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Abstract

We present an integrated framework to understand the emissions impact of uni-

lateral overlapping policies within a carbon-pricing system. “Internal carbon leak-

age” captures emissions displacement within the system (e.g., due to greater product

imports from a neighbouring country). The waterbed effect captures the policy’s

interaction with the system’s overall emissions cap. Current market rules in the

reformed EU ETS, California’s carbon market and RGGI feature “punctured” wa-

terbeds that allow overlapping policies to affect aggregate emissions. We present

simple formulae to estimate internal carbon leakage for different types of policy such

as a carbon price floor (perhaps with a border tax adjustment), an energy efficiency

program, and renewables support. The sign and magnitude of the climate benefit

from an overlapping policy varies widely depending on its design, location and tim-

ing. Punctured waterbeds raise the stakes: well-designed overlapping policies can

be much more climate-effective but others now backfire.
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1 Introduction

Following reforms finally agreed in 2018, the European Union’s emissions trading scheme

(EU ETS) has been augmented with a Market Stability Reserve (MSR). The MSR’s

core feature is that, from 2023 onwards, it will cancel “excess” allowances (EUAs)—and

thereby make the EU ETS’s long-run emissions cap a function of market outcomes. This

transforms a “plain vanilla” cap-and-trade design with a fixed cap into a complex variant

of a “hybrid” policy instrument (Roberts and Spence, 1976; Pizer, 2002).

At the same time, Europe is seeing increasing unilateral action by individual EU

member states wishing to “do more” than what the ETS centrally provides. For example,

Great Britain has since 2013 imposed an additional Carbon Price Support on electricity

generation to “top up” the EUA price; in December 2018, the Netherlands committed to

introducing a similar policy.1 Other examples include a plethora of support mechanisms

for renewables and energy efficiency. These share a common feature: they are policies by

an individual country aimed at an individual sector within a multi-country multi-sector

ETS.

What is the climate benefit of such overlapping policies? Pre-MSR, the answer was

clear. With a binding EU-wide emissions cap, any unilateral emissions reduction is exactly

offset by an emissions increase elsewhere: the “waterbed effect” is 100% (Fankhauser et

al., 2010; Böhringer, 2014; Edenhofer et al., 2018). The MSR, by canceling a fraction

of surplus EUAs, punctures this waterbed. Recent estimates suggest that near-term

unilateral action that reduces EU-wide emissions demand by 1 ton of CO2 will, over time,

translate into an emissions reduction of .5 tCO2 or more (e.g., Perino, 2018). This enables

unilateral action to have a global climate benefit.

Yet the crucial missing link in the argument lies in figuring out how large a unilateral

action is actually required to achieve this 1 tCO2 reduction in EU-wide emissions demand.

The missing link is what we call “internal carbon leakage” within the EU ETS. Given the

degree of market integration across Europe, a unilateral policy that reduces the domestic

emissions of an individual country will often have knock-on effects on its neighbours. For

example, a unilateral carbon price floor on Dutch electricity may lead to an increase in

emissions—and higher allowance demand—from imports of German coal-fired power.

In this paper, we aim to fill this gap in the literature by providing a simple new

integrated framework to understand the climate impacts of such unilateral action. We

characterize internal leakage for three types of policy: cost-raising (e.g., a carbon price

floor), demand-reducing (e.g., an energy efficiency program) and supply-increasing (e.g.,

1Unilateral action has been driven by concerns about low/volatile EUA prices and other market
failures such as innovation externalities (Newbery et al., 2019). See also Flachsland et al. (2018) on the
potential for an EU-wide carbon price floor.
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renewables support). Our empirical illustrations show how our approach also speaks to

overlapping policies within a wider carbon tax system and to cap-and-trade systems in

North America. We hope our analysis will be of value to policymakers trying “in real

time” to gauge the attractiveness of domestic climate initiatives.

Internal carbon leakage differs from the forms of “external” leakage typically consid-

ered in the literature. This includes, most prominently, leakage to foreign jurisdictions

(Fowlie, 2009; Caron et al., 2015), e.g., leakage from the EU ETS to non-EU jurisdictions.

