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1 Introduction

In order to bound global warming, the Intergovernmental Panel on Climate Change

(IPCC) noted that worldwide annual carbon emissions need to be cut approximately

in half by 2050 (IPCC 2008). A mix of different policy instruments is likely to be required

to deliver the necessary emissions reductions, including a price for carbon, incentives

for technological innovation, and suitable administrative procedures (Stern 2007). We

focus on the role of a carbon price, and explore the role of price- and quantity-control

instruments on mitigation efforts and investment in improvement of emissions-abatement

technologies. We first characterize optimal cap-and-trade schemes with price controls (of

which pure taxation and standard cap-and-trade are special cases) and then examine how

a change in innovation effectiveness influences the design of carbon markets. We find

that an increase in innovation effectiveness can counter-intuitively lead to higher carbon

prices, which stems from the fact that in order to encourage technological innovation, the

welfare-maximizing regulator may opt to aggressively decrease the emissions cap, leading

to a higher expected carbon price despite the anticipated decrease in abatement cost.

Because of the increased importance of the emissions cap as a policy instrument, more

innovation tends to favor quantity-based instruments over price-based instruments such

as taxes: unless the slope of the marginal environmental damage cost curve is small (and

an inverse result obtains), an increase in innovation effectiveness will lead to looser price

controls (i.e., lower price floor and higher price cap), tipping the scales more towards a

quantity-control scheme.

There are three main reasons for a simultaneous consideration of several regulatory

instruments.1 First, a joint optimization of several instruments (prices and quanti-

ties) cannot do worse than optimizing any policy instrument individually (Roberts and

Spence 1976; Weitzman 1978). Second, analysis focusing on economic impacts, and ab-

stracting from the political economy of implementation policy instruments, shows that

no single policy instrument clearly dominates the others (Fullerton 2001; Nordhaus 2007;

Goulder and Parry 2008). Third, the regulatory policy needs to influence multiple de-

cisions, in our case, the capital investment in innovation, and the decision about the

1There are also reasons against hybrid cap-and-trade markets, such as the increased design complexity,

commitment problems, political influence activities (e.g., price controls are subject to significant lobbying

activities, as are already the number of emissions permits as well as the mode of the initial permit

allocation), and increased risk of incompatibilities of different designs across countries (cf. Section 4).
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emissions output. In terms of results, we characterize the optimal policy, a cap-and-trade

scheme with price controls (in the form of price cap and price floor), and contrast it to the

classical schemes of pure taxation and cap-and-trade without price controls, with respect

to performance and the firms’ incentives to abate and innovate. Tight price controls limit

the firms’ exposure to risk on the carbon market due to macroeconomic risk and uncer-

tainty resulting from the random return to the firms’ R&D investment. However, they

also lead to variability in aggregate emissions and thus increase the volatility of environ-

mental damages. The latter because of their convexity in aggregate emissions lead (via

Jensen’s inequality) to higher expected damages. While the firms’ innovation becomes

more effective, it is always optimal to set a more ambitious, lower emissions cap, optimal

price controls tighten only when the slope of the marginal environmental damage cost

curve (per unit of emissions output) is small. When the slope of marginal environmental

damages is large, then it is best for a regulator to relax price controls in response to an

increase in the firms’ innovation effectiveness. While at first glance this appears to be a

contradiction to Weitzman’s (1974) seminal analysis of ‘prices vs. quantities,’ which pre-

dicts – in the absence of innovation – less stringent price controls as a consequence of an

increase in marginal environmental damages, the same tradeoff prevails at any fixed level

of innovation effectiveness. This, together with the fact that price controls are relaxed

(in the sense that price floor decreases and price cap increases) when innovation effective-

ness increases and environmental damages are large, implies that the sensitivity of the

price controls increases substantially as innovation becomes an important factor. This

increased sensitivity underlines the necessity to jointly consider all available instruments,

as welfare losses are compounded in the presence of additional uncertainty, e.g., in terms

of macroeconomic conditions, innovation costs, or environmental damages.

1.1 Related Literature

Ever since Tyndall’s (1861) empirical investigations about the interaction of gases with

radiation and concomitant absorption of heat, and Arrhenius’ (1898) theoretical model of

the greenhouse effect, the question of global warming, in terms of its causes, description,

mitigation of its effects, and projection of resulting scenarios, has been on the modern

research agenda. A consensus emerged that carbon emissions by man’s economic activity

and climate change are intertwined, and have to be addressed simultaneously (see, e.g.,

Nordhaus (1977)). The economic activity considered here includes two decisions taken by

2



firms: first, how much carbon (dioxide) to emit (‘emissions control’), and, second, how

much to invest in an improvement (‘innovation’) of carbon-abatement technologies.

Emissions Control. Pigouvian taxation (Pigou 1920) was initially viewed as the most

straightforward way to price the social cost of firms’ emissions output, since unlike other

distortionary taxation on a firm’s inputs, which usually lead to significant deadweight

losses (Ballard et al. 1985), a carbon tax corrects a distortion generated by the lack of

a price for the expected environmental damages through carbon (or ‘carbon-equivalent’)

emissions (Pearce 1991). An alternative course of action for governments, namely to

issue tradable emissions permits, was suggested already by Coase (1960) and further

developed by Crocker (1966), Dales (1968), and Montgomery (1972). Such quantity-

based regulation is sometimes viewed as inferior on the grounds of significant transaction

costs (Stavins 1995), given that an administrative system for levying tax is usually avail-

able. In the absence of transaction-cost considerations, the optimal choice between tax or

quantity-based allowance-trading scheme depends on the nature of the uncertainty (Weitz-

man 1974):2 since environmental damages are typically modelled as a convex function of

the aggregate emissions output, an increase in risk (Rothchild and Stiglitz 1971) increases

expected damages (as a consequence of Jensen’s inequality), which in turn favors quantity-

based regulation. If, on the other hand, the loss in society’s payoffs due to uncertainty in

emissions output and resulting expected environmental damages are small compared to

the loss due to randomness in market prices, then an emissions tax is preferred, as it elimi-

nates price uncertainty. Naturally, as Weitzman (1978) shows, a combination of price and

quantity regulation cannot do worse than either policy instrument alone. In Weitzman’s

treatment a price-quota system determines a socially optimal reward as a function of its

emissions output for each participating firm. In actual real-world settings, it is impossible

to implement such infinite-dimensional policies (in the form of reward functions) using

simple cap-and-trade. Yet, a first approximation, which still combines the features of pure

taxation and a simple cap-and-trade system, is a market for emissions allowances with

price controls: an emissions cap controls total emissions and determines the initial num-

2Various generalizations of Weitzman’s (1974) analysis have been proposed, such as for situations with

asymmetric information between regulator and firms (Laffont 1977; Hoel and Karp 2002), correlated

uncertainty (Stavins 1996), hybrid price-quantity controls (Roberts and Spence 1976; Weitzman 1978),

incomplete enforcement (Montero 2002), and bankable permits (Fell et al. 2008).
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ber of permits to be issued. As long as the resulting market price for emissions is within

pre-specified price bounds, this results in a normal cap-and-trade system. If the carbon

price reaches the pre-specified maximum price (price cap), additional permits are issued

(Roberts and Spence 1976; McKibbin and Wilcoxen 2002; Pizer 2002). The price floor

can be implemented with a reservation price for allowance auctions (Hepburn et al. 2006),

by governments issuing option contracts on the carbon price (Ismer and Neuhoff 2006) as

a commitment to buy back permits as the carbon price drops below the price floor. More

recently, Philibert (2008) uses extensive Monte-Carlo simulations to study the effect of

price caps and price floors on climate policy. The simulation results confirm that price

controls, while increasing expected environmental damage, dampen expected aggregate

abatement cost. To this we add a simplified formal framework and an analysis of the

interaction with innovation.

