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1. Introduction 

 
    Many of the cost reductions for new technologies are expected to come from learning by doing (Arrow, 
1962). Producers will explore new ideas to reduce production costs when they build a new production line – 
and repeat successful approaches in future investments. This suggests that learning by doing requires 
some market growth in order to allow for the construction of new production lines. However, the more 
production lines are built in parallel with the same technology, the fewer the number of additional insights 
from an extra line. This suggests that growth rates should not be excessive. Reviewing studies across 
various technologies we observe growth rates rarely exceeding 35% per year, while new technologies 
exhibit high learning by doing rates up to these growth rates. 
    The learning by doing methodology has been frequently applied to assess whether public support for new 
technologies is justified by the future benefits derived from renewable technologies. This paper expands 
previous work and analyses the marginal benefit of an additional unit of subsidised new technology – with a 
puzzling result: even where the overall scheme is profitable, the extra subsidy is larger than the discounted 
future cost reductions that result from it. 
    The puzzle's solution is the growth constraint for the new technology. Production volume of new 
technologies can only grow gradually, due to of constraints on production capacity and qualified labour. 
Also, industry takes time to gather experience from production at a new installation. If too many new 
installations are built in parallel this will reduce the learning benefit. 
    Now assume today's investment in the new technology is reduced by one unit, the implication is that all 
future investments will also have to be reduced by one unit if the future growth constraint is not to be 
violated. This will delay the time when the new technology becomes profitable and reduces the future 
market size of the new technology. The marginal value of capturing the full growth potential can be a 
multiple of the direct value from the cost reductions associated with the new technology. 
    This is not too surprising. If it is profitable to use a strategic deployment program for a technology, then 
the discounted future benefits outweigh the additional costs that are born earlier on. If the deployment can 
be accelerated without compromising the learning by doing rate, then future benefits are delivered earlier 
and do not need to be as heavily discounted, thus increasing the overall profitability. If costs are too high 
and output too similar to conventional technologies, feed-in tariffs, traded certificate schemes, and tender 
auctions are used to create markets for new technologies in order to create sufficient private demand for 
low-carbon options. 
    Some analysts argue instead that governments should rely on the carbon price to internalise the 
environmental externality and incentivise the development of technologies (Manne and Richels 2004). This 
assumes that investors anticipate high future carbon prices and shoulder the early costs of deploying a new 
technology, by selling a technology below cost so as to develop the market and gain learning experience. 
Given the difficulties of appropriate innovation in the energy sector (Stokey 1996), and the sharing of the 
benefits among many players that may be involved in the development of the technology, this is an unlikely 
scenario (Neuhoff 2005). It is more likely that technology companies and investors will wait until the carbon 
price sufficiently increases the costs of competing conventional technologies in order to make the new 
technology competitive. This will result in a peaky CO2 price. In the model carbon prices will not only peak, 
but remain at far higher prices for many years until technology costs are reduced via learning by doing. 
    Due to technology spill over the market outcome will no longer coincide with the social optimal 
investment pattern. This has also implications for modelling approaches. While the representation of 
endogenous technological change has become standard for large scale modelling approaches (Koehler et 
al 2006), the precise formulation of the optimisation function and its implementation can influence the 
outcomes. This paper suggests a framework to classify different simplifications used to represent 
endogenous technological change (Sijm 2004). This helps to understand the implications of different model 
formulations and solution algorithms. 
    This paper first reviews the empirical evidence for learning by doing and discusses approaches to 
represent and quantify the effect. Using the learning-curve approach, Section 3 analyses the marginal value 
of additional learning investment, and Section 4 illustrates the result with a numerical example. Section 5 
discusses the implication for public policy analysis and Section 6 concludes. 
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2. Empirical evidence - improvements through market experience 

 

