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Abstract 
There are two difficulties in doing an objective evaluation of the performance of decision-making 
units (DMUs). The first one is how to treat undesirable outputs jointly produced with the desirable 
outputs, and the second one is how to treat uncontrollable variables, which often capture the impact 
of the operating environment. Given difficulties in both model construction and data availability, 
very few published papers simultaneously consider the above two problems. This article attempts to 
do so by proposing six DEA-based performance evaluation models based on a research sample of the 
Chinese coal-fired power plants. The finding of this paper not only contributes for the performance 
measurement methodology, but also has policy implications for the Chinese coal-fired power sector.  
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1. Introduction 

There are two difficulties in doing an objective evaluation of the performance of 
decision making units (DMUs). The first difficulty is how to treat undesirable outputs 
jointly produced with desirable outputs. Traditional literature only values the desirable 
and simply ignores the undesirable. However, ignorance of the undesirable is equal to 
saying that they have no value in the final evaluation and may present misleading results. 
It is therefore necessary to credit DMUs for their provision of desirables and penalize 
them for their provision of undesirables. The second difficulty is how to treat 
uncontrollable variables, which often reflect the impact of the operating environment. 
Generally, the management can decide on some controllable factors internal to 
production activities, while the impact of the operating environment is out of the control 
of the management. Traditional studies which have constructed research models using 
controllable factors only, implicitly assume that all the inefficiencies of DMUs are 
caused by bad management. Since the impact of uncontrollable variables is not filtered 
out, the evaluation of those DMUs in an adverse operating environment will be 
underestimated. However, given difficulties in both model construction and data 
availability, there are very few published papers which consider both problems 
simultaneously.  
 
This article attempts to solve the above issue by setting up six DEA-based performance 
evaluation models for a production process which produces both desirable and 
undesirable outputs. However, unlike parametric methods, the inclusion of undesirable 
outputs and uncontrollable variables in DEA is still a nascent field of research. Previous 
works incorporating both of the variables are summarized. The models used include the 
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both members of the ESRC Electricity Policy Research Group whose financial support is acknowledged. They have 
benefited from comments received at presentations in Cambridge University. All remaining errors are their own. 
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basic model, the one-stage model, the two-stage model, the three-stage model and the 
four-stage model, following the characterisation offered in Pastor (2002). To the authors’ 
knowledge, no other empirical studies on performance measurement or efficiency 
analysis have used all of these models in one paper. 
 
The Chinese electricity sector is now the second largest electricity system in the world, 
both in terms of installed capacity and generation. In 2005 its total installed generation 
capacity was about 508.4 GW, of which about 384.1 GW was thermal generating 
capacity with more than 90% of that thermal capacity being coal-fired (Zhang, 2006). 
The wide usage of coal-fired capacity has posed many serious environmental problems 
and become a world concern. For example, in 2005 the total amount of SO2 emissions 
from China ranked as number one in the world, and the total amount of CO2 emissions 
ranked second only to US in absolute terms (SEPA, 2006). However, despite the 
growing size of the Chinese coal-fired electricity system and increasing environmental 
concerns, few empirical quantitative analyses of the efficiency of Chinese coal-fired 
power plants have been completed. In this paper a research sample of Chinese coal-fired 
power plants during 2002 is used. Data in the sample covers both traditional inputs and 
outputs and undesirable outputs (e.g. SO2 emissions) and some carefully selected 
uncontrollable variables. This research sample allows the authors to examine the impact 
of uncontrollable variables on the performance of coal-fired power plants together with 
undesirable outputs, and also to test the validity of different models constructed in the 
paper.  
 
This paper is organized as follows: section 2 reviews existing literature on the inclusion 
of undesirable outputs and uncontrollable variables; section 3 explains the research 
methodology (the different models proposed for incorporating undesirable outputs and 
uncontrollable variables are laid out here); section 4 describes the research data; section 
5 summarizes the results and section 6 concludes the paper.  

2. Literature Review 

2.1 Inclusion of Undesirable Outputs 

Since Charnes et al. (1978) DEA has been widely used to measure the performance of 
various kinds of DMUs. In the case of power plants, examples from different eras 
include Fare et al. (1985b), Pollitt (1995), Coelli (1997) and Olatubi and Dismukes 
(2000). Within these studies traditional inputs are used to produce desirable or 
marketable outputs. Such ignoring of undesirable outputs might produce misleading 
results. However, Fare et al. (1989) implemented the nonparametric approach on a 1976 
data set of 30 US mills which use pulp and three other inputs in order to produce paper 
and four pollutants. In their research they assumed weak disposability1 for undesirable 
outputs. Their results showed that the performance rankings of DMUs turned out to be 
very sensitive to whether or not undesirable outputs were included. That is to say, 
traditional DEA models might give us a biased indication of where we stand. Other 
studies exhibit similar results (e.g. Pittman, 1983; Tyteca, 1996, 1997). Thus, given the 
                                                        
1 Strong disposability of outputs implies that given an input vector x , if an output vector y can be 
produced, then *y can also be produced as long as *y y≤ . Strong disposability is also called free 
disposability. Weak disposability of outputs means that if y can be produced, and then (0 1)yθ θ≤ ≤ can 
also be produced. 
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fact that undesirable outputs are jointly produced with desirable outputs, it makes sense 
for us to credit a DMU for its provision of desirable outputs and to penalize it for its 
production of emissions when evaluating its performance.  
 
Yaisawarng and Klein (1994) constructed a DEA model to measure the effects of SO2 
control on the efficiency change of US coal-fired power plants in the 1980s. Following 
Fare et al. (1989), they assumed weak disposability for undesirable outputs and further 
extended their DEA model to include an undesirable input, namely sulphur content in 
the fuel. However, because SO2 emissions can only come from the combustion of 
sulphur and as this is expected to be highly correlative with sulphur content in the fuel, 
the inclusion of both variables synchronously in the DEA is not necessary. In fact, it 
may actually reduce the discriminating power of the DEA model2. 
 
Fare et al. (1996) introduced an environmental performance indicator by decomposing 
overall productivity into an environmental index and a productive efficiency index. The 
authors adopted disposability assumption and DEA modelling techniques similar to 
those in Fare et al. (1989). Models were then used to examine two data sets of US 
fossil-fired electric utilities. The results showed that, when compared with those of the 
traditional model, the ranking of utilities obtained by the new model was significantly 
different.  
 
Tyteca (1996) provided a comprehensive survey of the previous literature on 
environmental performance measurement. He proposed three DEA variations in terms 
of how undesirable outputs are included. These three models were later implemented in 
Tyteca (1997) on the same data set as that used in Fare et al. (1996). Given the similar 
models constructed in both papers, the results of both papers are also quite comparable.  
 
Korhonen and Luptacik (2004) used several variants of DEA models to measure the 
eco-efficiency of 24 coal-fired power plants in a European country. Their modelling 
methods were quite similar to those used in Tyteca (1996, 1997). They treated emissions 
directly as inputs in the sense that given a certain amount of desirable output, both 
inputs and undesirable outputs should be decreased. The results showed that all model 
variants lead to similar results. When compared to previous studies this paper provided a 
deeper insight on the efficiency of power plants.  
 
In total, all the above explorations have effectively broadened our understanding of 
efficiency evaluation of DMUs. Based on the above, the basic DEA model of this paper 
is constructed. Following Korhonen and Luptacik (2004), undesirable outputs are 
included like inputs.  

