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Abstract

In part I of this paper, we proposed a Mixed-Integer Linear Program (MILP) to analyze
imperfect competition of oligopoly producers in two-stage zonal power markets. In part
II of this paper, we propose a solution algorithm which decomposes the proposed MILP
model into several subproblems and solve them in parallel and iteratively. Our solution
algorithm reduces the solution time of the MILP model and it allows us to analyze large-
scale examples. To tackle the multiple Subgame Perfect Nash Equilibria (SPNE) situation,
we propose a SPNE-band approach. The SPNE band is split into several subintervals and
the proposed solution algorithm finds a representative SPNE in each subinterval. Each
subinterval is independent from each other, so this structure enables us to use parallel
computing. We also design a pre-feasibility test to identify the subintervals without SPNE.
Our proposed solution algorithm and our SPNE-band approach are demonstrated on the
6-node and the modified IEEE 30-node example systems. The computational tractability
of our solution algorithm is illustrated for the IEEE 118-node and 300-node systems.

Keywords: Modified Benders decomposition, Multiple Subgame Perfect Nash equilibria,
Parallel computing, Wholesale electricity market, Zonal pricing
JEL Classification: C61, C63, C72, D43, L13, L94

1. Introduction

This paper is a continuation of [1]. In [1], we formulated a Two-stage Stochastic Equilib-
rium Problem with Equilibrium Constraints (TS-EPEC) to model producers’ bidding game
in two-stage zonal power markets. In the literature, two approaches are commonly used
to solve TS-EPECs. In the first approach, each producer’s profit maximization problem is
formulated as a Mathematical Problem with Equilibrium Constraints (MPEC) and then
it is reformulated as a Nonlinear Program (NLP). The Subgame Perfect Nash Equilibrium
(SPNE) of the game is found by solving the Karush-Kuhn-Tucker (KKT) conditions of
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all producers’ NLPs simultaneously [2, 3]. The second approach uses the diagonalization
method [4] which solves each producer’s MPEC model sequentially until the SPNE is found
[5, 6]. The mathematical models in both approaches are nonconvex and therefore there is
no guarantee to find the global solution. In the first part of this paper [1], we use a discrete
approximation that allows us to reformulate the TS-EPEC as a MILP model. Our MILP
model in [1] can be solved using the commercial MILP solvers. However, solving large-scale
MILP models is not an easy task (it is NP-hard). The commercial solvers such as CPLEX
and XPRESS use the branch-and-cut algorithm to solve MILP models. The branch-and-
cut algorithm relaxes the integrality constraints on the integer variables and formulates a
relaxed Linear Program (LP). It partitions the feasibility region into smaller subsets. The
relaxed LP is solved in each subset iteratively until the global solution is reached. This
solution algorithm often becomes intractable for MILP models with many binary variables.
An alternative way to solve big MILP models, which we use, is to decompose it into sev-
eral smaller optimization problems and then solve smaller ones iteratively and hopefully in
parallel. Benders decomposition [7] is used in the literature to improve the tractability of
MILP models [8, 9]. Benders algorithm decomposes the MILP model into a master problem
and subproblem. Then it solves the master problem and the subproblem iteratively. In this
manner, a series of smaller problems are solved instead of a single large one.

Another issue is that, game-theoretic models of power markets may have multiple equi-
libria. Several researchers propose different methods to tackle multiple Nash equilibria in
one-stage power markets [10–19]. A common approach is to find all Nash equilibria as in
[10–12]. To do this, after finding a new Nash equilibrium, a constraint is added to the model
to exclude the already found Nash equilibrium from the feasibility set. For large-scale ex-
amples, finding all Nash equilibria may not be an easy task. Authors in [13–17] analyze
the Nash equilibria with the highest dispatch cost and the one with the lowest dispatch
cost. A Nash-equilibria band which consists of all Nash equilibria is constructed and used
for merger analysis in [18]. Authors in [19] apply the same Nash-equilibria-band approach
to a ramp-game between producers.

The contributions of the current paper are as follows: (a) we propose a solution algo-
rithm which decomposes the proposed MILP model in part I of this paper [1] into several
subproblems and solves them iteratively. Our proposed solution algorithm finds the optimal
solution in shorter time for the 6-node and the modified IEEE 30-node systems as com-
pared to the Benders decomposition embedded in CPLEX. Moreover it finds the optimal
solution in larger systems where the Benders decomposition embedded in CPLEX fails to
find any solution. (b) In the proposed MILP model in part I of this paper [1], each producer
chooses their price bids from a discrete price grid. The price grid might be rather coarse.
In this paper, we propose an iterative grid-refinement technique which allows us to improve
the accuracy of the price grid and the computed equilibria. (c) We also contribute to the
existing literature by tackling multiple SPNE in large-scale examples. SPNE are computed
by means of the SPNE-band concept. The band is created by placing a lower bound where
the dispatch cost is lower than the one in the best SPNE (with the lowest dispatch cost)
and an upper bound where the dispatch cost is higher than the one in the worst SPNE
(with the highest dispatch cost). The SPNE band is divided into several subintervals and
a representative SPNE is found in each subinterval. This method enables us to parallelize
our proposed solution algorithm over subintervals and solve for a SPNE in each subinterval
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concurrently. (d) We design a pre-feasibility test to identify the subintervals which has no
SPNE, so that we can avoid searching for a SPNE in those subintervals. The proposed
solution algorithm and the proposed SPNE-band approach are demonstrated on the 6-node
and the modified IEEE 30-node systems. The IEEE 118-node and 300-node systems are
implemented to show the computational efficiency of our proposed solution algorithm.

The rest of this paper is organized as follows. In addition to the symbols in the first
part of this paper [1], the additional symbols used in the proposed solution algorithm are
presented in Section 2. Sections 3 and 4 explain our proposed solution algorithm and the
SPNE-band approach, respectively. The application of the proposed solution algorithm
and the SPNE-band approach are demonstrated on the 6-node, modified IEEE 30-node,
118-node and 300-node systems in section 5. Section 6 concludes the paper.

2. Nomenclature

In addition to the symbols presented in part I of this paper, the following symbols are
introduced.

