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= Introduction

The acceptance and spread of new technology in a market is commonly referred
to as technology adoption or diffusion. It is an important topic of research in
several disciplines, such as marketing, strategy, organizational behavior,
economics, and the history of technology (Loch et al, 1999). The classical
diffusion model is the S-curve model of spreading innovations. This model has
successfully been fitted to new product innovations in many industries (e.g.,
Gurbaxani 1990). However, Abernathy and Utterback (1978) first pointed out
that industries often go through cycles of incremental innovations, punctuated
by short periods of radical change. As noted by Loch et al. (1999), this pattern
has been called “punctuated equilibrium,” a term that originated in biology
(Eldredge and Gould 1972) and subsequently was adopted in the management
literature (e.g., Anderson and Tushman 1990, Mokyr 1990).

As surveyed in Loch et al. (1999), the literature presents a number of obstacles
to switching between technologies. For example, organizational inertia and
stable industry constellations may prohibit significant innovations for long
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periods until change is forced by a crisis. Cultural “openness” may also foster or
inhibit significant technological changes, and interdependencies among multiple
component technologies can prevent radical innovations for compatibility
reasons. In a groundbreaking paper, Loch et al. (1999) developed a model that
offers a different explanation for punctuated technology diffusion. In their
theory, punctuated equilibrium may occur among bounded rational adopters
who at any point in time choose the technology with the better performance,
although with an imperfect capability of evaluation. Loch et al. (1999)
demonstrated that punctuation can happen if positive externalities as well as
uncertainty in the evaluation of a new technology are present in the system.

In this paper, we use a different modelling approach, based on an agent based
simulation, to study further the dynamics of technology diffusion among
bounded rational adopters when there are positive externalities as well as
uncertainty about the performance of two technologies. A multi-agent model
consists of a number of software objects, the ‘agents’, interacting within a virtual
environment. The strength of agent-based simulation is that it makes possible
the study of the emergence of phenomenologies at the macro level from repeated
interaction of simple agents at the micro level. The behaviour of the society is
said to ‘emerge’ from the actions of its units.

The paper’s objectives are twofold. First, we aim to assess whether there is the
potential for the emergence of “punctuated equilibrium” patterns of technology
adoption in an agent based model characterised by positive spatial externalities
as well as uncertainty in the evaluation of a new technology; further, we aim to
assess whether there is some scope for the system off-equilibrium trajectory to
exhibit behaviours characteristic of mathematically complex systems, such as
avalanche effects and tipping points. Agent based simulation is particularly well
suited to study such off-equilibrium trajectories, as well as the impact of spatial
externalities, thanks to the spatial representation of technology adoption on a
stylised lattice.

The second objective of the paper is to study the impact of a specific type of
spatial externality, which we refer to as the “fashion effect”, on patterns of
technology adoption. The penetration of many technologies is indeed driven not
only by characteristics intrinsic to the technology, such as its relative
performance with regard to the old dominant technology, but also driven by
other features such as the impact of a “fashion effect” within a community of
users. Examples of the impact of such effect include the disruptive patterns of
diffusion of some luxury goods, or fashion related electronic equipment such as
mobile phones; the sudden popularity of hybrid cars or hummers in the US can
also be attributed to such “fashion effect”. We model this “fashion effect” as a
particular kind of spatial externality, which increases the attractiveness of one
technology for those agents which have one of their neighbors equipped with the
fashionable new technology. The objective is again to study both how the off-
equilibrium technology adoption trajectory is influenced by this fashion effect,
and to explore the impact on spatial distribution of new technology adopters
once a stable equilibrium is reached. We question in particular the likelihood of
such “fashion effect” to give rise to spatial clusters of technology adoption.



