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1. Introduction

Economists have shown that competition increases firm performance (Nickell, 1996; Fabrizio

et al., 2007). But in many industries, in particular where delivery is over networks, effective

competition requires the vertical separation of the firm. Several studies have shown that such

separation can increase costs due to foregone fixed cost sharing or cost complementarity (Kaser-

man and Mayo, 1991; Kwoka, 2002; Arocena et al., 2012). There is a potential trade-off between

technical efficiency gains from competition and efficiency losses from separation.1 But the ef-

fect of separation is not necessarily negative. Separation might also increase efficiency due to

increased management focus, i.e. due to a lower span of control and a reduction in asymmetric

information for management and regulators. As one utility manager says: “[. . . ] separation [of

activities] exposes the true costs of operation and presents the opportunity for challenge and

change” Utility Week (2010).

In this paper, we estimate the combined effect of the introduction of competition and ver-

tical separation on efficiency for the case of US electric utility divestitures. During the 1990s

several US states restructured their electricity markets to introduce competition into electric-

ity wholesale and retail markets. Distribution and transmission networks remained regulated

franchise monopolies. In several states restructuring was accompanied by utility divestitures of

generation plant.

We measure the effect as the difference-in-difference in the inefficiency of the divested unit

and the average inefficiency of all non-divested units. The unit is the generation, distribution

or transmission activity or the combination of all three activities. We multiply the inefficiency

difference with the observed costs of the divested unit to express the effect in monetary terms.

We employ two alternative counterfactuals. First, all non-divesting utilities in non-restructuring

states, such that the implied treatment is the combination of the introduction of competition

for generation and the vertical separation of generation plant. Second, all non-divesting units

in restructuring states such that the implied treatment is divestiture only.

To the best of our knowledge this is the most comprehensive assessment of the combined

effect of vertical separation and competition, as well as US electric divestitures to date. Our

contributions are as follows. First, as both technology and effort are unobserved, we apply a

model that separates technology and inefficiency (as a proxy for effort) explicitly. Second, our

non-parametric model estimates inefficiency at the unit-level such that we can aggregate unit-

level effects over the whole distribution as opposed to assessing the effects at the sample mean

1We ignore allocative efficiency. A more comprehensive analysis might also take into account how competition
increases allocative efficiency.
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only as is usually done with parametric techniques. The non-parametric nature of our model

also allows for the easy comparison of different specifications of the technology, e.g. convex

or non-convex. Third, we include all activities, i.e. generation, transmission, and distribution.

This is obviously important for completeness but also because cost reallocation at restructuring

or divestiture would bias the results for single activities. Fourth, we have a long panel which

allows us to follow divested utilities for several years and to capture the effects of adjustment and

learning. It also allows us to control for any differences prior to treatment as restructuring and

divestiture are not random. Fifth, we proxy for the costs of stand-alone generation, which after

divestiture is not required to file regulatory accounts and therefore often omitted by previous

studies.

Previous studies for the US electric utility industry only offered a partial analysis. The

existing evidence comes from two strands of the empirical literature. First, several papers

estimate economies of scale and economies of vertical integration for electric utilities (Kaserman

and Mayo, 1991; Kwoka, 2002; Arocena et al., 2012). Their findings generally suggest that there

is a cost attached to vertically separating electric utilities. These studies do not model technical

inefficiency. Also, their predictions are mostly out of sample as they do not study episodes

where actual divestitures took place. A second strand of the literature evaluates actual policy

changes. Several recent studies look at the actual impact of restructuring and/or divestitures

on productivity (Bushnell and Wolfram, 2005; Fabrizio et al., 2007; Delmas and Tokat, 2005;

Kwoka et al., 2010). These studies mostly analyze single activities only, e.g. generation or

distribution; the exception being Delmas and Tokat (2005). Generally, these studies find that

restructuring has (slight) positive effects on productivity.

Our data is for 138 investor owned electric utilities for the year 1994 and 2006. We record

divestitures for 29 utilities. We find that the combined effect of competition and divestiture is

$-16 million for our benchmark, i.e. conservative, model of technology (all numbers are in year

2000 dollars). This amounts to less than 0.01 per cent of the total costs of all divested units

over our sample period. As the true technology is unobserved there is uncertainty about it. We

estimate the effects for different specifications of the technology and find that $-16 million is

the lower bound and that $24 billion is the upper bound, i.e. the results are very sensitive. We

find that competition always has a positive effect and that the effect of separation is positive

for most models. Also, unlike suggested by previous studies on vertical economies of scope the

effect of separation itself is mostly positive (and much larger than the competition effect). Why

our aggregate result is different can possibly be explained by our finding that the initial impact

of divestiture is often adverse but firms adjust and learn so that eventually the effect is positive.
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This paper is divided into seven sections. Section 2 provides some background for the divesti-

tures we study. Section 3 briefly reviews the relevant empirical literature. Section 4 outlines our

analytical approach. Section 5 summarizes the data and gives details on our variables. Section

6 gives the results and section 7 concludes.

2. Background

This section shortly discusses relevant regulatory change for the US electric industry. For a

general overview of restructuring see Jurewitz (2001). Historically, most of the electricity in the

US was provided by privately owned, vertically integrated franchise monopolies. Pricing was

constrained by rate-of-return regulation.

Rising prices, technical change, and political change lead to federal regulatory changes from

the 1970s on that culminated in fully liberalized electricity markets in some but not all states.

The first phase of reform was driven by the federal government. The aims were competition

in generation and transmission access. The second phase was driven by the states and lead to

regulatory divergence at the state level. We are interested in the effects of state level regula-

tory change, the strengthening of competition and the vertical unbundling of generation plants.

Efforts to create competitive wholesale markets started in 1978 with the federal Public Utility

Regulatory Policies Act mandating local utilities to purchase all the electricity qualifying gen-

erators supplied. Entry by these merchant generators was regulated but not necessarily their

prices. However, these merchant generators faced problems to access the utility owned trans-

mission networks. To increase the effectiveness of third-party generation the 1992 Energy Policy

Act regulated wholesale transmission access (later strengthened through FERC rule making in

1996 and 1999) and allowed generators to own non-connected plants in various states.

Several states considered this federal regulatory change insufficient and took the initiative to

further improve wholesale competition and, in some cases, to also introduce retail competition.