2.2 Incorporating Uncontrollable Variables3 into DEA 

Previous works which incorporate uncontrollable variables into DEA can be broadly 

                                                        
2 Due to the nature of DEA modeling, for any fixed sample size, increasing the number of variables 
results in higher efficiency scores and more efficient units. 
3 Here we use the term uncontrollable variables to represent those factors that may influence the 
performance of DMUs, and which are at the same time are out of the control of the management. We 
notice that many authors prefer to use the term environmental variable to express the same meaning (e.g. 
Coelli et al., 2005; Fried et al., 1999, 2002; Pastor, 2002). However, in order to avoid any unnecessary 
confusion with environmental emissions, this paper uses the uncontrollable variables term instead. 
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classified as follows: separation models, one-stage models, two-stage models, 
three-stage models and four-stage models. In each case the basic aim is to level the 
playing ground for all players. In the rest of this section we sketch the different models 
and in section 3 we characterize them formally. 
 
2.2.1 Separation model 
 
The separation model stratifies the research sample in terms of categorical variables 
which capture the characteristics of the operating environment (e.g. public versus 
private ownership). DEA frontiers are then constructed for each category respectively. 
Despite being easy to interpret and apply, it requires an advance selection of the most 
influencing features of the operating environment and can only be used for categorical 
variables. Also, because it greatly reduces the comparison set its implementation lessens 
the discriminating power of DEA. Some inefficient DMUs may become efficient after 
the research sample is subdivided. In addition, because DMU efficiency scores are 
calculated against the respective DEA frontiers, the comparison of efficiency scores 
across sub-samples becomes meaningless. Studies using this model include Charnes, 
Cooper and Rhodes (1981),  Grosskopf and Valdmanis (1987), Banker, Kaufman and 
Morey (1990) and Fizel and Nunnikhoven (1992). 
 
2.2.2 One-stage model 
 
The one-stage model directly includes uncontrollable variables in its linear functions, 
along with traditional inputs and outputs. This model can make use of the capability of 
DEA to accommodate multiple variables. However, it also has some shortcomings. 
Firstly, in line with traditional DEA models, it assumes that all uncontrollable variables 
can be radially altered. This assumption might not be reasonable for some features of the 
operating environment. A variation is proposed in order to solve this problem, in which 
uncontrollable variables are either held at a constant or cannot be reduced if cost 
increases or cannot be increased if cost decreases in the calculation. Although this 
variation precludes the original arbitrary assumption, the one-stage model still requires a 
prior decision regarding the influence direction of an uncontrollable variable. Secondly, 
as the number of variables included increases, the number of efficient DMUs is 
expected to increase as well. Examples using this approach include Banker and Morey 
(1986) and McCarty and Yaisawarng (1993).  
 
2.2.3 Two-stage model 
 
The two-stage model starts with a standard DEA model based on traditional inputs and 
outputs in the first stage, and regresses the efficiency scores of the first stage against a 
set of selected uncontrollable variables in the second stage. Because the efficiency 
scores of the first stage are confined in the interval (0, 1], the use of limited dependent 
variable regression techniques, such as Tobit or an exponential function model, is 
preferable. This model is easy to use and easy to interpret, and is also capable of 
accommodating both continuous and categorical uncontrollable variables without 
increasing the number of efficient DMUs. Furthermore, it does not require any prior 
knowledge regarding the influence direction of an uncontrollable variable. However, 
this model has some disadvantages as well. Firstly, it ignores the information contained 
in the input slacks or output surpluses. Secondly, if the variables used in the first stage 
are highly correlated with the variables used in the second stage, then the results may 
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bias the parameter estimates regarding the impact of uncontrollable variables on 
efficiency (Coelli et al., 2005; Simar and Wilson, 2007). Examples of research using this 
approach are McCarty and Yaisawarng (1993), Fried et al. (1993), and Pollitt (1995). 
 
2.2.4 Three-stage model 
 
The three-stage model was first applied by Fried et al. (2002) on a 1993 sample of US 
hospital-affiliated nursing homes. The first stage comprises a standard DEA using 
traditional inputs and outputs. In the second stage stochastic frontier analysis (SFA) is 
used to regress the input slacks (radial plus non-radial) of the first stage against a set of 
selected uncontrollable variables. In this stage the total input slacks (radial plus 
non-radial) are decomposed into three parts: a part attributable to uncontrollable impacts, 
a part attributable to management inefficiency, and a part attributable to statistical noise. 
The stochastic slack frontier constructed here can be interpreted as the minimum slacks 
which can be achieved in a noisy environment. Based on the estimated coefficients, the 
inputs are then adjusted accordingly. The aim of this stage is to obtain slacks filtered for 
the impact of uncontrollable variables. In the third stage, DEA is repeated using the 
adjusted input values. The merits of this model are straightforward. First of all, it can 
thoroughly decompose input slacks and make best use of the information contained in 
the input slacks. Secondly, it can accommodate multiple uncontrollable variables and 
does not require any prior understanding with regards to their influence direction on the 
efficiency scores of the DMUs. Yet the cost of this model is high in terms of time and 
computation requirements. 
 
2.2.5 Four-stage model 
 
The four-stage model was introduced by Fried et al. (1999) to measure the impact of 
uncontrollable variables on DMU efficiency. In the first stage, a standard DEA is 
constructed using traditional inputs and outputs. In the second stage, total input slacks 
(radial plus non-radial) are regressed using Tobit against selected uncontrollable 
variables. In the third stage, parameters estimated in the second stage are used to 
estimate allowable input slacks. Then the values of primary inputs are adjusted 
accordingly. In the fourth stage, the DEA is repeated using the adjusted input values.  
 
The four-stage model shares its modelling philosophy with the three-stage model. That 
is, DMUs operating in relatively unfavourable environments are disadvantaged in the 
traditional DEA model. Therefore, levelling of the playing field is necessary for an 
objective performance evaluation. The major difference between these two models is the 
functional form used in the regression of the second-stage. SFA is selected in the 
third-stage model, while the Tobit regression is used in the four-stage model. The 
four-stage model shares similar advantages and disadvantages with the three-stage 
model. However, when compared with the three-stage model, the four-stage model can 
only adjust inputs to account for environmental impact and not for statistical noise.  
 
It is clear from the above that each model has its own advantages and disadvantages 
(Table 1). As such it would be right to say that the three-stage model is the most 
sophisticated model in terms of methodology. With the exception of the separation 
model, which is discarded due to its shortcomings, all of the other models will be used 
and compared in this paper.  
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Table 1: Inclusion of Uncontrollable Variables 
 

Research approach Methods Advantages and disadvantages Example literature 

Separation 
approach 

Subdivide the research sample into sub-samples according to different 
uncontrollable variables. 

Advantages: Easy to interpret and apply. 
Disadvantages: 
(1)   Can only be used for a categorical variable each time; 
(2)   Lessens the discriminating power of DEA. 

Charnes, Cooper and Rhodes (1981), 
Banker and Morey (1986), 

Grosskopf and Valdmanis (1987), 
Banker, Kaufman and Morey (1990), 

Fizel and Nunnikhoven (1992) 
 

One-stage model Include uncontrollable variables in DEA together with traditional 
inputs and outputs. 

