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Abstract 

Based on the classic behavioural theory “the Theory of Planned Behaviour”, we develop an 

agent-based model to simulate the diffusion of smart metering technology in the electricity 

market. We simulate the emergent adoption of smart metering technology under different 

management strategies and economic regulations. Our research results show that in terms of 

boosting the take-off of smart meters in the electricity market, choosing the initial users on a 

random and geographically dispersed basis and encouraging meter competition between energy 

suppliers can be two very effective strategies. We also observe an “S-curve” diffusion of smart 

metering technology and a “lock-in” effect in the model. The research results provide us with 

insights as to effective policies and strategies for the roll-out of smart metering technology in 

the electricity market.  
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1. Introduction 

 

Technology adoption, which studies the acceptance and diffusion of a new technology 

in a market or an economy, is an important research area in several disciplines such as 

marketing, management, industrial engineering and economics [1]. Although the 

invention of a new technology often comes into being as a single discrete event or a 

jump, the adoption of that technology often appears as a continuous, long and slow 

process [2]. A new technology will contribute little in a market or economy until it has 

been adopted by many users. Therefore, understanding the process of the diffusion of a 

new technology is of great significance. Rosenberg [3] points out two characteristics in 

the technology diffusion process: overall slowness and wide variations in the rates of 

acceptance of different technologies. Rogers [4] theorizes a classical technology 

diffusion model—the S-curve model of spreading innovations, which suggests that the 

early users adopt a new technology first, followed by the majority, until the technology 

becomes common. This model has been successfully justified by studying the 

adoptions of new technologies in many industries (e.g. [5, 6]). Currently the studies of 

the diffusion of new technologies mainly focus on econometric models (e.g. [7, 8, 9]). 

However, as suggested in the Punctuated-Equilibrium Model of Technology Diffusion 

[1], the diffusion of a new technology is a complex process influenced by a broad range 

of factors, such as organizational inertia, stable industry constellations, cultural 

“openness” and uncertainty in the evolution of the new technology. Davis et al. [10] 

also point out that the acceptance of a new technology is highly related to consumers’ 

psychological factors such as “perceived usefulness” and “perceived ease of use”. 

Therefore, complexity science which studies how the micro-level individual behaviour 

gives rise to the macro-level collective properties of a whole system appears to be 

another effective means of studying the influences of factors in the complex process of 

the diffusion of a new technology. 

 

In this paper, we present an agent-based model to study the adoption of smart metering 



technology in the electricity consumer market. The motivation of the study is triggered 

by the fact that the future of smart metering technology in the UK energy consumer 

market remains a key concern of the government (e.g. the Department for Business, 

Enterprise and Regulatory Reform (DBERR)), the energy market regulator (the Office 

of Gas and Electricity Markets (Ofgem)), as well as energy suppliers and consumers. 

We target the issue by using agent-based computational simulation, i.e. we build a 

virtual society being comprised of rational software objects, the “intelligent agents”, in 

a computer. These agents, representing both energy consumers and energy suppliers, 

interact in the virtual society. As with real households, the energy consumer agents 

make rational decisions in terms of choosing energy suppliers and metering 

technologies in the virtual society. Macro-level emergent properties, such as the 

evolution of the adoption of smart metering technology in the virtual society, can be 

seen as inferences of the adoption of smart metering technology in the real electricity 

consumer market.   

 

The objectives of the study are twofold. First, we aim to provide an exploratory and 

predictive study of the future of smart metering technology in the UK electricity 

consumer market. Currently all the stakeholders, especially the government (DBERR), 

energy market regulator (Ofgem) and energy suppliers, are all interested in promoting 

smart meters in the UK energy consumer market. However, a wide range of barriers and 

uncertainties make the future of smart meters unclear. A robust exploratory and 

predictive model can provide very helpful management intelligence for these 

stakeholders. In other words, the results from the model could potentially help 

decision-makers see the future of smart metering technology and establish effective 

strategies and economic regulations to push the take-off of smart meters in the UK 

energy consumer market.  

 

The second objective of the paper is to develop an effective multi-agent system 

framework on the basis of the classical psychological/behavioural theories to study all 

the complex phenomena in the energy consumer market. This model can be seen as a 



generic multi-agent framework based on which we can study the influences of a 

number of factors (e.g. word-of-mouth effects in a social network, consumers’ 

perceptions, and the impact of random events) on the issues of most concern (e.g. issues 

about energy security, technology adoption and global warming) in the energy 

consumer market. For example, if we detach the model from smart metering 

technology and apply it to another issue, such as the diffusion of renewable energy 

technologies, it will still be an effective research approach. Moreover, because a key 

point in the development of the model—designing algorithms to control the behaviour 

and interactions of the electricity consumer agents, is based on the classical 

psychological/behavioural theories, the model can also be seen as another way of 

validating the classical psychological/behavioural theory.     

 

The paper is comprised of six sections. The second section describes smart metering 

technology and its current situation of adoption. The third section describes our 

agent-based simulation model of smart metering technology adoption in detail. The 

fourth section describes the four scenarios we simulated with the model. The fifth 

section concentrates on the analysis of the simulation results and their practical 

implications. The sixth section presents a discussion of the model and concludes the 

paper. 