It also includes leakage to sectors in the same jurisdiction that are not covered by the

carbon-pricing system (Baylis et al., 2013), e.g., leakage from the EU ETS to uncovered

sectors such as transport.

2 Conceptual framework

Consider unilateral action by an individual country i within a multi-country carbon-

pricing system. Suppose that at a particular time t, holding the carbon price path τt =

(τt, τt+1, ..., τT ) fixed, this unilateral policy is successful at reducing country i’s domestic

demand for emissions, ∆eit < 0.

What is the policy’s equilibrium impact on overall emissions, ∆e∗t ? We answer this

question using the following expression:

∆e∗t = [1−Wt][1− Lit]∆eit, (1)

where Lit is the rate of internal carbon leakage associated with i’s policy and Wt is

the extent of the waterbed effect. Following IPCC (2007), we use the definition Lit ≡
− [∆e−it/∆eit]τt fixed, where ∆e−it is the change in the emissions demand of all other coun-

tries induced by i’s policy—holding current and future carbon prices τt fixed. Therefore

∆et ≡ [1−Lit]∆eit represents the net EU-wide change in allowance demand. This quantity

will generally vary from one unilateral policy to another.

Given this, the waterbed effect Wt ≡ 1− [∆e∗t/∆et]τt equilibrium captures that i’s policy

affects the system-wide carbon price path τt. This translates the net EU-wide change in

emissions demand ∆et into an equilibrium change in overall emissions ∆e∗t . The waterbed

effect may be time-dependent but does not depend on the details of i’s policy.

Under a “plain vanilla” cap-and-trade system with a fixed cap the waterbed effect

Wt = 1, and so i’s policy cannot shift overall emissions, ∆e∗t = 0. This conclusion applies

regardless of the size of Lit.

The EU ETS’s new MSR punctures the waterbed, Wt ∈ (0, 1), so internal leakage

becomes critical for the magnitude of ∆e∗t . We distinguish between three cases. First,

with intermediate leakage, Lit ∈ (0, 1), i’s policy induces an overall reduction in emissions,
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∆e∗t < 0. Second, with negative leakage, Lit < 0, the same conclusion applies. It is

strengthened whenever leakage is sufficiently negative; if Lit < [−Wt/(1−Wt)] ≡ Lt < 0,

then the combination of leakage and waterbed induces a stronger overall emissions cut,

∆e∗t < ∆eit. Third, with leakage above 100%, Lit ≥ 1, i’s policy now backfires in that

it leads to higher overall emissions, ∆e∗t ≥ 0 > ∆eit. In short, the MSR raises the

stakes: some policies can now backfire but well-designed policy can be much more climate-

effective.

Unilateral action under a “plain vanilla” carbon tax system has a zero waterbed: there

is no cap and no induced change in the carbon price. So this policy instrument is nested

as Wt = 0 in our approach—and the same three leakage cases apply.

We do not attempt to quantify ∆eit for any particular policy but rather are interested

in the mapping from a given ∆eit to ∆e∗t .

3 A model of internal carbon leakage

Next we present a new theory of internal carbon leakage arising from different types of

unilateral overlapping policy. The model is static; time subscripts are omitted to simplify

notation.

3.1 Model setup

There are two countries, i and j, where the latter can be interpreted as an aggregate of

all countries except i. A representative firm in each country produces output xk with a

cost function Ck(xk), where C ′k(·), C ′′k (·) > 0 for k = i, j. Firms face a common demand

function p(X), where X ≡ xi + xj and p′(·) < 0. Carbon emissions ek = θkxk, where the

emissions intensity θk > 0 is a constant, so emissions are proportional to output. This

is best thought of as the dirtiness of production at country k’s marginal plant. All firms

face a common carbon price τ .

Under perfect competition, the first-order condition for profit-maximization by the

firm in country k is given by:

p(X)− C ′k(xk)− τθk = 0 for k = i, j, (2)

so price equals marginal cost where the latter includes production and carbon costs.