These issues related to technology adoption are explored in the paper in the light
of the electricity industry. While this industry is currently dominated by the
traditional electricity system, where customers are connected to a grid which
brings to them the power produced in a few large power stations, the electricity
supply industry is undergoing profound structural change with the emergence of
decentralized electricity generation technologies (Patterson, 200X). There is
much debate about the penetration speed and patterns of new technologies such
as decentralized combined heat and power or solar panels, which could
substitute to traditional grid supply. There are many barriers, including
technological and institutional lock in, to the adoption of such decentralized
power supply technologies. There is also much uncertainty over the performance
of such new technologies (i.e. some measure of competitiveness or
attractiveness) as compared to the old grid supply technology. Besides, while
combined heat and power technology is largely invisible, solar panels diffusion
may be subject to different diffusion patterns due to the previously mentioned
“fashion effect”.

The paper is divided into five sections. The next section provides a literature
review of models of technology adoption and of agent based models. The third
section describes our agent based model of technology adoption. The fourth
section concentrates on the simulation results and details successively the
emergence of “punctuated equilibrium” adoption patterns, the “off-equilibrium”
technology adoption trajectory, and the impact of the “fashion effect” on
clustering. The fifth section concludes.

= Literature review

The classical technology diffusion model in the management literature is the S-
curve model of spreading innovations. S-curve growth (logistical growth) results
when growth is proportional to the established base (contagion) and to the
remaining untapped potential (Loch et al., 1999). While this model has been
successfully fitted to new product innovations in many industries, other
industries have also seen more disruptive patterns of technology diffusion. In
many industries, long periods of incremental improvement tend to be
interrupted by short periods of radical innovation (Abernathy and Utterback
1978, Utterback and Suarez 1993). Kummar and Kummar (1992) observe that
the typical application of diffusion Scurves is to new products or product
categories opening up a new market potential, but not to the competition
between an established and a new technology. This paper examines how a new
technology diffuses in competition with an established technology.

Technology diffusion patterns alternating long periods of incremental
improvement and short periods of radical innovation have been called
“punctuated equilibrium,” a term that originated in biology (Eldredge and Gould
1972) and subsequently was adopted in the management literature (e.g,
Anderson and Tushman 1990, Mokyr 1990). Loch et al. (1999) provide a
thorough survey of the management, marketing, and organization theory
literature justifications for such diffusion patterns. Loch et al. (1999) categorize



the different arguments that have been brought forward to explain the existence
of punctuated equilibria in technology diffusion as follows:

“l. Aradical innovation creates uncertainty (for producers as well
as users), which needs to be resolved before widespread
adoption can occur.

2.  The new characteristics of the technology may destroy existing
firm competences, which contributes to inertia within firms.

3. In addition, a new technology may be incompatible technically
with other components of complex systems of which it is a
part.

4. It may also upset the balance of co-operation and interests in
the business network that has evolved around the old
technology and its complements.

5. Finally, it may encounter resistance in society at large”

Our model, similarly to Loch et al. (1999)’s model of technology diffusion, offers
a different explanation for the existence of punctuated equilibrium behavior.
Loch et al. (1999) show that “even in the absence of inertia or compatibility
issues, punctuated equilibrium-type diffusion can happen, provided that two
factors are present: some positive network externalities, and uncertainty about
the performance of the new technology.” While we use a completely different
modeling approach, based on agents simulation, our model is linked to the large
literature on so-called evolutionary models of technological change technology
adoption pioneered by Nelson and Winter (1982). Similarities between our
model and the evolutionary approach include the assumption that actors are
profit driven but unable to optimize because of bounded rationality. Actors
simply choose the “best” out of the currently available technologies, without
being capable of perfect evaluation or of anticipating the system equilibrium.

An extensive literature building on Nelson and Winter (1982) has developed on
this evolutionary approach to technology diffusion, which Silverberg et al. (1990,
p. 75) define as “the diffusion of techniques and new products under conditions
of uncertainty, bounded rationality and endogeneity of market structures as a
disequilibrium process”. Most of the literature, to the exception of Loch et al.
(1999), focuses on firm market shares and pioneer advantage, whereas our
model emphasizes the technology and the possibility of its sudden adoption
across the user population. The other strands of literature related to our model
of technology adoption are reviewed in Loch et al. (1999), and include the so
called path dependence models with positive externalities. Positive externalities
are also referred to as “bandwagon” adoptions (e.g., Abrahamson and Rosenkopf
1997). These models emphasize that small initial advantages may determine
which one of possibly several competing technologies is chosen by the user
community.