 

2. Smart Metering Technology and Its Current Situation of Adoption 

 

2.1 What is a Smart Meter? 

 

“Smart meter” is a catch-all term for a type of advanced and innovative meter (usually 

an electric meter) which offers consumers information about consumption in more 

detail than a traditional meter, and optionally interacts with local utility suppliers via 

some network for monitoring and billing purposes [11]. It could range from a simple 

display meter which shows consumers how much they spent on the utility, to a 



high-technology meter which automatically interacts with utility suppliers so as to send 

accurate meter readings to utility suppliers remotely or help consumers keep track of 

the carbon emissions caused by their energy consumption [12]. 

 

Although currently there is no single unified definition of a “smart meter”, some 

commonly recognised functions are available: 

 

• Display real time information about energy consumption to consumers and send 

it to energy suppliers directly and remotely [13]; 

 

• Provide a more effective way for consumers to understand their energy 

consumption via a prominent display unit which includes: 

 

- Cost in £/p 

- Indicator of low/med/high use, 

- Comparison with historic/average consumption patterns, 

- Function to allow data to be accessed via PCs/mobile phones [13]. 

 

• Interact with energy suppliers so as to make it is possible for consumers to 

switch tariffs remotely [12, 13]; 

 

• Export metering for domestic micro-generators [13, 14]; 

 

• Enhance demand-side management options, such as tariffs which charge more 

at peak times of the day and less for off-peak times [15]; 

 

• Ensure security of energy supply, inactivity monitoring and real time 

monitoring of gas leaks and CO2 emissions [12, 13]; 

 

2.2 Benefits of Smart Meters 



 

Smart metering technology can potentially offer a broad range of benefits including 

better information and control of energy use, new service opportunities for companies 

and other organizations, enhanced power network management facilities, and 

alternative connections to digital services. These benefits are in line with government’s 

objectives to reduce emissions, keep energy prices competitive, and to encourage 

electronic trading [13]. The potential benefits that smart meters bring to different 

stakeholders are outlined below in detail. 

 

• Energy Efficiency 

 

As a basic function, a smart meter can display energy consumption accurately in 

pounds and pence so that consumers can easily be made aware of the money 

they are spending on energy. The display is often located in a separate place 

from where the meter is installed, e.g. in the kitchen or next to the thermostat, in 

order to provide consumers with easy access to the information [13]. More 

sophisticated smart meters can interact with electrical appliances around the 

home and display the exact amount of energy they use, or even control the 

amount of energy use in a house.   

 

A significant body of evidence has proven that consumers’ behaviour would 

change if they were regularly informed of the cost of energy they consume [14, 

16]. Therefore, arming consumers with better information about their energy 

consumption could change their behaviour. For example, they may try to find 

ways of saving money by cutting back on the amount of overall energy they 

consume, or by reducing energy consumption at peak times. As a result, 

consumers with smart meters could be more energy efficient. This has been 

witnessed by studies and experience from overseas including Italy, Ontario, 

Northern Ireland and Sweden: changes of consumer behaviour have resulted in 

a reduction of energy consumption by between 3% and 15% [16], with “savings 



at the upper end often being linked to the provision of energy efficiency 

information and advice” [13]. Ofgem’s analysis based on limited UK 

information has shown that smart meters could have the potential to deliver, on 

an annual basis, a reduction in domestic fuel bills by an average of £24 and, if 

applied in all household, a reduction in overall UK gas and electricity 

consumption of around 3% [14].   

 

• Demand-side Management, Micro-generations and Cutting Emissions 

 

As reported by Energywatch, demand-side management measures and 

micro-generation technologies can facilitate the establishment of an effective 

and competitive energy market that delivers reduced carbon emissions, secure 

energy suppliers and affordable energy for all consumers [13]. Demand-side 

management enables energy suppliers to offer consumers variable rate contracts 

which encourage consumers to use energy at off-peak demand times of the day 

by offering reduced off-peak rates in exchange for relatively high rates at peak 

demand times of the day. For example, in Italy and Ontario, there are rates for 

three different periods of the day [16]. Demand-side management measures can 

decrease the pressure of the distribution network at peak demand times, and also 

potentially reduce the need for building generating plants to cover the demand 

at peak times [13]. 

 

Micro-generation produces electricity and heat from a low or non-carbon source 

on a domestic scale. Examples of micro-generation include: micro-CHP (a 

small domestic Combined Heat and Power unit which produces electricity and 

heat simultaneously), micro-hydro, micro-wind and photovoltaics. The benefits 

of wind, solar and hydro micro-generation are the zero fuel cost and that the 

technologies are carbon free. The development of micro-generation can 

potentially produce a third of a householder’s annual electricity needs thus 

reducing the load on distribution networks and largely cutting carbon emissions 



[13]. As a result, the total cost to consumers will be reduced. In order to capture 

the benefits from micro-generation, meters must be able to record imported 

electricity from the distribution network and electricity exported back to the 

network during the periods when generation outstrips demand. Therefore, smart 

meters can help boost the spread of micro-generation.  