Advantages: 
(1) Easy to interpret and apply; 
(2) Able to accommodate multiple variables. 
Disadvantages: 
(1) Requires a prior understanding of the influence direction of an 

uncontrollable variable; 
(2) Some inefficient DMUs might become efficient as the number of 

the uncontrollable variables included increases. 

Banker and Morey (1986), 
McCarty and Yaisawarng (1993), 

 

Two-stage model 
(1)   Construct a traditional DEA in the first stage; 
(2)   Regress efficiency scores from the first stage against a set of 
uncontrollable variables in the second stage. 

Advantages: 
(1) Easy to apply and interpret; 
(2) Able to accommodate continuous and categorical variables 

without increasing the number of efficient DMUs; 
(3) Does not require a prior understanding of the influence direction 

of each uncontrollable variable. 
Disadvantages: 
(1)   May bias the parameter estimates regarding the impact of 
uncontrollable variables on efficiency (Coelli et al., 1998); 
(2)   If using OLS in the second stage, the corrected efficiency scores 
might not be between 0 and 1. 

McCarty and Yaisawarng (1993), 
Fried et al. (1993), 

Pollitt (1995) 

Three-stage 
model 

(1)   Construct a traditional DEA in the first stage; 
(2)   Use SFA to estimate the impact of uncontrollable variables and 
statistical noise, and adjust the input values accordingly; 
(3)   Repeat the DEA in the third stage using the adjusted input 
values. 

Advantages: 
(1) Easy to understand; 
(2) Able to accommodate many variables without requiring a prior 

understanding of their influence direction; 
(3) Able to capture the information contained in the input slack. 
Disadvantages: 
High cost of time and calculation. 

Fried et al. (2002) 

Four-stage model 

(1)   Construct a traditional DEA in the first stage; 
(2)   Use Tobit to estimate the impact of uncontrollable variables in 
the second stage; 
(3)   Adjust the input values in the third stage; 
(4)   Repeat the DEA in the last stage using the adjusted input values. 

Shares similar advantages and disadvantages with the three-stage 
model. Compared to the three-stage model, it can only adjust the input 
values to account for uncontrollable variables and not for statistical 
noise. 

Fried et al. (1999) 
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3. Methodology 

3.1 Basic DEA Model 

Assume that we have N (homogeneous) DMUs each producing P desirable outputs 
and S undesirable outputs while using M inputs. Let Y R+∈  be the output matrix 
consisting of non-negative elements, and vectors d

jy  and u
jy  refer to the desirable 

and undesirable outputs of DMU j respectively. Then the output matrix Y can be 
decomposed into two parts: 

d

u

Y
Y

Y
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

where a P × N matrix dY  stands for desirable outputs and an S× N matrix uY  stands 
for undesirable outputs.  
 
Also, define M NX R ×

+∈ as the input matrix and ( , , )d u
jF X Y Y as the input-oriented 

efficiency measurement for DMU j. Assume we like to produce as much as possible 
of a desirable output and as little as possible of an undesirable output. Based on the 
assumption of constant return to scale (CRS), an input-oriented DEA model can be 
formulated in the following format4:  
 

0 , 1, ...,

( , , )  

. .

d u

d d
j

u u
j

j

j

Y y

Y y

X x

j N

F X Y Y M in

s t

λ

λ θ

λ θ

λ

θ

≥

≤

≤

≥ =

=

                   (1) 

 
where λ  is an (N×1) vector of coefficients which represents the intensity levels for 
DMUs in the construction of the reference efficiency frontier.  
 
Note that the convexity constraint 1' 1N λ =  is not included in the above model. 
There are two reasons for this. Firstly, under a VRS frontier a DMU is only 
benchmarked against DMUs of a similar size (Coelli et al., 2005), it is therefore 
arguable whether or not a DMU’s efficiency score under a VRS frontier effectively 
reflects its performance relative to the best practice in the industry. Secondly, the 

                                                        
4 The disposability of undesirable outputs has two facets. In coal-fired electricity generation, on the 
one hand, some undesirable outputs, e.g. CO2 emissions, can only be weakly disposable using the 
existing technology; on the other hand, some undesirable outputs, e.g. SO2 emissions, can be strongly 
disposable. Because in this paper only SO2 emissions are considered, for simplicity the authors only 
include a constraint for undesirable outputs with strong disposability.  
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constraint might screen some of the effects of uncontrollable variables. In particular, 
the constraint is very likely to undermine the use of scale variables in multistage 
regression analysis. Such analysis enables the statistical testing of scale effects. The 
authors will introduce scale variables in this way in the latter part of the paper. 
 
So in a different approach to that used in Fried et al. (1999, 2002), both of which used 
VRS DEA as their first-stage technology, this research adopts CRS DEA instead. 
 

3.2 Inclusion of Uncontrollable Variables 
Assume that jZ  is a vector of uncontrollable variables characterizing the operating 
environment for unit j. Based on the explanation in the previous section, different 
models are formulated to include jZ .  
 
3.2.1 One-Stage Model 
The one-stage model requires a prior differentiation on the influence of jZ . Assume 
that jZ +  and jZ −  are the vectors of uncontrollable variables for unit j with a positive 
and negative impact on performance respectively. The one-stage model can then be 
constructed as 

0 , 1, .. . ,

( , , )  

. .

d u

d d
j

u u
j

j

j

j

j

Y y

Y y

X x

Z Z

Z Z

j N

F X Y Y M in

s t

λ

λ θ

λ θ

λ

λ

λ

θ

+ +

− −

≥

≤

≤

≤

≥

≥ =

=

                    (2) 

3.2.2 Two-Stage Model 
In the second stage of the two-stage model, efficiency scores from the basic model are 
regressed on a set of uncontrollable variables. In order to constrain the corrected 
efficiency scores within an interval between 0 and 1, this study follows Pastor (2002) 
in its use of two different regression techniques, one being Tobit regression and the 
other being non-linear logistic regression. In the latter case, the non-linear function is 
structured as follows: 

exp( ; )
1 exp( ; )

j
j j

j

Z
Z
β

θ ε
β

= +
+

                   (3) 

The parameters of both the Tobit regression and the logistic regression allow the 
efficiency scores of individual units to be adjusted to common levels of uncontrollable 
variables in order to facilitate proper comparison. The authors do this by taking the 
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sum of the estimated impact of all uncontrollable variables for each DMU and 
adjusting each DMU’s efficiency score to the average level of the estimated impact of 
the uncontrollable variables. For example, DMUs with unfavorable operating 
conditions have their efficiency scores adjusted upwards to reflect average operating 
environment. 

3.2.3 Three-Stage Model 
The first stage of the three-stage model is conducted using the basic model, which 
provides the initial performance evaluation for each unit.  
 