All states initiated hearings on restructuring between 1993 and 1999; California being the first.

By 2000, about half the states had passed restructuring laws including retail access provisions.

The scope of restructuring is highly state specific, as is the speed of implementation. Most

states allowed for multi-year transition periods, e.g. four years in California. And it is not clear

that all the provisions in the state laws were always implemented, especially after the California

energy crisis.

In some states the introduction of competition was accompanied by the vertical separation

of power plants. Power plants were sold to affiliated or non-affiliated entities. In any case,

once divested plants no longer have to file regulatory accounts we can no longer observe them.
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Divestitures were mandated, voluntary, or on a quid-pro-quo basis. For instance, states provided

incentives for divestiture in the form of favorable stranded cost recovery, relaxation of wholesale

price regulation, or merger approval. Typically, these deals did not require full divestiture.

Irrespective of regulatory incentives many companies divested for business strategic reasons like

diversification into non-utility businesses. Often utilities sold in-state generation assets and

bought out-of-state assets “hoping that the state regulator of their local distribution business

may feel less justified in reducing allowed returns on the local distribution business in response to

higher profits earned in the out-of-state generation business” (Jurewitz, 2001, p. 289). Swapping

generation assets in this way might increase overall distribution costs as regulators do not take

into account economic rents from generation when setting distribution tariffs.

Restructuring states were keen to make restructuring a success and to minimize transition

costs for utilities. For instance, to lower electricity prices regulators often allowed the real-

location of costs from generation to distribution. Whereas in some states the reallocation of

costs from generation to distribution was sanctioned (and often welcomed) by the regulator

(Maloney, 2001) in others costs were reallocated without the regulators consent and possibly

the intention of gaining an unfair competitive advantage in generation. Such cost reallocation

potentially biases the results when analyzing single activities. Many states capped or reduced

regulated default tariffs. Regulated standard tariffs often implied fixed percentage reductions

compared to the tariffs before restructuring and were often frozen for a transition period. Such

regulated standard offers often turned out to be priced below competitive rates because these

were higher than expected (Pfeifenberger et al., 2004, endnote 3). Not to suffer a margin

squeeze like the Californian utilities, many distribution companies that divested their gener-

ation assets and faced capped retail tariffs entered into buy-back contracts with their former

generation units, whether owned by holding companies or not (Pfeifenberger et al., 2004). And

contract prices were often linked to regulated standard offers. In some states (e.g. California)

buy-back contracts did not exist because all electricity had to be sold through central clearing

mechanisms (including the power that utilities generate themselves). In total only nine states

started such competitive procurement of regulated generation services before the end of our

sample (Pfeifenberger et al., 2004, Table 2), i.e. by 2006. We use purchased power expenses (as

reported by the distribution company) as a proxy for divested plant’s generation cost. These

buy-back contracts are likely to control margins and help us not to overestimate the cost of

power generation. However, it would be a problem if these buy back contracts forced stand

alone generators to sell below cost, which is unlikely. Last, regulators introduced transition

charges to cover costs that cannot be recouped at lower competitive prices (stranded costs). To
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the extent that these transition charges are included in a distributor’s cost of purchased power

we overestimate the cost of stand alone generation.

3. Related Literature

The literature that provides evidence on the likely effects of restructuring and divestitures falls

into two categories: studies that analyze the properties of the technology and studies that

evaluate policy changes.

Studies in the first category estimate returns to scale and economies of scope (horizontal

and vertical) and infer optimal industry structure. Most relevant for us is that these studies

generally find negative economies of vertical integration. That is, they predict a cost associated

with divestitures. The two most recent studies using U.S. data are Kwoka (2002) and Arocena

et al. (2012). Kwoka (2002) finds strong evidence for cost complementarity and mixed evidence

of indivisible inputs when separating generation from transmission and distribution (T&D). His

evidence is for a cross-section of firms in 1989, long before any actual divestitures and modern

computer based techniques for coordination across independent firms. He finds that the total

cost saving from integration for mean-sized firms (in terms of T&D and generation output) is

42 per cent (p. 664). The study also ranks the sources of cost savings from integration. Lower

operating and maintenance (O&M) costs for generation provide the biggest saving followed by

lower O&M costs for T&D. A higher share of nuclear generation capacity and overall higher

capacity utilization also increase the benefits from integration. Additionally, the study finds

that certain holding structures can off-set losses from vertical integration but the same is not

true for membership in power pools. This is evidence for the hypothesis that economies of scope

do not necessarily require common ownership (Teece, 1980).

Arocena et al. (2012) find evidence for both horizontal (upstream, between fuel types) and

vertical economies of scope for a cross-section of electric utilities in 2001. Their sample also

does not include divested, non-utility generation plants. They estimate that vertically integrated

firms save between 4.3 and 9.7 per cent of total cost. Estimates hardly depend on firm size in

terms of distribution customers and generation output. But estimates depend on the generation

mix and the balance between distribution and generation activity. Divesting nuclear generation

carries the greatest penalty followed by fossil-fuel and hydro. If the utility retains all nuclear

capacity and divests fossil-fuel and hydro only, no significant loss in economies of scope is

incurred. Also, estimates of economies of scope are higher for firms that have greater generation

to distribution ratios. Thus, who divests what matters. These studies do not model efficiency

explicitly (though differences in mean efficiency between diversified and specialized firms would
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be captured by type specific intercepts) and therefore cannot identify any potential efficiency

gains from specialization. Generally, empirical studies on optimal industry structure do not

cover actual divestitures, because in most countries and especially in the U.S. the data is not

observed. Thus, these studies infer potential losses from integrated firms, i.e. predict out of

sample.

Another strand of the literature, instead of studying the properties of the production tech-

nology, directly estimates the impact of restructuring on productivity. A number of studies

evaluate U.S. electric industry restructuring. Kwoka et al. (2010) study the impact of restruc-

turing and divestiture on the efficiency for a sample of 73 distribution companies for the years

1994-2003. They find that the difference in distribution efficiency (measured between 0 and

1) between divested and non-divested firms is 0.003 points. When only looking at mandatory

divestitures the difference is 0.055 points. And only for mandatory divestitures is the difference

statistically significant. Firms that divest voluntarily (or on a quid-pro-quo basis) might even

slightly increase their efficiency.

