 0.000 0.000

Note: standard errors (in parentheses) are clustered by contest and contestant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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G Realized Moments of Daily Portfolio Returns

This appendix examines the realized moments of investors’ daily portfolio returns, and relates

them to experience and data availability.

An investor who seeks to maximize her out-of-sample portfolio Sharpe Ratio, as Quantiacs

contestants do, is faced with the joint problem of maximizing the out-of-sample returns of the

portfolio while minimizing their variance; this is due to the construction of the Sharpe Ratio

itself. Using timeseries of trading strategy daily returns, I decompose the realized Sharpe Ratios

by estimating the mean and standard deviation of these contestants’ out-of-sample portfolio

daily returns. I then relate these to experience levels and the availability of additional predictive

variables.
I modify the specification (14) in the paper by regressing the ex post estimated means of the

out-of-sample daily returns of trading strategies against interacted dummies for the availability
of additional predictive variables and investor experience levels:

Meani,t(Best Live entry daily returns)

= β1 +
4
∑

k=2

�

βk ×1{Contests experiencedi,t = k}
�

+ γ1 ×New variables availablet

+
4
∑

k=2

�

γk ×1{Contests experiencedi,t = k} ×New variables availablet

�

+ εi,t . (34)

Regression results are displayed in Table IA.6, with the dependent variable in columns (1)-

(3) constructed using raw returns, and the dependent variable in columns (4)-(6) adjusting

for the benchmark portfolio’s daily returns as an implicit control. Whether or not the bench-

mark adjustment is applied, the availability of additional predictive variables is associated with

higher out-of-sample mean returns for more experienced investors, and the estimates for these

coefficients γk are significantly different to zero.
A similar modification of the main specification (14) and previous specification (34) is to

regress the ex post estimated standard deviations of the out-of-sample daily returns of trading
strategies against interacted dummies for the availability of additional predictive variables and
investor experience levels:

SDi,t(Best Live entry daily returns)

= β1 +
4
∑

k=2

�

βk ×1{Contests experiencedi,t = k}
�

+ γ1 ×New variables availablet

+
4
∑

k=2

�

γk ×1{Contests experiencedi,t = k} ×New variables availablet

�

+ εi,t . (35)
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Regression results are displayed in Table IA.7. As above, columns (1)-(3) use raw returns

and columns (4)-(6) adjust for the benchmark portfolio’s daily returns before estimating their

standard deviation, in order to implicitly control for differing contest time periods. Once again,

the conclusions do not depend on whether the benchmark adjustment is applied. While the

estimates for coefficients γk in columns (3) & (6) again agree with intuition, this time they are

mostly not significantly different to zero.

These results indicate that the improvements in out-of-sample Sharpe Ratios that are asso-

ciated with the availability of additional predictive variables (in Table 8, for example) can be

attributed mainly to higher out-of-sample mean returns (Table IA.6). While I also detect lower

out-of-sample standard deviations, these additional effects are mostly statistically insignificant

(Table IA.7).
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Table IA.6: Means of daily trading strategy returns. Regressions of investors’ out-of-sample daily return means against additional data
availability & experience. The dependent variable in columns (1)-(3) does not incorporate a benchmark, so there is no control for time periods;
the dependent variable in columns (4)-(6) adjusts the daily returns using the benchmark portfolio. In all specifications, the dummy “Macro
variables availablet” indicates whether the contestant is a member of the Treatment group, defined in Section 6.1, or the Control group.

Dependent variable:

Mean of Live daily returns (%) for contestant i’s best entry in contest t

Raw returns Excess returns over the benchmark

(1) (2) (3) (4) (5) (6)

(Intercept) −0.143∗∗ −0.006 0.008 −0.159∗∗ −0.012 0.002
(0.066) (0.009) (0.006) (0.066) (0.009) (0.006)

1{Contests experiencedi,t = 2} 0.165∗∗ 0.137∗∗ 0.022 0.172∗∗ 0.142∗∗ 0.025
(0.067) (0.057) (0.016) (0.067) (0.057) (0.016)

1{Contests experiencedi,t = 3} 0.148∗∗ 0.130∗ −0.016 0.161∗∗ 0.141∗∗ −0.018
(0.067) (0.067) (0.011) (0.067) (0.068) (0.014)

1{Contests experiencedi,t = 4} 0.212∗∗∗ 0.149∗∗∗ 0.067∗∗∗ 0.208∗∗∗ 0.141∗∗ 0.048∗∗∗