Indices
q iteration index
Parameters

τ (q) Tolerance of price grid in iteration q,
τ̄ Predefined tolerance of price grid,
ε Tolerance for SPNE-band approach,
ε Tolerance for modified Benders decomposition,
cu,(cu) upper (lower) limit of day-ahead price-bid of producer u
cupu ,(cupu ) upper (lower) limit of up-regulation price-bid of producer u
cdnu ,(cdnu ) upper (lower) limit of down-regulation price-bid of producer u

3. Proposed solution algorithm

The SPNE in two-stage zonal power markets is formulated as a stochastic MILP model
in part I of this paper. It is set out in (1).

Minimize
Φ

∑
u

ζu (1a)

Subject to:∑
u

(gu + gupu,s − gdnu,s) =
∑
n

(vn,s +Dn −∆Wn,s) : (δ(1)
s ), ∀s (1b)

Fk −
∑
n

Hk,n(
∑
n:u

(gu + gupu,s − gdnu,s)− vn,s −Dn + ∆Wn,s) ≥ 0 : (δ
(2)
k,s), ∀k, s (1c)

0 ≤ gupu,s ≤ Gu − gu : (δ(3)
u,s, δ

(4)
u,s), ∀u, s (1d)

0 ≤ gdnu,s ≤ gu : (δ(5)
u,s, δ

(6)
u,s), ∀u, s (1e)

0 ≤ vn,s ≤ W̄n + ∆Wn,s : (δ(7)
n,s, δ

(8)
n,s), ∀n, s (1f)

− σsĉupu + αs −
∑
n:u

∑
k

Hk,nµk,s + κu,s − βu,s = 0 : (δ(9)
u,s), ∀u, s (1g)
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σsĉ
dn
u − αs +

∑
n:u

∑
k

Hk,nµk,s + ψu,s − ϕu,s = 0 : (δ(10)
u,s ), ∀u, s (1h)

αs −
∑
k

Hk,nµk,s − θn,s + χn,s = 0 : (δ(11)
n,s ), ∀n, s (1i)

ρ′z,s = (αs −
∑
k

Hk,nµk,s)/σs : (δ(19)
n,s ), ∀n ∈ z, ∀s (1j)

(Rz,sβu,s(Gu − gu) +Rz,sϕu,sgu)/σs + Cdnu gdnu,s − Cupu gupu,s + ĉupu g
up
u,s − ĉdnu gdnu,s ≥ 0 : (δ(20)

u,s ),

∀u, s (1k)

− σsĉupu + λAs −
∑
n:u

∑
k

Hk,nλ
B
k,s + λCu,s − λDu,s + λMu,sĉ

up
u − λMu,sCupu = 0, ∀u, s (1l)

σsĉ
dn
u − λAs +

∑
n:u

∑
k

Hk,nλ
B
k,s + λEu,s − λFu,s + λMu,sC

dn
u − λMu,sĉdnu = 0, ∀u, s (1m)

λAs −
∑
k

Hk,nλ
B
k,s − λGn,s + λHn,s = 0, ∀n, s (1n)∑

n

(λLn,s/σs −∆Wn,s − λKn,s) +
∑
u

(λIu,s − λJu,s) = 0, ∀s (1o)

− Fk +
∑
n

Hk,n(∆Wn,s −Dn + λKn,s + λLn,s/σs +
∑
u:n

(gu + λJu,s − λIu,s)) + λNk,s = 0, ∀k, s

(1p)

λIu,s + λOu,s = 0, ∀u, s (1q)

gu −Gu − λIu,s +
∑
z:u

Rz,s(Gu − gu)λMu,s/σs + λPu,s = 0, ∀u, s (1r)

λJu,s + λQu,s = 0, ∀u, s (1s)

gu + λJu,s −
∑
z:u

Rz,sguλ
M
u,s/σs − λRu,s = 0, ∀u, s (1t)

λKn,s + λSn,s = 0, ∀n, s (1u)

λTn,s − λKn,s − (Wn + ∆Wn,s) = 0, ∀n, s (1v)∑
n∈z

λLn,s = 0 : (δ(32)
z,s ), ∀z, s (1w)

σs
∑
u

(−ĉupu gupu,s + ĉdnu g
dn
u,s)− (αs

∑
n

∆Wn,s +
∑
k

µk,s(Fk −
∑
n

Hk,n(
∑
n:u

gu −Dn+

∆Wn,s)) +
∑
u

(βu,s(Gu − gu) + ϕu,sgu) +
∑
n

χn,s(Wn + ∆Wn,s))− (λAs
∑
n

∆Wn,s+∑
k

λBk,s(F −
∑
n

(Hk,n(
∑
n:u

gu + ∆Wn,s −Dn))) +
∑
u

(λDu,s(Gu − gu) + λFu,sgu−

λIu,sĉ
up
u σs + λJu,sĉ

dn
u σs) +

∑
n

λHn,s(Wn + ∆Wn,s)) = 0 : (δ(48)
s ), ∀s (1x)∑

u

gu =
∑
n

Dn : (δ(49)) (1y)

F̄l −
∑
z

H ′l,z(
∑
u:z

gu −
∑
n:z

Dn) ≥ 0 : (δ
(50)
l ), ∀l (1z)
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0 ≤ gu ≤ Gu : (δ(51)
u , δ(52)

u ) ∀u (1aa)

ĉu − ξ +
∑
z:u

∑
l

H ′l,zγl − ηu + νu = 0 : (δ(53)
u ), ∀u (1ab)

−
∑
u

ĉugu − (ξ
∑
n

−Dn +
∑
l

γl(F̄l +
∑
z

H ′l,z(
∑
n:z

Dn)) +
∑
u

νuGu) = 0 : (δ(57)) (1ac)

µk,s, κu,s, βu,s, ψu,s, ϕu,s, θn,s, χn,s, λ
B
k,s, λ

C
u,s, λ

D
u,s, λ

E
u,s, λ

F
u,s, λ

G
n,s, λ

H
n,s, λ

M
u,s, λ

N
k,s, λ

O
u,s, λ

P
u,s,

λQu,s, λ
R
u,s, λ

S
n,s, λ

T
n,s, γl, ηu, νu ≥ 0 : (δ

(12)
k,s , δ

(13)
u,s , δ

(14)
u,s , δ

(15)
u,s , δ

(16)
u,s , δ

(17)
n,s , δ

(18)
n,s , δ

(33)
k,s , δ

(34)
u,s ,

δ(35)
u,s , δ

(36)
u,s , δ

(37)
u,s , δ

(38)
n,s , δ

(39)
n,s , δ

(40)
u,s , δ

(41)
k,s , δ

(42)
u,s , δ

(43)
u,s , δ

(44)
u,s , δ

(45)
u,s , δ

(46)
n,s , δ

(47)
n,s , δ

(54)
l , δ(55)

u , δ(56)
u )