Fabrizio et al. (2007) studied the impact of US electric industry restructuring on generation

plant productivity. They found that investor-owned utilities (IOUs) in restructuring states

reduced non-fuel expenses by up to 5 percent, labor input by 3 percent, and fuel input by

up to 1.4 percent (the latter being statistically insignificant) in comparison to firms in non-

restructuring states. They also used an alternative counterfactual, municipality owned plants,

and found that for labor and non-fuel expenses the effect of restructuring is about twice as

large. This implies either, that IOUs in non-restructuring states are not a good control group,

because restructuring had spill-over effects or, that the effect of ownership adds to the effect of

competition and both effects are about the same size. Somewhat surprisingly, they found no

economically or statistically significant effect for fuel efficiency. But they omit divested, non-

utility plants from their sample. Non-divested plants could face lower competitive pressure if

retail customers remain captive or they are able to relocate some costs to activities that remain

regulated. Bushnell and Wolfram (2005) analyze the effect of divestiture on the fuel efficiency

of fossil fuel powered plants. They found that divestitures increase fuel efficiency by 2 per cent

compared to utility owned plants. However, they also found that higher powered regulatory

incentives had about the same effect as divestitures for utility owned plants.

Whereas the studies above look at single activities only, Delmas and Tokat (2005) investigate

the effects of restructuring on the entire utility. They analyze the effects of deregulation and

vertical integration on efficiency for a large sample of U.S. electric utilities for the years 1998 to

2001. They find evidence that in states that mandate divestiture average efficiency is lower and
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that firms that have a higher share of own generation are more efficient. They do not explicitly

compare divested and non-divested firms but their results suggest that divestitures increase

total cost (generation, transmission and distribution). One important shortcoming of their

analytical approach is that they specify a large number of input and output variables (seven

and three respectively). As their efficiency estimator (Data Envelopment Analysis) compares

like-with-like an unrealistically high number of firms are estimated to be fully efficient (45 per

cent). This is likely to complicate their second stage regression as there is little variance for the

dependent variable, efficiency. Also, they include cost of purchased power but do not control

for changes in wholesale prices. Last, there are problems with the way in which they define

indicator variables for integration and divestiture as explained by Kwoka et al. (2010, p. 90).

To sum up the empirical evidence, studies analyzing the properties of the technology largely

find positive economies of vertical integration. Studies evaluating policy change typically find

that a move towards higher powered incentives has (slightly) positive effects on productivity.

Studies of economies of vertical integration include all activities but they typically do not

compare explicitly divested and non-divested firms. Studies that evaluate policy changes often

only look at single activities. It is virtually impossible to combine the results from these different

studies into an overall assessment.

4. Analytical Approach

4.1. Net Benefit Calculation

We need to compare the performance of divested units in restructured states against a coun-

terfactual. The counterfactual is non-divested units in either non-restructuring or restructuring

states. Following the difference-in-difference concept we also control for any ex-ante differences.

Let D denote the set of all divesting firms and D the set of all non-divesting firms. Also,

let R denote the set of all restructuring states and R the set of all non-restructuring states.

Let, i donate a single divesting unit and j denotes a single non-divesting unit. We compute the

average inefficiency for a control group at time t as

γX,t = 1
|X|

∑
j∈X

γj,t,

where |X| is the number of non-divesting units in non-restructuring states
∣∣∣D ∩R∣∣∣ or the

number of non-divesting units in restructuring states
∣∣∣D ∩R∣∣∣. For a divested unit i net benefit

7



of activity A in year t is,

NBA
i,t =

(
γAX,t − γ

A
i,t

)
CAi,t −

∑b
t′=1

(
γAX,t′ − γAi,t′

)
CAi,t′

b
. (1)

where t = b is the date of divestiture, the activity A is distribution, power sourcing, trans-

mission, or all three combined and C is total cost of the relevant activity. The second term

subtracts the average net benefit across the years before divestiture. We assume that had the

unit not divested its inefficiency would be equal to the average inefficiency of those units not

divesting. The net benefit of divestiture is positive (negative) if the average inefficiency, i.e., av-

erage waste of all non-divested units is larger (smaller) than the inefficiency of the divested firm

(corrected for any pre-divestiture differences). The ex-ante difference adjusts the net benefits

for any initial differences between divested and non-divested units and corrects for any possible

endogeneity due to heterogeneity between the treatment and control group.

Equation (1) measures a typical difference-in-difference. But instead of estimating average

productivities as proxies for γ we use nonparametric inefficiency scores. In the next section

we introduce a model of production that estimates inefficiency. Also, instead of comparing the

effect at the sample mean we sum over the differences between each treated unit and the mean of

all the counterfactual units. Finally, we sum the net benefits across activities (if the technology

is separate), units, and years to obtain the overall net benefit

NB =
∑
t

∑
i

∑
A

NBA
i,t. (2)

4.2. Technology and Inefficiency

We want to evaluate the performance of a decision making unit against observed best practice.

When units use inputs x = RN+ and outputs y = RN+ we can evaluate a unit’s performance

against a sample of units i = 1, ..., I as

max pTi yo
wT
i xo

; (3)

s.t.(
wT
i xi

)−1 (
pTi yi

)
≤ 1 , i = 1, ..., o, ...I

pi,wi ≥ 0 ,

where (yo,xo) are the vectors of outputs and inputs of the unit we evaluate. And pi and wi
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are decision variables. These weights are not observed prices but choice variables. The weights

are chosen as to maximize the aggregated outputs over aggregated inputs for each unit subject

to the constraint that no unit has a ratio greater than 1, i.e. no positive shadow profit. This

nonlinear program can be converted into a linear envelopment program of the following type

min
θ,λ

θ ; (4)

s.t.

yo ≥ Yλ ;

θxo ≤ Xλ ;

λ ∈ {0, 1} .