The second main difference between our agent based simulation model and the
evolutionary approach of technology diffusion models is that we focus on the off-
equilibrium behavior of the system, or the system dynamics, until an equilibrium
is possibly reached. Human societies, institutions and organisations are complex



systems, using ‘complex’ in the technical sense to mean that the behaviour of the
system as a whole cannot be determined by partitioning it and understanding
the behaviour of each of the parts separately, which is the classic strategy of the
reductionist physical sciences. One reason why human societies are complex is
that there are many, non-linear interactions between their units, that is between
people. The behaviour of the society is said to ‘emerge’ from the actions of its
units (Gilbert, 2004). Our model aims to assess there is some scope for the
technology adoption in a population off-equilibrium trajectory to exhibit
behaviours characteristic of mathematically complex systems, such as avalanche
effects and tipping points.

There are two fundamental attributes of mathematical complex systems: First
complex systems of the type discussed here are based upon a very large number
of spatially separated decision agents, each making constrained choices subject
to a very simple set of predetermined rules. Second these complex systems are
generally extremely resilient, yet nevertheless very small disturbances can
generate profound changes. In this way such complex systems can exhibit the
famous ‘butterfly effect’ of chaos theory (Gleick, 1988).

When the interaction of the agents is contingent on past experience, and
especially when the agents continually adapt to that experience, mathematical
analysis is typically very limited in its ability to derive the dynamic consequences
(Axelrod and Tesfatsion, 2006). In this case, agent based modeling might be the
only practical method of analysis. Our model allows investigating how large-
scale technology adoption arises from the micro-processes of interactions among
many agents. As surveyed by Dawid (2005), neoclassical models belonging to the
evolutionary approach are indeed limited to explain and reproduce important
stylized facts about innovation, technological change and industry evolution. Tier
weaknesses have been discussed among other places in Dosi et al. (1995), Dosi et
al. (1997), Sutton (1997) or Klepper and Simons (1997). Dawid (2005)
demonstrates that quite a few of these observed patterns of technology adoption
can be rather robustly reproduced using agent based models. As he points out,
“this is particularly encouraging since these patterns are in no way explicitly
incorporated into these models, but are emergent properties of the aggregate
behavior in complex models, which in many cases are built upon rich micro
foundations incorporating at least some of the key features of the processes
involved in actual technological change.”

As noticed by Axelrod and Tesfatsion (2006), agent based modeling is “a method
for studying systems exhibiting the following two properties: (1) the system is
composed of interacting agents; and (2) the system exhibits emergent
properties, that is, properties arising from the interactions of the agents that
cannot be deduced simply by aggregating the properties of the agents.” Much of
the insight into the phenomenology of two-dimensional (2-D) computational
models of large-scale systems stems from techniques developed by theoretical
and computational condensed matter physicists. It is not our intent in the work
reported here to develop physics-based models of socio-economic systems from
which we might obtain scientific predictive power. Rather we merely aim to
extrapolate from physics-based modelling insights, which although they fall



short of a full theory of phase transitions, might provide us with insight into the
broad types of system behaviour that might occur - so called phenomenologies.
In so doing, we aim to explore the range of possible phenomenologies for these
systems and to gain insight into possible robustness and fragility of societal
uptake of an innovation.

While it is undeniable that physics is the traditional intellectual discipline with
the greatest proximity to the ideas of complexity science, it is important to
acknowledge other relevant scientific disciplines (notably ecology and geology)
that have done much to push forward our understanding of complexity in the
last thirty years. Some work in biology has formalized punctuation as switching
between stable equilibria in the system (Foster and Young 1990). This
relationship has been described comprehensively and accessibly by Philip Ball in
his book Critical Mass (2005).