Technological Innovation. The introduction of a carbon price via incentive-based

emissions-control policies is, according to Hicks’ (1932, p. 132) ‘induced invention hy-

pothesis,’ likely to affect the rate and path of technological change. This hypothesis

sparked not only a stream of research attempting to formally establish this effect in

general-equilibrium models (Kennedy 1964; von Weiszäcker 1965), but also several severe

criticisms related to the description of knowledge accumulation (Samuelson 1965; Nord-

haus 1973), producing a hiatus of results. More recently, research on technology-induced

innovation has seen renewed efforts, particularly in the context of carbon-abatement tech-

nologies (Goulder and Mathai 2000; Goulder and Schneider 1999; Sue Wing 2003). For

a recent survey on technological change in economic models of environmental policy, see

Löschel (2002) and Edenhofer et al. (2006), who emphasize the need to consider innovation

as an endogenous decision variable rather than an exogenous process. With the aid of sim-

ulations in a computational general-equilibrium model, Goulder and Mathai (1999) show

that a carbon tax may stimulate R&D and technological progress in both carbon-using

and carbon-competing industries. Goulder and Mathai (2000) demonstrate analytically

that induced technological change leads to a lower carbon tax. Our findings, which are

obtained in a somewhat different setting, where firms can fully appropriate rents to in-

novation, only partially confirm this finding. When the intensity (or ‘effectiveness’) of
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innovation is large, then in our model a decrease in tax is an optimal response.3 Yet,

for relatively small induced technological change, which corresponds to fairly realistic

model calibration, it may be optimal to increase taxes as a response to an increase in

innovation effectiveness. More generally, in a hybrid cap-and-trade scheme with quan-

tity controls, an increase in innovation effectiveness can lead to either a tightening of the

price band (for low marginal environmental damages) or a widening of the price band

(for high marginal environmental damages). Margolis and Kammen (1999) point out that

investments in R&D in the U.S. energy sector are low when compared to other sectors,

somewhat corroborating the possibility that innovation effectiveness may still be low for

carbon-abatement technologies.

1.2 Outline

The paper is organized as follows. After introducing the basic model in Section 2, we

characterize, in Section 3, optimal regulatory approaches and their respective responses

to increases in innovation effectiveness. Policy implications are discussed in Section 4,

and Section 5 concludes.

2 The Model

We consider a unit mass of firms, indexed by θ ∈ Θ ⊂ R++, and distributed on the

(measurable) type space Θ with the cumulative distribution function (cdf) F : Θ → [0, 1],

so that the mean

µ =

∫

Θ

θdF (θ)

and the variance

σ2
θ =

∫

Θ

(θ − µ)2dF (θ)

both exist and are finite. The model timing consists of three time periods (stages), indexed

by t ∈ {0, 1, 2}. At time t = 0 (regulation stage), a regulator commits to a regulatory

policy R = (E, L, U), by announcing an emissions cap E, a price floor L, and a price

cap U . In particular, the regulator may choose pure taxation or a cap-and-trade scheme

3Hart (2008) examines the intertemporal use of carbon taxes in the presence of technological spillovers.

He shows that a regulator may find it optimal to set taxes above the Pigouvian level of marginal envi-

ronmental damages in order to provide a sufficiently large incentive to innovate.
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without price controls.4 At time t = 1 (innovation stage), any firm has the option to in-

vest in innovation, which may reduce its cost of carbon abatement in the future. Finally,

at time t = 2 (implementation stage), each firm θ ∈ Θ chooses its carbon emissions level.

We now describe each of the three stages in detail, starting with the last.

Implementation Stage (t = 2). Without any price on carbon or other output restrictions,

firm θ expects to produce its business-as-usual (BAU) carbon emissions output of e0(θ).

The actual BAU carbon emissions for firm θ are subject to a macroeconomic random

shock ε̃. The latter is common to all firms and has cdf G : R → [0, 1], with Eε̃ = 0

and 0 < Eε̃2 = σ2
ε < ∞.5 Given a realized BAU carbon emissions level ê0 = e0(θ) + ε,

firm θ’s cost of abating its carbon emissions to a level e ≤ ê0 is

C(e, ρ̂θ|ê0) =
(ê0 − e)2

2ρ̂θ
, (1)

where ρ̂ ≥ 1 denotes the outcome of the firm’s investment in the preceding innovation

stage, further detailed below. All else being equal, the larger the firm’s type θ, the smaller

its marginal abatement cost (ê0 − e)/(ρ̂θ).6 Given a price p for each unit of carbon

emissions (typically measured in tCO2eq, i.e., tons of ‘carbon-dioxide equivalent,’ 7 and

here denoted by tCO2 for simplicity), the firm’s total cost of producing at the emissions

4In Section 3, these important special cases are examined separately.
5It is possible to allow for independent firm-specific (idiosyncratic) zero-mean random shocks ε̃(θ) with

finite variances σ2
ε(θ) > 0, satisfying the Lindeberg condition

∫
Θ

E
[
ε̃2(θ)/σ2

ε(θ)
∣∣ |ε̃(θ)| > δσε(θ)

]
dF (θ) =

0 for all δ > 0, which complicates the presentation and leads to an equivalent result. By the central limit

theorem, the macroeconomic shock ε̃ then corresponds to the limiting zero-mean normal distribution

with standard deviation σε =
∫
Θ

σε(θ)dF (θ).
6The affine form of the marginal abatement cost is chosen as in Weitzman (1978) so as to obtain explicit

model results. More generally, marginal abatement costs are convex and decrease to zero as the emissions

level approaches the firm’s BAU level (Misfeldt and Hauff 2004). Enkvist et al. (2007) use data to find an

approximately affine marginal abatement-cost curve. They also note that marginal abatement cost may

become negative for small levels of abatement, as small emissions improvements could be implemented at

a gain to a firm. In our model we assume that all such gains have been internalized, so that the marginal

abatement cost at the firm’s realized BAU emissions level vanishes.
7One ton of carbon dioxide equivalent (denoted by tCO2eq) is the weight of a greenhouse gas which

would have the same time-integrated radiative forcing (over a period of 100 years) as one ton of CO2. The

term radiative forcing, as used by the IPCC, refers to the perturbation of the surface-troposphere system

after introduction of a chemical agent, e.g., as a result of a change in greenhouse-gas concentrations. A

related measure, equivalent carbon dioxide (CO2e), is the concentration of CO2 that would generate the

same level of radiative forcing as a given type of greenhouse gas. The unit of CO2e is parts per million per
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level e is

TC(e, p, ρ̂θ|ê0) = C(e, ρ̂θ|ê0) + pe.

The firm’s optimal emissions output minimizes its total cost, and is uniquely determined

by8

e∗(p, ρ̂θ|ê0) = ê0 − ρ̂θp. (2)

At this output level, the firm’s optimal total carbon emissions cost is

TC∗(p, ρ̂θ|ê0) = ê0p− ρ̂θp2

2
.

Innovation Stage (t = 1). Given the announcement of a carbon pricing policy, each firm θ

chooses the level y of innovative activity. The cost of pursuing the innovative activity

K(y) is known, but the outcome of the innovation ρ̃(y) is uncertain. The innovation

provides an advantage over the existing technology if and only if ρ̃(y) > 1. Only in this

case will it be utilized. We assume that the expected outcome of innovation for a certain

level of innovative activity y is:9

y = E [max{ρ̃(y), 1}| y]− 1 ≥ 0. (3)

Firm θ’s expected net payoff from innovating is

π(p, y, θ) =
θyp2

2
−K(y).