Some further definitions will be useful. First, let εD ≡ −p(·)/Xp′(·) > 0 be the price

elasticity of demand. Second, let σk ≡ xk/X ∈ (0, 1) be the market share of country k’s

firm (so σi + σj ≡ 1). Third, let Ĉ ′k(xk) ≡ C ′k(xk) + τθk be k’s total marginal cost and

define ηSk ≡ xkĈ
′′
k (xk)/Ĉ

′
k(xk) > 0 as its elasticity, also noting that Ĉ ′′k (xk) ≡ C ′′k (xk). By
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k’s first-order condition, x′k(p) = 1/C ′′k (xk) > 0, i.e., its supply curve is upward-sloping.

So εSk ≡ px′k(p)/xk(p) > 0 is k’s price elasticity of supply and, at the firm’s optimum,

ηSk = 1/εSk .

To simplify the analysis, we focus on marginal policies that perturb the equilibrium

only by a small amount. Carbon leakage is thus defined as Li ≡ (−dej/dei). Given fixed

emissions intensities, this is equivalent to Li = (θj/θi) (−dxj/dxi), where the first term is

firms’ “relative dirtiness” and the second term is output leakage.

3.2 Cost-raising unilateral policy

We begin with a unilateral policy λi that imposes an additional carbon price only on i’s

firms. Formally, i’s firms now face a carbon price τi = τi(τ, λi), where d
dτ
τi(τ, λi),

d
dλi
τi(τ, λi) >

0, while j’s firms continue to face τj = τ . A leading example is a unilateral carbon price

floor on electricity generation designed to “top up” the EU ETS price, τi = τ + λi; our

setup is more general in that it allows the top-up to be non-uniform.

For concreteness, we can think of the firms’ common demand curve p(X) as the

willingness-to-pay of domestic consumers in country i; they are served partly by domestic

production from within i and partly by imports from j.

Such unilateral action leads to an asymmetric cost shock, inducing i’s firms to cut

production and emissions but thereby raising the “competitiveness” of rivals in j.

Proposition 1 A cost-increasing unilateral policy λi by country i has internal carbon

leakage to country j equal to:

Lcost
i =

θj
θi

σj(
σj + εD/εSj

) > 0.

Carbon leakage exceeds 100% whenever θj/θi is sufficiently larger than unity.

Carbon leakage is always positive because the underlying output leakage is positive—

i’s firms lose market share to j’s. Output leakage is always less than 100% as i’s policy

raises the market price, i.e., there is positive carbon cost pass-through. Yet carbon leakage

can exceed 100% if j’s firms are sufficiently dirtier.

Proposition 1 (proof and subsequent formal results in Appendix A) provides a simple

formula to quantify the leakage rate in terms of “industry primitives”. The comparative

statics are intuitive: leakage is high when i’s market share is small, demand is relatively

inelastic, and j’s firms are more supply-responsive (e.g., because they hold significant

spare capacity) and dirtier.
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This formalizes the rationale for a regional coalition within the EU introducing a

carbon price floor (Newbery et al., 2019): a coalition combines greater market share than

single-country action and contains leakage.

Finally, the formula for Lcost
i does not depend on the precise functional form of τi =

τi(τ, λi); this matters for the absolute output effects (dxi/dλi, dxj/dλi) but not for the

relative output effect—which is what Lcost
i captures.

3.3 Demand-reducing and supply-increasing unilateral policies

We now turn to a unilateral policy φi that reduces consumer demand or increases low-

emissions production. Formally, write the demand curve as p(X;φi) where ∂
∂φi
p(X;φi) <

0. Both firms continue to face the carbon price τ .

An example of a demand-reducing policy is an energy-efficiency program that reduces

consumer demand in country i; write direct demand as (1 − φi)D(p), so p(X;φi) =

D−1 (X/(1− φi)). An example of a supply-increasing policy is a renewables support

mechanism that brings in additional zero-emissions generation, so p(X;φi) = p(X + φi).

In both examples, ∂
∂φi
p(X;φi) < 0 at an interior equilibrium.