The most famous example of social agent-based simulation has been developed
economist and social scientist Thomas Schelling, Nobel Laureate Economics
(2005). Schelling’s work has demonstrated that racial segregation can emerge in
communities from the behaviours of autonomous agents each individually
exhibiting only very small racial prejudices (Schelling, 1978). Many hundreds of
multi-agent social simulation models have now been designed and built, to
examine a very wide range of social phenomena. It is not practicable to review all
of these, and even describing a representative sample would be a difficult
exercise. However, there are dimensions along which models can be arranged
(see e.g. Gilbert, 2004; Hare and Deadman 2004; David et al 2004).

In summary, the contribution of this article lies in the application of agent based
modeling to study the off-equilibrium phenomenologies characterizing
punctuated equilibrium technology diffusion patterns. The key resulting insight
is to show how the combination of positive externalities and performance
uncertainty at the micro (agent) level alone may cause a “catastrophic” (that is,
sudden and unforeseeable) adoption of a new technology at the macro level,
independent of the absolute performance comparison or other managerial and
context variables, thereby shedding new light on the micro level roots of such
evolution first observed by Loch et al. (1999).

= Description of the Model
Context and Premise - Distributed Electricity Generation

In the early twenty-first century the developed world is dominated by concerns
for energy security and for climate change. Against these backdrops there is a
renewed emphasis being given to possible shifts in the electricity system away
from the historically dominate paradigm of large-scale centralised generation,
high voltage transmission and distribution and the sale of electricity through
suppliers to end-user consumers. Some such as Walt Patterson (1999) argue that
our needs would be better served and the adverse externalities minimised if a
large proportion of electricity consumers were to break their dependence upon
centralised grid-based electricity and rather generate electricity much closer to
its point of use. In extremis this proposition suggests that individual residential



electricity users and small businesses should consider investing in, and making
use of, small scale electricity generation technologies such as solar Photovoltaics
and micro-Combined Heat and Power. These and other similar technologies are
described in a book Future Electricity Technologies and Systems edited by
Jamasb, Politt and Nuttall (2006).

In its White Paper on Energy of May 2007 the UK Department of Trade and
Industry gives prominence to distributed electricity generation. Paragraph 3.5.0
of the White Paper states:
“In the context of the governments overall policy goals, we believe
that any action to address these barriers [cost, lack of reliable
information, electricity industry issues and regulatory barriers]

should:
1  Stimulate take-up of cost-effective low-carbon distributed
generation;

2 provide a means of enabling distributed generators to realise a
reasonable economic value from their schemes;

3  reduce complexity involved in setting up as a distributed
generator [...];

4  encourage where possible, further development of distributed
generation within the licensed framework rather than outside of
it.”

In extremis this gets down to the level of household generation. It is this possible
shift in electricity end use and demand, albeit in a highly stylised form, that we
seek to model in the simulations reported in this paper.

The Agent Based Model

In order to model a system involving technology adoption within an agent based
framework and investigate the dynamics of such a system, we consider a
spatially discrete ‘city’ populated with interacting, autonomous agents
representing electricity consumers. The time evolution of the this system is
studied for a given set of initially predetermined rules and conditions. The only
non-deterministic element in the model is the perceived relative attractiveness
between old and new technologies, which represents the main driver for change
and is stochastic in nature. The agents can be of one of two types, either
‘residential’ or ‘business’ consumers. This difference is a crucial aspect of the
model as the residential consumers are influenced by a spatial externality in the
form of a fashion effect, while the business consumers are not. The consumer
agents receive electricity from one of three sources: the grid (‘Grid’ the initial
default provider), solar power (‘Solar’) or from Combined Heat and Power
(‘CHP’). Each agent repeatedly makes an assessment of the relative
attractiveness of the competing technologies leading to a decision whether to
stay with the old technology (supply from the grid) or to switch to the new one
(decentralized generation at home/business through either CHP or solar panels).
The model can be best described by separating its constituent elements into
three distinct categories: the global model parameters, the intrinsic attributes of
the agents and the criteria used by the agents in evaluating the available
technologies.