Assuming that K(y) is a continuously differentiable, convex, and increasing function (sat-

isfying the Inada conditions K(0) = K ′(0) = 0 and K ′(∞) = ∞), the optimal innovation

is determined by the first-order optimality condition θp2/2 = K ′(y). If we assume, for the

sake of discussion, that

K(y) = cy2/2,

volume (ppmv). CO2eq is therefore a time-integrated version of CO2e and measures the ‘global warming

potential’ of a given amount of greenhouse gas emissions.
8In principle it is possible to obtain negative values for optimal carbon emissions, which implies that

the firm would further substitute its production away from carbon than its zero-carbon emissions normal-

ization would indicate. Alternatively, the firm can accumulate carbon credits. The unconstrained opti-

mization also simplifies the model in that the expected level of aggregate emissions with macroeconomic

uncertainty corresponds to the aggregate emissions level in the absence of this uncertainty (‘certainty

equivalence’). Relaxing this condition would influence modeling results only marginally, and would also

raise the additional question of the precise measurement of the absolute level of BAU emissions.
9This is without any loss in generality, as for any arbitrary parametrization of the innovative pro-

cess ρ̃(x) in terms of x, one can simply set y equal to v(x) ≡ E [max{ρ̃(x), 1}|x]− 1 and then reparame-

terize the innovative process in terms of x̂ = (x̂0, x) which contains x̂0 = y = v(x) as one component.
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where c is a positive constant, firm θ’s optimal innovation becomes

y∗(p, θ) =
θp2

2c
, (4)

resulting in an expected net payoff of

π∗(p, θ) =
θ2p4

8c
. (5)

Thus, the benefits of improving abatement technologies are highly sensitive to the carbon

price. Nonetheless, the expected payoff of optimal innovation is positive, as long as small

improvements are cheap (since K ′(0) = 0).10

Regulation Stage (t = 0). The regulator commits to a (deterministic) regulatory policy

R = (E, L, U),

consisting of an emissions cap E (implemented by issuing a set quantity of emissions

permits), and a price interval [L,U ] for the secondary market in emissions permits. In

the event the market price p reaches the price floor L, the regulator offers firms to buy

back emissions permits at the price L. If the market price p reaches the price cap U , the

regulator offers firms additional permits at the price U .

Remark 1 (i) A pure carbon tax τ can be implemented by choosing R = (E, τ, τ),

where E ≥ 0 is arbitrary, since the carbon market is bypassed by the regulator, who

offers an ex-ante unlimited number of carbon emissions permits at the fixed price of τ .

(ii) A pure carbon emissions cap of E is also a special case, which can be implemented

by setting R = (E, 0,∞), effectively disabling the price controls with L = 0 and U = ∞.

The set of feasible regulatory policies is

R =
{
(E, L, U) ∈ R3

+ : L ≤ U
}

.

To formulate the regulator’s problem, we first aggregate the firms’ expected emissions at

a given carbon price p, which yields (using Eqs. (2)–(4)) the expected aggregate carbon

emissions output

Q(p, ε) =

∫

Θ

e∗(p, (1 + y∗(p, θ))θ|e0(θ) + ε)dF (θ) = e0 + ε− µp− µ2 + σ2
θ

2c
p3, (6)

10Enkvist et al. (2007) argue that the cost of abating the first units of carbon emissions, net of benefits,

may on average be negative. The assumption that K ′(0) = 0 implies that any firm’s BAU emissions are

set to the level at which it has internalized any such abatement benefits.
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where we denote by

e0 =

∫

Θ

e0(θ)dF (θ)

the expected aggregate BAU emissions output in the economy. To understand the integral

in Eq. (6) note first that by Eq. (3) a firm of cost type θ, when investing in technology at

the optimal innovation level y∗(p, θ), expects to transition to the improved cost type θ̂ =

(1 + y∗(p, θ))θ. After substitution of Eqs. (2) and (4) in the integrand on the right-hand

side of Eq. (6) is obtained via straightforward integration . At the aggregate emissions

level Q, environmental damages are given by

D(Q) =
dQ2

2
,

where d denotes the slope of the marginal environmental damage cost curve.11 The

expected environmental damages are therefore

D̄(R) = E [D (Q(p̃, ε̃))|H(p̃, ε̃, R) = 0] , (7)

where the measure of the stochastic price p̃ is determined by the market-clearing condi-

tion 12

H(p, ε, R) ≡ (U − p)(p− L)(E −Q(p, ε)) = 0. (8)

Insofar as the regulatory policy R influences aggregate emissions, it also controls the level

of expected environmental damages. The expected aggregate cost of carbon abatement

at the policy R is

C̄(R) = E
[
C

(
e∗(p̃, (1 + y∗(p̃, θ̃))θ̃|e0 + ε̃), (1 + y∗(p̃, θ̃))θ̃

∣∣∣ e0 + ε̃
)∣∣∣H(p̃, ε̃, R) = 0

]
, (9)

where the optimal emissions e∗ are given in Eq. (2) and optimal innovation is determined

by Eq. (4). The firms’ expected aggregate social cost of innovation K̄(R) of the policy R

is

K̄(R) = λE
[
K(y∗(p̃, θ̃))

∣∣∣ H(p̃, ε̃, R) = 0
]
, (10)

where the constant λ ∈ [0, 1] describes how much society (i.e., the regulator) cares about

these costs. The reason why one would expect generally that λ < 1 is that firms are

11A quadratic form for environmental damages is widely used in the literature (see, e.g., Baumol and

Oates (1988)). Such quadratic damages seem more realistic, especially in light of nonlinear threshold

effects for high CO2 concentrations, than the often assumed linear form (see, e.g., Tol 2005).
12For the measure of p̃ to be determined by the condition H(p̃, ε̃, R) = 0 it is, by the inverse function

theorem, enough to assume that ∂H(p, ε,R)/∂p exists and is nonzero almost everywhere.
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able to appropriate a portion of the innovation payoffs in the form of intellectual property

rights (on top of the abatement-cost savings), resulting in private benefits, e.g., through

international technology licensing or savings in future unmodelled periods, that offset the

innovation cost to society at least in part.13

The Regulatory Problem. An optimal regulatory policy R∗ maximizes expected wel-

fare W̄ (R) (or, equivalently, minimizes total expected social cost SC(R) ≡ −W̄ (R)),

W̄ (R) = −C̄(R)− D̄(R)− K̄(R), (11)

i.e., it is such that

R∗ ∈ arg max
R∈R

W̄ (R).

The main notation relevant for the model is summarized in Table 1.

3 Optimal Regulation

Common regulatory schemes include pure carbon taxation, cap-and-trade markets with-

out price controls, and cap-and-trade markets with price controls as a generalization which

includes the first two. Here we examine all three regulatory schemes. In doing this, we

parameterize the firms’ ‘innovation effectiveness’ by β ≥ 0 and examine the effect of inno-

vation as β increases, in particular over the ‘base case’ without innovation (when β = 0).

Such increases could come about exogenously as a result of government sponsorship, or

endogenously through ‘learning by doing’ with private investment in R&D, which tends

to generate further technological possibilities (Grubb 1997).

To compute the regulator’s objective function (expected total welfare W̄ ), we first

determine the price p(ε,R) of carbon using the market-clearing condition (8) as a function

of the macroeconomic shock ε and the regulatory policy R = (E, L, U), which yields

p(ε,R) =





U, if ε ≥ ε̄(E,U),

L, if ε ≤ ε
¯
(E,L),

p0(ε, E)−∆(p0(ε, E), β), otherwise,

(12)

13In addition, society may be able to obtain a “double dividend” from the revenues generated by the

sale of the carbon permits (Bovenberg and de Mooij 1994; Carraro et al. 1996). For simplicity, we assume

that the double dividend is zero.
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Symbol Description Unit

c Marginal cost of innovation $

d Slope of marginal environmental damage cost $/(tCO2)2

e∗(p, θ) Firm θ’s carbon emissions output at price p tCO2

e0 Aggregate BAU emissions output tCO2

p, p0 Carbon price, with and without innovation $/(tCO2)

y∗(p, θ) Firm θ’s innovative activity at price p N/A

C̄(R) Expected aggregate abatement cost $

D̄(R) Expected aggregate environmental damage cost $

K̄(R) Expected social cost of innovation $

E Emissions cap tCO2

L Price floor $/(tCO2)

Q(p, ε) Aggregate carbon emissions level at (p, ε) tCO2

R Regulatory policy, R = (E,L, U) ∈ R ⊂ R3
+ [(E, L,U)]

U Price cap $/(tCO2)

W̄ (R) Expected aggregate social welfare $

β Innovation effectiveness (tCO2)2/$2

ε Macroeconomic uncertainty tCO2

λ Regulator’s weight on firms’ aggregate profit in W̄ N/A

θ Cost type in type space Θ ⊂ R++ (tCO2)2/$

τ Carbon tax $/(tCO2)