Such policies reduce the residual demand of i’s firms—but also that of j’s firms. In

this sense, the policy coverage is broader than for the cost-raising policy.

Proposition 2 Demand-reducing and supply-increasing unilateral policies φi by country

i have internal carbon leakage to country j equal to:

Ldemand
i = Lsupply

i = −θj
θi

σj
(1− σj)

εSj
εSi

< 0.

Carbon leakage is negative: j’s firms are directly affected and respond by cutting

output and emissions. Akin to Proposition 1, leakage is more strongly negative where j’s

firms are dirtier, more supply-responsive and have greater market share. In addition, it is

more pronounced if i’s own supply-responsiveness is weaker; then i’s output contraction

is smaller relative to j’s.

The leakage rate does not depend on any demand characteristics, including the form of

p(X;φi) and εD. The reason stems from policy coverage: different demand-side impacts,

in general, affect i’s and j’s absolute production responses but, because they are hit

by an identical demand shock, the relative magnitude does not depend on any demand

parameters. At the margin, both policies have identical carbon leakage: Ldemand
i = Lsupply

i .
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3.4 Extensions

We extend the model with an “end-of-pipe” abatement technology such as carbon capture

& storage that cleans up production ex post. A firm’s investment incentive rises with its

domestic carbon price. For a cost-raising policy, we show (Proposition 1A) that such

abatement reduces i’s leakage rate—though, as in Proposition 1, it remains positive and

exceeds 100% for θj/θi sufficiently high. Proposition 2 is unaffected because carbon prices

(τi, τj) remain the same and so i’s policy induces no incremental abatement (Proposition

2A).

A cost-increasing policy such as a unilateral carbon price floor is sometimes accom-

panied by a border tax adjustment (BTA) on imports. This increases policy coverage:

the higher carbon price now applies to both i’s and j’s firms. In a further extension,

we show (Proposition 1B) that a BTA can induce j’s firms to also cut emissions so that

Lcost+BTA
i < 0; in the special case where i and j have identical emissions intensities

(θi = θj), leakage is exactly as in Proposition 2, Lcost+BTA
i = Ldemand

i = Lsupply
i < 0. All

proofs are in Appendix B.

4 The punctured waterbed under the reformed EU

ETS

We next derive the waterbed effect Wt for the reformed EU ETS. The new MSR works as

follows. If the total number of allowances in circulation (the “bank”) exceeds 833 million

at the end of a given year (in 2017 or later), then the number of allowances auctioned in

the 12 months following October of the following year (but not before January 2019) is

reduced by a certain percentage of the size of the bank as shown in Table 1. Allowances

withheld are placed in the MSR and released in installments of 100 million/year once the

bank has dropped below 400 million. We label tB=833 the year in which the bank drops

below the 833 million threshold and the MSR hence stops taking in allowances.

Time at which bank exceeds 833 million allowances Intake rate
(on December 31st) (%)

2017 16∗

2018 - 2021 24
2021 - tB=833 12

Table 1: Intake rates for the EU ETS Market Stability Reserve (MSR)
∗ Two-thirds of 24 percent because the withdrawals that would be due in Oct.-Dec. 2018 do not materialize

(European Commission, 2018).

7



Starting in 2023, the maximum number of allowances held in the MSR is limited to

the number auctioned in the previous year. The target share of auctioning in Phase 4 is

57% (European Parliament and Council, 2018) with the remaining allowances being freely

allocated. Allowances stored in the MSR in excess of this upper bound are permanently

canceled. The long-run cap is thus a function of market outcomes—and can be impacted

by overlapping policies within the EU ETS.

We compute Wt as follows. The net change in allowance demand ∆et is assumed to

translate into an instantaneous change in the number of banked allowances assuming a

fixed carbon price path. With a fixed cap and no reserve mechanism, the bank would

hence shift by ∆et from that year forward. We call the associated change in allowances

transferred into the MSR and canceled, the direct impact.