(1ad)

ĉupu =
∑
a

B̂u,ax
up
u,aC

up
u , ĉdnu =

∑
a

B̃u,ax
dn
u,aC

dn
u (1ae)

xupu,a, x
dn
u,a ∈ {0, 1} (1af)

πu = νuGu + gu(ĉu − Cu), ∀u (1ag)

ĉu =
∑
a

Bu,axu,aCu, ∀u, xu,a ∈ {0, 1}, (1ah)

gu =
∑
r

Eu,ryu,r,
∑
r

yu,r ≤ 1, ∀u, yu,r ∈ {0, 1} (1ai)

Linerization of bilinear terms guxu,a, x
up
u,ag

up
u,s, x

dn
u,ag

dn
u,s, λ

I
u,sx

up
u,a, λ

J
u,sx

dn
u,a, λ

M
u,sx

up
u,a,

λMu,sx
dn
u,a, βu,sgu, ϕu,sgu, µk,s

∑
n,n:u

Hk,ngu, λ
B
k,s

∑
n,n:u

Hk,ngu, λ
D
u,sgu, λ

F
u,sgu, λ

M
u,sgu

(1aj)

Constraints (1y)− (1ac), (1ag)− (1ai), ∀j (1ak)

Constraints (1b)− (1x), (1ad)− (1af), (1aj), ∀i, j (1al)

Es[φu,s] ≥ Es[φ(i),(j)
u,s ], ∀u, i, j (1am)

πu + Es[φu,s]− π(j)
u − Es[φ(i),(j)

u,s ] + ζu ≥ 0, ∀u, i, j (1an)

The set of decision variables in (1) is Φ and the elements of Φ is defined in part I of this
paper [1]. Our proposed solution algorithm has the following three modules.

3.1. Module 1: Grid refinement technique

The proposed stochastic MILP (1) computes SPNE for a discrete approximation of
prices. One potential problem with this approximation technique is that the price grid
might be rather coarse and it may influence the SPNE outcomes. To tackle this problem
we propose an iterative grid-refinement technique as illustrated in Fig. 1. In the first
iteration (price grid is shown in black color) we find the SPNE which is shown as black dot
in the grid. In the next iteration we build a new grid (shown in blue color) around the SPNE
found in the first iteration. The new SPNE is found analogously to the first SPNE, but
for an updated grid. This grid-refinement process continues until the predefined tolerance
is reached. This technique iteratively improves the accuracy of the discrete approximation
technique used when deriving stochastic MILP model (1).
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The tolerance in iteration q is calculated by τ (q) = τ (q−1)/(A − 1) where A is the
number of bidding actions. Based on τ (q), the bid grid (Bu,a,B̂u,a,B̃u,a) is determined. The
algorithm stops when τ (q) is less than or equal to the predefined tolerance, τ̄ .

Grid in iteration 1
Grid in iteration 2
Grid in iteration 3

Price-bid
 limit

($/MWh)

Price-bid limit 
($/MWh)

SPNE in iteration 3
SPNE in iteration 2
SPNE in iteration 1

τ(q-2) 

τ(q-1) 

τ(q) 

Price-bid of 
producer 2

Price-bid of 
producer 1

Figure 1: Iterative grid-refinement technique

3.2. Module 2: Constraint-reduction technique

The proposed stochastic MILP in (1) has constraints for the SPNE strategy and for
alternative strategies for all producer. The connections between these constraints are by
the profits in day-ahead market and real-time market in (1am) and (1an). Fig. 2 shows that
for a given SPNE strategy (shown in blue shaded cell), we can form a set which consists
all alternative strategies of each producer while holding its competitors’ strategies fixed
(shown in black shaded cells). Using this set, each producer’s profits in day-ahead and
real-time markets can be calculated for all alternative strategies separately. This allows
us to remove the constraints related to the alternative strategies (constraints (1ak) and
(1al)) from stochastic MILP model (1). For calculating each producer’s profits for all of its
alternative bidding strategies (while holding its competitors’ strategies fixed), we formulate
the feasibility model in (2). The bidding decisions (ĉu, ĉupu and ĉdnu ) are fixed in their values
in alternative strategy (i, j). Model (2) has only yu,r as binary variable. Accordingly,
model (2) for each alternative strategy is independent from each other so they can be run
in parallel.

Find Φ̂ = Π ∪ {λAs , λBk,s, λCu,s, λDu,s, λEu,s, λFu,s, λGn,s, λHn,s, λIu,s, λJu,s, λKu,s, λLn,s, λMu,s, λNk,s, λOu,s,
λPu,s, λ

Q
u,s, λ

R
u,s, λ

S
n,s, λ

T
n,s, gu, ξ, γl, ηu, νu, πu, yu,r} (2a)

Such that

Constraints (1b)− (1ad), (1ag), (1ai), (1aj) (2b)

ĉu = ĉ(j)
u , ĉupu = ĉup,(i),(j)u , ĉdnu = ĉdn,(i),(j)u , ∀u (2c)

The elements of set Π is defined in part I of this paper [1].
Table 1 shows that our constraint-reduction technique reduces the size of our SPNE

model and helps us to achieve the optimal solution in shorter time. To be able to apply the
constraint-reduction technique, we use the decomposition technique explained in Module
3.
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j=1
i=1

j=1
i=2

j=J
i=I

j=1
i=1
j=1
i=2.
.
.

j=J
i=I

...

Pr
od

uc
er

 1

Producer 2

Producer 1's alternative 
strategies given the 

strategy of producer 2

Producer 2's 
alternative strategies 
given the strategy of 

producer 1

SPNE strategy

Figure 2: The concept of our constraint-reduction technique

Table 1: The size of the MILP model (1) before and after applying constraint-reduction tech-
nique, CR: Constraint reduction, Q1=KS(5+8AU )+US(26 + 24A+20AU )+13NS+3S, Q2=2L+8U+2,
Q3=US(5AU+6A+18)+KS(2AU+3)+9NS+ZS+2U+2S, Q4=1+L+UA+5U , see also nomenclature in
part I [1]

MILP model (1)

Before CR After CR

# of constraint Q1(IJ+1)+Q2(J+1)+2 Q1+Q2+2
# of binary variables U(3A+AU+AJ+AIJ+JAU ) U(3A+AU )
# of continuous variables Q3(1+JI)+Q4(1+J)+U Q3+Q4+U

3.3. Module 3: Decomposition technique

We use modified and parallelized Benders decomposition to decompose the MILP model
in (1) into a master problem and a subproblem. The master problem is a relaxation of the
MILP model in (1) which contains only the binary variables. The subproblem is obtained
by fixing the binary variables in the MILP model in (1). Their formulations are explained
below.