Table 1: Summary of Notation.
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where

p0(ε, E) = (e0 + ε− E)/µ (13)

is the market price for carbon without innovation, and

ε̄(E, U) = µU(1 + βU2)− (e0 − E), (14)

ε
¯
(E, L) = µL(1 + βL2)− (e0 − E) (15)

are the upper and lower thresholds for BAU emissions realizations that trigger price

controls. The perturbation term in Eq. (12),

∆(p0, β) = 2µA−1/3 − A1/3

6β
+ p0, (16)

with A = 12µβ2
(
9p0 +

√
3
√

(4µ3/β) + 27p2
0

)
, is nonnegative and increasing in the inno-

vation effectiveness

β =
µ2 + σ2

θ

2µc
. (17)

The innovation effectiveness increases when the innovation cost c decreases, or when

the first (µ) or second (σ2
θ) moment of the firms’ type distribution F increases. When

innovation becomes prohibitively expensive (so that c → ∞), then β vanishes and con-

sequently ∆(p0, 0) = 0. The expected social welfare W̄ as a function of R in Eq. (11) is

obtained by substituting the market price p(ε,R) in Eqs. (7), (9), and (10), leading to

C̄(R) =
µ

2

∫ ∞

−∞

(
1 + βp2(ε,R)

)
p2(ε,R) dG(ε), (18)

D̄(R) =
d

2

∫ ∞

−∞

(
e0 + ε− µp(ε, R)

(
1 + βp2(ε,R)

))2
dG(ε), (19)

K̄(R) =
λµ

4

∫ ∞

−∞
βp4(ε,R)dG(ε). (20)

3.1 Pure Taxation

Consider first a restriction of feasible policies to imposing a carbon tax τ ≥ 0, which is

equivalent to fixing a price in a carbon market by setting L = U = τ and issuing an

arbitrary number of permits, e.g., E = e0. In that case, R = (e0, τ, τ) and p(ε,R) ≡ τ .

Proposition 1 (Optimal Tax) For any β ≥ 0, let τ ∗(β) be the optimal carbon tax.

(i) In the absence of innovation, i.e., when β = 0, the optimal tax is

τ ∗(0) =
de0

1 + µd
≡ τ ∗0 .

12



(ii) The optimal tax τ ∗(β) decreases (in a neighborhood of β > 0) if and only if

µd > (1− λ)/(1 + 3βτ 2)2
∣∣
τ=τ∗(β)

.

(iii) For β →∞, the optimal tax vanishes, i.e., it is τ ∗(∞) = 0.

Part (i) implies that the optimal social welfare without innovation is

W̄ ∗
0,Tax = − µde2

0

1 + µd
− dσ2

ε

2
.

The maximum tax τ ∗max = maxβ≥0 τ ∗(β) follows directly from part (ii) when the inequality

is either replaced by an equality or satisfied everywhere (in which case τ ∗0 is maximal), so

that

τ ∗max =





τ ∗0 , if µd ≥ 1− λ,√
1

3βm

[√
1−λ
µd
− 1

]
+
, otherwise;

it is imposed where β = βm ≡ inf

{
β̂ ≥ 0 : µd ≥ (1− λ)/(1 + 3β̂τ 2)2

∣∣∣
τ=τ∗(β̂)

}
. The fact

that the optimal carbon tax is (as long as λ < 1) generally nonmonotonic in innovation

effectiveness, as shown in Figure 1, is noteworthy. Indeed, if environmental damages are

‘small,’ so that µd < 1 − λ, then it is optimal for a regulator to first increase taxes

as innovation starts to become feasible (i.e., for small β). The intuition is that higher

taxes lead to increased incentives to innovate and thus imply more ambitious emissions

targets. The regulator is more likely to increase taxes as a response to increases in β, the

larger 1/µ (corresponding, roughly, to the average marginal abatement cost) and the larger

the weight on the firms’ aggregate profits in the expected social welfare. As innovation

becomes more and more effective, the regulator can decrease taxes, since firms will tend

to fully abate their emissions, even when the carbon tax is low. If the regulator considers

all of the innovation cost as social cost, so that λ = 1, the optimal tax is decreasing in

the innovation effectiveness β.

Example 1 Consider an economy where the firms’ marginal cost types are distributed

such that µ = 33 · 106 (tCO2)
2/$2, σθ = 3.3 · 106 (tCO2)

2/$2, the innovation-cost coef-

ficient is c = $100 · 109/(unit of relative improvement), and the environmental damage

function is characterized by d = $3.3 · 10−9/(tCO2)
2. Then for an annual aggregate

BAU emissions level of e0 = 13.5 · 109 tCO2, corresponding to the combined OECD

emissions output (IEA 2008), we obtain that τ ∗0 ≈ $40/(tCO2). Furthermore, with a

13



Figure 1: Optimal Carbon Tax as a Function of β and d (for 0 ≤ λ < 1).

resulting innovation effectiveness of β ≈ 0.167 · 10−3 (tCO2)
2/$2, the optimal carbon tax

(determined numerically) is τ ∗(β) ≈ $46/(tCO2) increases by about 13% over its level

without innovation, for λ = 0. If the regulator considers the innovation cost as social

expenses, i.e., when λ = 1, the optimal carbon tax drops to τ ∗(β) ≈ $39/(tCO2). The

resulting expected aggregate emissions are Q̄∗
0 ≈ 12.17 · 109 tCO2 without innovation,

and Q̄∗(β) ≈ 12.0 · 109 tCO2 for λ = 0 (resp. Q̄∗(β) ≈ 12.21 · 109 tCO2 for λ = 1) with

innovation. ¤

3.2 Basic Cap-and-Trade (without Price Controls)

We now consider the special case where the regulator chooses a “basic” cap-and-trade

scheme without binding price bounds, by setting L = 0 and U = ∞. Then the market

price for carbon depends only on the emissions cap E and the realization of the macroe-

conomic uncertainty ε, i.e., p = p(ε, E) = p0(ε, E) −∆(p0(ε, E), β). It is determined by

the market-clearing condition (8), which can be written in the form

p0(ε, E)− p(ε, E)− βp3(ε, E) = 0. (21)

Proposition 2 (Optimal Emissions Cap) For any β ≥ 0, let E∗(β) be the optimal

emissions cap in the absence of price controls.

14



(i) In the absence of innovation, i.e., when β = 0, the optimal emissions cap is

E∗(0) =
e0

1 + µd
≡ E∗

0 .

(ii) As the firms’ innovation effectiveness β increases, the optimal emissions cap E∗(β)

decreases.

(iii) For β →∞, the optimal emissions cap vanishes, i.e., E∗(∞) = 0.

In the absence of innovation, Eq. (13) and part (i) of Propositon 1 imply that the expected

price is the same as the optimal tax without innovation computed in the previous section,

p̄∗0 = E [p0(ε̃, E
∗
0)|E∗

0 ] = (e0 − E∗
0)/µ = τ ∗0 . (22)

The corresponding optimal expected social welfare is

W̄ ∗
0,Basic C&T = − µde2

0

1 + µd
− σ2

ε

2µ
.

Part (ii) of Proposition 2 characterizes the behavior of the solution in β. Since this paper

provides several such monotone comparative statics results, we provide the proof intuition.

The proofs of other such results (cf. Proposition 1 (ii) and Proposition 4 (ii),(iii)) follow

along similar lines. Via implicit differentiation of the market-clearing condition (21),

we obtain that pE, pβ < 0 < pβE (see Eqs. (24)–(26) in the Appendix for the exact

expressions), where subscripts denote partial derivatives. That is, when the carbon market

clears, the market price p decreases in the emissions cap E and innovation effectiveness β;

it also exhibits increasing differences in (β,E), which means that the price decrease in E

(resp. β) is moderated when β (resp. E) increases. Furthermore, since p is nonnegative

and decreasing in both β and E, any (positive integer) power of p also has increasing

differences in (β,E). Using the previous relations, expected abatement cost C̄ can easily

be shown to have increasing differences in (β,E), while D̄ does not depend on β for

a given emissions cap. Thus, the expected social welfare W̄ has decreasing differences

in (β,E), so that the optimal E is decreasing in β. In other words, as innovation becomes

easier (β increases), it is optimal to impose a more ambitious emissions cap, i.e., E∗(β)

is decreasing in β (cf. Figure 2).