    The cost of new technologies falls with increasing deployment, both for energy technologies and other 
industry sectors. The IEA (2003) concludes that "there is overwhelming empirical evidence that deploying 
new technologies in competitive markets leads to technology learning, in which the cost of using a new 
technology falls and its technical performance improves as sales and operational experience accumulate." 
Isoard and Soria (2001) identify Grainger causality between installed capacity and capital costs both for 
wind and PV. McDonald and Schrattenholzer (2001) also show that for emerging technology, the price 
reduction typically falls between 5-25% with each doubling of cumulative industry output, with most 
reductions clustered between 15-20%. 
    However, careful assessments have also illustrated that extremely high improvement rates calculated by 
some initial studies can be partially attributed to factors such as capital availability or changing product 
quality (Thompson 2001, Nemet 2006). A survey of several industries indicates that learning effects usually 
dominate scale economies (Isoard and Soria 1997), for example Watanabe (1999) shows that 70% of price 
reductions in the Japanese PV industry can be attributed to learning effects. 
    One fundamental assumption of the improvement through market experience (learning curve) 
methodology is that the pattern of cost reductions caused by global installed capacity will not undergo 
fundamental future change. This result requires thorough examination as it has significant implications for 
government technology policy. Lieberman (1984) shows that in the chemical processing industry time 
becomes statistically insignificant if log cumulative production is used as an explanatory variable, and 
Jensen (2004) critically discusses different modelling approaches. In contrast, Papineau (2006) identifies 
time as a significant explanatory variable for price reductions in a regression of PV module prices. One 
possible interpretation of this finding is that if we merely wait for a sufficient period of time, the technology 
cost will fall. However, the estimation did not include the log of global cumulative installed capacity as an 
explanatory variable. In the observation period, global PV penetration increased exponentially (with 
constant growth rates). Therefore, the log of global cumulative capacity is almost perfectly correlated with 
time. In the sample it is impossible to identify whether time or global cumulative installed capacity drives the 
cost reduction. 
    Various extensions of the learning curve model are currently being developed to capture the interaction 
of cumulative production and R&D (Research and Development) expenditure. All the models try to explicitly 
model the impact of R&D expenditure, which is implicit in the traditional learning curve model. The learning 
rate is estimated on historical data, and historical cost reductions are explained by cumulative production 
and of R&D expenditure. Gruebler and Gritsevskyi (1997) introduce a model that assesses learning as a 
function of aggregate expenditure on R&D and market expenditure. Kouvartiakis et al (2000) apply the two-
factor learning curve (see also Jamasb 2007). This is a Cobb-Douglas type production function, with both 
factors acting as substitutes according to their so-called learning-by-doing (cumulative installed capacity) 
and learning-by-searching (R&D) elasticities. Barreto and Kypreos (2003) suggest that the two-factor 
learning curve approach is limited by "unsolved estimation and data issues, but constitutes an important 
step towards understanding the role of R&D". 
    One disadvantage of the traditional learning curve is that costs approach zero with increasing 
deployment, which is not realistic. To address this concern, some authors suggest a learning curve with a 
floor cost level (e.g. Tsuchiya and Kobayashi, 2003). 
    A factor that has not been analysed explicitly in previous papers on learning by doing is the market 
growth rate. Surveying the literature it is notable that the growth rate for the new technology is frequently 
not even reported, even though the necessary data must have been available wherever a learning rate was 
calculated for a technology. Figure 1 illustrates that in most of the studies that reported both growth rates 
(or allowed for deduction of the growth rate from reported market volumes), the rate is in the range 0-30% 
per year, with only a few studies exhibiting growth up to 40% per year.  
    This empirical observation is also reflected in many macroscopic model formulations. Barreto and 
Kypreos (2002) apply maximum growth and decline rates (15%, 10%) for R&D budgets in their model for 
endogenous technological change. Rasmussen (2001) includes learning by doing in a macroscopic model, 
but fixes the rate of subsidy for renewable technologies. This effectively allows the author to set growth 
rates for renewable technologies. MERGE at Stanford assumes that a new technology can enter at 
maximum 1% of total production in the initial year with an increase by the factor of three in each subsequent 
decade. Time steps of MERGE are ten years. (Manne and Richels 2004) 
    We were also interested to see whether a relationship between growth rates and learning rates can be 
established for the surveyed technologies. Figure 1 does not reveal such a trend, perhaps because the 
number of observations is still too low, or because other factors – like industry sector, have to be 
considered. But it might well be that different effects cancel each other out. With higher growth rates less 
time is available for industry to learn from previous experiences and learning rates should decline. At the 
same time, successful technologies should receive more market demand or public support and thus 
correlate with higher growth rates. 