3.3.1. Subproblem

Given the set of binary variables, the subproblem is a LP and formulated in (3).

Minimize
Ψ̂

Υ =
∑
u

ζu (3a)

Subject to:

Constraints (1b)− (1ae), (1ag)− (1aj) (3b)

Es[φu,s] ≥ Es[φ̄(i),(j)
u,s ], ∀u, i, j (3c)

πu + Es[φu,s]− π̄(j)
u − Es[φ̄(i),(j)

u,s ] + ζu ≥ 0, ∀u, i, j (3d)

x̃u,a = x̄u,a : Λu,a, ∀u, a, x̃upu,a = x̄upu,a : Λupu,a, ∀u, a (3e)

x̃dnu,a = x̄dnu,a : Λdnu,a, ∀u, a, ỹu,r = ȳu,r : Λ̂u,r ∀u, r (3f)
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The set of decision variables in (3) is Ψ̂=Φ̂ \ {yu,r} ∪{ĉu, ĉupu ,ĉdnu ,x̃u,a,x̃
up
u,a,x̃dnu,a,ỹu,r}. Here

x̄u,a, x̄
up
u,a, x̄dnu,a and ȳu,r are the given binary decisions and x̃u,a, x̃

up
u,a, x̃

up
u,a and ỹu,r repre-

sent the continuous variables. The binary variables (xu,a, x
up
u,a, xdnu,a, yu,r) are replaced by

continuous variables (x̃u,a, x̃
up
u,a, x̃

up
u,a, ỹu,r) in constraint (3b). Note that π̄

(j)
u and Es[φ̄

(i),(j)
u,s ]

are parameters and calculated in Module 2.
If optimization model (3) has an optimal solution, the upper bound of MILP (1) is

updated by UB = min(UB,Υ). If optimization model (3) is infeasible, the feasibility
subproblem formulated in (4) is solved.

Minimize
Ψ̃

Υ̂ =
∑
u

ζu +
∑
s

(Γ̂s + Γ̃s) (4a)

Subject to:

Constraints (1b)− (1ae), (1ag)− (1aj), (3c)− (3f) (4b)

σs
∑
u

(−ĉupu gupu,s + ĉdnu g
dn
u,s)− (αs

∑
n

∆Wn,s +
∑
k

µk,s(Fk −
∑
n

Hk,n(
∑
n:u

gu −Dn+

∆Wn,s)) +
∑
u

(βu,s(Gu − gu) + ϕu,sgu) +
∑
n

χn,s(Wn + ∆Wn,s))− (λAs
∑
n

∆Wn,s+∑
k

λBk,s(F −
∑
n

(Hk,n(
∑
n:u

gu + ∆Wn,s −Dn))) +
∑
u

(λDu,s(Gu − gu) + λFu,sgu−

λIu,sĉ
up
u σs + λJu,sĉ

dn
u σs) +

∑
n

λHn,s(Wn + ∆Wn,s)) = Γ̂s − Γ̃s, ∀s (4c)

The set of decision variables in (4) is Ψ̃=Ψ̂ ∪{Γ̂s,Γ̃s}.

3.3.2. Master problem

Given the sensitivities in iteration q, (Λ
(q)
u,a, Λ

up,(q)
u,a , Λ

dn,(q)
u,a , Λ̂

(q)
u,r), we formulate the

master problem in (5).

Minimize
Π̂

% (5a)

Subject to

% ≥ Υ(q) +
∑
u,a

(Λ(q)
u,a(xu,a − x̄(q)

u,a) + Λup,(q)u,a (xupu,a − x̄up,(q)u,a ) + Λdn,(q)u,a (xdnu,a − x̄dn,(q)u,a ))+∑
u,r

(Λ̂(q)
u,r(yu,r − ȳ(q)

u,r)), ∀q ∈ R (5b)

0 ≥ Υ̂(q) +
∑
u,a

(Λ(q)
u,a(xu,a − x̄(q)

u,a) + Λup,(q)u,a (xupu,a − x̄up,(q)u,a ) + Λdn,(q)u,a (xdnu,a − x̄dn,(q)u,a ))+∑
u,r

(Λ̂(q)
u,r(yu,r − ȳ(q)

u,r)), ∀q ∈ O (5c)

% ≥ % (5d)

The set of decision variables in (5) is Π̂={xu,a,xupu,a,xdnu,a, yu,r,%}. Constraints (5b) and (5c)
are the optimality and feasibility cuts, respectively. The lower bound of % is modeled in

8



(5d). The objective value of optimization model (5) gives a lower bound of MILP model
(1). In each iteration, the lower bound is updated by LB = %. Note that if master problem
(5) is infeasible in any iteration, the algorithm stops. It means the game does not have any
SPNE.

When UB and LB are close enough, a SPNE is found. If the tolerance of the price grid
is less than or equal to the predefined tolerance, the algorithm stops. Otherwise, a new
price grid is selected around the found SPNE.

The whole proposed solution algorithm is illustrated in Fig 3. In Module 2, we use the
fork-join-parallelization method [20].

Start

Solve (2) for 
u=1, i=1, j=1

Solve (2) for 
u=1, i=1, j=2

Solve (2) for 
u=U, i=I, j=J...