Example 2 Using the same values for µ, σθ, c, d, and e0 as in Example 1, we obtain an

optimal emissions cap of E∗
0 ≈ 12.2 · 109 tCO2. Since µd ≈ 0.11 < 1, a carbon tax is

15



Figure 2: Optimal Emissions Cap as a Function of β and d.

superior to a pure emissions cap in terms of expected welfare. Furthermore, with an

innovation effectiveness of β ≈ 0.167 · 10−3 (tCO2)
2/$2, and a uniform distribution of

the macroeconomic uncertainty on [−δ, δ] (where δ = (10%) · e0), the optimal emissions

cap E∗(β) ≈ 11.38 · 109 tCO2 for λ = 0 (resp. E∗(β) ≈ 11.78 · 109 tCO2 for λ = 1) with

innovation is more ambitious than the optimal emissions cap E∗
0 without innovation. ¤

Comparison between Pure Taxation and Basic Cap-and-Trade

The price fluctuations have a detrimental impact on social welfare compared to pure

taxation if environmental damages are small, i.e., when µd < 1. Indeed, as shown by

Weitzman (1974), the difference in optimal expected welfare levels,

W̄ ∗
0,Tax − W̄ ∗

0,Basic C&T = (1− µd)
σ2

ε

2µ
,

favors a carbon tax over the basic cap-and-trade scheme if and only if µd < 1, i.e., if and

only if the slope of marginal environmental damages is small compared to the (average)

marginal abatement cost.14 With the introduction of innovation, i.e., when β > 0 and

small enough, the scales gradually tip towards quantity-based regulation, no matter what

the environmental damages. Let W̄ ∗
Tax(β) and W̄ ∗

Basic C&T(β̂) be the optimal welfare under

a pure tax and an emissions cap, respectively.

14Strictly speaking, the expected marginal cost is
∫
Θ
(1/θ)dF (θ), which may vary somewhat from 1/µ,

which is relevant in the comparison with the slope of marginal environmental damages d.
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Proposition 3 (Pure Taxation vs. Basic Cap-and-Trade) (i) An increase in β in-

creases the relative attractiveness of quantity-based regulation over pure taxation, i.e.,

there exists a β̄ > 0 such that

0 < β < β̂ < β̄ ⇒ W̄ ∗
Basic C&T(β)− W̄ ∗

Tax(β) < W̄ ∗
Basic C&T(β̂)− W̄ ∗

Tax(β̂).

(ii) For large levels of innovation effectiveness, i.e., as β →∞, quantity-based regulation

strictly dominates pure taxation, so that 0 = W̄ ∗
Basic C&T(∞) > W̄ ∗

Tax(∞) = −dσ2
ε/2.

With increasing innovation effectiveness abatement goes up and aggregate emissions tend

to zero under either of the two regulatory schemes. The intuition for part (i) of Proposi-

tion 3 is that while expected social welfare is increasing under both regulatory policies, the

increase is slower under pure taxation. With innovation firms perceive price uncertainty

as positive, as the upside to a higher price is a disproportionately larger benefit from

abating carbon and thus a higher expected return on innovation (the technical reason

being that firms’ payoffs are convex in the market price, which implies a preference for

increases in risk). In the extreme, a fixed carbon tax does not respond to the macroeco-

nomic uncertainty, which leads to residual emissions (or overabatement) and therefore to

positive environmental damages, whereas quantity-regulation forces aggregate emissions

to zero.

Remark 2 For any β, let W̄Tax(E; β) and W̄Basic C&T(τ ; β) be the expected welfare under

a pure-tax and a basic cap-and-trade scheme, respectively. The market-clearing condi-

tion (21) then implies that

max
E≥0

W̄Basic C&T(E; β) = max
τ≥0

E
[
W̄Basic C&T(e0 + ε̃− µτ

(
1 + βτ 2

)
; β)

∣∣ τ
]
.

Similarly, the relation between price and aggregate emissions output in Eq. (6) yields that

max
τ≥0

W̄Tax(τ ; β) = max
E≥0

E
[
W̄Tax(p(ε̃, E); β)

∣∣ E
]
.

In other words, finding the optimal tax is equivalent to finding an emissions cap that

maximizes the expected welfare subject to market clearing (21), and finding the opti-

mal emissions cap is the same as optimizing the expected welfare subject to the output

relation (6).
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Figure 3: Cap-and-Trade with Price Controls.

3.3 Cap-and-Trade (with Price Controls)

Let us now consider the general case where the regulator can specify the general cap-and-

trade scheme R = (E, L, U) with price controls. Clearly, this scheme cannot perform worse

than any of the two regulatory policies considered above. The extant theoretical literature

has focussed on the effect of a price ceiling (McKibbin and Wilcoxen 2002; Pizer 2002),

which by Eqs. (18) and (19) reduces expected aggregate costs, but at the same time tends

to increase expected aggregate damages. The introduction of price ceilings therefore

tends to convert abatement-cost uncertainty into environmental-damage uncertainty. As

a result it may be optimal to increase or decrease the emissions cap, depending on how

fast marginal environmental damages increase. A price floor, on the other hand, tends to

increase the expected aggregate abatement cost and decrease expected aggregate damages,

and therefore produces a counterveiling effect on the optimal emissions cap.

Proposition 4 (Optimal Cap-and-Trade with Price Controls) (i) In the absence

of innovation, i.e., when β = 0, the optimal regulatory policy R∗ = (E∗
0 , L

∗
0, U

∗
0 ) is deter-
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mined by

E∗
0 =

e0

1 + µd
,

L∗0 = d · e0 + E [ε̃|ε̃ ≤ ε
¯
∗]

1 + µd
,

U∗
0 = d · e0 + E [ε̃|ε̃ ≥ ε̄∗]

1 + µd
,

where the optimal uncertainty thresholds ε̄∗ = ε̄(E∗
0 , U

∗
0 ) and ε

¯
∗ = ε

¯
(E∗

0 , L
∗
0) are given by

Eqs. (14) and (15), respectively. For parts (ii) and (iii), assume that the density of the

macroeconomic uncertainty ε̃ is nondecreasing on its support.15

(ii) With increasing innovation effectiveness β, the optimal emissions cap E∗(β) decre-

asses.

(iii) With increasing innovation effectiveness β, the optimal price controls L∗(β) and

U∗(β) tighten for small d and loosen for large d.

The workings of an optimal cap-and-trade market design with price controls as a function

of the macroeconomic uncertainty ε and aggregate emissions Q are illustrated in Figure 3.

For β = 0 (i.e., without innovation), the optimal emissions cap E∗
0 is unaffected by the

optimal price controls and identical to the one determined earlier, in Section 3.2. The price

controls are symmetric to the marginal environmental damages dE∗
0 if the distribution

of macroeconomic uncertainty is symmetrical. The width of the interval depends on

thickness of the tails of that distribution and on magnitude of the product µd. The latter

is also decisive in determining the tradeoff between pure taxation (µd < 1) and quantity-

based regulation (µd > 1), as analyzed before. With increases in µd, not only does the

regulator set a lower emissions cap, but also price controls are loosened around dE∗
0 .

Part (ii) of the last result states, that, all else being equal, innovation always leads to a

more ambitious emissions target. In part (iii) of Proposition 4, it becomes evident that

the evolution of the price controls as a function of innovation effectiveness is somewhat

more complicated. First, the price cap and price always adjust to changes of β in opposite

directions, either tightening or widening the interval of admissible prices in the market

for carbon permits. Second, for small d price controls tighten with increasing β, i.e.,

15This condition is simple and sufficient; it is, e.g., for a uniform distribution of the macroeconomic

uncertainty on a compact support. Much less is required, as can be seen by inspecting the proof of

Proposition 4.
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Figure 4: Price Controls as a Function of Innovation Effectiveness β (for d Small/Large).