 

Widespread adoption of smart metering technology can therefore cut CO2 

emissions because: 

 

 “Large uptake of micro-generation would dramatically reduce 

the need for electricity from major CO2 emitting power stations. 

It would also help to smooth out peaks in demand for electricity 

which would in turn reduce emissions from power stations. 

 

 By encouraging customers to adopt energy efficiency measures 

and use less energy, this will also help reduce emissions. 

 

 Smart meters could also show how much carbon a household 

was emitting and this could make customers more aware of the 

impact of their energy use on the environment” [12]. 

 

• Improving Billing Performance 

 

As reported by Energywatch, poor billing is by far the largest source of 

complaints by consumers. In 2004/5, poor billing accounted for 61.5% of all 

domestic consumers’ complaints, equivalent to approximately 40,000 

complaints [13]. Since April 2002, the number of consumers seeking advice 

about billing from Energywatch has increased by 202% [13]. The results from a 

research commissioned by Energywatch in 2003 shows: 

 



• “Consumers lack confidence in the accuracy of estimated bills; 

 

• 35% of customers receive estimated bills frequently; 

 

• One in five believe that the estimated bills they received are very or 

fairly inaccurate; 

 

• Almost one in ten said that estimated billing had pushed them into debt 

with their supplier and for a third of those the debt exceeded £100. For 

one in four of these the debt was difficult or impossible to pay off” [13]. 

 

If there is a suitable information network and infrastructure, smart meters can 

send accurate real time meter readings directly to the energy suppliers. 

Therefore, the adoption of smart meters can potentially eliminate the need for 

manual meter reading and estimated billing. The automatic and remote meter 

reading and accurate billing will lead to a substantial reduction in energy 

suppliers’ back office costs related to complaint resolution [13].  

 

2.3 Barriers to the Adoption of Smart Metering Technology   

 

Despite a number of benefits that could arise from the widespread application of smart 

metering technology, the adoption of this new technology is not yet as good as expected. 

The barriers that have prevented smart metering technology from taking off in the 

energy consumer market can be summarized in three aspects: economic, technical and 

regulatory. 

 

• Economic 

 

As they are based on advanced technologies, smart meters inevitably cost more then 

conventional meters, and the more sophisticated the model, the higher the price. 



Table 1 shows a comparison between the costs of smart meters and the costs of 

conventional meters. On the one hand, for consumers, the cost of a smart meter 

might be up to three times the cost of a conventional meter. On the other hand, 

currently energy suppliers are also unlikely to roll out smart meters in the whole UK 

because they may have to pay around £800 million in total for the deployment of 

smart meters. [14]. Therefore, high absolute cost of replacement of existing 

conventional meters with smart meters remains a significant economic barrier 

preventing smart meters from taking off.   

  
Meter Type Meter Cost Comments 
Standard credit tariff £50-£70 Combined cost of supply and 

installation 
Standard prepayment meter £80-£100 Combined cost of supply and 

installation 
Smart “Display” meter £75-£120 Supply and install. Includes cost 

of display unit. Potentially 
additional costs associated with 
pre-payment token systems. 

Smart “AMR/Net” meter 
(Remote Readable) 

£100-£170 Supply and install. Additional 
infrastructure costs e.g. wireless 
or powerline communications 
systems 

Smart “Internet” meter £150 and upwards Supply and install. Includes costs 
of TCP/IP stack. Additional 
infrastructure costs apply 
directly related to the number of 
additional services carried over 
metering system 

Table 1: Comparative Costs of “SMART” versus “STANDARD” Meters (Source: [14])  

 

• Technical 

 

Although advanced metering technology is already available, there are many 

options in terms of the types of smart meters. The lack of standardization of types of 

smart meters can create risk for energy suppliers: a consumer installing a smart 

meter from one energy supplier may switch to another energy supplier because its 



new smart meters appear to offer more advanced services [14]. Additionally, the 

lack of standardization of smart metering technology means that large number of 

smart meters of different types will work (e.g. collect and dispatch data and 

instructions, keep track of meter errors, validate and transform the data and store 

data) under different communication protocols. Currently, this issue remains a big 

technical challenge for energy suppliers [34]. This barrier is being discussed by 

both Ofgem and Energywatch, who are currently making efforts to publish 

international standards covering automatic meter data exchange [18]. The 

standardization of smart meter technology can overcome this technical barrier and 

enable energy suppliers to boost the deployment of smart meters in large scale. 

 

• Regulatory 

 

With the current regulatory framework, most of the energy meters remain the assets 

of the energy suppliers, and the prime focus of Ofgem has been the development of 

metering competition in the energy market. Ofgem suggests that metering 

competition would advance the interests of consumers by offering more choices, 

encouraging technological innovation and reducing costs for both consumers and 

energy suppliers [19]. However, the combination of RPI-X regulations on the 

ex-PES (the electricity supplier to the extent that the electricity supplier is 

undertaking activities within its distribution services area), and currently 

distribution network operators (DNOs) has the effect of exacerbating the trend to 

install conventional meters with basic functionality, because the regulation can 

incentivise network operators to deliver their existing services as efficiently as 

possible in order to maintain their margins [14]. The electricity network operators 

are reluctant to risk developing innovative services, especially those that can render 

their current assets (existing working meters) obsolete [14]. Furthermore, the 

28-day rule allows consumers to switch their energy suppliers at 28 days notice, 

which causes energy suppliers to face the risk that consumers may not meet their 

debts for the meter or services provided, leaving energy suppliers to chase the debt 



(additionally expenses are incurred for this) [13, 14].  