 

 

    In the energy technology sector, manufacturing and installation costs are the biggest cost share, with 
reductions in these components being the focus of technology policy. Therefore, this paper is based on 
installed capacity rather than produced output. Estimations of learning curves typically use price rather than 
production costs as input, but in competitive industries such as PV, long-term learning rates are either not 
affected by market power mark-ups or average out over time (Duke 2002). In contrast, in the short-term 
excess demand or production shortages can result in scarcity prices above production costs, as currently 
observed for wind turbines and PV panels. 
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Figure 1 Market growth rate and learning rate across a set of technologies 

 

        

3. Marginal analysis 

 

    We define the social welfare function and then calculate the optimal level of investment in a new 
technology over time in the presence of learning by doing. Thus the marginal learning benefit with and 
without technology growth constraints can be calculated. 
    We assume production P(Kt,Lt) is a function of capital input Kt and labour input Lt. The output can be 
consumed Xt or invested in new production facilities It. 
 

    ttttt IECXLKP )(),( +=            (0) 

 
    The function C(Et) captures the idea that the productivity of capital can change over time with experience 
Et. For the purpose of this model it is assumed that knowledge is not lost and thus experience does not 
depreciate over time, but grows with all new investment. 

      tl

tl

t IEE ∀+= ∑
−= 1...1

0                      (1) 

 
 In contrast, physical capital grows with new investment, but a fraction δ of existing physical capital 
depreciates each period: 
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We use the global welfare function that discounts annual welfare U(X,L) with the factor β and substitute 
from (0).  
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Substituting Et and Kt from (1) and (2) and differentiating with respect to the investment in any one year (3) 
gives the marginal value of additional investment: 
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On the equilibrium path, the investment decision is optimal in each period. For a positive investment 

quantity lI  in period l , a marginal change should have no impact on global welfare. A marginal change in 

investment lI  reduces the consumption in period l  by )( lEC . This disutility is compensated for by 

additional consumption in future periods. Future consumption increases for two reasons. First, because the 
capital stock is increased (in (4) part one of line 2) and second, because future investment is cheaper 

by
tt EC ∂∂ /  (in (4) part two of line 2). Line three gives the impact of a change of investment in period l  on 

future investment decisions. We can now differentiate between two cases. If investment decisions are 
unconstrained, then they are chosen such that .0/ =∂∂ tIW  Alternative growth rates for investment in a 

technology can be constrained if production capacity cannot be expanded too fast without loss of learning 
experience. This can be represented by: 
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Increased investment in one period allows for additional investment in future periods which can offer 
additional benefits. 
    For the case where the growth constraint (5) is not binding, an analytic solution for (4) can be 
determined. We assume constant growth rates g for the new technology and therefore 
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and the standard learning by doing function for investment costs: 
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In addition constant marginal utility 1/ =∂∂ tt XU is assumed and returns to scale are constant 
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Equation (9) shows the three influences on welfare from an additional unit of investment in the new 

technology in period l . (i) Costs for investment are incurred and are falling over time due to experience in 

the growing market. (ii) The produced electricity has a net present value, which in our subsequent 
calibration will be related to the levelised costs of the conventional generation technology. (iii) The extra 
investment creates additional experience that reduces all future investment costs. If the growth constraint is 
binding, then an additional term appears, but could not be presented in a closed form analytic solution. 
Therefore we proceed to a numeric example. 

4. Numeric example 

 
    We proceed to a numeric example, based on the example of photovoltaics for electric power generation 
within the European Union. This is currently a very high cost technology with a low installed capacity base. 
To quantify the value of the individual components, the following assumptions are made: 
 

Parameter Value Implication 

Discount rate r =7.5% β =0.93 

Depreciation δ =7%  

Levelised cost new tech, 0=t  MWhEuroEC /2500 =−λ
  

Levelised cost old tech, 62.50 Euro/MWh 74.9=
∂

∂

K

Pt  

Max growth rate new tech 3.0=g   

Learning rate  20% 322.0=λ  

 
    Inserting the parameter values into (9) gives: 
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 The initially striking result is that the sum of the value of future energy (62.50 Euro/MWh) plus the value of 
future cost reductions (153 Euro/MWh) is below the cost of the investment into the new energy source (250 
Euro/MWh). Does this suggest that welfare is not improved by supporting photovoltaic deployment? 
    Now we assume that a growth constraint is binding at a growth rate of 30% (equation 5). Thus a change 
(e.g. decrease below 30%) of the investment volume in one period can also change the investment volume 
in all subsequent periods. The sum of the full derivative (10) does not converge. This is because the future 
benefits grow faster with market growth than their contribution to the net present value. In reality markets 
will eventually be saturated with the new technology, and thus the growth constraint will no longer be 
binding. If the growth constraint is binding for 23 periods, then the numerical calculation gives 

MWhEurodIdW /13513/ 0 = . 