In the second stage SFA is used to decompose stage-one slacks. Since slacks cannot 
be aggregated across non-commensurate variables, SFA slack regressions 5  are 
conducted for different inputs and undesirable outputs, which are all treated like 
inputs in the model. The M separate SFA regressions take the following general form. 
For the m-th input,  

( ; ) , 

 = 1, 2, &, M;  =1,2, &, N,

m m
mj j mj mjS f Z v u

m j

β= + +
                     (4) 

where mj mj mS x X λ= −  are the stage-one slacks in the usage of the m-th input for the 
j-th DMU, including radial and non-radial slacks. jZ  is the vector of uncontrollable 
variables for the j-th DMU. mβ is a vector of coefficients. We also assume that 
the 2(0, )mj vmv N σ� reflects statistical noise and the 2( , )m

mj umu N μ σ+�  reflects 
managerial inefficiency. Estimates of coefficients in the function (4) make it possible 
to measure the contributions of different factors on the input slacks. ˆ mβ  indicates the 
contribution of each uncontrollable variable, while ˆmjv  and ˆmju  explain the effects 
of statistical noise and managerial inefficiency. Define 2 2 2/( )m

um vm umγ σ σ σ= + . 
While 1mγ → , the impact of managerial inefficiency dominates that of statistical 
noise, and while 0mγ → , statistical noise plays the dominant role. 
 
In terms of the results of the SFA analysis, inputs are then adjusted to reflect the 
impact of uncontrollable variables and statistical noise. The inputs of those DMUs 
which have relatively favorable operating environments, and relatively good luck, are 
adjusted upwards. The general form of the correcting equation is:  
 

ˆ ˆ[max { ( ; )} ( ; )} [max { } ],

1, 2,..., ; 1, 2,..., .

A m m m m
mjmj mj j j j j mjx x f z f z v v

m M j N

β β= + − + −

= =

) $
       (5) 

 
where A

mjx  and mjx  are adjusted and original input values respectively.  
 
The third stage repeats the linear function (1) using the adjusted values for inputs.  
                                                        
5 We need to make an assumption about the form of mf . Because we have no prior knowledge about 
this and also because several of our variables are categorical, we assume a simple linear functional 
form. 
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3.2.4 Four-Stage Model 
As in the three-stage model, the first stage of the four-stage model also uses the linear 
function (1). 
 
In the second stage, the total input slacks (radial plus non-radial) are regressed against 
a set of uncontrollable variables using Tobit regression. In line with the M inputs, M 
input slack equations are specified in terms of the following form: 

( ; ; ),

1, 2,..., ; 1, 2,..., .

m m m
mj jS f Z

m M j N

β ε=

= =
                         (6) 

where mj mj mS x X λ= −  are the total slacks from stage one in the usage of the m-th 
input for the j-th DMU. jZ  is the vector of uncontrollable variables for the j-th DMU.  

mβ  is a vector of coefficients, and mε  is the statistical noise. 
ˆ[max { ( ; )} ( ; )],

1, 2,..., ; 1, 2,..., .

A m m m m
mj mj j j jx x f z f z

m M j N

β β= + −

= =

)

                 (7) 

where A
mjx  and mjx  are adjusted and original input data.  

 
Stage four repeats the DEA in the first stage using the adjusted input data. 

4. Data and Variables 
The research sample used covers 221 Chinese coal-fired power plants during 2002. 
The plants are largely base load plants and hence can be considered as broadly 
comparable. The total installed capacity of the sample power plants is 106.7GW, 
about 40% of the total coal-fired generating capacity of China in 2002. Their total 
generation is 577.75 TWh, nearly 45% of the total generation from coal-fired 
generating capacity. The raw data of individual power plants, such as annual 
electricity generation, installed capacity, unit scale, number of employees, annual fuel 
consumption, quality of coal, and vintage, were collected for the sample power plants 
through fieldwork completed in China by one of the authors between 2005 and 2006. 
Descriptive statistics of sample power plants are presented in Table 2. 

4.1 Traditional Variables 
Traditional variables include annual electricity generation (MWh), installed capacity 
(MW), labour (number of employees), and fuel consumption (energy input, TJ). 
Descriptive statistics for all of these traditional variables are presented in Table 2. 
 
Note that in this study fuel consumption is measured in terms of energy input (or heat 
input). This is because in almost all Chinese power plants, oil-fired (sometimes 
gas-fired) equipment is also installed for boiler-preheating and standby purposes. The 
capacity of oil-fired (or gas-fired) equipment varies greatly in terms of type of boiler 
and design of combustion facilities. Generally speaking, given the certain load of a 
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boiler, the more oil it burns, the less coal it consumes. So in order to make the final 
efficiency evaluation accurate, all fuel consumption, such as coal, oil, and gas, is 
converted to energy input and is measured in TJ. 

 
Table 2: Descriptive Statistics of Power Plants with Uncontrollable Variables 

Variable Unit Mean Maximum Minimum Std. Err. 

Desirable output:      

Annual Generation 1000 MWh 2614.26 12422.77 59.85 2262.41 

Inputs:      

Installed Capacity MW 482.69 2400 12 407.27 

Labour no. 801 3674 136 645 

Fuel TJ 27073.73 124968 1121 22270.44 

Undesirable output:      

SO2 Emissions tonnes 24110.14 194595 461 27538.53 

Uncontrollable variables:      

Vintage Year 10.19 43 1 8.09 

calorific value of coal GJ / tonne 22.86 28.68 12.49 2.43 

Scale1 (91 plants) 0< Scale 
<200MW - 1 0 - 

Scale2 (115 plants) 200 MW≤Scale 
< 400MW - 1 0 - 

Scale3 (15 plants) 400 MW ≤
Scale - 1 0 - 

CHP ( 46 plants) 1= Yes; 0 = No - 1 0 - 

Note: sample size = 221 

4.2 Undesirable Output 
Undesirable outputs of coal-fired power plants refer to those emissions jointly 
produced with electricity. Emissions from coal combustion mainly comprise CO2, SO2, 
CH4, N2O, NOx, CO, and NMVOC6. Of these emissions, SO2 attracts major attention 
at present. In 2005 the total for emissions in China was about 25.49 million tonnes 
and this ranked China as number one in the world (SEPA, 2006). Given its importance 
and the availability of data, SO2 emissions are selected as the undesirable output in 
this research. An accurate estimation of SO2 emissions depends on having knowledge 
of combustion conditions, technology, and emission control policies, as well as fuel 
characteristics. The method of estimation for SO2 emissions is derived from the IPCC 
Reference Approach. The general formula for estimating emissions can be described 
using the following formula: 

2
100 100 2

100 100content
r nSO emissions S ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −= × × × , 

where, 2    is the ratio of molecular weight of SO2 to S (kg/kg);  
contents is the sulphur content in fuel (tonne); 

                                                        
6 ‘NMVOC’ is the short form for Non-methane volatile organic compounds. For more detail, please 
see Appendix 1. 
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r    is the rate of retention of sulphur in ash (%); 
n    is the efficiency of desulphurization (%). 

 
Sulphur content is estimated in terms of annual fuel consumption and coal quality 
factors. Descriptive statistics for SO2 emissions are presented in Table 2. 

4.3 Uncontrollable Variables 
Uncontrollable variables here refer to those factors which influence the performance 
of coal-fired power plants and are also out of the control of the management7. Because 
a wide range of variables may influence efficiency, to limit possibility this research 
focuses on four variables, including vintage of generating units, calorific value of coal, 
unit scale and combined heat & power (CHP). Among which vintage is a 
time-dependent variable, calorific value of coal is directly related to the geological 
features of coal mines, and unit scale and CHP are characteristics of generating units 
made at the design and construction stage and they both cannot be changed in 
operation without remaking the whole thermal system of a power plant. Therefore, it 
would be right to say that these four variables are independent of the control of 
management and can meet the separability assumption of Simar and Wilson (2007) in 
this occasion.  