The model is constructed on a square lattice of N cells, with each cell either
occupied by a consumer agent or empty (as shown in figure 1). This stylized city
is randomly seeded according to three global parameters: the lattice size, the
overall agent density and the ratio of business to residential consumers. Detailed
sensitivity studies have been performed to assess the impact of varying these
three parameters, as well as the effect of employing periodic or non-periodic
boundary conditions. We postpone a discussion of the significance of the
business to residential agent ratio until the next section. In all other cases
involving variation of the lattice size, the overall density or the boundary
conditions, the net result is that the the time evolution and system dynamics
remain unaltered and only the time required before the system reaches
equilibrium is affected. In order, therefore, that many different configurations of
the model could be studied in a computationally efficient manner, a default
lattice size of 6400 cells (80 x 80), periodic boundary conditions and an overall
agent density of 1 were employed in the simulations presented in this paper.3

Time is incremented in twelve-hour periods, with agents updating their own
evaluation of the competing technologies continuously but making decisions to
change to a particular technology asynchronously according to a Poisson
process. It is important to incorporate this asynchronous decision-making as it
has been observed, for example by Loch et al. (1999), that a model with
consumers making decisions in lock-step is not only unrealistic, but can
drastically perturb the very system dynamics of interest in the present study.
The net result of this approach is that each agent has its own internal clock with
respect to the global clock. It is assumed that all agents are identical in the sense
that they measure performance in the same fundamental way, although each
agent has its own threshold for change w; (for the ith agent). These thresholds
are normally distributed among the agents around some appropriately chosen
common value.

It is further assumed that there are no switching costs between the various
technologies, and that agents choose to switch technologies based solely on their
perception of the relative attractiveness of the old technology (the grid)
compared to the new technologies (CHP and solar panels). A global
parameterized attractiveness function A(t) is therefore introduced, which is
weighted heavily in favour of the old technology at the start of the simulation
and is stochastic with some minimal spread, in order to reflect the uncertainty
over the impact of technological progress on the performance of the new versus
the old technologies. As the simulation progresses, the magnitude of the relative
attractiveness function decreases in proportion to the number of agents
switching away from the old technology, while the stochastic spread becomes
greater.

*The model underpinning this work makes use of the Swarm tools originally developed at the
Santa Fe Institute, NM USA for the simulation of collections of concurrently interacting agents
(www.swarm.org). The simulations make use of a set of open-source libraries written in both
Objective-C and JAVA. The model was constructed on a standard desktop Linux PC and run on a
multi-node Linux farm.


http://www.swarm.org/

All agents start the simulation by getting their electricity from the grid. Their
evaluation criteria (for both residential and business consumers) are determined
at an individual agent level and depend on their imperfect perception of the
relative attractiveness between technologies. The following factors, which are
established and fixed before the simulation starts, represent the agents'
perception regarding the competing technologies and therefore control their
decision-making. The ith agent's level of ‘satisfaction’ with the old technology is
represented by a continuous function S;(t) that can take values between 0 and 1.
For each time-increment dt, the agents update their level of satisfaction
according to the formula:

Si(t + dt) = KiSi(t)

where K; can hold one of three values Ki*, K, or 1:

Ki = Ki* corresponds to the situation where the grid is relatively attractive,
Si(t) > A(t);

Ki = Ki corresponds to the situation where the grid is relatively
unattractive, Si(t) < A(t);

Ki = 1 is a normalization correction to ensure S remains between 0 and 1
at the extremes.