    The marginal benefit of additional investment by far exceeds the values in (6). This shows that if the 
growth constraint is not yet binding, it is valuable to increase the investment volume to the level at which the 
growth constraint is binding, and hence the value of marginal investment has to be calculated for the case 
of binding growth constraint. 
    So far the analysis focused on one year and assumed the growth constraint would be binding for the 
subsequent 23 years. To illustrate the role of the different learning benefits over time we assume an existing 
power system with generation capacity of 350 GW, annual demand growth of 2% and initial share of the 
new technology in energy provision of 0.1%. Levelised investment costs for the coal power stations are 15 
Euro/MWh (6000 full load hours), fuel costs are 15 Euro/MWh increasing at 1% real per year. Carbon 
constraints create additional costs for CO2 certificates of 20 Euro/MWh in 2008 that are increasing at 3% 
per year. Figure 2 shows that because of the larger learning stock and a smaller investment rate of the 
traditional technology costs fall more slowly than the costs of the new technology. In 2030, as the new 
technology captures the whole market of new investment, growth declines in line with demand growth and 
replacement of depreciated capacity. 
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Figure 2 Evolution of generation share and levelised costs of coal and photovoltaic 

 

    To allow for a comparison between a capacity with high fixed costs (photovoltaic) and a technology with 
high variable costs (coal), the levelised generation costs over an assumed 20 year operation period are 
depicted and used for the subsequent cost calculations. In the initial years investment costs for the new 
technology exceed the costs of investment and fuel using the conventional technology. 
    Figure 3 illustrates that it is nevertheless socially beneficial to invest. The benefit from future cost 
reductions compensates for a large share of the additional investment costs. The benefits from accelerated 
deployment more than make up for the remaining contribution. Private investors would only start buying the 
technology at production costs in the year 2023 when it breaks even with the levelised costs of coal power 
stations.  
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Figure 3 Evolution of marginal benefit of last unit of investment into photovoltaics. 

 
    In Figure 4 the discounted costs for the investment and operation of all new plants over their life time is 
calculated. If higher discounting factors are assumed, then this obviously reduces net present costs. If the 
growth rate of photovoltaics is very low, then any activities on photovoltaics are small relative to the total 
market, and thus do not significantly influence overall costs. 
    As the growth rate increases towards 10% per year, the overall costs increase. This is because the 
investment volume and thus initial costs increase. However, improvement through market experience is 
slow, and it takes too long for the new technology to become cost competitive. Therefore, it becomes 
preferable not to use the technology at all (see Manne and Barreto, 2004) 
    The benefits of the new technology available at low cost and scale can, in this model, only be captured 
where growth rates exceed 15% per year. With increasing growth rates, the benefit increases as the cost 



 

 

improvement of the technology accelerates and a low cost technology is available earlier. In reality it should 
be expected that learning rates decline if growth rates are too high, i.e.; if companies replicate new 
production facilities rather than explore new production opportunities and therefore do not capture additional 
learning benefits. 
    Figure 4 also illustrates how learning by doing creates multiple local optima, with one local optimal growth 
rate of 0. If the use of the technology is profitable then a second, global optimal growth rate is at the 
maximum possible market growth that supports effective learning by doing. Analysis that focuses on local 
optimisation runs the risk of ignoring the global optima once the local optima has been identified. This non-
convexity is created by the non-convex learning function. 
 

0.0

0.5

1.0

1.5

2.0

0% 10% 20% 30% 40% 50%N
e
t 

p
re

s
e
n
t 

c
o
s
t 
fo

r 
in

v
e
s
tm

e
n
t 

&
 o

p
e
ra

ti
o

n
 o

f 

a
ll 

n
e
w

 c
a
p
a
c
it
y
 (

tr
ill

io
n
 E

u
ro

)

5% discount rate

10% discount rate

Max growth rate of new technology

7.5% discount rate

 
Figure 4 Net present value of levelised costs calculated over operation time of all new plant 