where λ is an indicator that decides against which other production plan, the plan of interest

is evaluated. The scalar θ is the technical efficiency measure. Here θ ranges from 0 to 1 for

the most efficient decision making unit. The measure captures the maximum radial contraction

of inputs that project the decision making unit onto the frontier. Equation (4) gives the non-

convex Free Disposable Hull (FDH) efficiency index. For our purposes we transform θ and

obtain inefficiency as

γ = 1− θ

for the use in (1) above. The program is evaluated i times, once for every decisions making

unit. This program implies a set representation of the technology, where the distance to the set’s

boundary is a natural measure of inefficiency. The distance measure is input-oriented, which

seems reasonable for electric utilities as they are mandated to satisfy any given demand. The

set is made up of observed and unobserved production plans. The inclusion of the unobserved

plans requires assumptions about the true production technology. The technology in (4) is a

non-convex production reference set (Charnes et al., 1978; Deprins et al., 2006). Intuitively, the

non-convexity implies that a unit that is special in its input or output dimension is more likely

to be efficient than to be inefficient. We assume that all observed input-output combinations

belong to the true set, which makes the set deterministic and that all the production plans

that are weakly dominated by observed plans are also part of the set, i.e. inputs and outputs

are strongly disposable (e.g. more inputs do not reduce the maximum output). Returns to

scale are effectively variable. This nonparametric approach have several advantages. It does

not require the specification of a parametric functional form and therefore does not require
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any assumptions on firm behavior (e.g. profit maximization or cost minimization) to estimate

cost efficiency, which seems appropriate for regulated industries. Also, it easily accommodates

multiple inputs and outputs.

We choose as our benchmark model a conservative model in the sense that it should favor the

legacy structure of the industry. In addition to non-convexity we make the following assump-

tions. First, instead of specifying a technology for each activity as in (1) we specify a common

technology for all three activities. A common technology makes sure that we do not underes-

timate the benefits of integration when the different activities are actually integrated. Second,

we specify a sequential frontier in time, i.e. the production possibilities of period t are nested

in the possibilities of period t + 1. The reason for specifying a sequential technology is that

divestitures might imply technological regress (e.g. the loss of technological complementarities)

which we want to capture as inefficiency.

To analyze the uncertainty around these assumptions we specify several other technologies,

where we change one assumption of the benchmark model at a time. First, we specify separate

technologies for each activity (distribution, power sourcing, and transmission). This allows us to

analyze the effects by activity although some effects, especially economies of integration, are not

independent across the activities. Estimating the technology by activity also reduces the total

size variation, making it less likely that results are driven by size differences per se. Second,

instead of a sequential frontier we specify a contemporaneous frontier, where the technology

set is period specific (the different sets might be related in any possibly way). We do so

because there are some forms of technological regress we do not want to capture as inefficiency,

e.g. increasingly stringent environmental regulation, changes in the economic regulation of

the network franchises or adjustment costs due to for instance, the increased generation from

renewable sources. Third, we specify a convex free disposable hull (Data Envelopment Analysis)

technology with variable returns to scale. This is achieved by replacing the last constraint in

(4) with λ ≥ 0 and adding the constraint 1Tλ = 1. Unlike our baseline model this model allows

convex combinations to be part of the technology set. The intuition is that such a convex model

captures more of the underlying heterogeneity as inefficiency.

Besides the structural characteristics the technology for each activity is modeled in terms

of inputs and outputs. For the distribution technology the two inputs are operating expenses

(Opex) and capital expenses (Capex). The distribution outputs are number of units distributed,

number of customers, and distribution network length. Network length accounts for dispersion.

Together these three variables cover the long-run expansion of the distribution activity. Due to

data limitations and the inability of our method to admit zero values we model power sourcing
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as a single input, single output technology. The input is the sum of the costs of own generation

and costs of purchased power and output is the number of units distributed and resold. We can

only use a single input because some integrated firms incur no costs for purchasing power and

the DEA estimator does not admit zero values. Thus for the power sourcing activity the DEA

efficiency score collapses to a simple input-output index. For transmission we use two inputs

and a single output. The inputs are operating and capital expenses. The single output is the

number of units distributed. When the technology combines all activities we include all inputs

and outputs. Section 5 gives more detailed variable definitions.

4.3. Defining Divestiture and Restructuring

As most utilities own several power plants and divest any number of them we have to define

divestiture at the utility level. We define a utility as divested if the book value of production

plant drops by at least 50 per cent year-on-year and the proportion of own generation of total

requirements is at least 25 per cent the year before divestiture. Additionally, we require that

divested firms generate at most 50 per cent of their requirements. The firm counts as divested

for all subsequent years. Thus, we only account for the first but not subsequent divestitures

for the same firm. Instead of using book values one could use physical generation capacity

or actual generation output as proxies for divestiture. Having manually checked the data we

believe that book value is the best measure for this particular data set. Naturally the thresholds

are somewhat arbitrary but follow Kwoka et al. (2010) who also use a 50 per cent drop in plant

value given a “substantial fraction” of own generation. Table 3 lists the names of the 29 utilities

we count as divested and the year the divestiture is recorded. Note that due to missing data

the recorded year might be after the actual year of divestiture.

We defined a state as restructuring (a time invariant variable) following Fabrizio et al. (2007).

They count a state as restructured if a restructuring law including retail access competition is

passed before 2000 (according to them there were no further restructurings before the end of

our sample).

5. Data and Variable Definitions

The data mainly comes from the regulatory accounts US utilities have to file with the Federal

Energy Regulatory Commission (FERC). These filings are known as Form 1 and have to be

submitted on an annual basis by utilities above a certain size. The data is publicly available on

the FERC website. The Form 1 data is well established in the economic literature. Examples

are Fabrizio et al. (2007), Kwoka et al. (2010), and Arocena et al. (2012). The main advantage
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of this data set is that data is consistently available for a large number of variables, a large

number of firms, and several years. The main disadvantage is that it does not report data for

divested generation plants.

As reporting is mandatory for utilities above the size threshold we basically observe the

population of electric utilities. For our sample period we observe the distribution activity 138

firms out of 144 major utilities as counted by Sappington et al. (2001). Some observations are

missing or dropped because they make no sense. In our sample the proportion of missing values

is greater for distribution than for power sourcing. Also, the proportion of missing values drops

after 2001 for distribution but stays constant for power sourcing. Last, data for the first year

after a divestiture is more likely to be missing than data for subsequent years so that we observe

only 18 out of 28 first year costs and benefits which would overestimate the benefit if costs are

incurred in the first year of divestiture.