4.3.1 Vintage of Generating Units 
There are two reasons which support the selection of vintage of generating units. 
Above all, it is expected that the performance of generating units with regards to both 
heat rate and availability decreases as the units age (Joskow and Schmalensee, 1987)8. 
Secondly, although there is no definite trend in the efficiency change of auxiliary 
equipment with time, it is expected to decrease because of wear and tear on the 
equipment. Additionally, following Pollitt (1995), this paper also tests the impact of 
variable vintage squared.  

4.3.2 Calorific Value of Coal 

The quality of coal affects the operating performance of a coal-fired generating unit. 
Ceteris paribus, coal with a higher calorific value tends to be lower in ash content and 
other impurities, both of which can cause the excessive loading of coal mills and 
draught fans in the boiler and electrostatic precipitators. Generally, as the calorific 
value of coal falls, the amount of coal consumed increases and the probability of 
outages and unit derating also increases (Joskow and Schmalensee, 1987).   

                                                        
7 Fried et al. (1999) provided a thorough discussion on uncontrollable variables.  
8 Heat rate refers to the amount of fuel used to generate a KWh of electricity. It can be gross or net heat 
rate. The gross heat rate is based on the amount of electricity generated by the steam turbine, and the 
net heat rate is based on the amount of electricity sent to the grid from a power plant. The difference 
between these two accounts for the electricity consumed within the power plant itself to run auxiliary 
equipment.  
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4.3.3 Unit Scale 

Modern technology has made it possible to build generating units with higher 
parameters, e.g. steam pressure and temperature. At least in theory, increases in both 
parameters lead to an improvement in thermal efficiency. However, because larger 
units usually have poorer availabilities than smaller units, the advantage of larger 
units for thermal efficiency may disappear when the costs of poor reliability are 
factored in (Joskow and Schmalensee, 1987). Therefore, it is necessary to check the 
effects of unit scale on unit performance. Three dummy variables are used in this 
research, including scale1 (0<scale<200MW), scale2 (200MW≤scale<400MW) and 
scale3 (400MW ≤scale), to test the hypothesis that larger generating units enjoy a 
higher performance than smaller units. Because scale2 is the largest category in the 
sample (Table 2), it is therefore selected as the reference category in the following 
regression analysis.  

4.3.4 Combined Heat & Power (CHP) 

Combined heat & power (CHP), also known as cogeneration, is a type of generating 
facility which produces electricity and heat (or steam) for industrial, commercial, 
heating, or for other purposes. Reported fuel consumption for CHP facilities has 
already been downwardly adjusted by the data providers to account for fuel used for 
heat. The nature of this adjustment is expected to bias the final efficiency score 
upwards. Therefore, in order to accurately specify a power plant’s efficiency in this 
research a dummy variable CHP is created, which is equal to 1 if a power plant 
installs a CHP facility and 0 otherwise.  
 

Table 3: Overview of models and variables 

Model name 
Basic 
model 

(1) 

One-stage 
model 
 (2) 

Two-stage 
model 
Tobit 
 (3) 

Two-stage 
model 

Logistic 
(4) 

Three-stage 
model 
 (5) 

Four-stage 
model  

(6) 

Desirable output:       
Annual generation √ √ √ √ √ √ 

Inputs:       
Installed capacity √ √ √ √ √ √ 
Labour √ √ √ √ √ √ 
Fuel √ √ √ √ √ √ 

Undesirable output:       
SO2 emissions √ √ √ √ √ √ 

Uncontrollable variables:       
Vintage  √   √ √ 

Vintage squared   √ √ √ √ 
   Calorific value of coal  √ √ √ √ √ 

Scale1    √ √ √ √ 
Scale2   √ √ √ √ 
Scale3   √ √ √ √ 
CHP   √ √ √ √ 
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5. Results 
We estimate six models based on the discussion in section 3 and these are summarized 
in Table 3. The basic DEA model (Model 1) is used as the starting model, which only 
considers the effects of the undesirable output. Based on this basic model, other 
models are then used to examine the impact of the operating environment. The 
calculation of the basic DEA model is performed using the common DEA program 
DEAP Version 2.1 (Coelli, 1996a). The summary statistics for the results of the basic 
model are presented in Table 9. 

5.1 One-Stage Model (Model 2) 
 
Since the DEA linear function cannot accommodate dummy variables, only two 
uncontrollable variables, such as vintage of generating units and the calorific value of 
coal, are included; of which the calorific value of coal is incorporated as a variable 
with a positive impact and vintage as a variable with a negative influence. The 
rationality of this arbitrary decision regarding the influence direction of both variables 
is validated by the later models. Since the program DEAP cannot accommodate the 
uncontrollable variables, the calculation of this model is carried out by a Matlab 
program written by the authors. The summary statistics of efficiency scores for the 
one-stage model are presented in Table 9. 

5.2 Two-Stage Model 
 
Based on the basic model, in the second stage of the two-stage model efficiency 
scores from the first-stage are regressed against the selected uncontrollable variables. 
Both the Tobit model (Model 3) and the logistic regression model (Model 4) are 
demonstrated here. The initial results of both models are presented in Table 4.  
 

Table 4: Initial Results of Two-Stage Models 

Independent variables 
Tobit Logistic regression 

    Coef.        Std. Err.   Coef.           Std. Err. 
Constant 0.7738***        0.0448 -0.0429           1.7642 
Vintage 0.0020           0.0017 -0.00316           0.0676 

Vintage squared -0.00013*         0.00005 -0.0016            0.0021 
Calorific value of coal 0.0056**          0.0019 0.1471*           0.0732 

Scale1 -0.0633***       0.0101 -0.8239*            0.3991 
Scale2 --- --- 
Scale3 0.0771***        0.0192 2.3382***         0.7269 
CHP 0.0399**          0.0131    0.5965            0.5140 

Log-likelihood 
function 

237.9844 -526.0825 

Note: Dependent variables are efficiency scores from the first stage DEA model. ***, ** and * 
indicate that the parameter estimate is significantly different from zero at the 0.1%, 1% and 5% 
levels, respectively.  
 
Except for the coefficient estimated for vintage, in Table 4 the coefficients for other 
variables are significantly different from zero at 5% or better significance levels in at 
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least one model. Both the T-test and log-likelihood ratio test do not reject the 
hypothesis that vintage makes no contribution to the fitness of the model. Therefore, 
vintage is discarded in both models and the final results of the two-stage models are 
presented in Table 5. 
 

Table 5: Final Results of Two-Stage Models 
 

Independent variables 

Tobit Logistic regression 

Coef.         Std. Err. Coef.            Std. Err. 

Constant  0.79079***       0.04266 -0.06805             1.67338 

Vintage squared -0.00008***       0.00002 -0.00166*           0.00080 

Calorific value of coal   0.00533**        0.00186 0.14748*             0.07272 

Scale1 -0.06377***       0.01015 -0.82326*           0.39885 

Scale2 --- --- 

Scale3 0.07440***         0.01910 2.34216***         0.72193 

CHP 0.04190***         0.01299 0.59336               0.50954 

Log-likelihood function 237.28035 -526.08358 
Note: dependent variables are efficiency scores from the first stage DEA model. ***, ** and * indicate 
that the parameter estimate is significantly different from zero at the 0.1%, 1% and 5% levels, 
respectively.  
 