 

2.4 Current Situation of Smart Metering Technology Adoption in the UK 

 

The domestic metering market in the UK stands at around 45 million units [14]. 

Although all the stakeholders (e.g. DBERR, Ofgem, Energywatch and energy 

consumers) have high expectations with regard to smart meters which can potentially 

offer a broad range of benefits, smart metering technology is not currently taking off in 

the UK. According to Ofgem, some trials have been carried out by energy suppliers (e.g. 

former Seeboard, Severn Trent Water, British Gas and EDF energy), but consumers’ 

acceptance of smart meters does not seem satisfactory [20].  Therefore, the market for 

smart meters in the UK still remains questionable. In order to promote the adoption of 

smart metering technology in the UK, Ofgem has proposed pilot studies and they are 

urging the government to fund the pilots [14]. They suggest that the trials should 

involve a cross section of society, covering for example, inner city housing, affluent 

suburban housing, rural areas and a new residential development, to test (i) the social, 

environmental and consumer benefits of smart meters; (ii) the technical attributes; and 

(iii) the likely costs both to energy suppliers and consumers of the installation and 

maintenance of various types of meters and remote switching of appliances [14]. In 

May 2007, DBERR published a new version of white paper on energy “Meeting the 

Energy Challenge”, which fully addressed the government’s ambition in promoting 

smart metering technology in the UK energy market. In this new energy white paper, 

DBERR announced its new policies on promoting smart meters: (i) energy suppliers 

should extend advanced and smart metering services to all business consumers in Great 

Britain within next 5 years; (ii) a 10-year plan to roll out smart meters to households 

and, between 2008-2010, smart meters will be available free of charge to any 

households that requests one. 

 

3. Description of the Model 



 

3.1 The Model 

 

In order to provide an exploratory and predictive study on the adoption of smart 

metering technology in the UK energy consumer market, we propose to incorporate the 

research with computational simulation by developing a multi-agent model to simulate 

the scenarios of the adoption of smart metering technology in the electricity consumer 

market. The idea of the model is that: based on a two-dimensional spatial map, we will 

develop a virtual community within which residential electricity consumers and 

electricity suppliers interact with each other. Each residential consumer can proactively 

gain information about metering technologies and energy suppliers from other 

residential consumers and energy suppliers, and can also proactively send information 

about metering technologies and energy suppliers to other residential consumers.  A 

residential consumer’s decision in terms of choosing metering technology and an 

energy supplier is rationally made based on the information the consumer gains from 

the social network in which it is involved. The rationality in this process of 

decision-making is based on the theory of planned behavivour (TpB) [24]. Energy 

suppliers, on the other hand, will act economically to promote energy and their 

metering technologies including both traditional metering technology and the new 

smart metering technology. Whether energy suppliers “push” or “pull” the smart 

metering technology is economically determined by market situations. The evolution of 

the adoption of smart metering technology with time can be observed from the virtual 

community on system level. By adjusting the parameters, we can test and study the 

influence of management strategies and economic regulations on the adoption of smart 

metering technology. The simulation model can provide us with an in-depth 

understanding of the process of smart metering technology adoption and also assist us 

in predicting the future adoption of smart metering technology. 

 

3.2 The Environment and the Agents 

 



In computational simulation, the environment is a virtual system in which the agents 

behave and interact in a computer. In the model, we create our model based on a square 

lattice of 62500 cells (250*250) with periodic boundary conditions. Cells can either be 

blank or be occupied by residential electricity consumers, as shown in Figure 1. The 

population in the virtual community is determined by an adjustable parameter called 

“population-density”.   

 

 

Figure 1: The Environment 

Note: In the virtual community, residential electricity consumer agents are randomly populated in the cells (blue or yellow houses), 

and the black areas are unpopulated cells (non-residential areas). Each populated cell just has one residential consumer agent, and 

the number of total residential consumer agents is control by the parameter called “population-density”. The blue houses are the 

residential consumer agents with conventional meters, while yellow houses are the initial participating residential consumer agents 

(the residential consumer agents who have been initially chosen to install smart meters) in the pilot programme. In order to 

eliminate edge effects, the square lattice has periodic boundary conditions. 

 

There are two kinds of agents in the virtual community: the residential consumer (RC) 

agents which appear in form of houses, and the energy supplier (ES) agents which are 

not visible but interact with RC agents by disseminating price information of energy 

and smart meters throughout the whole virtual community.    