Distribution operating expenses (Opex) are measured as distribution operation and main-

tenance, customer accounts, customer service, and sales expenses plus a share of general and

administrative expenses. The allocation key for the latter is based on the ratio of labor ex-

penses for distribution, customer accounts, and sales to total labor expenses less general and

administrative labor expenses. Opex is expressed in year 2000 dollars where the deflator is an

index of state-level electricity distribution wages (or gas where electricity is not available). The

index is based on the “Quarterly Census of Employment and Wages” series published by the

Bureau of Labour statistics.

We measure distribution capital expense as current capital expenditure (i.e. plant additions)

plus a share of general plant additions. The allocation key is the ratio of distribution plant

over total plant. Kwoka et al. (2010) suggest that current expenditure has the advantages of

being a controllable expense and being related to the investment program of the firm. It has

the additional advantage of being observed at the firm level. Capital expense is expressed in

year 2000 dollars where the deflator is a national US GDP deflator2. The distribution outputs

are units delivered (Units), number of customers (Customers), and network length (Network

length). Since Form 1 only reports units delivered and number of customers for bundled service

we adjust the data to take into account that with the onset of retail competition actual numbers

tend to be higher than bundled numbers. For this purpose we add data from the Energy

Information Agency (Form EIA-861) and the state public utility commissions (PUC). Both the

EIA and PUCs report distribution service only numbers. Where we have data from both the

EIA and the PUC we take the minimum. If we cannot obtain data from either the EIA or PUC

2Source: http://www.gpoaccess.gov/usbudget/fy09/hist.html.
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Figure 1: Group average state-level electricity wholesale price indices

we revert back to the FERC data.

Total cost of power sourcing is the sum of costs of own generation and purchased power. The

total cost of own generation is measured as the sum of O&M and capital expenses. We measure

capital expense as the sum of interest, dividends, tax, and depreciation expenses (Farsi and

Filippini, 2005). Interest, dividends and tax are apportioned based on the share of production

plant to total plant.

We use purchased power expense as a proxy for the generation cost of stand-alone plants

(which no longer report their cost after divestiture). This potentially overestimates the cost of

stand-alone generation by the profit margin.

Cost of power sourcing is deflated by an index of state-level prices (2000 = 1) for industrial

customers3 which serves as a proxy for a wholesale price index, because for some states there is no

wholesale price for all years as wholesale markets were only introduced with restructuring. This

is an attempt to account for factors that are beyond the control of the firm. This normalization

neutralizes the effect of changes in market power and fuel price, which is ignored by earlier

studies. It also reduces the problem of having to include profit in the cost of the divested

plants to a time invariant mark-up. Figure 1 plots the yearly averages of the index for both the

treatment group and our alternative control groups. It does not seem that the wholesale price is

systematically higher for divesting firms or that its rate of increase is higher. The single output

3This data is taken from the EIA Electric Power Annual 2007, Table “1990 -
2007 Average Price by State by Provider (EIA-861)” which can be found at:
http://www.eia.doe.gov/cneaf/electricity/epa/epa_sprdshts.html.
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for the power sourcing activity is the sum of bundled distribution units and units for resale. The

units that are generated by the firm itself are reflected by the bundled units distributed and

units resold. The units not generated but bought are also included in the bundled distribution

units.

Transmission costs are the sum of O&M and capital expenses. Transmission O&M is total

transmission O&M expenses plus system control and load dispatching, and a share of general

expenses where the allocation key is based on labor expenses. As system control and load

dispatching is actually a generation item the key underestimates the share of general expenses

allocated to transmission. O&M expenses are deflated by the same wage deflator as distribution

expenses above. Capital expenses are measured as current year plant additions plus a share

of general plant additions where the allocation key is based on the ratio of transmission to

total plant. The deflator for Capex is again GDP. The single output for transmission is units

distributed. This is a proxy as we do not observe the units transmitted. The appendix gives

more detail on the construction of these variables as well as details on the sources.

A complication for transmission is the correct delineation of the transmission network and

its costs and outputs. We only include the transmission costs accounted for by electric utilities

but not system operators. Whereas utilities are responsible for investment and maintenance,

system operators are responsible for trading systems (both for electricity and transmission

rights) and ancillary services. As different transmission operators have different functional

scope we capture the transmission costs where functions are operated by utilities but not where

they are operated by system operators. Greenfield and Kwoka (2011) investigate the costs of

transmission operators and estimate that for every 280,000 GWh (assuming constant returns

to scale) a fully-fledged system operator costs about $150 million per annum and a minimum

requirement operator costs about $68 million.

Table 1 provides summary statistics. It distinguishes between non-divested and divested

(irrespective of the state’s restructuring status) firms. About 14 per cent of the unit-year

observations are for divested firms. The average costs of distribution and power sourcing are

comparable for the two unit types. Divested firms have higher average transmission operating

expenditures but only half the amount of capital expenditures. This might reflect the fact that

transmission assets in restructuring states are held by system operators and not accounted for

by utilities. The average (distribution) outputs are also comparable across the two types.

The average shares of own generation are about 70 per cent and 10 per cent for non-divested

and divested firms, respectively. Figure 2 plots the evolution of average own generation shares

for divesting firms as well as well as the cumulative count of divestitures. The first divestiture
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is recorded in 1998 and the bulk of divestitures are recorded between 1999 and 2001. The share

of own generation for divesting firms mirrors the count of divestitures. Between 1994 and 1998

the shares of own generation are similar for divesting and non-divesting firms. From 2003 on

the share of own generation for divested firms is stable again. The share of own generation

does not differ much between the two control groups. We take this pattern as evidence that our

definition of divestiture is reasonable.