Compared with those in Table 4, the coefficients estimated in Table 5 have largely 
been improved in quality. Table 5 reveals some very important findings. Above all, the 
variables selected can provide a relatively good explanation of the variation of the 
efficiency scores. Except for the coefficient for CHP in the logistic regression model, 
other estimated figures are different from zero at a 5% or better significance level in 
both models. Secondly, the signs of the estimated coefficients for uncontrollable 
variables are quite stable in both models and are consistent in an engineering sense. 
This confirms the impact of the selected uncontrollable variables and their influence 
direction on the technical efficiency of power plants. For example, vintage does 
matter for the efficiency variation of a coal-fired power plant, but it is most likely to 
influence the performance of coal-fired power plants in a negative quadratic way. 
Therefore, the hypothesis that operating environment has no effect on efficiency 
scores can be rejected.  
 
The summary statistics for the efficiency scores of this model are presented in Table 9. 
Due to the adjustment of the final scores for uncontrollable variables, the maximum 
value predicted by the Tobit model is slightly different from one. This occurs because 
a relatively efficient power plant is operating in a relatively unfavorable operating 
environment. Regressions in both models are performed using the statistical package 
STATA.  

5.3 Three-Stage Model 
 
The first stage of the three-stage model is also the basic DEA model (1). In the second 
stage, since slacks cannot be aggregated across non-commensurate variables, four 
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SFA slack regressions are conducted. The total slacks (radial plus non-radial) are 
regressed on the selected uncontrollable variables, based on a truncated normal 
specification of the one-sided inefficiency error component 2( , )m

mj umu N μ σ+� 9. The 
initial stochastic frontier estimation results are summarized in Table 6.  
 

Table 6: Initial Stochastic Frontier Estimation Results 

Independent variables 
Dependent variables 

Capacity slack Labour slack Fuel slack SO2 slack 

Constant 
0.4635*** 
(0.1043) 

1.0780*** 
(0.1116) 

0.2251** 
(0.0764) 

0.2858***  
(0.0503) 

Vintage 
-0.0101*  
(0.0040) 

-0.0030 
(0.0050) 

-0.0031 
(0.0016) 

-0.0036 
(0.0020) 

Vintage squared 
0.0003*  
(0.0001) 

0.0001  
(0.0002) 

0.00018*** 
(0.00005) 

0.00017** 
(0.00006) 

Calorific value of coal 
-0.0089*  
(0.0040) 

-0.0063 
(0.0044) 

-0.0051** 
(0.0018) 

-0.0072**  
(0.0022) 

Scale1 
0.0354  

(0.0231) 
0.0614* 
(0.0293) 

0.0646*** 
(0.0097) 

0.0554***  
(0.0121) 

Scale3 
-0.1128*  
(0.0435) 

-0.2504*** 
(0.0570) 

-0.0658*** 
(0.0179) 

-0.0767***  
(0.0218) 

CHP 
-0.0900**  
(0.0299) 

-0.0099 
(0.0323) 

-0.0419** 
(0.0133) 

-0.0398*  
(0.0165) 

2σ  
0.2447*** 
(0.0020) 

0.1258*** 
(0.0351) 

0.0040*** 
(0.0009) 

0.0060***  
(0.0007) 

γ  
0.00003 

(0.01165) 
0.99999*** 
(0.00001) 

0.0092 
 (0.2543) 

0.0020 
(0.0355) 

μ  
0.0017  

(0.0233) 
0.3347*** 
(0.0747) 

-0.0120 
 (0.0653) 

-0.0069 
(0.0509) 

Log-likelihood 
function 

96.4228 -5.9358 298.5798 251.8603 

Note: ***, ** and * indicate that the parameter estimate is significantly different from zero at the 0.1%, 
1% and 5% levels, respectively. 
 
A likelihood ratio test does not reject the hypothesis that the 2( , )m

mj umu N μ σ+�  
makes no contribution to the composed error term ( )mj mjv u+ , except for with the 
labour slack regression. Also, a T-test on the 2 2 2/( )m

um vm umγ σ σ σ= +  shows the 
hypothesis that 0mγ =  cannot be rejected at any sensible importance level in the 
regressions for capacity slack, fuel slack and SO2 slack. Therefore, both tests disclose 
that managerial inefficiency actually exerts no impact on the usage of these three 
inputs.  
 
On the contrary, the contribution of managerial inefficiency to the labour slack is 
confirmed by both a likelihood ratio test and a T-test. Table 6 shows that the estimated 
value of γ  in the SFA regression for labour slack is very close to one10. That is to say, 
managerial inefficiency is actually able to explain almost all variations in the labour 
slack.  
                                                        
9 Because the magnitude of the total slacks might correlate to the size of a power plant, therefore, the 
total slacks are expressed as percentages both here and later in the four-stage model. 
10 These kinds of very high values for γ are also reported by other researchers, e.g. Jamasb and Pollitt 
(2003) and Coelli and Perleman (1996).  
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Given the aforementioned reasons, the SFA regressions for capacity, fuel and SO2 
slacks are replaced by three OLS regressions11. The new estimation results are 
presented in Table 7. 
 

Table 7: Final Estimation Results of Three-Stage Model 

Independent variables 
Dependent variables 

Capacity slack Labour slack Fuel slack SO2 slack 

Coefficient 
-0.4618*** 

(0.1072) 
1.0780*** 
(0.1116) 

0.2223*** 
(0.0429) 

0.2845*** 
(0.0531) 

Vintage 
-0.0101* 
(0.0041) 

-0.0030 
(0.0050) 

-0.0031 
(0.0016) 

-0.0036 
(0.0020) 

Vintage squared 
0.0003* 
(0.0001) 

0.0001 
(0.0002) 

0.00018*** 
(0.00005) 

0.0002** 
(0.0001) 

Calorific value of coal 
-0.0089* 
(0.0044) 

-0.0063 
(0.0044) 

-0.0051** 
(0.0018) 

-0.0072** 
(0.0022) 

Scale1 
0.0354 

(0.0242) 
0.0614* 
(0.0293) 

0.0647*** 
(0.0097) 

0.0554*** 
(0.0120) 

Scale3 
-0.1128** 
(0.0442) 

-0.2504*** 
(0.0570) 

-0.0659*** 
(0.0177) 

-0.0766*** 
(0.0219) 

CHP 
-0.090** 
(0.0312) 

-0.0099 
(0.0323) 

-0.0421*** 
(0.0125) 

-0.0398* 
(0.0155) 

2σ  0.0253 0.1258 0.0041 0.0062 

γ  -- 0.99999*** -- -- 

μ  -- 0.3347*** -- -- 

Log-likelihood 
function 

96.4228 -5.9358 298.5805 251.8609 

Note: ***, ** and * indicate that the parameter estimate is significantly different from zero at the 0.1%, 
1% and 5% levels, respectively. 

  
Based on the results in Table 7, the input data is adjusted and the DEA model is 
repeated. The summary statistics of the efficiency scores of the three-stage model are 
presented in Table 9. The SFA regression is implemented using the program 
FRONTIER, Version 4.1 (Coelli, 1996b). Input data are adjusted in Microsoft EXCEL. 
Final efficiency scores are calculated using the program DEAP, Version 2.1. 

5.4 Four-Stage Model 
As mentioned previously, the procedure for the four-stage model is quite similar to 
that of the three-stage model. Based on the Tobit regression technique, the estimated 
coefficients of the slack regressions are listed in Table 8. 
 