5. Implications for public policy analysis 

 
    Sometimes it is argued that carbon pricing, whether pursued via carbon taxes or cap and trade schemes, 
suffices to incentivise the development and deployment of new technologies. If a new energy technology is 
worthwhile, then it will become competitive as soon as the CO2 price rises sufficiently. 
    The following simulation illustrates the implications of such an approach. Again 350 GW installed 
conventional generation capacity and demand growth of 2% per year is assumed. It is assumed that the 
carbon constraint is tightened by 1% of initial emissions per year and that the carbon market allows for a 
linear supply of allowances. The slope is calibrated to equal an initial supply elasticity of 1%. 
    Off-shore wind is this time considered as the new technology with cost estimates of 120 Euro/MWh 
(German feed as July 2008 with tariff levelised over 20 years). The effect that will be demonstrated would 
be even more extreme with photovoltaics. Initial installed off-shore wind capacity is assumed to be 2 GW 
and again learning rates of 10% and maximum growth rates of 30% are assumed. 
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Figure 5 Technology and carbon prices - without dedicated renewable support scheme 

 
    Figure 5 illustrates that the CO2 price will rise together with the 20 year average CO2 price, until it is 
profitable for investors to use the new technology in year 16. In the subsequent years investment costs are 
significantly below the 20 year average CO2 price and it would therefore be profitable to expand investment 
in any of these years. However, the maximum growth of new installations is limited to 30% per year. As a 
result the CO2 price continues to rise, and peaks in year 26. In anticipation of the future decline of the CO2 
price, the levelised CO2 price starts falling after year 20. Numeric models (see e.g. Riahi et al 2004, Figure 
12) produce similar peaky prices when growth constraints are implemented for new low emission 
technologies. 
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Figure 6 Technology and carbon prices - with strategic deployment program 

 
    In Figure 6 this result is compared with a scenario in which the government pursues active technology 
policy and starts deploying the renewable technology in year 1 with a growth rate of 30%. The difference 
between the levelised cost of off-shore wind and the levelised cost for coal presents the learning investment 
that has to be provided as subsidy per MWh electricity produced over the live time (20 years) of the turbine. 
If policy analysts wish to ignore the idea and benefits of strategic deployment, then they can translate the 
premium of around 50 Euro/MWh paid in the initial years in additional carbon prices of 55 Euro/t CO2 for 
deep water off-shore parks (assuming coal with emission factors 0.9 tCO2/MWh is replaced). However, with 
the last edits of this article, coal and gas prices have more than doubled and pushed base load power 



 

 

prices to 100 Euro/MWh, with carbon costs adding further 20 Euro/MWh. Should fossil fuel prices remain at 
these price levels, then support with feed-in tariffs only offers price guarantees but does not create extra 
subsidy requirements. 
 
By year 9, the improvements arising from market experience have reduced costs to a level that is sufficient 
for strategic deployment to be abandoned. The most important effect is that the early deployment creates 
the capacity to provide carbon free energy and therefore reduces the high scarcity value of CO2 that was 
previously observed.    Future energy technologies are a crucial input in models that determine the benefits 
and costs of different climate policy options. Koehler et al (2006) provide a comprehensive survey of such 
modelling approaches with endogenous modelling of learning by doing or R&D. 
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Figure 7 Technology representation in numeric economic models 

 
    Figure 7 offers a system to classify macroeconomic models. Models differ in whether they optimize over 
the entire horizon and are therefore forward looking, or whether they are myopic and assume that 
investment and labour decisions are made on the assumption that current prices will prevail in the future. 
Three basic approaches can be used to represent technology costs in models. 
    First, the model can take technology costs as exogenously given and will therefore ignore all the learning 
benefits. If analysts 'believe' that learning by doing does not exist, then they will only evaluate investment 
projects based on their direct benefits in terms of (for example) energy delivered. 
    Second, a technology model can be added to update technology costs. In this case an initial set of 
technology costs are fed into the economic model. The economic model determines the equilibrium 
investment quantities in different technologies. Based on the experience with these different technologies, 
the technology model is run to update the technology costs. Then the economic model is run again with the 
updated set of technology costs. This procedure is iterated until the technology prices and investment 
quantities converge. While this second set of models calculates technology costs over time, it does not 
internalize the improvements through market experience. At each iteration of the economic optimization the 
technology costs are fixed and therefore benefits of using the technology for future cost reductions and 
future growth potential are not considered. This has strong implications. Without initial investment 
improvements through market experience will not materialize and therefore costs will stay high - in the 
absence CO2 pricing the new technology would never be deployed. In the second example with CO2 
pricing, the models would predict the high CO2 peak prices of Figure 5. The impact of a full internalisation 
can be approximated, if an economic model with technology updating is either 'forced' to apply a new 
technology by setting quantity obligations, or tempted to apply the new technology by modelling financial 
incentives. Comparing the total discounted costs of models run with and without forced deployment helps to 
illustrate whether the strategic deployment of a technology is beneficial. 
    Third, assume a model solves the full optimization problem and therefore determines the equilibrium 
specified in (4). Such a complete optimisation can determine the socially optimal investment and 