(0.068) (0.057) (0.023) (0.068) (0.061) (0.018)

Macro variables availablet −0.223∗∗ −0.246∗∗ −0.238∗∗ −0.262∗∗

(0.098) (0.108) (0.098) (0.108)

1{Contests experiencedi,t = 2} × Macro variables availablet 0.230∗∗ 0.233∗∗

(0.110) (0.110)

1{Contests experiencedi,t = 3} × Macro variables availablet 0.270∗∗ 0.295∗∗∗

(0.109) (0.109)

1{Contests experiencedi,t = 4} × Macro variables availablet 0.225∗∗ 0.258∗∗

(0.111) (0.110)

Observations 713 713 713 713 713 713
R2 0.001 0.005 0.006 0.001 0.006 0.007

Note: standard errors (in parentheses) are clustered by contest. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table IA.7: Standard deviations of daily trading strategy returns. Regressions of investors’ out-of-sample daily return standard deviations
against additional data availability & experience. The dependent variable in columns (1)-(3) does not incorporate a benchmark, so there is no
control for time periods; the dependent variable in columns (4)-(6) adjusts the daily returns using the benchmark portfolio. In all specifications,
the dummy “Macro variables availablet” indicates whether the contestant is a member of the Treatment group, defined in Section 6.1, or the
Control group.

Dependent variable:

SD of Live daily returns (%) for contestant i’s best entry in contest t

Raw returns Excess returns over the benchmark

(1) (2) (3) (4) (5) (6)

(Intercept) 0.816∗∗∗ 0.705∗∗∗ 0.686∗∗∗ 0.893∗∗∗ 0.769∗∗∗ 0.747∗∗∗

(0.140) (0.060) (0.062) (0.139) (0.058) (0.060)

1{Contests experiencedi,t = 2} −0.389∗∗∗ −0.367∗∗∗ −0.226∗∗ −0.380∗∗∗ −0.355∗∗∗ −0.175∗∗

(0.146) (0.124) (0.089) (0.144) (0.124) (0.085)

1{Contests experiencedi,t = 3} −0.416∗∗∗ −0.401∗∗∗ −0.189 −0.367∗∗ −0.351∗∗ −0.101
(0.155) (0.147) (0.129) (0.159) (0.153) (0.149)

1{Contests experiencedi,t = 4} −0.413∗∗∗ −0.362∗∗∗ −0.225∗∗ −0.478∗∗∗ −0.421∗∗∗ −0.316∗∗∗

(0.152) (0.124) (0.096) (0.144) (0.108) (0.080)

Macro variables availablet 0.181 0.211 0.202 0.238
(0.210) (0.233) (0.209) (0.232)

1{Contests experiencedi,t = 2} × Macro variables availablet −0.279 −0.358
(0.246) (0.243)

1{Contests experiencedi,t = 3} × Macro variables availablet −0.393 −0.462∗

(0.266) (0.275)

1{Contests experiencedi,t = 4} × Macro variables availablet −0.386 −0.285
(0.245) (0.240)

Observations 713 713 713 713 713 713
R2 0.001 0.002 0.002 0.001 0.002 0.002

Note: standard errors (in parentheses) are clustered by contest. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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H Data Abundance and Competition Effects

This appendix checks whether and how competitive pressures can explain the benefits that

investors derive (or fail to gain) from access to additional predictive variables. The analysis

indicates that an interaction between competitive intensity and data abundance (Dugast and

Foucault, 2021) does not drive the results in the Quantiacs setting. The regression results that

I present next do not apply any clustering to standard errors, in order to set a lower hurdle

for coefficient significance to overcome; nonetheless, the key coefficients of interest remains

non-significantly different to zero, as I explain shortly.

I proxy for the competitive intensity experienced by an investor by the (log of the) total

number of contestants taking part in the same competition. Table IA.8 displays the results

of OLS regressions of this competitive intensity against investors’ out-of-sample performance

outcomes (with the usual benchmark adjustment). I find significant and negative coefficients

on competitive intensity, indicating that individual investors do seem to experience poorer ab-

solute performance outcomes in highly-competitive contests. However, the coefficients on the

interaction of competitive intensity with the availability of additional predictors are not signif-

icantly different to zero, suggesting that competition does not impact on any data abundance-

related gains or losses experienced by an investor. Furthermore, the main results (that are

repeated in columns (1) & (3)) are not qualitatively affected by the inclusion of the additional

covariates in columns (4) & (6), respectively.