Store

UB-LB<ε

Solve (3)
Update UB

Solve (5)
Update LB

End

No

No

Yes

Yes

𝜋 𝑢
(𝑗)
,𝐸𝑠[∅ 𝑢 ,𝑠

 𝑖 ,(𝑗)
] 

𝜏 ≤ 𝜏  

Select bid grid

Module 1

Module 2

Module 3

Module 1

Figure 3: The flowchart of the proposed solution algorithm
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4. SPNE-band approach

To compute multiple SPNE, we generalize and modify the equilibria-band concept in
[18]. In the generalized version, one would build a SPNE band by placing the SPNE with
the worst dispatch cost (WSPNE) into one end and the one with the best dispatch cost
(BSPNE) at the other end. However, our SPNE model is much larger than the Nash-
equilibrium model in [18]. Accordingly, the MILP models of WSPNE and BSPNE are hard
to solve. Hence, we modify the concept. We find a lower bound where the dispatch cost is
lower than the one in the BSPNE and an upper bound where the dispatch cost is higher
than the one in the WSPNE for building the SPNE band.

UB-WSPNE

LB-BSPNE

WSPNE

BSPNE
UB-WSPNE

LB-BSPNE
SB1

SB2

SBP
SBP-1

Ω1

Ω2

ΩP-1

SPNE band

SPNE 
band

D
isp

at
ch

 c
os

t
($

/h
)

Demand shocks

Figure 4: SPNE-band approach, UB: Upper bound, LB: Lower bound, SB1: Subinterval 1, Ω1: The upper
bound of subinterval 1

Fig. 4 illustrates our proposed SPNE-band concept. All SPNE are located between the
BSPNE and the WSPNE (shown in dashed lines). The blue lines represent the lower bound
of the BSPNE (LB-SPNE) and the upper bound of the WSPNE (UB-SPNE). We split the
SPNE band into several subintervals with a tolerance (ε) and we search for a representative
SPNE in each subinterval. This is modeled by adding constraint (6) in the stochastic MILP
model (1).

Ωp−1 ≤
∑
s,u

σs(ĉ
up
u g

up
u,s − ĉdnu gdnu,s) +

∑
u

ĉugu ≤ Ωp (6)

Constraint (6) ensures that the Total Dispatch Cost (TDC) in the found SPNE in
subinterval p is between the upper and lower limits of subinterval p (Ωp and Ωp−1 are
parameters) as in Fig. 4. If there is no SPNE in subinterval p, the resulting stochastic
MILP model becomes either infeasible or returns an objective value which is strictly greater
than zero (

∑
u ζu > 0).

The BSPNE1 can be found by solving MILP model (7).

Minimize
Φ\{ζu}

∑
u

ĉugu +
∑
s

σs(
∑
u

ĉupu g
up
u,s − ĉdnu gdnu,s) (7a)

Subject to:

Constraints (1b)− (1am) (7b)

1We should note that we do not find BSPNE or WSPNE in this study. BSPNE model (7) is introduced
for formulating Lemma 1 and Lemma 2.
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πu + Es[φu,s]− π(j)
u − Es[φ(i),(j)

u,s ] ≥ 0, ∀u, i, j (7c)

Lemma 1 (Lower bound of the BSPNE)
If the integrality constraints on the binary variables are relaxed in problem (7), then the
solution of the resulting model gives the lower bound of the BSPNE.

Proof. If the integrality constraints on the binary variables are relaxed in (7), the resulting
model becomes a relaxation of the BSPNE model and it finds a lower bound of the BSPNE.

For finding the WSPNE1, the minimization problem (7) should be changed to the max-
imization problem.

Lemma 2 (Upper bound of the WSPNE)
If the integrality constraints on the binary variables are relaxed in WSPNE model, then the
solution of the resulting model gives the upper bound of the WSPNE.

Proof. If the integrality constraints on the binary variables are relaxed in the WSPNE
model, the resulting model becomes a relaxation of the WSPNE model and it finds an
upper bound on the WSPNE.

Lemma 1 and Lemma 2 provide two easy-to-solve linear programs to find the lower and
upper bounds within which all SPNE lie. At this stage, we divide the interval [TDCLB−BSPNE ,
TDCUB−WSPNE ] to equal subintervals SB1, SB2,...,SBP . Each subinterval may or may not
include a representative SPNE. We design a pre-feasibility test which detects the subinter-
vals which has no SPNE. We start with the MILP model (1). The linear constraints related
to McCormick reformulation technique are replaced by the original bilinear terms. This
converts the MILP model (1) to its equivalent Mixed-Integer Bilinear Program (MIBLP)2.
Then, we relax the binary variables in the MIBLP mode and arrives at Bilinear Program
(BLP) model (8). If this BLP model is infeasible, the MIBLP is also infeasible. Accordingly,
the interval in question has no SPNE.

Maximize
Θ̂

∑
u

ĉugu +
∑
s

σs(
∑
u

ĉupu g
up
u,s − ĉdnu gdnu,s) (8a)

Subject to:

Constraints (1b)− (1ag) and constraints (1b)− (1ag) ∀i, j (8b)

cu ≤ ĉu ≤ cu : (δ(58)
u , δ(59)

u ), ∀u (8c)

cupu ≤ ĉupu ≤ cupu : (δ(60)
u , δ(61)

u ), ∀u (8d)

cdnu ≤ ĉdnu ≤ cdnu : (δ(62)
u , δ(63)

u ), ∀u (8e)

Es[φu,s] ≥ Es[φ(i),(j)
u,s ] : (δ

(64)
u,i,j), ∀u, i, j (8f)

πu + Es[φu,s]− π̄(i),(j)
u − Es[φ̄(i),(j)

u,s ] ≥ 0 : (δ
(65)
u,i,j), ∀u, i, j (8g)

Ωp−1 ≤
∑
s,u

σs(ĉ
up
u g

up
u,s − ĉdnu gdnu,s) +

∑
u

ĉugu ≤ Ωp : (δ(66), δ(67)) (8h)

2The reason for using MIBLP is that we do not need to tune the disjunctive parameters in the McCormick-
related constraints.
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The set of decision variables in (8) is Θ̂=Φ \ {xu,a,xupu,a, xdnu,a, yu,r}. Since the BLP model
(8) is hard to solve we solve its dual program. The Lagrange multipliers related to the
constraints of (8) are given in parenthesis. The dual program of nonconvex BLP (8) is
formulated in (9).