Here, Ki* and K are coefficients for the rise and fall in consumer satisfaction, the
values of which are normally distributed around appropriately chosen values in
order to reflect a spread in the willingness among the agents to switch
technologies. To incorporate the fact that the status quo is usually preferred over
change, these coefficients are chosen to be correspondingly asymmetric. Like the
threshold parameters, the satisfaction coefficients are assigned to the consumer
agents before the start of a simulation run. The final step in the process occurs
when it becomes time for an individual agent to make a decision as to whether to
switch away from the grid. At this point, determined by the agent's internal
clock, a simple comparison is made between the level of satisfaction and the
threshold for change; if the satisfaction has dropped below the threshold the
agent switches to one of the new technologies.
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Figure 1: The model 'city’ populated with residential and business electricity consumers, where the

black squares represent empty sites. At the start, all consumers get their electricity from the grid
(blue for residential and grey for business). The consumers can then choose to switch to solar
(green/yellow) or micro combined heat and power (orange/red) sources. To eliminate edge effects
the model has periodic boundary conditions.

The final element in the model involves incorporating a spatial externality in the
form of a fashion effect. All consumer agents have a ‘supply preference’
probability. If the agent, as described in the previous paragraph, is to switch the
source of its electricity supply away from the grid then the supply preference
probability determines whether it will move to Solar or CHP. For the business
consumers there is an equal probability for each throughout the entire
simulation, representing the fact that business consumers in our simple model
are not influenced by any kind of fashion effects. This is, however, not the case
for the residential consumers. These agents are subject to fashion effects that
take the form of a nearest neighbour interaction. This means that if any of a
residential consumer's neighbours has solar power then that consumer’s supply
preference shifts incrementally in favour of Solar. In other words, the greater the
number of neighbours that have moved to Solar the greater the extent to which a
given agent will prefer Solar.

= Results of the Simulations

A very large number of simulations have been run over the full possible range of
initial parameter settings. As a result it is found that the variation of only two
parameters yield profound effects on the time evolution of the system and the
corresponding fundamental dynamics. These are the initial value of the relative
attractiveness function (Ainitial) and the ratio of business to residential consumers
(R). This latter parameter governs the importance of spatial nearest neighbour
fashion effects in the model. It is in some senses equivalent to the overall density.
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For the purposes of investigating the system dynamics, we have chosen to focus
on the variation of this parameter rather than of the overall density. It is, in our
opinion, a more direct and intuitive parameter. Figure 2 shows the three distinct
diffusion trajectories which were observed in the model as characterized by
these two key parameters, as well as the city in its equilibrium state. For
simplicity and clarity, both residential and business consumer agents have the
same colour-scheme in figure 2. The first case is termed ‘Stable’ and is
characteristic of simulations in which Ainitial is very large and the fashion effects
are weak (i.e. there are relatively few residential consumer agents). In such
systems a stationary state or equilibrium is achieved straightforwardly and
rapidly. The time evolution of such a system would hold few surprises for policy
makers in our fictional world. It is a slight evolutionary shift from the pre-
existing status quo. Trends are good and behaviours appear predictable and
stable. Note that most consumers remain with the Grid, and because of the
fashion effects more consumers switch to Solar than to CHP.

The second panel of figure 2 illustrates a different case, termed ‘Asymptotic’. In
this case Ainitial is very small and fashion effects are very strong (i.e. there are a
very large number of residential consumer agents). Once again a stationary,
equilibrium state is reached straightforwardly and rapidly. In this case however
we see a large-scale disruptive adoption of Solar technology and a
haemorrhaging of consumers from the Grid. This case is therefore very different
from the slight evolutionary behaviour shown in the first panel of figure 2. There
is a large literature on the now ubiquitous observation of S-curves in technology
adoption. Indeed, S-curves have been observed previously in agent-based
simulations of technology adoption. Such behaviours were posited by Everett
Rogers in his Diffusion of Innovation Theory (1995). In Rogers’ model,
technology adoption starts slowly with the ‘innovators’ followed with greater
take-up coming from the ‘early adopters’. The highly non-linear S-curve ends
with the final slow adoption of the technology by the ‘laggards’. In the case of
this work we regard the S-shape of the curve revealed in the middle panels of
figure 2 to be nothing more than a direct mathematical consequence of the
normal distributions adopted for the distribution of consumer agent thresholds.
Nevertheless by a logical inversion the emergence of S-curves might be argued to
validate our selection of normally distributed consumer agent thresholds.