It can be seen that the signs of the coefficients are fairly consistent. The coefficients 
estimated for the selected uncontrollable variables are significantly important. The 
results again demonstrate the impact of the operating environment on a power plant’s 
                                                        
11 We note in passing that in the original implementation of the three-stage model, Fried et al. (2002) 
made use of Tobit regression in a similar situation. However, we think that it is logically more 
consistent to use OLS, given that we started with linear SFA. The difference this makes to the final 
results is negligible.  
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performance. The input data are then adjusted and the DEA model is repeated. Its 
summary statistics are also presented in Table 9. The four Tobit regressions are 
implemented using the statistical package STATA. Input data are adjusted in 
Microsoft EXCEL. The DEA calculation in the last stage is performed using the 
program DEAP, Version 2.1. 

 
Table 8: Estimation Results of Four-Stage Model 

Independent variables 
Dependent variables 

Capacity slack Labour slack Fuel slack SO2 slack 

Coefficient 
-0.4809*** 

(0.1146) 
0.5982** 
(0.1988) 

     0.2303*** 
(0.0460) 

0.2956*** 
(0.0567) 

Vintage 
-0.0101*  
(0.0044) 

0.0069 
(0.0076) 

-0.0031 
(0.0018) 

-0.0036 
(0.0022) 

Vintage squared 
0.0003*  
(0.0001) 

-0.0001 
(0.0002) 

0.00017*** 
(0.00005) 

0.0002** 
(0.0001) 

Calorific value of coal 
-0.0101*  
(0.0048) 

-0.0080 
(0.0082) 

-0.0056** 
(0.0019) 

-0.0079*** 
(0.0024) 

Scale1 
0.0378 

(0.0259) 
0.1097* 
(0.0449) 

0.0661*** 
(0.0104) 

0.0571*** 
(0.0127) 

Scale3 
-0.1355** 
(0.0487) 

-0.3121*** 
(0.0843) 

-0.0763*** 
(0.0197) 

-0.0904*** 
(0.0243) 

CHP 
-0.0940** 
(0.0334) 

-0.0734 
(0.0579) 

-0.0433*** 
(0.0134) 

-0.0412* 
(0.0165) 

2σ  
0.1685*** 
(0.0086) 

0.2929*** 
(0.0150) 

0.0677*** 
(0.0034) 

0.0834*** 
(0.0042) 

Log-likelihood 
function 

51.5552 -62.4791 233.0675 192.6340 

Note: ***, ** and * indicate that the parameter estimate is significantly different from zero at the 0.1%, 
1% and 5% levels, respectively. 

5.5 Model Comparison 
Table 9 shows the summary statistics of the efficiency scores for different models. 
Although they clearly do differ, after the effects of the uncontrollable variables are 
considered there is a general increase in efficiency scores across the models, from 
models (2) to (6). This suggests that the impact of the uncontrollable variables on the 
efficiency of coal-fired power plants is fairly stable. A Rank-Sum test 12  is 
implemented in order to identify whether or not the difference is significant between 
the efficiency scores of the basic model (1) and those averages of the models (2) to (6). 
Test results show the null hypothesis that the two groups of scores belonging to the 
same distribution can be rejected at the significance level of 0.5% 13 . This 
demonstrates that both groups of efficiency scores are significantly different. In other 
words, incorporating the selected uncontrollable variables does make a difference in 
the final efficiency evaluation.  
                                                        
12 The Rank-Sum test, also known as the Wilcoxon-Mann-Whitney test, is a kind of nonparametric 
statistic. Since the theoretical distribution of the efficiency score in DEA is usually unknown, therefore, 
using the parametric approach in this context is more susceptible. Please see Brockett and Golany 
(1996) and Cooper et al. (2000) for detail. 
13 The Rank-Sum statistic follows an approximately standard normal distribution and the value it 
achieves here is about 3.257.  
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Table 9: Summary Statistics of Efficiency Scores 

Model name 
Basic 
model 

(1) 

One-stage 
model 

(2) 

Two-stage 
model  
Tobit  

(3) 

Two-stage 
model 

Logistic 
(4) 

Three-stage 
model 

(5) 

Four-stage 
model 

(6) 

Model 
average 
(2)-(6) 

Mean 0.884 0.910 0.884 0.889 0.950 0.901 0.907 

Std. Err. 0.076 0.069 0.062 0.083 0.036 0.066 0.053 

Min. 0.648 0.664 0.684 0.576 0.799 0.672 0.724 

Max. 1 1 1.058 1 1 1 1.012 
Number of 

efficient 
DMUs 

20 41 6 20 20 18 - 

 
Some results related to Table 9 are also worthy of stressing here. First of all, DMUs 
operating in relatively unfavourable environment tends to have larger efficiency score 
differences between the basic model and other models. Remember that our attempt to 
eliminate the effects of uncontrollable variables is to level the playing ground for all 
DMUs. In the one-stage model, this is realized by comparing the j-th DMU with a 
theoretical frontier DMU operating in an environment that is no better than that of the 
j-th DMU. In the two-stage model, this is done by adjusting each DMU’s efficiency 
score to the average level of the estimated impact of uncontrollable variables. In the 
three- and four-stage models, this is done by adjusting upward the inputs of those 
DMUs, who have relatively favourable operating environments. In general, the bigger 
the adjustment is, the larger the efficiency score difference between the basic model 
and other models will be. The final results support this argument. Secondly, except in 
the one-stage model and the two-stage Tobit model, efficient DMUs in other models 
are quite consistent. The one-stage model has the largest number of efficient DMUs – 
this agrees with what the authors discussed in section 2.2. That is, as variables 
included in DEA increase, the number of efficient DMUs will increase. Thirdly, when 
compared with other models, the three-stage model has the narrowest efficiency score 
interval (Table 9). This to some extent reflects the superiority of the three-stage model 
to eliminate the impact of uncontrollable variables. 
 
Tables 10, 11, 12 and 13 exhibit the relationships between the average efficiency 
scores and the selected uncontrollable variables, these being vintage, calorific value of 
coal, unit scale, and CHP. When compared with the average efficiency scores of the 
basic model (1), those of models (2) to (6) become less tendentious after being 
adjusted by the corresponding uncontrollable variables. This result validates the 
authors’ selection of uncontrollable variables in the previous section. It is also 
consistent with the hypothesis that at least some of the power plants which had 
relatively low efficiency scores in the basic model, did so in part due to their 
relatively unfavorable operating environments. Not all of them were as poorly 
managed as their low efficiency scores in the traditional DEA model indicated.  