 



3.3 Behaviour of RC Agents 

 

Since the RC agents are human, they are “smart agents” [21] which have intelligent 

behaviour in terms of choosing energy suppliers and metering technologies. An RC 

agent gains information about energy suppliers and metering technologies from both its 

social network (e.g. neighbours, friends or colleagues) and energy suppliers, processes 

the information and finally makes decisions. This decision-making process is a 

complex cognitive process about which scientists of different backgrounds have given 

different interpretations. For example, in economics, Sugden [22] suggests “rational 

choice” based on the utility theory; in psychology, McClelland [23] develops the 

motivation theory; and in behavioural science, Ajzen [24] develops the theory of 

planned behaviour (TpB). In terms of constructing human agents in an agent-based 

model, the theories based on which we develop algorithms to control the human agents’ 

behaviour are significantly important because they determine the fidelities of the agents. 

Previous work on agent-based simulations in the electricity market (e.g. [25, 26]) 

developed algorithms to control agents’ behaviour based on economic theories. In our 

model, we focus on behavioural science and develop algorithms to control RC agents’ 

behaviour on the basis of the most influential decision-making model “The Theory of 

Planned Behaviour (TpB)” [24].   

 

The TpB model [24], as shown in Figure 2, suggests that intention is the immediate 

antecedent of an actual behaviour of a person and it comes from three sources: the 

person’s attitude towards the behaviour, the influence the person perceives from his/her 

social network (the subjective norm), and the person’s perception of his/her ability to 

perform the behaviour (the perceived behavioural control, which may be facilitated or 

impeded by unexpected or random events). External stimuli’s contributions to the three 

sources of intention are calibrated by their relevant parameters (e.g. behavioural beliefs, 

normative beliefs or control beliefs, which are referred to as a person’s personality 

traits). 

 



 

 
Backgroud 

Factors 
 

Individual 
   Personality 
   Mood, emotion 
   Intelligence 
   Values, stereotypes 
   General attitudes 
   Experience 
 
Social 
   Education 
   Age, gender 
   Income 
   Religion 
   Race, ethnicity 
   Culture 
 
Information 
   Knowledge 
   Media 
   Intervention 

Behavioral
beliefs 

Normative
beliefs 

Control 
beliefs 

Attitude
toward the 
behavior

Subjective
norm 

Perceived
behavioral 

control

Intention Behavior 

Actual
behavioral

control

 

Figure 2: The model of TpB (Source: Ajzen, 1991, p. 181) 

 

We draw on the ideas of the TpB model. In the virtual community, an RC agent has two 

kinds of interactions (Figure 3). One kind, in the form of price information of energy 

and smart meters, is the interaction between the RC agent and ES agents. The other kind, 

in the form of word-of-mouth effects, is the interaction between the RC agent and other 

RC agents. As competition between suppliers in the energy supply market has so far 

been based primarily on price comparison [14], the price information of electricity and 

smart meters can determine the RC agent’s attitude towards its behaviour—choosing a 

smart meter or not, and from which energy supplier. Therefore, based on the TpB model, 

the price information of electricity and smart meters can been seen as the external 

stimuli related to “behavioural beliefs”. The influences from the RC agent’s social 

network through word-of-mouth effects can positively or negatively trigger the RC 

agent’s intention to make a decision on whether to choose a smart meter or not, and 

from which energy supplier. Therefore, they can be seen as the external stimuli related 

to “normative beliefs” in the TpB model. Energy and technology policies made by 

Ofgem or DBERR are the external factors that can facilitate consumer’s decisions on 

choosing smart meters. Thus these policy effects can be seen as external stimuli related 

to “control beliefs” in the TpB model. 



 
Figure 3: An RC agent’s interactions 

 

Table 2: Stimuli, Weights and Intention 

 

 RC agent (agent i) interacting with j RC agents. Each RC agent sends a 

gent i also gains stimuli about option α from an energy supplier. If we use  PαE to 

 

Consider an

stimulus about option α (choosing an energy supplier and a metering technology) to the 

RC agent via the word-of-mouth effect (Figure 3), and the contribution of each stimulus 

to the RC agent’s subjective norm is calibrated by its relevant normative belief. We use 

different weights to represent these normative beliefs, as show in Table 2. Based on the 

TpB model, agent i subjective norm to option α can be formulated as  

 

 

 

A

denote the price information of energy, use PP S

agent 

α  to denote the price information of a 

stimulus weight intention 

1 Infαi1 Wi1 Infαi1 * Wi1

2 Infαi2 Wi2 Infαi2 * Wi2

3 Infαi3 Wi3 Infαi3 * Wi3

. . . . 

j Infαij Wij Infαij * Wij

ES PαE + PαS WiP (PαE + PαS) * WiP

infαi1

Infαi2

Infαij

Pα
E + Pα

S

intentionα
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. 

j
jiji InfWSN
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smart meter if option α includes smart metering technology (if it does not include smart 

metering technology, then PαP

ombining agent i’s subjective norm and attitude towards to option α, its intention to 

here we use a minus before the attitude towards the option because price has a 

decisioni = max {I1, I2, I3, … Iα } 

 

.4 Behaviour of ES agents 

s the ES agents are business organizations, their behaviours in a market are economic 

. The Simulation 

e programmed the model with the agent-based simulation package NetLogo 3.1.4. In 

)(* ααα
SEiPi PPWA +=

∑ +−=
j

SEiPjiji PPWInfWI
1

)(*)*( ααα

S is null), and WiP to denote agent i’s sensitivity to price (a 

behavioural belief in the TpB model), agent i attitude towards option α can be 

formulated as 

 

C

choose option α can be formulated as 

 n
α

 =

 

w

negative influence on the RC agent’s intention to choose option α. In a the virtual 

community, if agent i has α options, the one that can give agent i the largest intention is 

its preferred one, i.e. its final decision on whether to choose a smart meter or not and 

from which energy supplier. The decision-making can be formulated as  

 

3

 

A

activities. In our model, each ES agent’s behaviour includes: (i) promoting energy and 

smart meters to consumers by disseminating their price information throughout the 

whole virtual community; (ii) adjusting prices based on the variation of its overall 

market share (this differs in different scenarios of experiments).  