Minimize
Θ̃

∑
s

δ(1)
s (

∑
n

(∆Wn,s −Dn) +
∑
u,s

δ(4)
u,sGu −

∑
n,s

δ(24)
s ∆Wn,s +

∑
k,s

δ
(2)
k,s(Fk−∑

n

Hk,n(∆Wn,s −Dn)) +
∑
n,s

δ(8)
n,s(∆Wn,s +Wn)−

∑
n,s

δ(31)
n,s (∆Wn,s +Wn)+

∑
k,s

δ
(25)
k,s (−Fk +

∑
n

Hk,n(∆Wn,s −Dn))− δ(49)
∑
n

Dn −
∑
u,s

δ(27)
u,s Gu+

∑
l

δ
(50)
l (F̄l +H ′l,z(

∑
z:n

Dn)) +
∑
u

(δ(52)
u Gu − δ(58)

u cu + δ(59)
u cu − δ(60)

u cupu +

δ(61)
u cupu − δ(62)

u cdnu + δ(63)
u cdnu ) + δ(66)Ωp − δ(67)Ωp−1 (9a)

Subject to:

− δ(53)
u + δ(58)

u − δ(59)
u = 0,∀u (9b)

−
∑
s

σs(δ
(9)
u,s + δ(21)

u,s ) + δ(60)
u − δ(61)

u = 0,∀u (9c)∑
s

σs(δ
(10)
u,s + δ(22)

u,s ) + δ(62)
u − δ(63)

u = 0,∀u (9d)

δ(1)
s −

∑
n:u,k,s

Hk,n(δ
(2)
k,s + δ

(25)
k,s )

∑
s

(δ(4)
u,s + δ(6)

u,s + δ(27)
u,s − δ(29)

u,s ) + δ(49) −
∑
u:z,l

H ′l,zδ
(50)
l +

δ(51)
u − δ(52)

u −
∑
i,j

δ
(65)
u,i,jCu = 0, ∀u (9e)

δ(1)
s −

∑
u:n,k

Hk,nδ
(2)
k,s + δ(3)

u,s − δ(4)
u,s − Cupu δ(20)

u,s −
∑
i

Cupu δ
(64)
u,i,jσs −

∑
i,j

Cupu δ
(65)
i,j,sσs = 0, ∀u, s

(9f)

− δ(1)
s +

∑
u:n,k

Hk,nδ
(2)
k,s + δ(5)

u,s − δ(6)
u,s + Cdnu δ(20)

u,s +
∑
i

Cdnu δ
(64)
u,i,jσs +

∑
i,j

Cdnu δ
(65)
i,j,sσs = 0, ∀u, s

(9g)

− δ(1)
s +

∑
k

Hk,nδ
(2)
k,s + δ(7)

n,s − δ(8)
n,s = 0, ∀n, s (9h)∑

u

(δ(9)
u,s − δ(10)

u,s )−
∑
n

δ(11)
n,s = 0, ∀s (9i)∑

n

Hk,n(
∑
n:u

(δ(10)
u,s − δ(9)

u,s) + δ(11)
n,s ) + δ

(12)
k,s = 0, ∀k, s (9j)

δ(9)
u,s + δ(13)

u,s = 0, ∀u, s (9k)

δ(15)
u,s + δ(16)

u,s = 0, ∀u, s (9l)

δ(17)
n,s + δ(18)

n,s = 0, ∀n, s (9m)
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− δ(9)
u,s + δ(14)

u,s + (
∑
z:u

Rz,s)Gu(δ(20)
u,s /σs +

∑
i

δ
(64)
u,i,j +

∑
i,j

δ
(65)
u,i,j) = 0, ∀u, s (9n)

δ(24)
s −

∑
u:n,k

Hk,sδ
(25)
k,s + δ(26)

u,s − δ(27)
u,s = 0, ∀u, s (9o)

− δ(24)
s +

∑
u:n,k

Hk,sδ
(25)
k,s + δ(28)

u,s − δ(29)
u,s = 0, ∀u, s (9p)

− δ(24)
s +

∑
k

Hk,sδ
(25)
k,s − δ

(31)
n,s − δ(30)

n,s = 0, ∀n, s (9q)∑
k

Hk,sδ
(25)
k,s /σs + δ(32)

n,s − δ(24)
s /σs = 0, ∀n, s (9r)

(
∑
z:u

Rz,s)Gu(δ(27)
u,s /σs + δ(40)

u,s = 0, ∀u, s (9s)

δ
(25)
k,s + δ

(41)
k,s = 0, ∀k, s (9t)

δ(26)
u,s + δ(42)

u,s = 0, ∀u, s (9u)

δ(27)
u,s + δ(43)

u,s = 0, ∀u, s (9v)

δ(28)
u,s + δ(44)

u,s = 0, ∀u, s (9w)

δ(29)
u,s + δ(45)

u,s = 0, ∀u, s (9x)

δ(30)
n,s + δ(46)

n,s = 0, ∀n, s (9y)

δ(31)
u,s + δ(47)

u,s = 0, ∀u, s (9z)

δ(53)
u + δ(55)

u = 0, ∀u (9aa)∑
u

δ(53)
u − δ(57)

∑
n

Dn = 0 (9ab)

−
∑
z

H ′l,z(
∑
u:z

δ(53)
u ) + δ

(54)
l − δ(57)

∑
l

(F̄l +
∑
z

H ′l,z(
∑
n:z

Dn)) = 0, ∀l (9ac)

− δ(53)
u + δ(56)

u − δ(57)
∑
u

Gu = 0, ∀u (9ad)

1 +
∑
i,j

δ
(65)
u,i,j − δ

(66) + δ(67) − δ(57) = 0, ∀u (9ae)

σs + δ(20)
u,s + σs

∑
i

δ
(64)
u,i,j +

∑
i,j

δ
(65)
u,i,jσs − δ

(66)σs + δ(67)σs = 0, ∀u, s (9af)

∑
z:u

Rz,sδ
(20)
u,s /σs +

∑
z:u

Rz,s(
∑
i,j

()δ
(64)
u,i,j + δ

(65)
u,i,j) = 0, ∀u, s (9ag)

∑
z:u

Rz,s(δ
(20)
u,s /σs +

∑
i,j

(δ
(64)
u,i,j + δ

(65)
u,i,j)) = 0, ∀u, s (9ah)

−
∑
z:u

Rz,sδ
(27)
u,s /σs +

∑
z:u

Rz,sδ
(29)
u,s /σs = 0, ∀u, s (9ai)