We abstract from indirect impacts. One is that ∆et induces a small adjustment of

the carbon price and emission paths and hence the evolution of the bank. These effects

are small in the period just following t because the bank is a cumulative measure that

exhibits inertia towards small flow adjustments. A further indirect effect is changes to

the years in which the MSR thresholds are passed; given our focus on marginal policies,

the associated error is small.

Everything else equal, adding one allowance to the bank triggers a sequence of transfers

to the MSR. Because only a share ρt of the added amount is transferred in the first year,

the remainder (1−ρt) adds to the bank in the following year and again induces a transfer

at rate ρt+1, i.e. (1 − ρt)ρt+1, and so on. Using this rule, we compute the total direct

waterbed effect as a function of the time t of unilateral action and tB=833:

Lemma 1 For unilateral action in year t and the bank dropping below 833 million al-

lowances in year tB=833, the (direct) waterbed effect under the MSR is given by:

Wt,tB=833
= (1− .16)max[0,min[2018,tB=833]−max[2017,t]] (3)

× (1− .24)max[0,min[2022,tB=833]−max[2018,t]]

× (1− .12)max[0,max[2022,tB=833]−max[2022,t]].

The share of a net change in allowance demand in year t that ends up being canceled

is 1 −Wt,tB=833
. Figure 1 illustrates. The degree of puncture depends crucially on the

number of years left until tB=833. This date is subject to substantial uncertainty, with

estimates ranging from 2020 (Perino, 2018) to the second half of the 2030s (Beck and

Kruse-Andersen, 2018; Quemin and Trotignon, 2018), and tB=833 = 2030 as a mid-range

value (Vollebergh, 2018). The closer the change in net demand occurs to tB=833, the

smaller its impact on the long-run cap.
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Figure 1: The evolving waterbed effect in the EU ETS

Notes: Eventual impact of a marginal change in net allowance demand on overall EU ETS emissions

1−Wt (black) and the waterbed effect Wt (grey) as functions of the number of years until the aggregate

bank drops below 833 million allowances tB=833. Dashed: Effect in 2017 or earlier. Solid: Effect in 2022

or later. Effects for 2018-2021 in between (not shown). Calculations assume fixed carbon price path.
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5 Illustrations of unilateral overlapping policies

We now illustrate how real-world overlapping policies fit into our model’s framework. Our

main outcome of interest is the emissions reduction rate Rit = (1−Lit)(1−Wt), the ratio

of equilibrium system-wide to domestic emissions reductions. Figure 2 plots the contour

lines of Rit in (L,W )-space along with various policy examples (described in more detail

in Appendix C).

Figure 2: Unilateral policies facing internal carbon leakage and a waterbed effect
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Notes: Figure shows the contour plot of the emissions reduction rate Rit = (1−Lit)(1−Wt) of various

policies discussed in this section. Solid black lines indicate the contour lines where Rit = 0 (when L = 1

or W = 1) and Rit = 1 (bottom left). Dashed grey arrows indicate that, in the EU ETS, a policy’s Rit

moves towards zero as t approaches tB=833 and Wt → 1. We assume tB=833 = 2030. Solid grey arrows

show specific shifts in time for the German renewable energy support schemes and for a proposed regional

carbon price floor.

5.1 Overlapping policies in the EU ETS

As shown in Figure 1, the waterbed effect in the EU ETS depends on the year in which

the policy takes effect t and the number of years until the bank drops below 833 million
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allowances tB=833. We consider tB=833 = 2030 and contrast policies acting in years t =

2020, 2025 and 2030. As time moves on, Wt increases from 0.21 to 0.53 to 1 and all

European policies in Figure 2 (in grey) move north, as indicated by the dotted lines. The

internal leakage rate Lit is policy- and time-specific.