L∗(β) increases and U∗(β) decreases. Third, for large d, it is best for the regulator to

respond to an increase in β by relaxing price controls, so that L∗(β) decreases and U∗(β)

increases. Combining the last two points, we see that the sensitivity of the optimal

regulatory scheme to the magnitude of the slope of marginal environmental damages d

increases with increasing β (cf. Figure 4). This makes sense and directly corresponds to

the classical tradeoff by Weitzman. But this time it is related to the regulatory response

to innovation. Depending on the magnitude of the environmental damages, an increase

of innovation effectiveness may prompt a regulator to impose more or less price control,

a decision which becomes more sensitive to the magnitude of marginal environmental

damages.

Remark 3 Even for extremely large damage cost, the corresponding limits for the price

bounds are well-defined,

lim
d→∞

U∗
0 =

e0 + E [ε̃|ε̃ ≥ ε̄]

µ
and lim

d→∞
L∗0 =

e0 + E [ε̃|ε̃ ≤ ε̄]

µ
.

Example 3 If the macroeconomic random shock ε̃ is uniformly distributed on [−δ, δ] for

some δ > 0, then in the absence of innovation the optimal carbon emissions cap is

E∗
0 =

e0

1 + µd
,

while the optimal price controls are

U∗
0 = d

(
e0

1 + µd
+

δ

2 + µd

)
and L∗0 = d

(
e0

1 + µd
− δ

2 + µd

)
.
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Figure 5: Complementarity Relationships in Social Cost SC = −W̄ .

Using the same values for µ, σθ, c, d, e0, and λ as in Example 1 and Example 2, in the

absence of innovation we obtain an optimal emissions cap E∗
0 ≈ 12.2 · 109 tCO2 (as in

Example 2) with optimal price controls (L∗0, U
∗
0 ) ≈ (38, 42) $/tCO2. At an innovation

effectiveness of β ≈ 0.167 · 10−3 (tCO2)
2/$2, and with δ = (10%) · e0 as in Example 2,

the optimal emissions cap becomes E∗(β) ≈ 11.5 · 109 tCO2 with the loosened price

controls (L∗(β), U∗(β)) ≈ (42.8, 48.6) $/tCO2, for λ = 0 (resp. E∗(β) ≈ 11.9 · 109 tCO2

and (L∗(β), U∗(β)) ≈ (37.2, 41.3) $/tCO2 for λ = 1). ¤

Comparative Statics Analysis

The proof of the last parts of Proposition 4 sheds further light on how the optimal regula-

tory scheme adjusts as some of its components are adjusted. In other words, the questions

we would like to answer now are of the sort, ‘what happens to the optimal price floor and

the optimal emissions cap when the price ceiling is changed?’ The latter adjustment may

be needed for political reasons or for harmonizing between different cap-and-trade schemes

in neighboring countries, despite the prima facie welfare losses in a single country.

As pointed out by Milgrom and Roberts (1990), based on earlier findings by Top-

kis (1968), among others, the monotonicity of optimal decisions (on lattices) critically

depends on the supermodularity properties of the objective function in the decision vari-

ables and parameters.16 Variable and/or parameter transformations may be used in case

supermodularity does not obtain under the initial problem parametrization (Strulovici and

Weber 2008). The latter turn out to be very simple in our context, as several simple sign

reversals are enough to establish supermodularity of each of the components (−C̄,−D̄,

and −K̄) of the expected social welfare W̄ .

16Milgrom and Shannon (1994) show that quasi-supermodularity of the objective function is a sufficient

(and in some sense necessary) condition for the monotonicity of solutions in parameters.
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Figure 6: Expected Market Price p̄∗(β) as a Function of Innovation Effectiveness β.

The complementarity relationships between the decision variables and innovation effec-

tiveness as well as marginal environmental damage, as determined by the sign of the cross-

partial derivatives, are summarized by the diagrams in Figure 5. We see that both −C̄

and −K̄ are supermodular (have positive cross-partial derivatives) in (E,−L,U,−β),

whereas −D̄ is supermodular in (E, L,−U,D). Thus, when expected damages dominate

in the social welfare, i.e., when d is large, then the monotone comparative statics obtain

according to the complementarity properties of D̄. When d is small, then the comple-

mentarity properties of C̄ determine the comparative statics. Figure 5 is also useful for

determining the direction of adjustments to the remaining policy instruments when one of

them is changed exogenously. For example, when the price ceiling U is decreased and the

slope of marginal environmental damage cost d is fairly large, then the optimal emissions

cap decreases (same direction as change in price cap, for the relation between E and U

in −D̄ has a positive sign, as indicated by the ‘+’ at the corresponding arrow) and the

optimal price floor increases (opposite direction compared to change in price cap, as the

relation between E and U in −D̄ has a negative sign).

22



4 Policy Implications

A substantial private investment is needed to significantly reduce carbon emissions into

the atmosphere. Effective regulatory schemes therefore need to take into account not

only the firms’ emissions decisions, but also the return on their R&D investments. A

price floor guarantees a minimum return on innovation, whereas a price cap reduces the

volatility in the aggregate abatement cost. The last section has shown that changes in the

firms’ propensity to innovate are likely to have a profound impact on the optimal design

of carbon taxes as well as cap-and-trade markets, with or without price controls. It has

also made clear that a higher innovation effectiveness tends to increase the attractiveness

of cap-and-trade schemes vs. carbon taxes.17 This is due to the fact that when prices

increase, the substitution of emissions uncertainty for price uncertainty by imposing a

tighter quantity control serves as an additional innovation incentive, while when prices

decrease, the savings in abatement cost become so large that the regulator’s only worry

is the uncertainty in environmental damages, thus calling for quantity control.

The introduction of price controls in cap-and-trade markets, while superior to basic

cap-and-trade from a purely mathematical point of view, is subject to a number of political

considerations. First, the determination of a price cap in a political process is likely to lead

to substantial influence activities by affected parties during the course of the legislative

process, which may therefore produce price caps that are too low or price floors that are

too high in the form of ‘political compromises.’ Second, environmental damages depend

on aggregate carbon and other greenhouse gas emissions irrespective of their origin. This

implies the need for a coordinated response and therefore government intervention, and

international cooperation. A negative side-effect of price controls may be that they create

challenges for the harmonization of cap-and-trade schemes with different price controls,

and may even lead to arbitrage opportunities in cross-border trade of emissions permits.

Given the above caveats, what are the potential benefits of additional price controls?18

17Both taxes and cap-and-trade markets implement a price for carbon emissions, encouraging firms to

switch to low-carbon technologies and to develop better carbon-abatement technologies. They also both

raise funds (directly in the case of a carbon tax, indirectly using an emissions permit system) which can

be used to mitigate environmental damages or to help other countries achieve common emissions-control

targets.
18Indirect methods of ‘price stabilization,’ for example through the use of buffer stocks, were suggested

in great detail by Newbery and Stiglitz (1981). In this spirit, it may be possible to relax direct price

controls if one allows for emissions banking to create buffers moderating price fluctuations that would
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Price caps reduce expected aggregate costs as well as the social cost of innovation, as can

be seen directly from Eqs. (18) and (20). At the same time they tend to increase the

expected environmental damages. Decreasing an existing price cap decreases the optimal

emissions cap, as long as d is small. For large d, the opposite holds true. Thus, the degree

to which a more ambitious policy can be pursued by introducing a price cap depends

on the relative magnitude of the environmental damage cost. Price floors, on the other

hand, offer a government-backed minimum value for emissions permits. This encourages

innovation. Price floors also tend to reduce carbon-price volatility, thus increasing the

emissions volatility and therefore the expected environmental damage, all else being equal.

However, because of the higher innovation, it is to be expected that firms abate more

carbon than before, compensating for the increased in the environmental damages due to

the emissions-volatility increase.

5 Conclusion

In the absence of innovation, the classical Weitzman (1974) result states that under

uncertainty the relative magnitude of marginal abatement costs and marginal environ-

mental damage costs is crucial for deciding between tax-based or quantity-based policy

instruments. When marginal environmental damage cost d is larger than the (expected)

marginal abatement costs 1/µ, quantity-based regulation is preferable. The best instru-

ment aims to parallel the marginal welfare as a function of the uncertainty. Weitzman’s

classical framework allows only for one degree of freedom, either the choice of the emis-

sions cap or the choice of the carbon price. Introducing additional degrees of freedom

through price controls in a cap-and-trade market allows one first to replicate each of the

two simple schemes and then to improve welfare over both schemes.