 

4

 

W



terms of an RC agent’s interactions with other RC agents, we consider to two kinds 

(Figure 4). One is the RC agent’s regular interactions with its neighbouring RC agents: 

the RC agent can regularly receive influences from its neighbouring RC agents through 

regular interactions with them, and the number of regular interactions is controlled by a 

parameter called “radius”. For example, if we make the “radius” larger (a longer radius 

in Figure 4), the RC agent will have more regular interactions with its neigbouring RC 

agents. The other is the RC agent’s random interactions with other agents in the virtual 

community: the RC agent can also randomly receive influences from other agents in the 

virtual community through the random interactions with them, and the number of 

random interactions is controlled by a parameter called “random-interaction”. The 

purpose of this design is to enable the social networks in the virtual community to have 

the attributes of both “small-world” effect [27,28] and scale-free power-law 

distribution [29]. In such kind of social networks, each RC agent can both receive 

regular influences and random influences from other RC agents and send regular and 

random influences to other RC agents in the virtual community. 

 

 

 

Figure 4: An RC agent’s regular (blue) and random interactions (red) with other RC agents 

 

e simulate four scenarios. The time steps in the evolution of the four scenarios are the W

same, with each time step being defined as one month. In all the four scenarios, if an RC 



agent chooses a smart meter, it cannot switch back to a conventional meter or switch to 

the other ES agent within two time steps (simulating the 28 days rule in the energy 

market [14]). In the first scenario, we simulate one possible pilot for promoting smart 

meters in a monopoly market. An RC agent has two options in the virtual community: (i) 

conventional metering technology, and (ii) the new smart metering technology. The 

initial conditions of Scenario 1 are given in Table 3: 

 

parameter value comments 
number of ES agent y one energy supplier in the virtual community 1 There is onl

 
population-density 0.40 ere are 40% of the cells in the virtual community is populated, i.e. th

25000 (62500*0.4 = 25000) RC agents in the virtual community   
random-interaction 10 Each RC agent has less than 10 random interactions in the virtual 

community 
radius 2 Each RC agent regularly interacts with other RC agents less that 2 

times of radius away from its position 
percentage 0.10 Initially in the pilot, the ES agent randomly chooses 10% of its RC 

agents at geographically dispersed sites to install smart meters 

Tab

 

n the second scenario, we simulate a second pilot scheme for promoting smart meters 

arameter value comments 

le 3: Initial Conditions in Scenario 1 

I

in a monopoly market, with initial conditions the same as that in Scenario 1. An RC 

agent also has two options in the virtual community: (i) conventional metering 

technology, and (ii) the new smart metering technology. The only difference between 

Scenario 1 and Scenario 2 is that in Scenario 2, the ES agent chooses 10% of its RC 

agents in a centralized controlled area to install smart meters, as shown in Table 4.  

 

 

 

 

 

p
number of ES agent y one energy supplier in the virtual community 1 There is onl

 



population-density 0.40 ere are 
5000 (62500*0.4 = 25000) RC agents in the virtual community   

40% of the cells in the virtual community is populated, i.e. th
2

random-interaction 10 Each RC agent has less than 10 random interactions in the virtual 
community 

radius 2 Each RC agent regularly interacts with other RC agents less that 2 
times of radius away from its position 

percentage 0 
mart meters 

0.1 Initially in the pilot, the ES agent chooses 10% of its RC agents in a 
centralized controlled area to install s

Tab

In the third scenario, we sim arket. The two ES 

parameter value comments 

le 4: Initial Conditions in Scenario 2 

ulate a pilot scheme in a duopoly m

agents promote smart meters with cooperation, i.e. they set a unified price for smart 

meters and neither of the two will unilaterally adjust the unified price of smart meters. 