Table 1 also compares the raw inefficiency scores for non-divested and divested firms. For our

benchmark model the average scores are the same. For the separate technology model there

are some differences. Divested distribution is more inefficient, divested power sourcing is less

inefficient, and divested transmission is more inefficient on average. For the contemporaneous

and convex technology models the inefficiency mean are again almost identical.
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Table 1: Summary Statistics

Non-divested Divested
mean sd max min mean sd max min

Data

Distribution Opex (M. US dollars) 156.76 192.51 1673.81 0.72 167.86 147.16 866.76 17.97
Distribution Capex (M. US dollars) 94.94 115.06 797.46 0.14 91.68 107.77 679.17 13.62
Units, distribution (GWh) 20281.28 20427.39 103652.91 40.94 19195.21 16718.60 92362.80 1718.20
Units, resale (GWh) 6295.79 14896.80 266283.71 0.00 2638.78 3597.35 17583.48 0.00
Customers (thd.) 747.18 857.10 5121.49 3.35 792.86 689.79 3738.63 126.84
Distribution network length (thd. miles) 21.96 21.75 119.31 0.28 21.06 17.14 86.88 0.90
Pow. Sourc. Exp. (M. US dollars) 921.80 973.45 7161.65 2.91 770.69 608.34 3072.25 112.23
Transmission Opex (M. US dollars) 32.22 38.97 337.93 0.04 40.99 49.90 358.66 2.02
Transmission Capex (M. US dollars) 28.66 45.74 464.51 0.01 15.71 25.18 185.50 0.01
Own generation (proportion) 0.72 0.18 1.00 0.25 0.10 0.15 0.50 0.00

Inefficiency scores

FDH (Benchmark) 0.03 0.07 0.39 0.00 0.03 0.07 0.34 0.00
FDH (Distribution) 0.13 0.16 0.70 0.00 0.18 0.17 0.68 0.00
FDH (Power Sourcing) 0.52 0.32 0.94 0.00 0.46 0.32 0.93 0.00
FDH (Transmission) 0.44 0.28 0.97 0.00 0.50 0.26 0.97 0.00
FDH (Cont. frontier) 0.01 0.03 0.29 0.00 0.01 0.04 0.34 0.00
DEA (Convex) 0.21 0.18 0.63 0.00 0.23 0.19 0.62 0.00

Observations 1084 176
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Figure 2: Average shares of own generation of total requirements.
Notes: This graph plots the yearly averages for own generation over total requirements for three groups: divesting
plants, non-divesting plants in non-restructuring states, and non-divesting plants in restructuring states. It also
plots the cumulative count of divestitures.

6. Results

Before giving the results for the net benefits we investigate the unit level inefficiency scores, the

key ingredient of net benefit. In particular, we are interested in one key characteristic of the

distribution of the inefficiency scores: the ratio of efficient firms. Table 2 gives the counts and

percentages for the efficient units, i.e. the units that make up the frontier of the technology

set. The first block of rows is for our benchmark model, the next three blocks are for the

separate technology model, the fifth block is for the contemporaneous frontier model and the

last block is for the convex technology model. The ratio of efficient firms varies greatly across

the models. Intuitively, the higher the ratio of efficient firms the less heterogeneity the model

ascribes to genuine inefficiency. For our benchmark model the ratio of efficient units is roughly

three quarters. This is high but reflects the conservative nature of the model. The activity

specific technology model produces fewer efficient firms than the benchmark model. Intuitively,

at the level of a single activity the units are more comparable and more heterogeneity is ascribed

to inefficiency. The contemporaneous frontier model produces an unrealistically high number

of efficient firms, because there is an insufficient number of observations for individual years.

This qualifies the net benefit results for this model below. Last, the convex technology model

(DEA) produces fewer efficient firms, because it allows convex combinations of observed units

to make up the frontier.
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Table 2: Ratio of Efficient Firms
FDH (benchmark) Non-Divested Divested Total

No. % No. % No. %

Inefficient 254 23 48 28 302 24
Efficient 829 77 126 72 955 76
Total 1, 083 100 174 100 1, 257 100

FDH (Distribution) Non-Divested Divested Total

No. % No. % No. %

Inefficient 623 58 119 68 742 59
Efficient 460 42 55 32 515 41
Total 1, 083 100 174 100 1, 257 100

FDH (Power Sourcing) Non-Divested Divested Total

No. % No. % No. %

Inefficient 954 88 154 89 1, 108 88
Efficient 129 12 20 11 149 12
Total 1, 083 100 174 100 1, 257 100

FDH (Transmission) Non-Divested Divested Total

No. % No. % No. %

Inefficient 941 87 160 92 1, 101 88
Efficient 142 13 14 8 156 12
Total 1, 083 100 174 100 1, 257 100

FDH (cont. frontier.) Non-Divested Divested Total

No. % No. % No. %

Inefficient 61 6 13 7 74 6
Efficient 1, 022 94 161 93 1, 183 94
Total 1, 083 100 174 100 1, 257 100

DEA (convex) Non-Divested Divested Total

No. % No. % No. %

Inefficient 854 79 147 84 1, 001 80
Efficient 229 21 27 16 256 20
Total 1, 083 100 174 100 1, 257 100

Notes: This table gives the counts of efficient and inefficient units for divested and non-divested units. The first
block is for our benchmark model, where the technology combines all activities, is sequential in time, and non-
convex. The next three blocks are for sequential, non-convex and activity specific technologies. The second to
last block is for the combined, non-convex, contemporaneous technology, and the last block is for the combined,
sequential, and convex technology.
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Now we describe the net benefits as in (1) using a series of graphs. We use the contrasts

between the different models of technology and the different counterfactuals to better understand

how competition and divestiture affect performance. Figure 3 plots the cumulative net benefits

from the year of the first divestiture until the end of our sample for our four models of technology.

Whereas 3a is for the non-restructuring counterfactual, 3b is for the restructuring counterfactual.

For the former the implied treatment is the introduction of competition and divestiture. For

the latter it is divestiture only. Remember that the bulk of divestitures occurred between 1999

and 2001.

We first focus on the cross-sectional difference at the end of our sample. Our benchmark

model (FDH benchmark) gives the lowest cumulative net benefit at the end of our sample of

$-16 million. To put this number into perspective we compare it to the total cost for all three

activities, for all divested units, for the years 1997 to 2006 of $219 billion. In relation, the

total net benefit is less than 0.01 per cent. In contrast, the activity specific technology model

(FDH separate tech.) gives a cumulative net benefit of just under $24 billion, the highest across

our models. Instead of artificially integrating some firms, this model artificially separates some

other firms. It seems that the common technology model captures any losses in economies of

scope better but captures any gains from separation less well. It is not that the results from

the two models contradict each other but that each model emphasizes a different mechanism.

When the technology is contemporaneous (FDH cont. frontier) the net benefit is $2.8 billion.

The fact that this number is higher than for the benchmark model suggests that divested units

suffer technical regress. As the divergence occurs in the years 2000 to 2002 it seems that the

regress is indeed related to divestiture. Assuming that we are able to control for the generation

profit margins, a loss of economies of scope is likely to cause the regress.