δ
(2)
k,s, δ

(3)
u,s, δ

(4)
u,s, δ

(5)
u,s, δ

(6)
u,s, δ

(7)
n,s, δ

(8)
n,s, δ

(12)
k,s , δ

(13)
u,s , δ

(14)
u,s , δ

(15)
u,s , δ

(16)
u,s , δ

(17)
n,s , δ

(18)
n,s , δ

(20)
u,s , δ

(33)
k,s , δ

(34)
u,s ,
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δ(35)
u,s , δ

(36)
u,s , δ

(37)
u,s , δ

(38)
n,s , δ

(39)
n,s , δ

(40)
u,s , δ

(41)
k,s , δ

(42)
u,s , δ

(43)
u,s , δ

(44)
u,s , δ

(45)
u,s , δ

(46)
n,s , δ

(47)
n,s , δ

(50)
l , δ(51)

u , δ(52)
u ,

δ
(54)
l , δ(55)

u , δ(56)
u , δ(58)

u , δ(59)
u , δ(60)

u , δ(61)
u , δ(62)

u , δ(63)
u ≥ 0 (9aj)

Constraints (9a)− (9aj), ∀i, j (9ak)

δ
(64)
u,i,j , δ

(65)
u,i,j , δ

(66), δ(67) ≥ 0 (9al)

In optimization problem (9), Θ̃=V ∪ V (i),(j)∪{δ(64)
u,i,j ,δ

(65)
u,i,j , δ

(66),δ(67)} where V={δ(1)
s , δ

(2)
k,s,

δ
(3)
u,s, δ

(4)
u,s, δ

(5)
u,s,δ

(6)
u,s,δ

(7)
n,s,δ

(8)
n,s, δ

(9)
u,s,δ

(10)
u,s ,δ

(11)
n,s ,δ

(12)
k,s ,δ

(13)
u,s ,δ

(14)
u,s ,δ

(15)
u,s ,δ

(16)
u,s ,δ

(17)
n,s ,δ

(18)
n,s ,δ

(19)
n,s , δ

(20)
u,s ,δ

(21)
u,s ,

δ
(22)
u,s ,δ

(23)
n,s ,δ

(24)
s ,δ

(25)
k,s ,δ

(26)
u,s ,δ

(27)
u,s ,δ

(28)
u,s ,δ

(29)
u,s ,δ

(30)
n,s , δ

(31)
n,s ,δ

(32)
z,s ,δ

(33)
k,s ,δ

(34)
u,s ,δ

(35)
u,s ,δ

(36)
u,s ,δ

(37)
u,s ,δ

(38)
n,s ,δ

(39)
n,s ,

δ
(40)
u,s ,δ

(41)
k,s , δ

(42)
u,s ,δ

(43)
u,s ,δ

(44)
u,s ,δ

(45)
u,s ,δ

(46)
n,s ,δ

(47)
n,s ,δ

(48)
s ,δ(49),δ

(50)
l ,δ

(51)
u ,δ

(52)
u , δ

(53)
u ,δ

(54)
l ,δ

(55)
u ,δ

(56)
u ,δ(57),

δ
(58)
u ,δ

(59)
u ,δ

(60)
u ,δ

(61)
u , δ

(62)
u ,δ

(63)
u }.

Now, we have the following lemma.

Lemma 3 (Pre-feasibility test)
If LP model (9) is unbounded in subinterval SBp, then there is no SPNE in subinterval
SBp.

Proof. Based on duality theory, we know that (a) the dual of a nonconvex program is
always convex and (b) if a primal program is infeasible, the dual program is unbounded
[21]. Therefore if LP model (9) is unbounded, then primal BLP problem (8) which is
a relaxation of (7) is infeasible. If the relaxation of (7) is infeasible, it is ensured that
problem (7) is infeasible. In other words, there is no SPNE in subinterval SBp. Note that
our feasibility test is based on solving an easy-to-solve LP model (9).

Using the pre-feasibility test in Lemma 3, we first solve LP model (9), to detect the
subintervals without SPNE. Accordingly, we solve MILP model (1) in less number of subin-
tervals. This improves the computational tractability for finding the set of representative
SPNE. The algorithm for the SPNE-band approach is outlined in Algorithm 1. Steps 1-3
explain how the SPNE band is constructed. In Step 4, the application of pre-feasibility test
and the parallelization of the SPNE search is described. After splitting the SPNE band
into several subintervals, there is no communication requirement between these subintervals.
Therefore the SPNE can be searched in all subintervals in parallel. We use the fork-join
parallelization method in Algorithm 1. This parallel architecture is presented in Fig. 5.

SB1 ...

Thread-1

SB2

Thread-2

SBP

Thread-P

Start

End

SB3

Thread-3

Figure 5: Application of fork-join method to our proposed SPNE-band approach
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Algorithm 1: Proposed SPNE-band approach

Step 1: Calculate the lower bound of the SPNE band.
Step 2: Calculate the upper bound of the SPNE band.
Step 3: Construct SPNE band by:
(a) Decide number of subintervals by P=log(1+ε)

UB
LB

(b) Calculate upper bound of subinterval SBp by Ωp=(1+ε)Ωp−1.
Step 4: Search a SPNE in subinterval SBp by the steps below:
for p=1 to P do

Solve LP model (9) for subinterval SBp;
if LP model (9) is unbounded then

Report no SPNE found for subinterval SBp;
else

Solve MILP model (1) for subinterval SBp using the proposed solution
algorithm.;

if optimal solution found (
∑

u ζu = 0) then
Report SPNE found for subinterval SBp;

else
Report no SPNE found for SBp;

end

end

end

5. Numerical Results

We use the same 6-node and modified IEEE 30-node examples presented in part I of this
paper [1] to demonstrate our proposed solution algorithm and the SPNE-band approach.

Algorithm 1 is employed in 6-node system and the results are illustrated in Fig. 6. The
SPNE band is split into 14 subintervals by setting ε to 10%. The pre-feasibility test returns
unbounded solution in subintervals SB1, SB2 and SB8-SB14. So there is no SPNE in these
subintervals. We search for a representative SPNE in SB3, SB4, SB5, SB6 and SB7. We
find a SPNE only in SB5.

SB3-SB4
PFT    (X)

2369 2866.5 3815.33468.5 4196.8 4616.5 8894

PFT    (✓)
SPNE (X) PFT    (X)

SB5 SB6 SB7 SB8-SB14SB1-SB2

PFT    (✓)
SPNE (X)

PFT    (✓)
SPNE (✓)

PFT    (✓)
SPNE (X)

Figure 6: The SPNE band in the 6-node system, PFT: Pre-feasibility test, (X): No solution found, (X):
Optimal solution found

First, the price grid is set by the values used in part I of this paper [1] with a tolerance of
τ (1)=20%. Then, it is reduced to τ (2)=10% and τ (3)=5% with the grid-refinement technique.
We see that there is no change in the SPNE between the grid-refinement iterations for the
6-node system.