A RC agent has four options in the virtual community: (i) conventional metering 

technology with ES agent A, (ii) smart metering technology with ES agent A, (iii) 

conventional metering technology with ES agent B, and (iv) smart metering technology 

with ES agent B. The initial conditions of Scenario 3 are shown in Table 5. 

number of ES agent 2 There are two energy suppliers (A and B) in the virtual community 
 

population-density 0.40  
5000 (62500*0.4 = 25000) RC agents in the virtual community   

40% of the cells in the virtual community is populated, i.e. there are
2

market-share-A 0.50 Initially ES agent A has 50% market share 
 

market-share-B 0.50 Initially ES agent B has 50% market share 
 

random-interaction teractions in the virtual 
ommunity 

10 Each RC agent has less than 10 random in
c

radius 2 Each RC agent regularly interacts with other RC agents less that 2 
times of radius away from its position 

percentage-A 5 0.0 Initially in the pilot, the ES agent A randomly chooses 5% of its RC 
agents to install smart meters 

percentage-B 0.05 Initially in the pilot, the ES agent B randomly chooses 5% of its RC 
agents to install smart meters 

Tab

 

ulates a pilot of promoting smart meters in a duopoly 

promote smart meters with competition, i.e. they will always adjust the price of smart 

le 5: Initial Conditions in Scenario 3 

The fourth scenario also sim

market. However, it is different from Scenario 3. In Scenario 4, the two ES agents 



meters based on the variation of market shares. Every six months the two ES agents 

check their overall market shares, and if one ES agent finds that it is losing in its market 

share, it will slightly lower the price of smart meters in order to gain more RC agents; if 

it finds that its market share is increasing, it will slightly raise the price of smart meters 

in order to gain more profit. An RC agent also has four options in the virtual community: 

(i) conventional metering technology with ES agent A, (ii) smart metering technology 

with ES agent A, (iii) conventional metering technology with ES agent B, and (iv) 

smart metering technology with ES agent B. The initial conditions of Scenario 4 are 

given in Table 6. 

 

parameter value comments 
number of ES agent 2 There are two energy suppliers (A and B) in the virtual community 

 
population-density cells in the virtual community is populated, i.e. there are 0.40 40% of the 

25000 (62500*0.4 = 25000) RC agents in the virtual community   
market-share-A 0.50 itially ES agent A has 50% market share In

 
market-share-B 0.50 Initially ES agent B has 50% market share 

 
random-interaction 10 ach RC agent has less than 10 random interactions in the virtual E

community 
radius 2 ach RC agent regularly interacts with other RC agents less that 2 E

times of radius away from its position 
percentage-A 0.05 e pilot, the ES agent A randomly chooses 5% of its RC Initially in th

agents to install smart meters 
percentage-B 0.05 domly chooses 5% of its RC Initially in the pilot, the ES agent B ran

agents to install smart meters 

Tab ario 4 

 

5. Simulation Results

ents we observe the evolution of the adoption of smart 

etering technology under different conditions, which gives us possible 

le 6: Initial Conditions in Scen

 

 

Through the four experim

m

phenomenological information about the future of smart metering technology in the 

real UK energy consumer market.  



 

Figure 5 from Scenario 1 shows that if the ES agent at the outset randomly and 

ispersedly chooses its RC agents to have smart meters, the smart metering technology 

the evolution of smart metering technology in a scenario of 

ooperation (Scenario 3), and Figure 9 presents the evolution of smart metering 

d

will be adopted by those RC agents outside the pilot group in a very effective way. The 

market share of smart meters evolves to around 100% in about 40 time steps. Figure 6 

from Scenario 2, however, presents a very different situation. The adoption of smart 

metering technology is very slow if the ES agent initially chooses its RC agents in a 

centralized controlled area, even though in Scenario 2 the percentage of RC agents 

initially chosen to install smart meters is the same as that in Scenario 1. Figure 7 shows 

a comparison between the evolutions of the adoption of smart metering technology in 

the two scenarios. One conclusion we can draw from the comparison is that in the pilot 

of promoting smart metering technology, choosing the initial participating RC agents 

(the RC agents who have been chosen to install smart meters at the beginning of the 

pilot programme) on a random and geographically dispersed basis is a more effective 

strategy than choosing initial participating RC agents on controlled and geographically 

centralized basis.  

 

Figure 8 presents 

c

technology in a scenario of competition (Scenario 4). Although the two scenarios are 

different, a common pattern of the adoption of smart metering technology appears. 

However, if we make a comparison between the evolutions of the adoption of smart 

metering technology in the two scenarios (Figure 10), we can find that in competition 

scenario (Scenario 4), the adoption of smart metering technology can be quicker and 

when the market reaches a stable state, smart meters in competition scenario can 

possess a larger market share than that in cooperation scenario. Moreover, Figure 12, 

Figure 13 and Figure 14 show that competition can also help an ES agent to maintain its 

overall market share, because the difference between the two ES agents’ overall market 

shares in the competition scenario is evidently smaller than that in the cooperation 

scenario. Therefore, we can draw another conclusion from the comparison: competition 



is a more effective way than cooperation in terms of both promoting smart metering 

technology and maintaining ES agents’ market shares.  

 

The model reproduces the “S-curve” model of technology diffusion [4]. The evolutions 

f the adoption of smart metering technology in all four scenarios have the common 

 interesting emergent result is the appearance of a “lock-in” effect [30]. 

he “lock-in” effect is a very interesting phenomenon in marketing. It describes a state 

o

pattern of an “S-curve” (Figure 7 and Figure 10). Our empirical observation from the 

Telegestore Project of promoting smart meters carried out by Enel in Italy also shows 

the “S-curve” model of technology adoption (Figure 15). Our simulation results show 

that the increasing rates of the four “S-curves” are different. This is due to the highly 

different management strategies (methods of choosing initial participating RC agents) 

and economic regulations (competition and cooperation). Under these different 

management strategies and economic regulations, individual RC agents have different 

perceptions (which is reflected as highly different values of “attitude towards the 

behviour”, “subjective norm” and “perceived behavioural control” in the TpB model) 

towards smart meters and energy suppliers. As a result, they have different behaviour at 

individual level (whether choose smart meters or not and with which energy supplier), 

which then gives rise to the different system level properties (different rates of the four 

“S-curves”). 