The lower panels of figure 2 reveal the most interesting effects and these form
the main basis of the work presented here. These data correspond to a case
intermediate to those considered previously and described as ‘Near-Critical’. In
this case Ainitial is neither exceptionally large nor exceptionally small. Similarly
nearest neighbour fashion effects are neither dominant nor negligible. As in the
other two cases a stable stationary, equilibrium state is achieved although it
takes longer than in either of the other two cases. What is most dramatic,
however, is the nature of the shift from starting conditions to final stationary
state. In this case it is not smooth, monotonic or well suited to trend analysis.
Behaviours of this type are to be expected in systems exhibiting the attributes of
scientific complexity discussed earlier. These sudden shifts in agent behaviour
are an emergent property of the complex system and are not the result of sudden
shocks to the system. That is, they occur without specific trigger events and any
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policy-maker in our stylized fictional city looking for explanation would be well
advised to avoid looking for targets to blame or for a sudden collapse of the rules
and policies governing the system. The sudden shifts observed are merely a
phenomenon to be expected in a system that exhibits typical complex, non-linear
effects on the way to achieving a stationary state. The behaviours are simply a
direct consequence of the original rules and agent properties established before
the start of the simulation. Our extensive analysis has reassured us that the
sudden system shifts seen in the bottom panel of figure 2 are not a consequence
of any of the stochastic processes occurring during the running of the model.

Figure 3 shows the percentage of consumers which remain with the Grid once
equilibrium has been reached, which in the parlance of phase transition physics
we shall term the the ‘order parameter’ of the equilibrium state. This variable
has been calculated from the average value obtained from three separate
simulation runs for each bin. The nature of each equilibrium stationary state, and
hence the value of the order parameter, has been binned in the two key
parameters Ainitial and R. Fundamentally we see the phase space of these two
parameters to show two states, the first a state in which at equilibrium
effectively no consumer agents remain as customers of the grid. The second a
state in which a clear proportion of grid consumers remain. The transition
between the two is not particularly sudden or abrupt and this leads us to
conclude that this model system may indeed reveal ‘critical phenomena’ in phase
transition terms. For states where only a small, but non-zero, number of
customers remain on the grid we expect that relatively unusual phenomena
might occur that in the absence of the insight from this work might perplex
analysts and policy makers. It is our intention to extend and broaden our
investigations into these and related phenomena. In so doing we hope that we
might be able to draw insight and inspiration from complexity science to the very
real challenges facing our modern energy systems.
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Figure 2: A comparison of three different scenarios. Only two of the model parameters were varied in
order to make this comparison: the relative attractiveness between technologies and the ratio of
business to residential consumers (i.e. the percentage of consumers influenced by their neighbours).
The overall agent density is 1 and the colour-scheme is the same for both business and residential
consumers (blue for grid, orange for solar and green for CHP).
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Figure 3: Phase diagram showing the percentage of consumers remaining on the grid at equilibrium
as a function of both the relative attractiveness (Ainitial) and the ratio of business to residential
consumers (R).

= Conclusions

In this work we present results obtained from a simple and highly stylised agent
based simulation of consumer attitudes to electricity supply. The main
motivation for this work is the demonstration that micro-interactions and the
subsequent system dynamics and can play an important role in technology
diffusion, a role which is not included in the management literature paradigm
based on equilibrium states alone. The model adopted involves a very large
number of simple agents making decisions based upon current conditions. No
money or agent memory is involved in the model. The model is therefore
unrealistic in that it possesses no inter-temporal effects that might arise from the
banking of money, a time preference of money or a memory of previous
conditions. We find that in this simplified model the dominant factors driving the
system dynamics are the degree to which the competing technologies are
perceived to be relatively attractive and the significance of a nearest neighbour
interaction modelling a fashion effect. We observe, depending on these initial
conditions: small evolutionary changes; S-curve technology adoption and the
elimination of the customer base for the grid; and, in a situation highly
reminiscent of phase transition physics, states where profound shifts occur in
response to negligibly small triggers.
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