Last, for the convex technology model the net benefit is $10 billion. The model allows convex

combinations of observed units as comparators for inefficient units. That is, the technology is

not necessarily fully combined or separate across activities. We believe this is the reason why

the net benefit lies between these two extremes. Net benefits are higher than for the benchmark

model, because actual divestitures influence the frontier. And net benefits are lower than for

the activity specific model, because it also allows some combined firms to influence the frontier.

And a convex technology generally produces fewer efficient units. Looking at the time path it

is interesting to observe that the result first runs parallel to the result of the benchmark model

but after 2002 seems to converge with the result from the activity specific model.

So far we only considered the results for the non-restructuring counterfactual in figure 3a.

Now we contrast these with the results for the restructuring counterfactual in Figure 3b. As we
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would expect, the effect of divestiture only is smaller, i.e. the effect of competition is positive

(except for the FDH cont. frontier). For our benchmark model the effect of separation is

negative and roughly the same absolute size as the effect of competition. For all other models

the effect of separation itself is positive. The positive effect for competition is in line with

the previous literature. But the non-negative effect of separation is different from the previous

findings on economies of scope. We believe the difference is due to the fact that we observe

actual divestitures and do not infer the effect from integrated firms.
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Figure 3: Cumulative net benefit
Notes: Both figures plot the cumulative net benefits for our four models of technology over time, starting with
the year where the first divestiture occurred.

For the activity specific technology model we plot the cumulative net benefits by activity in

Figure 4 (for the other models the inefficiency scores are constant across activities). We see that

by the end of our sample period the contributions by all three activities are positive (for both

counterfactuals). For the non-restructuring counterfactual in 4a we see that the distribution net

benefit is substantially negative right after most divestitures occurred in 2002. As we do not

observe a similar dip for the restructuring counterfactual in 4b it seems that the reason might

be temporary cost reallocation in restructuring states. If the dip reflected a loss of economies of

scope we would expect to see it for both counterfactuals. This temporary decrease might also

explain why Kwoka et al. (2010) find that divestiture increased distribution inefficiency using

a shorter sample (1994-2003).

The cumulative net benefit for power sourcing is positive and increasing over the entire sample

period for both counterfactuals. The contribution of power sourcing is the largest by a wide

margin despite potentially underestimating the net benefit by the generation profit margin that

is included in the cost of power sourcing for divested units. At the end of the sample period the

effect is about 14 per cent of the total cost of power sourcing of divested units over our sample

period. Out of this roughly one tenth is due to competition and nine tenth are due to separation
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itself. If the effect of competition on non-divested units in restructuring states (which we omit)

was different, this result would be biased. This effect of competition is at the lower end of the

input-specific effects Fabrizio et al. (2007) find.

The transmission net benefit is first flat and then increases in the last years of our sample

suggesting that there is no direct effect of competition or divestiture on transmission.
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Figure 4: Cumulative net benefit by Activity
Notes: These figures plot cumulative net benefits by activity over time, starting with the year where the first
divestiture occurred. The technology is activity specific.

So far we concentrated on the aggregate cumulative net benefits. Next we plot the average

net benefits at points in time after divestiture in Figure 5 to highlight the performance dynamics

after divestitures. The vertical axis now has the average net benefit and the horizontal axis has

the years after divestiture, i.e. we normalize the observations around divestitures. The results

are in line of what we saw above. The level differences between the technologies are not as

pronounced but similar. The effect for the benchmark model is close to zero and the effect for

the activity specific model is the highest. We also see that right after divestiture the effects

are negative or decreasing suggesting that the introduction of competition and divestiture are

themselves disruptive. After period seven the effects for the different models diverge substan-

tially. This is likely to be an artifact of the small number of observations; only for a single

divestiture do we observe nine years after.
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Figure 5: Cumulative net benefit of divestitures for different counterfactuals and technology sets
Notes: These figures plot the average net benefit for the different models of technologies for years after divestiture,
i.e. time is normalized around the year of divestiture.

To summarize, we find that the net benefit of the introduction of competition and divestiture

is unlikely to be negative. It might be positive and large. Previous studies have found substantial

economies of scope but we find that the effect of separation itself is unlikely to be negative. The

effect of competition is smaller but certainly positive. Early effects are probably negative as

change is disruptive, but after about two or three years effects increase. As the true technology

is unobserved, we used several models and find that the variance across the models is large.

7. Conclusion

We study the combined effect of competition and vertical separation on firm-level performance.

Often, effective competition requires that an industry is vertically separated, which can lead

to a trade-off between higher powered incentives due to competition and a loss of synergies.

However, separation itself can lower asymmetric information leading to efficiency gains that

might outweigh any lost synergies. In this paper we quantify the combined effect of competition

and separation (as well as the individual effects) for the case of the introduction of competition

and divestiture in the US electric industry.

To quantify the effects we compare the difference-in-difference between a divested unit and the

average of all non-divested units in either non-restructuring or restructuring states. As both

the true technology and effort are unobserved we choose an empirical model that explicitly

separates the technology and unit level inefficiency as a proxy for effort. Our non-parametric

model also allows us to test different specifications of the technology, e.g. convex or non-convex.

Finally, we express the effects in monetary terms, which provides a benchmark for any gains

from allocative efficiency or direct set-up costs.

For our benchmark, i.e conservative, technology model, we find that the combination of
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restructuring and divestiture increased inefficient costs, relative to non-divested units in non-

restructuring states, by about $16 million over our sample period. That is less than 0.01 per

cent of the total cost of divested firms. The increase in inefficient cost due to divestiture itself

is about $682 million. That is, the effects of competition and divestiture have roughly the same

size but opposite signs for our benchmark model.