We assume that firms can invest in innovation, and thus reduce the cost of mitigation

efforts. This enables them to mitigate more carbon at the same price of carbon. With

additional mitigation opportunities the marginal abatement cost is reduced. This shifts

the tradeoff between marginal abatement cost and marginal environmental damage cost.

The optimal emissions cap decreases in the innovation effectiveness. In the presence of

innovation we observe two additional results. First, carbon prices create incentives for in-

otherwise result from the shocks in BAU emissions levels driven by macroeconomic uncertainty. A multi-

period emissions-trading framework is needed to address this question.
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novation in mitigation technologies. A welfare-optimal carbon policy targets an emissions

level at which the innovation-enhanced marginal mitigation cost curve (considering ex-

pected innovation) intersects the damage cost curve that includes the additional benefits

from incentives for innovation. As a result, the carbon price in a world with innovation

can be higher than in a world without innovation. Second, the model shows that with

increasing innovation, price controls are tightened when marginal environmental damage

costs are low, and relaxed when these costs are large. Innovation creates mitigation op-

portunities that reduce the slope of the mitigation cost curve and therefore make the

optimal instrument look more like a cap (e.g. wider spreads).

In the current discussion on price caps and floors, the analysis focuses often on static

models. Including additional dimensions can materially alter the results. For example,

the potential for innovation can increase the level at which caps and floors are set. We

note that the analysis in this paper neglected several global effects of price caps, such

as the question of what happens when they are set in a world of uncertain fuel and

technology prices. The political debate surrounding price controls as additional policy

instruments is complex. For example, Pizer (2002), among others, pointed out that price

caps can increase the likelihood of governments accepting more stringent targets. On the

other hand, price caps, through implicit borrowing from future periods, may reduce the

incentive for governments or private companies to comply with emissions targets and can

subsequently increase incentives to deviate from longer-term emissions targets so as to

reduce the cost of debt. Additional models are required to examine such effects in greater

detail.
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Appendix: Proofs

Proof of Proposition 1. (i) Let R = (e0, τ, τ). The corresponding expected social

welfare,

W̄ (τ ; β) = −µ

2

(
1 + βτ 2

)
τ 2 − d

2

[
σ2

ε +
(
e0 − µτ

(
1 + βτ 2

))2
]
− λ

µβτ 4

4
,

is strictly concave in the tax level τ . In the absence of innovation it is β = 0, so that

W̄ (τ ; 0) = −µτ 2

2
− d

2

[
σ2

ε + (e0 − µτ)2] ,

and the unique optimal tax becomes τ ∗0 = de0/(1 + µd). (ii) For β > 0, the optimal

tax τ ∗(β) is determined by the first-order necessary optimality condition W̄τ (τ
∗(β); β) =

0.19 Differentiating this condition implicitly with respect to β yields

dτ ∗(β)

dβ
= −W̄τβ(τ ∗(β); β)

W̄ττ (τ ∗(β); β)
.

Since W̄ττ (τ
∗(β); β) < 0 at the welfare-maximizing tax level, the optimal tax τ ∗(β) is

decreasing if and only if W̄τβ(τ ∗(β); β) < 0. Combining

W̄τβ(τ ; β) = µτ 3

[
3de0

τ
− 2

(
1 + µd

(
2 + 3βτ 2

))
+ λ

]

with the fact that by the first-order condition

de0

τ
=

1 + (2 + λ)βτ 2 + µd(1 + βτ 2)(1 + 3βτ 2)

1 + 3βτ 2
,

we obtain that W̄τβ < 0 if and only if

µd >
1− λ

(1 + 3βτ 2)2 .

(iii) Since limβ→∞ W̄τ (τ ; β)/β2 = −3µ2dτ 5 = 0 at the optimal tax τ = τ ∗(∞), we must

have that τ ∗(∞) = 0, i.e., the optimal tax converges to zero as perfect abatement becomes

free, which concludes our proof. ¥

Proof of Proposition 2. (i) Let R = (E, 0,∞). The expected social welfare in this

case is

W̄ (E; β) = −E
[
µ

2

(
1 + βp2(ε̃, E)

)
p2(ε̃, E) +

dE2

2
+

λµβp4(ε̃, E)

4

]
,

19By Abel’s well-known impossibility theorem (see, e.g., Hungerford 1974, p. 308) a closed-form solution

for τ∗(β) cannot be expected.
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where p(ε, E) = p0(ε, E) − ∆(p0(ε, E), β) as in Eq. (12). In the absence of innovation,

i.e., for β = 0, it is

W̄ (E; 0) = −(e0 − E)2

2µ
− dE2

2
− σ2

ε

2µ
,

strictly concave in E, leading to a unique optimal emissions cap of E∗
0 = e0/(1 + µd).

(ii) For β > 0, the optimal emissions cap E∗(β) is implicitly determined by the first-order

necessary optimality condition

W̄E(E∗(β), β) = 0. (23)

Differentiating Eq. (23) on both sides with respect to β, we obtain that

dE∗(β)

dβ
= − W̄Eβ(E∗(β); β)

W̄EE(E∗(β); β)
.

By differentiating the market-clearing condition (21) it is

pE = − 1

µ

1

1 + 3βp2
, (24)

pβ = − p3

1 + 3βp2
, (25)

and

pEβ =
3p2

µ

1 + βp2

(1 + 3βp2)3
, (26)

so that

W̄Eβ(E∗(β); β) = µE
[−(λ + 2µ)

(
p3 + 3βp2pβ

)
pE − (λ + 2µ)βp3pEβ − pβpE − ppEβ

]

= E
[
(−4− 3βp2 + (2µ + λ)(1− β2p4)) p3

µ(1 + 3βp2)3

]
< 0

for all λ ∈ [0, 1] and all µ > 0 (with p = p(ε̃, E∗(β))). Since W̄EE(E∗(β); β) < 0 at

the welfare-maximizing emissions cap, the fact that W̄Eβ < 0 implies that the optimal

emissions cap E∗(β) is decreasing. (iii) Note first that p(∞) = 0, i.e., the market price for

carbon vanishes for β → ∞, which is obtained by taking the corresponding limit in the

market-clearing condition (21). Thus, taking the limit in the first-order condition (23)

implies that E∗(∞) = 0, which concludes our proof. ¥

Proof of Proposition 3. (i) Given any β > 0, let W̄Tax(τ ; β) and W̄Basic C&T(E; β) be

the expected welfare for a pure tax of τ and an emissions cap of E, respectively. At the

27



optimal levels τ ∗(β) and E∗(β), an application of the envelope theorem yields that

d

dβ

(
W̄ ∗

Tax(β)− W̄ ∗
Basic C&T(β)

)
=

µ

2

(
1− λ

2

) 


(
1 +

(
2+λ
2−λ

)
βτ 2

)
τ 4

1 + 3βτ 2

∣∣∣∣∣
τ=τ∗(β)

− E
[ (

1 +
(

2+λ
2−λ

)
βp̃2

)
p̃4

1 + 3βp̃2

∣∣∣∣∣ p̃ = p(ε̃, E∗(β))

])
,

where W̄ ∗
Tax(β) = W̄Tax(τ

∗(β); β), W̄ ∗
Basic C&T(β) = W̄Basic C&T(E∗(β); β), and p(ε̃, E∗(β)) =

p0(ε̃, E
∗(β)) − ∆(p0(ε̃, E

∗(β)), β) as in Eq. (12). Taking the limit for β → 0+ on both

sides of the last equation, we obtain

d

dβ

∣∣∣∣
β=0

(
W̄ ∗

Tax(β)− W̄ ∗
Basic C&T(β)

)
=

µ

2

(
1− λ

2

) (
(τ ∗0 )4 − E [

(p0(ε̃, E
∗
0))

4]) < 0,

since τ ∗0 = E [p0(ε̃, E
∗
0)] by Eq. (22), and E [p0(ε̃, E

∗
0)] < E

[
(p0(ε̃, E

∗
0))

4] by Jensen’s

inequality (as long as there exists nontrivial macroeconomic uncertainty ε̃, so that σε > 0).