We employ Algorithm 1 to the modified IEEE 30-node system and the results are
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shown in Fig. 7. The SPNE band is split into 8 subintervals by setting the tolerance to
ε=10%. The pre-feasibility test returns unbounded solutions in SB1, SB2, SB7 and SB8.
A representative SPNE is searched in SB3, SB4, SB5 and SB6. The SPNE is only found
in SB4.

SB3
7120 8615.2 10424.49476.7 11466.8 12613.5 14865.3

PFT    (X)
PFT    (✓)
SPNE (✓)

SB4 SB5 SB6 SB7-SB8SB1-SB2

PFT    (✓)
SPNE (X)PFT    (X)

PFT    (✓)
SPNE (X)

PFT    (✓)
SPNE (X)

Figure 7: The SPNE band in the modified IEEE 30-node system, PFT: Pre-feasibility test, (X): No solution
found, (X): Optimal solution found

We iteratively refine the price grid. In the first iteration, the grid tolerance is set to
τ (1)=20%. Then it is set to τ (2)=10% and τ (3)=5% in iterations 2 and 3, respectively. We
see that the bids of u1, u2, u3 and u4 in the SPNE in the iterations of the grid refinement
technique remain the same. Producer u5, however, changes its up-regulation bid from 39.05
$/MWh to 39.938 $/MWh and this change increases its profit from 250.8 $/h to 310.9 $/h.
We observe that improving the accuracy of the price grid of u5 affects its profit by 24%.

We consider IEEE 118-node system [22] to further examine the impact of the grid-
refinement technique in a large system. Table 2 shows the data of the producers considered
in the IEEE 118-node system.

Table 2: Producer Data for IEEE 118-node system

Node
Cu Cupu Cdnu Gu

($/MWh) ($/MWh) ($/MWh) (MW)

u1 30 23 31.5 12.5 1200

u2 32 22.5 30.5 11.5 1200

u3 66 24.5 33.5 14.5 1000

u4 92 23.5 34.5 15.5 400

u5 77 25 35.5 16.5 1000

u6 110 25.5 35 17 1000

In the first iteration of the grid-refinement technique the tolerance is set to τ (1)=40%.
The profit of each producer in each iteration of the grid refinement technique is shown in
Table 3. The percentages which written in bold fonts in Table 3 shows how many percent
the profit changes as compared to the previous iteration. We observe that, except for u2,
each producer’s total profit is affected by the improved accuracy of the price grid. The
grid-refinement technique improves the tolerance of price grid from τ (1)=40% to τ (4)=5%
through 4 iterations and we see that total profit of all producers are affected by 17.3%,
12.4% and 5.5% in iterations 2, 3 and 4, respectively.

To examine the computational performance of our proposed solution algorithm, we
consider IEEE 300-node systems. The simulations are performed on a computer with 18
cores with Intel Xeon E5-2699 CPU and 128 GB of RAM. We use the same producers’
data as in the IEEE 118-node system. Table 4 illustrates the size and solution time of each
example considered in this study.
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Table 3: The total expected profits of each producer in each iteration of grid-refinement technique, it:
Iteration

it. 1 (τ (1)=40%) it. 2 (τ (2)=20%) it. 3 (τ (3)=10%) it. 4 (τ (4)=5%)

u1 9658.8 12851.2 (33.1%) 14321.2 (11.4%) 15056.2 (5.1%)

u2 17711.5 13545.8 (-23.5%) 13545.8 (0%) 13545.8 (0%)

u3 500 980 (96%) 1470 (50%) 1715 (16.7%)

u4 600 1380 (130%) 1870 (35.5%) 2115 (13.1%)

u5 0 1950 3175 (62.8%) 3787 (19.3%)

u6 0 2687.6 3135.5 (16.7%) 3359.5 (7.1%)

Total 28470.3 33394.6 (17.3%) 37517.5 (12.4%) 39578.5 (5.5%)

Table 4: The required time for finding one SPNE by solving MILP model (1) in all example systems, (*):
No solution found after 24 hours, Var: Variables, BD: Benders decomposition, SA: Solution algorithm

6-node 30-node 118-node 300-node

# of constraints 297,578 1,845,098 8,509,754 18,801,882

# of binary var. 591 985 1,182 1,182

# of continuous var. 116,081 647,247 2,646,900 5,784,804

BD embedded
55m 18h25m * *

in CPLEX

Proposed SA 40m 15h45m 18h15m 22h35m

We see that Benders decomposition embedded in CPLEX can find a SPNE in the 6-node
and the IEEE 30-node systems. For the IEEE 118-node and the IEEE 300-node examples,
the CPLEX solver did not return any solution after 24 hours of running. This is while our
proposed solution algorithm can find the optimal solution (i.e. SPNE of the game).

6. Conclusion

For large-scale examples, we propose (i) a solution algorithm to solve the proposed MILP
model in part I and (ii) a method to tackle multiple SPNE situation. Our proposed solution
algorithm decomposes the MILP model in part I into several subproblems and solves them
iteratively. Moreover, it improves the accuracy of the price grid. For a given price grid, our
proposed solution algorithm decomposes the MILP model into several subproblems and it
solves them iteratively. After finding a SPNE, it improves the accuracy of the price grid
and it searches for a new SPNE.

To tackle multiple SPNE, this paper proposes the SPNE-band approach. A band with
upper and lower bounds is designed and it is split into several subintervals and a SPNE
is searched in each subintervals using parallel computing. We also design a pre-feasibility
test to find the subintervals which have no SPNE. This pre-feasibility test enables us to
avoid searching for a SPNE in those intervals. The proposed solution algorithm and the
SPNE-band approach is applied on the 6-node, the modified 30-node, the IEEE 118-node
and the IEEE 300-node example systems. Our proposed solution algorithm can improve
the tractability of the optimal solution in 6-node and the modified IEEE 30-node example
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systems. Moreover, it can find the optimal solution in IEEE 118-node and the IEEE 300-
node example systems where the CPLEX solver cannot find it after running for 24 hours.
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