I next conduct an additional and related analysis of the effort a contestant exerts (proxied

by the number of entries she makes into a competition) and compare it to the competitive

pressure that she experiences. Table IA.9 shows Poisson GLM regressions that find no asso-

ciation between an investor’s observed effort and the competitive pressures she experiences,

controlling for her experience level. Furthermore, there is also no interaction with the avail-

ability of additional predictive variables. I conclude there is no direct relationship between

data abundance and the effort exerted by a competitor in my particular setting.
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Table IA.8: Competitive intensity interacted with the availability of macro signals. Regressions of investors’ out-of-sample performance (over the
benchmark SR) against measures of experience, availability of additional predictive variables, and competitive intensity. In all specifications, the dummy
“Macro variables availablet” indicates whether the contestant is a member of the Treatment group, defined in Section 6.1, or the Control group.

Dependent variable:

Excess Live SRBest
i,t

(1) (2) (3) (4) (5) (6)

(Intercept) −1.162∗∗∗ −0.970∗∗∗ −0.899∗∗∗ 4.777∗∗∗ 5.073∗∗∗ 5.214∗∗∗

(0.075) (0.127) (0.130) (0.667) (0.791) (0.795)

1{Contests experiencedi,t = 2} 1.332∗∗∗ 1.293∗∗∗ 1.044∗∗ 1.033∗∗∗ 1.054∗∗∗ 0.684
(0.355) (0.359) (0.444) (0.347) (0.342) (0.426)

1{Contests experiencedi,t = 3} 1.673∗∗∗ 1.654∗∗∗ −0.004 1.428∗∗ 1.390∗∗ −0.168
(0.523) (0.545) (0.395) (0.607) (0.590) (0.496)

1{Contests experiencedi,t = 4} 3.021∗∗∗ 2.918∗∗∗ 2.245∗∗∗ 3.009∗∗∗ 3.176∗∗∗ 2.636∗∗∗

(0.490) (0.529) (0.504) (0.545) (0.496) (0.562)

Macro variables availablet −0.311∗∗ −0.428∗∗∗ 2.569∗ 2.100
(0.153) (0.159) (1.428) (1.418)

Macro variables availablet × 1{Contests experiencedi,t = 2} 0.478 0.722
(0.717) (0.682)

Macro variables availablet × 1{Contests experiencedi,t = 3} 2.973∗∗∗ 2.801∗∗∗

(0.809) (0.943)

Macro variables availablet × 1{Contests experiencedi,t = 4} 2.221∗∗∗ 1.756∗∗∗

(0.714) (0.643)

Log Contestantst −1.311∗∗∗ −1.448∗∗∗ −1.463∗∗∗

(0.143) (0.175) (0.176)

Macro variables availablet × Log Contestantst −0.431 −0.357
(0.307) (0.305)

Observations 830 830 830 830 830 830
R2 0.050 0.055 0.067 0.180 0.196 0.207

Note: standard errors (in parentheses) are robust to heteroskedasticity. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table IA.9: Competitive intensity. Poisson GLM regressions of contestants’ number of entries in a
contest against measures of experience, availability of additional predictive variables, and competitive
intensity. In all specifications, the dummy “Macro variables availablet” indicates whether the contestant
is a member of the Treatment group, defined in Section 6.1, or the Control group.

Dependent variable:

Entriesi,t

(1) (2) (3) (4)

(Intercept) 0.737∗∗∗ 1.085∗∗ 1.080∗∗ 0.885∗

(0.074) (0.435) (0.460) (0.502)

1{Contests experiencedi,t = 2} 0.812∗∗∗ 0.794∗∗∗ 0.794∗∗∗ 0.792∗∗∗

(0.168) (0.172) (0.172) (0.173)

1{Contests experiencedi,t = 3} 1.537∗∗∗ 1.523∗∗∗ 1.523∗∗∗ 1.505∗∗∗

(0.350) (0.352) (0.353) (0.347)

1{Contests experiencedi,t = 4} 2.070∗∗∗ 2.070∗∗∗ 2.069∗∗∗ 2.055∗∗∗

(0.389) (0.393) (0.398) (0.393)

Log Contestantst −0.077 −0.075 −0.027
(0.094) (0.107) (0.115)

Macro variables availablet −0.004 1.138
(0.157) (1.267)

Macro variables availablet × Log Contestantst −0.249
(0.270)

Observations 830 830 830 830

Note: standard errors (in parentheses) are robust to heteroskedasticity.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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I Robustness to Using the Official Score

This appendix repeats key results that use contestants’ out-of-sample Sharpe Ratios as depen-

dent variables and instead uses the official scores assigned by the Quantiacs platform:

• Table IA.10 modifies the specification of Table 8.