 

Another very

T

of an evolving market in which consumers prefer one of two or more competing 

products and that this preference persists for a long time beyond what would be 

economically rational [31]. The “lock-in” effect in the adoption of smart metering 

technology in our model is an emergent property of the whole virtual market which 

originates from the behaviour of individual RC agents and their interactions. Empirical 

observation from the real UK energy market shows a typical “lock-in” effect does exist 

between the major electricity suppliers (Figure 16). The appearances of the “lock-in” 

effect in different markets have attracted many marketing scientists and a huge volume 

of literature on the studies of the “lock-in” effect has been published (e.g. [32, 33]). 



However, most of them are based on traditional top-down techniques on analytical 

mathematical models. Our computational simulation model offers another way of 

generating the “lock-in” effect: based on our bottom-up agent-based model, we can 

further study how the RC agents’ interactions in the social networks contribute to the 

“lock-in” effect.  

 

 

6. Conclusions and Future Work 

t based simulation in terms of coping with 

ncertainties and complexities in the adoption of smart metering technology in the 

fusion in 

e virtual community can be seen as two validations of our model. The appearances of 

 

Our model shows the robustness of agen

u

electricity consumer market. As our results show, with the model, we can carry out 

experiments to test the effectiveness of different management strategies and economic 

regulations in the process of promoting smart metering technology. The results from the 

experiments in the virtual community might be used to infer the results in the real 

electricity market. This can help us to gain insights into the future of smart metering 

technology and optimize our management strategies and economic regulations so as 

effectively to boost the take-off of smart metering technology in the real energy market. 

For example, given that the benefits of smart meters exceed their costs, our 

experimental results can have two practical implications: if we carry out pilots to 

promote smart meters in the UK energy market, we should (i) choose the initial 

participating households on a random and geographically dispersed basis; and (ii) 

encourage competition between energy suppliers in the smart meter market.  

 

The appearance of the “lock-in” effect and “S-curve” model of technology dif

th

the “lock-in” effect and the “S-curve” enable the model to bear resemblance to 

empirical observations from real electricity markets, and further signify the validity of 

the model. Additionally, because the model is developed based upon classical 



behavioural theory, the robustness of the model can also been seen as a validation of the 

TpB model. As the TpB model is a generic behavioural theory, our model can also be 

seen as a generic reference agent-based model that can be applied to deal with other 

issues in the energy market. For example, it might be possible to separate the model 

from smart metering technology and then apply it to another issue with similar 

properties, e.g. the adoption of micro-generations in the energy market.  

 

Our further research will evaluate the effectiveness of DBERR’s new policies on 

romoting smart meters set in the new energy white paper in May 2007. These new 

 

p

policies raise some interesting issues in the energy market. For example, to what extend 

should these policies be publicized to households and how can energy suppliers take the 

advantage of initial enthusiastic smart meter users to roll our smart metering services. 

We will target these issues via agent-based computational simulation and provide 

policy implications for promoting smart metering technology in the UK energy market. 

 

 

 

 

 

 

 

 

 

 

 



        
Figure 5: Scenario 1                            Figure 6: Scenario 2 

 

 

 

 

 

Evolution of SM Market Share (Scenario 1 vs Scenario 2)
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Figure 7: A Comparison between Scenario 1 and Scenario 2 

 

 

 

 

 

 

 



        
Figure 8: Scenario 3 (cooperation)              Figure 9: Scenario 4 (competition) 

Evolution of SM Market Share (Competition vs Cooperation)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Time Step

M
ar

ke
t S

ha
re Evolution of Market Share (SM,

Competition)
Evolution of Market Share (SM,
Cooperation)

 

Figure 10: A Comparison between Competition (Scenario 4) and Cooperation (Scenario 3) 
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Figure 11: The Evolution of SM Price in the Competition Scenario 



     

Figure 12: Market Shares of ES Agents (Scenario 3)   Figure 13: Market Shares of ES Agents (Scenario 4) 

 

 

 

 

Evoluation of Market Share (A and B, Competition vs Cooperation)
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Figure 14: A Comparison between Competition (Scenario 4) and Cooperation (Scenario 3) in ES Agents Market Shares 

 



The "S-curve" Model of Smart Metering Technology Adoption in the
Telegestore Project (Enel, Italy)
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Figure 15: The “S-curve” Model of Smart Metering Technology Adoption in the Telegestore Project (Data Source: Enel, Italy)   

 
 
 

The "Lock-in" Effect in the UK Electrcity Market
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Figure 16: The “Lock-in” Effect in the UK Electricity Market (Data Source: Domestic Retail Market Report, Ofgem, June 2007) 
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