As the true technology is unobserved we investigate the uncertainty around the technology

by specifying different technology models. We find that the results are very sensitive to the

exact specification of the technology. For instance, when the technology is activity specific our

estimate of the combined effect is a relative reduction in inefficient costs by $24 billion over our

sample period. Also, the relative sizes of the effects of competition and divestiture are different

for the other models. For all models of technology different from the benchmark model the

effect of divestiture itself is positive and much larger in size than the effect of competition,

which contradicts previous results on economies of vertical scope in the literature. Partly,

this contradiction might be explained by our finding that the initial impact of divestiture is

adverse but that the effect turns positive several years after divestiture. As previous studies

on economies of scope typically infer the effects from plants that are actually integrated they

might underestimate the positive effects from adjustment and learning of plants that actually

divest.
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A. Data Description
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Table 3: List of Divestitures

Name Year State

Atlantic City Electric Company 2001 New Jersey
Baltimore Gas and Electric Company 2000 Maryland
Boston Edison Company 1998 Massachusetts
CENTRAL HUDSON GAS & ELECTRIC CORPORATION 2001 New York
Central Illinois Light Company (AmerenCILCO) 2004 Illinois
Central Illinois Public Service Company (AmerenCIPS) 2001 Illinois
Central Maine Power Company 1999 Maine
Cleveland Electric Illuminating Company, The 2001 Ohio
Commonwealth Edison Company 2001 Illinois
Consolidated Edison Company of New York, Inc. 1999 New York
Delmarva Power & Light Company 2000 Delaware
Duquesne Light Company 2000 Pennsylvania
Illinois Power Company (AmerenIP) 2000 Illinois
Jersey Central Power & Light Company 2000 New Jersey
Metropolitan Edison Company 2000 Ohio
Montana Power Company, The 2000 Montana
New York State Electric & Gas Corporation 1999 New York
Ohio Edison Company 2001 Ohio
Orange and Rockland Utilities, Inc. 1999 New York
PECO Energy Company 2001 Pennsylvania
POTOMAC EDISON COMPANY 2000 Pennsylvania
PPL Electric Utilities Corporation 2000 Pennsylvania
Pennsylvania Electric Company 2000 Ohio
Pennsylvania Power Company 2006 Ohio
Potomac Electric Power Company 2001 District of Columbia
Public Service Electric and Gas Company 2000 New Jersey
Rochester Gas and Electric Corporation 2004 New York
Toledo Edison Company, The 2001 Ohio
United Illuminating Company 2000 Connecticut
WEST PENN POWER COMPANY 2000 Pennsylvania
Western Massachusetts Electric Company 2001 Massachusetts
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Variable/Formula FERC Name Source page-line
Distribution Opex
DE+AE+CE+SE+key1*GE DE TOTAL Distribution Expenses FERC 322-126b
key1=(DW+CW+CSW+SW)/(TOW-AW) AE TOTAL Customer Accounts Expenses FERC 322-134b

key2=(GW)/(TOW-AW) CE
TOTAL Customer. Service and Information
Expenses FERC 322-141b

key3=(TW)/(TOW-AW) SE TOTAL Sales Expenses FERC 322-148b
GE TOTAL Administration and General Expenses FERC 323-168b
Labour expenses
TOW TOTAL Oper. and Maint. FERC 354-25b
GW Generation FERC 354-18b
TW Transmission FERC 354-19b
DW Distribution FERC 354-20b
CW Customer Accounts FERC 354-21b
CSW Customer Service and Informational FERC 354-22b
SW Sales FERC 354-23b
AW Administrative and General FERC 354-24b

Distribution Capex Plant
DA+key4*(GA) DA TOTAL Distribution Plant Additions FERC 207-69c
key4=(DP)/(TOP) GA TOTAL General Plant Additions FERC 207-83c

DP TOTAL Distribution Plant FERC 207-69g
TOP TOTAL Plant FERC 207-88g

Units (total)
min(UE,UP) UF TOTAL Sales of Electricity (bundled) FERC 301-12d
or UF-UR if UE and UP missing UR Sales for Resale FERC 301-11d

UE total unit sales of electricity (delivery) EIA n/a
UP total unit sales of electricity (delivery) PUC n/a

Units (residential)
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min(RUE,RUP) RUF Residential Sales (bundled) FERC 301-2d
or RUF if RUE and RUP missing RUE residential unit sales of electricity (delivery) EIA n/a

RUP residential unit sales of electricity (delivery) PUC n/a
Customers
min(CE,CP) CF TOTAL Sales of Electricity (bundled) FERC 301-12f
or CF-CR if CE and CP missing CR Sales for Resale FERC 301-11f

CE number of customers (delivery) EIA n/a
CP number of customers (delivery) PUC n/a

Network length
ND Distr TOTAL Miles Platts n/a

PDD
PP TOTAL Prod. Plant FERC 207-42g

Generation O&M
PE-OE+PPE+(key2)*GE PE TOTAL Power Production Expenses FERC 321-80b

OE TOTAL Other Power Supply Exp FERC 321-79b
PPE Purchased Power FERC 321-76b

Generation Capex
key6*(NI+TO+ITF+ITO+DP+DC)+PD+key6*(GC) NI Net Interest Charges FERC 117-64

TO Taxes Other Than Income Taxes FERC 114-13e
ITF Income Taxes - Federal FERC 114-14e
ITO Income Taxes - Other FERC 114-15e
DP TOTAL Dividends Declared-Preferred Stock FERC 118-29c
DC TOTAL Dividends Declared-Common Stock FERC 118-36c

General Plant Capex
key5*(TO+ITF+ITO+DP+DC+)+ GC n/a
key5=(GP)/(TOP) GP TOTAL General Plant FERC 207-83g
key6=(PP)/(TOP) Depreciation

PD Production FERC 336-(2-6)
GD General FERC 336-9
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GenUnitCost
(Generation O&M+Generation Capex)/UF
Transmission O&M
TE+SC+key3*GE TE TOTAL Transmission Expenses FERC 321-100b

SC System Control and Load Dispatching FERC 321-77b
Transmission Capex
TA+key7*(GA) TA TOTAL Transmission Plant Additions FERC 207-53c
key7=(TP)/(TOP) TP TOTAL Transmission Plant FERC 207-53g
TransUnitCost
(Transmission O&M+Transmission Capex)/UF
Ratio Res. Sales
Units (residential)/Units (total)
Own generation Power sources
NG/(NG+P) NG Net Generation FERC 401-9b

P Purchases FERC 401-10b
Nuclear
Nu Nu Nuclear FERC 401-4b
Hydro
HC+HP HC Hydro-Conventional FERC 401-5b

HP Hydro-Pumped Storage FERC 401-6b
Fossil
Fo Fo Fossil-fuel FERC 401-3b
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