• Table IA.11 modifies the specification of Table 9.

There is little change to the estimates and no change to the conclusions drawn.
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Table IA.10: Benefiting from macro data availability, and its interaction with experience. Regressions of investors’ official scores against
additional data availability interacted with experience. The dependent variable in columns (1)-(3) does not incorporate a benchmark, so there
is no control for time periods; the dependent variable in columns (4)-(6) is the excess best official score over the Sharpe Ratio of the benchmark
index during the matched time period, which effectively controls for time periods/contests. In all specifications, the dummy “Macro variables
availablet” indicates whether the contestant is a member of the Treatment group, defined in Section 6.1, or the Control group.

Dependent variable:

ScoreBest
i,t ScoreBest

i,t − Benchmark SRt

(1) (2) (3) (4) (5) (6)

(Intercept) −0.592∗∗ −0.716∗∗∗ −0.698∗∗∗ −2.002∗∗∗ −1.754∗∗∗ −1.704∗∗∗

(0.232) (0.127) (0.133) (0.376) (0.350) (0.367)

1{Contests experiencedi,t = 2} 0.678∗∗∗ 0.703∗∗∗ 0.671∗∗∗ 0.945∗∗∗ 0.895∗∗∗ 0.840∗∗∗

(0.221) (0.192) (0.255) (0.192) (0.201) (0.244)

1{Contests experiencedi,t = 3} 0.920 0.932 0.644∗∗∗ 1.746∗∗∗ 1.722∗∗∗ 0.571∗

(0.585) (0.573) (0.209) (0.435) (0.420) (0.323)

1{Contests experiencedi,t = 4} 2.493∗∗∗ 2.560∗∗∗ 2.020∗∗∗ 2.770∗∗∗ 2.637∗∗∗ 1.530∗∗∗

(0.675) (0.577) (0.426) (0.731) (0.704) (0.444)

Macro variables availablet 0.201 0.172 −0.403 −0.483
(0.342) (0.384) (0.660) (0.667)

1{Contests experiencedi,t = 2} × Macro variables availablet 0.057 0.092
(0.382) (0.407)

1{Contests experiencedi,t = 3} × Macro variables availablet 0.515 2.063∗∗∗

(1.034) (0.626)

1{Contests experiencedi,t = 4} × Macro variables availablet 1.856∗∗ 3.783∗∗∗

(0.855) (0.511)

Observations 830 830 830 830 830 830
R2 0.061 0.068 0.072 0.065 0.080 0.097

Note: standard errors (in parentheses) are clustered by contest and contestant. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table IA.11: Ruling out selection effects. Heckman (1976) (i.e. Type II Tobit) two-stage selection
models for implementing selection bias corrections to the regression of official score against experience.
The first stage models the probability of participation. The second stage models the outcome of interest.

All contests Contests 1-7 Contests 8-12

Stage ScoreBest
i,t ScoreBest

i,t ScoreBest
i,t

1. Selection (Intercept) 1.95∗∗∗ 2.38∗∗∗ 1.50∗∗∗

(0.18) (0.29) (0.34)

Contests experiencedi,t −0.88∗∗∗ −1.22∗∗∗ −0.77∗∗∗

(0.05) (0.10) (0.05)

Quantopian search indext −0.01∗∗ −0.00 −0.00

(0.00) (0.00) (0.00)

Ratio of entries to contest meani,t−1 0.23∗∗∗ 0.24∗∗∗ 0.22∗∗∗

(0.04) (0.08) (0.04)

2. Outcome (Intercept) −0.99∗∗∗ −0.85∗∗∗ −0.14

(0.08) (0.30) (0.14)

Contests experiencedi,t 0.75∗∗∗ 0.51 0.70∗∗∗

(0.11) (0.36) (0.17)

Inverse Mills Ratio −0.76∗∗∗ 0.39 −0.94∗∗∗

(0.19) (0.49) (0.36)

σ 1.33 1.74 2.00

ρ −0.57 0.22 −0.47

R2 0.09 0.09 0.04

Num. obs. 1482 482 1000

Censored 621 163 458

Observed 861 319 542

Standard errors (in parentheses) computed according to Greene (1981). ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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