From the continuity of the derivative of W̄ ∗
Tax(β)− W̄ ∗

Basic C&T(β) we can therefore conclude

that there exists a β0 > 0, such that

d

dβ

(
W̄ ∗

Tax(β)− W̄ ∗
Basic C&T(β)

)
< 0

for all β ∈ (0, β0). (ii) By taking the limit for β → ∞ in Eq. (16) we obtain that

∆(p0,∞) = p0 for any p0. Hence, Eq. (12) implies that

lim
β→∞

p(ε, E∗(β)) = lim
β→∞

(p0(ε, E
∗(β))−∆(p0(ε, E

∗(β)), β)) = 0

for all ε. Thus, using part (iii) of Proposition 2 together with Eq. (13) and the market-

clearing condition (21), it is

lim
β→∞

p0(ε, E
∗(β)) = µ lim

β→∞
β (p(ε, E∗(β)))3 = e0 + ε

for all ε. Therefore,

lim
β→∞

β(p(ε, E∗(β)))4 =

(
lim

β→∞
β(p(ε, E∗(β)))3

)(
lim

β→∞
p(ε, E∗(β))

)
= 0,

which implies (after a legitimate switch of limit and integration) in Eqs. (18)–(20) (for R =

(E∗(β), 0,∞)) that

lim
β→∞

W̄ ∗
Basic C&T(β) = 0.

On the other hand, by part (iii) of Proposition 1 it is τ ∗(∞) = 0, so that, using Eqs. (18)

and (20), the social cost of innovation and aggregate abatement cost are zero. The
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key difference of pure taxation is that as innovation effectiveness goes to infinity, the

(deterministic!) optimal tax level approaches zero, and at the same time the aggregate

abatement approaches e0, so that, using Eqs. (6) and (17), the aggregate emissions output

becomes

lim
β→∞

Q(τ ∗(β), ε) = lim
β→∞

(
e0 + ε− µτ ∗(β)

(
1 + β(τ ∗(β))2

))
= ε

for all ε. Expected aggegrate environmental damages are therefore equal to −dσ2
ε/2, so

that

lim
β→∞

W̄ ∗
Tax(β) = −dσ2

ε

2
< 0 = lim

β→∞
W̄ ∗

Basic C&T(β),

which concludes our proof. ¥

Proof of Proposition 4. (i) we first consider the situation without innovation, where β =

0 and where W̄ (R; 0) is the expected social welfare without innovation. Using the Leibniz

rule, we obtain the first-order necessary optimality condition

∂W̄ (R; 0)

∂E
=

∫ ε̄

ε
¯

(
1

µ
(e0 + ε− E)− dE

)
dG(ε) = 0,

which is equivalent to

E∗
0 =

e0 + E [ε̃|ε
¯
≤ ε̃ ≤ ε̄]

1 + µd
.

Similarly, we obtain

∂W̄ (R; 0)

∂U
=

∫ ∞

ε̄

(−µU + µd(e0 + ε− µU)) dG(ε) = 0,

which is equivalent to

U∗
0 = d · e0 + E [ε̃|ε̃ ≥ ε̄]

1 + µd
,

and, analogously,

L∗0 = d · e0 + E [ε̃|ε̃ ≤ ε
¯
]

1 + µd
.

(ii),(iii) We examine the supermodularily properties of the expected welfare W̄ = −C̄ −
D̄ − K̄ for each of its components. Consider first

C̄(R; β) =
µ

2

∫ ∞

−∞

(
1 + βp2(ε, R)

)
p2(ε,R) dG(ε),

with

C̄β(R; β) =
µ

2

∫ ε̄

ε
¯

(
2(1 + 2βp2)ppβ + p4

)
dG(ε),
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where pβ is given in Eq. (25). Using Eqs. (24)–(26), we therefore find that

C̄βL = −µ2(1 + 4βL2)L7G′(ε
¯
)

1 + 3βL2
< 0 <

µ2(1 + 4βU2)U7G′(ε̄)
1 + 3βU2

= C̄βU ,

and

C̄βE = 2

∫ ε̄

ε
¯

(1 + 3βp2 + 3β2p4)p3

(1 + 3βp2)3
dG(ε) +

µU4(1 + 4βU2)G′(ε̄)
1 + 3βU2

− µL4(1 + 4βL2)G′(ε
¯
)

1 + 3βL2
.

Since, by hypothesis, the macroeconomic uncertainty is nondecreasing on its support, it

is G′(ε
¯
) ≤ G′(ε̄). Furthermore, it is easy to show that the function µx4(1+4βx2)/(1+3βx2)

is strictly increasing in x > 0, so that indeed C̄βE > 0. In addition, C̄LU = 0, C̄EU =

−µU(1+2βU2)G′(ε̄) < 0 < µL(1+2βL2)G′(ε
¯
) = C̄EL, which implies that C̄ is submodular

in (E,−L,U,−β). Consider now

K̄(R; β) =
λµβ

4

∫ ∞

−∞
p4dG(ε),

so that

K̄β(R; β) =
λµ

4

∫ ∞

−∞
p4dG(ε) + λµβ

∫ ε̄

ε
¯

p3pβdG(ε).

Using Eqs. (24)–(26), it is therefore

K̄βU = − λµ2βU9

1 + 3βU2
< 0 <

λµ2βL9

1 + 3βL2
= K̄βL

and

K̄βE = −λ

(∫ ε̄

ε
¯

(1− 3β2p4)p3

(1 + 3βp2)3
dG(ε) +

L3G(ε
¯
)

1 + 3βL2
+

U3(1−G(ε̄))

1 + 3βU2

)
< 0.

In addition, K̄LU = K̄EL = K̄EU = 0, so that we have shown that K̄ is submodular

in (E,−L,U,−β). Lastly, consider

D̄(R; β) =
d

2

∫ ε̄

ε
¯

E2dG(ε) +
d

2

∫ ε
¯

−∞

(
e0 + ε− µL

(
1 + βL2

))2
dG(ε)

+
d

2

∫ ∞

ε̄

(
e0 + ε− µU

(
1 + βU2

))2
dG(ε),

so that

D̄β(R; β) = −µd

[
L3

∫ ε
¯

−∞

(
e0 + ε− µL(1 + βL2)

)
dG(ε)

+U3

∫ ∞

ε̄

(
e0 + ε− µU(1 + βU2)

)
dG(ε)

]

= −µd

[
L3

∫ ε
¯

−∞
(E + ε− ε

¯
) dG(ε) + U3

∫ ∞

ε̄

(E + ε− ε̄) dG(ε)

]
.
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Thus, we find

D̄βL = µd(1−G(ε
¯
))L2

[
3 (E + E [ ε̃| ε̃ ≤ ε

¯
]− ε

¯
)− µL(1 + 3βL2)(1 + EG′(ε

¯
))

]
> 0,

D̄βU = −µd(1−G(ε̄))U2
[
3 (E + E [ ε̃| ε̃ ≥ ε̄]− ε̄)− µU(1 + 3βU2)(1 + EG′(ε̄))

]
< 0,

and

D̄βE = µd
[
U3G′(ε̄)− L3G′(ε

¯
)
]

> 0.

Moreover, D̄LU = 0, and D̄EL = −dEG′(ε
¯
) < 0 < dEG′(ε̄) = D̄EU , which, together

with the previous inequalities, implies that D̄ is submodular in (E, L,−U,−β). Hence,

for small damages W̄ is supermodular in (E,−L,U,−β), and for large damages W̄ is

supermodular in (E,L,−U,−β). This implies that E∗(β) is decreasing. Second, for small

environmental damages, L∗(β) is increasing and U∗(β) is decreasing (i.e., more stringent

price control). Third, for high environmental damages, L∗(β) is decreasing and U∗(β) is

increasing (i.e., less stringent price control). ¥
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