 
 



 20

 
Table 10: Average Efficiency Scores in Terms of Vintage 

Vintage 
(year) 

No. of 
power 
plants 

Basic 
model 

(1) 

One-stage 
model 

(2) 

Two-stage 
model   
Tobit  

(3) 

Two-stage 
model 

Logistic 
(4) 

Three-stage 
model 

(5) 

Four-stage 
model 

(6) 

Model 
average 
(2)-(6) 

0-10 136 0.894 0.904 0.881 0.876 0.955 0.910 0.905 

11-20 58 0.884 0.907 0.887 0.897 0.950 0.892 0.906 

21-30 21 0.852 0.943 0.903 0.935 0.933 0.886 0.920 

31- 6 0.766 0.946 0.866 0.962 0.875 0.816 0.893 

 
Table 11: Average Efficiency Scores in Terms of Calorific Value of Fuel 

Calorific 
value 

(TJ/tonne) 

No. of 
power 
plants 

Basic 
model 

(1) 

One-stage 
model 

(2) 

Two-stage 
model 
Tobit  

(3) 

Two-stage 
model 

Logistic 
(4) 

Three-stage 
model 

(5) 

Four-stage 
model 

(6) 

Model 
average 
(2)-(6) 

< 20 23 0.859 0.879 0.884 0.907 0.941 0.898 0.902 

20 – 25 164 0.885 0.911 0.886 0.894 0.950 0.902 0.909 

25 < 34 0.900 0.924 0.874 0.852 0.954 0.896 0.900 

 
Table 12: Average Efficiency Scores in Terms of the Scale Dummy Variable 

Scale  
No. of 
power 
plants 

Basic 
model 

(1) 

One-stage 
model 

(2) 

Two-stage 
model 
Tobit  

(3) 

Two-stage 
model 

Logistic 
(4) 

Three-stage 
model 

(5) 

Four-stage 
model 

(6) 

Model 
average 
(2)-(6) 

Scale1 91 0.841 0.885 0.886 0.908 0.927 0.877 0.897 

Scale2 115 0.906 0.920 0.884 0.889 0.962 0.915 0.914 

Scale3 15 0.974 0.981 0.873 0.778 0.990 0.933 0.911 

 
Table 13: Average Efficiency Scores in Terms of the CHP Dummy Variable 

CHP 
No. of 
power 
plants 

Basic 
model 

(1) 

One-stage 
model 

(2) 

Two-stage 
model 
Tobit  

(3) 

Two-stage 
model 

Logistic 
(4) 

Three-stage 
model 

(5) 

Four-stage 
model 

(6) 

Model 
average 
(2)-(6) 

CHP (=1) 46 0.874 0.936 0.886 0.903 0.941 0.875 0.908 

CHP (=0) 175 0.887 0.903 0.884 0.886 0.952 0.907 0.906 

 
Table 14 and Table 15 exhibit the simple and the rank correlations of the efficiency 
scores respectively. Generally, a high correlation coefficient between two sets of 
efficiency scores indicates a high consistency in both sets. It is clear to see that the 
efficiency scores of the three-stage and four-stage models have, in general, a higher 
correlation with the other models14. It indicates that these two models are able to 

                                                        
14 As one of the reviewers pointed out, the correlations between the efficiency scores in the various 
situations might be influenced by truncated errors or the fact that many DMUs have efficiency scores 
equal to one. However as Table 9 indicates the number of fully efficient DMUs is quite small as a 
percentage of the total sample size. Nor do the differences in correlation coefficient between the 
methods seem to vary with number of fully efficient DMUs, in particular models 2 and 3 with the most 
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explain most of the features of the other models, thus suggesting their superiority. 
Relative to the four-stage model, the three-stage model is able to differentiate between 
managerial inefficiency and statistical noise. This feature is valuable for an 
understanding of the causes of DMU inefficiency. Therefore, it is methodologically 
more preferable.  

 
Table 14: Correlation of Efficiency Scores for Different Models 

 Basic One-stage 
Two-stage 

(Tobit) 
Two-stage 
(logistic) 

Three-stage Four-stage 

Basic 1.000      

One-stage 0.775 1.000     

Two-stage (Tobit) 0.775 0.686 1.000    

Two-stage (logistic) 0.311 0.374 0.701 1.000   

Three-stage 0.980 0.701 0.731 0.268 1.000  

Four-stage 0.885 0.657 0.863 0.497 0.893 1.000 

 
Table 15: Spearman’s Rank Correlation of Efficiency Scores 

 Basic One-stage 
Two-stage 

(Tobit) 
Two-stage 
(logistic) 

Three-stage Four-stage 

Basic 1.000      

One-stage 0.792 1.000     

Two-stage (Tobit) 0.738 0.667 1.000    

Two-stage (logistic) 0.441 0.520 0.819 1.000   

Three-stage 0.988 0.765 0.694 0.401 1.000  

Four-stage 0.869 0.671 0.835 0.601 0.875 1.000 

 

6. Conclusion 
There are very few published studies on performance measurement which 
simultaneously incorporate both undesirable outputs and uncontrollable variables. For 
a few papers in which undesirable outputs have been considered, the impact of 
uncontrollable variables has been left unexamined. That is to say, many existing 
studies on performance measurement implicitly assume that all inefficiency is due to 
the bad management of DMUs. Therefore, the performance of DMUs in a relatively 
unfavorable operating environment is very likely to be underestimated.  
 
In this research different DEA-based efficiency measurement models are used to 
examine the impact of uncontrollable variables together with undesirable outputs. 
Furthermore, the basic model is derived from existing literature and is only able to 
consider the impact of undesirable outputs. The one-stage model incorporates selected 
uncontrollable variables directly into the DEA model. Despite being simple, it 
requires a prior understanding of the direction of uncontrollable variables. Also, it 
                                                                                                                                                               
different number of efficient DMUs do not seem to be unusual with reasonably high cross correlation 
to each other and similar cross correlations to the other models. 
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cannot accommodate uncontrollable dummy variables. The two-stage model involves 
constructing a basic DEA model for considering the impact of undesirable outputs in 
the first stage. The radial efficiency scores are then regressed against a set of 
uncontrollable variables in the second stage. Its advantage is that this model does not 
require any prior knowledge of the influence direction of uncontrollable variables. 
However, the two-stage model ignores the information contained in the input slacks. 
Moreover, because DEA is an extreme point method, any outlier is likely to influence 
the position of the efficiency frontier. Therefore, the use of efficiency scores gathered 
from the first stage as a dependent variable in the second stage does in theory entail an 
amount of risk. When compared with the two-stage model, the three-stage and 
four-stage models can make better use of any information contained in the input 
slacks. Our research results confirm their superiority over other models. They are both 
demanding in computation and the three-stage model. The three-stage, which uses the 
SFA technique as a regression tool, is able to differentiate between managerial 
inefficiency and statistical noise. It can also give a better explanation of DMU 
inefficiency. It is therefore more preferable.  
 
This paper not only contributes to performance measurement research methodology, 
but it also has implications for policies affecting the Chinese coal-fired power sector. 
With the rapid increase of coal-fired generating capacity, which has been a dominant 
part of Chinese electricity generation for decades, emissions from electricity 
generation have caused enormous environmental damage and great social economic 
cost in China. Given the large scale of the sector and its worldwide importance with 
regards to the control of climate change, how to raise the efficiency of coal-fired 
power plants has become a crucial issue. 221 coal-fired power plants are pooled in a 
research sample in this paper, along with data on their annual generation, capital, 
labour, and fuel consumption, and also with data on their vintage, calorific value of 
coal and unit scale. The results obtained indicate that the impact of uncontrollable 
variables is relatively significant. This confirms the hypothesis that at least some 
power plants with relatively low efficiency scores in the traditional model achieved 
these in part due to their relatively unfavorable operating environments. However, it 
should be noted that after correcting this we find inefficiency to be around 10%. 
Eliminating this inefficiency via the appropriate market and regulatory mechanisms 
would yield substantial economic and environmental benefits. Future research will 
examine power plant efficiency in more detail and incorporate additional undesirable 
outputs, such as CO2. 
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