consumption path, but faces the challenge that 
tt EEC ∂∂ /)(  is not a linear function of

tE  and therefore the 

maximization problem is no longer linear. This complicates the numerical solution of large economic 
models.. 

 



 

 

6. Conclusion 

 

    Countries implement strategic deployment programs to subsidize investment in renewable technologies. 
They do not aim only for the direct carbon and energy benefits of the projects, but also expect that 
increased experience will reduce technology costs and allow for large scale application in the future (Grubb, 
1997). This is expected to be a major contribution to low cost mitigation strategies (Edenhofer et al 2006, 
Stern 2006, IPCC 2007). 
    If a new technology competes with existing technologies in providing a homogeneous product, then the 
social value of investing in the technology might exceed the private value of the investment. This is because 
the investment creates market experience that reduces future investment costs. The investment also results 
in usage and expansion of production and installation capacity for the technology. If expansion rate of a 
technology is constrained, early expansion of capacity can create future benefits in the form of higher 
production capacity. Depending on the sector and the technology, private investors can capture some of 
these benefits. To the extent that they are not able to capture the benefits, and where they are not in a 
position to invest in a new technology without these benefits, public support for strategic deployment may 
be warranted. 
    To inform the decision whether the provision of public support is warranted, the paper suggests an 
approach to quantify the marginal social benefit of additional investment in new technologies. It points to the 
importance of growth constraints for new technologies. If these growth constraints are not considered, then 
evaluations of technology policy can provide misleading results that underestimate the value of the strategic 
deployment program. 
    The growth rate at which a new technology is deployed is an important policy variable. Typically, social 
benefits increase with a higher growth rate of deployment. This suggests that the optimal technology policy 
will deploy the technology at maximum growth rate. 
    This paper assumes a fixed maximum growth rate for a technology of 30%. Implementing public policy 
that is close to the optimal growth rate for a technology is important to maximize social benefits. Therefore it 
will be important to further investigate the optimal growth rates for different technologies, sectors and levels 
of experience gathered with a technology. 
   The focus of this paper was on equilibrium growth rates that are expected by market participants. Neuhoff 
et al (2007) illustrates that unexpected growth can result in scarcity prices and thus higher costs. This shifts 
the corporate focus on production expansion rather than leveraging learning benefits, and can thus reduce 
the cost reductions from learning by doing.  
    Some countries are reluctant to invest in strategic deployment programs, and discuss the option to free 
ride on the investment of other countries. The large marginal value of additional investment in strategic 
deployment programs that was identified in this paper has a promising implication. Even if only a fraction of 
the benefit is captured domestically, it is worthwhile pursing the program. Obviously this is subject to the 
assumption that the growth rate for the technology does not exceed the rate at which additional growth 
contributes to additional learning. 
 
    Rather than using strategic deployment programs, it is sometimes argued governments should pursue 
direct R&D programs. In the technology sector, however, much of the research capacity and experience 
has moved to private companies, and it is difficult to see how such research could be incentivised without 
the existence of profitable market opportunities. In addition, where much of the cost reductions are 
expected from improvements of the production process, ongoing production is required. Thus it seems that 
technology policy should combine support for public and private sector R&D with strategic deployment 
programs. Analysis to support such strategic deployment programs needs to reflect uncertainties 
associated with cost and learning estimates (Neuhoff 2005), for example by considering the merits of 
supporting a portfolio of different renewable technologies.  
 
    A numerical example was used to illustrate the benefit to society of implementing a technology policy to 
internalize the learning benefit, in addition to implementing an environmental policy to internalize the 
negative environmental externalities of CO2 emissions. In particular, if emissions constraints are binding, 
early development of emissions free technologies can avoid high scarcity prices. 
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