We first consider unilateral cost-raising policies such as a national carbon price floor

(CPF) for electricity generation—as announced in 2018 by the Dutch Government. Propo-

sition 1 shows that such policies, if binding, suffer from intra-EU leakage. We expect

high leakage for small countries (high σj) that are strongly interconnected to neighbours

with flexible yet dirty supply (high εSj , θj/θi). Consistent with this, recent estimates find

L ' 0.85 for the Dutch CPF, while a regional CPF including the Benelux, France and

Germany faces L = 0.61 (Frontier Economics, 2018; Vollebergh, 2018). Such CPFs in

small interconnected countries are unlikely to reduce EU-wide emissions by much, with

R = 0.15 in 2020 even under the punctured waterbed (see Figure 2).2 As more countries

join the CPF, R rises to 0.30. Furthermore, the solid grey arrow shows that the regional

CPF’s R decreases to 0.18 by 2025, so early action is preferable.

Cost-raising policies can backfire if imports are substantially dirtier than domestic

production (see Proposition 1). We plot a hypothetical “CPF with dirty imports” for

which L = 1.33 such that EU-wide emissions increase, R < 0.3 Since this policy lies

to the right of the R = 0 contour line, the negative effect gets weaker over time as the

waterbed effect gets stronger. Post-2030, all unilateral policies within the EU ETS end

up at R = 0.

As another example of a cost-raising unilateral policy, several European countries, such

as Austria, Germany, Norway and Sweden, have aviation taxes. The Netherlands had a

short-lived aviation tax in 2008-9, which faced leakage of 50% as passengers substituted

to Belgian and German airports (Gordijn and Kolkman, 2011). If reintroduced in 2020,

as planned by the current Dutch government (Dutch News, 2018), we estimate R =

0.38. There is some broader evidence that aviation taxes are most likely where leakage is

mitigated—e.g., in high-population countries (low σj) or countries far away from low-tax

airports abroad (high εSj ) (PricewaterhouseCoopers, 2017).

Unilateral renewable support schemes fit our definition of supply-increasing policies.

Abrell et al. (2019) estimate negative carbon leakage as zero-carbon energy offsets im-

ported gas- and coal-fired electricity in Germany (L = −0.50) and Spain (L = −0.12).

Similarly, a German government report finds L = −0.65 (Klobasa and Sensfuss, 2016).

Negative leakage corresponds to Proposition 2 and should also occur for energy-efficiency

policies.

2Internal carbon leakage may be weaker for Great Britain’s carbon price floor due to less intercon-
nection but we are not aware of any empirical estimates.

3We assume θj/θi = 2, εSj = 5⇔ ηSj = 0.2, σj = 0.2, and εD = 0.5.
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5.2 Overlapping policies in North America

In a stochastic sense, several carbon-pricing systems in North America have a punctured

waterbed. This happens in the presence of price floors and ceilings in allowance auctions,

combined with uncertainty over when the system will trade in the “intermediate range”

(full waterbed) vs. at the price floor/ceiling (zero waterbed).

California and Québec have a joint carbon market with an auction price floor and,

in a recent proposal to take effect in 2021, a hard price ceiling (Politico, 2018). Unsold

allowances during periods when the price floor binds—which it did in various auctions—

are essentially retired. Borenstein et al. (2017) and Borenstein et al. (2018) report a

post-reform estimate of 47% (34%) that the price floor (ceiling) binds. Thus, in expected

terms, W = 1− 0.47− 0.34 = 0.19.

Now consider a counterfactual Western Climate Initiative (WCI) joined by states

surrounding California. If California imposes an additional cost-raising policy such as

a fixed carbon top-up fee, there is internal leakage to neighbouring states. Caron et

al. (2015) provide a relevant leakage estimate of L = 0.09 assuming that—as the current

market rules specify—there is a border tax adjustment and resource shuffling is prevented.

Interestingly, they also report that internal carbon leakage for the electricity sector only

is negative (−13%), consistent with our theory in Section 3.4. In Caron et al. (2015), this

is more than offset by positive leakage to other sectors in the U.S. and internationally—

yielding an aggregate leakage rate of 9%.

The Regional Greenhouse Gas Initiative (RGGI) that caps CO2 emissions from elec-

tricity in ten Northeastern states is similar. Its CPF was binding for many years, but

allowances now trade at higher prices. New York is currently considering an additional car-

bon fee, which would also apply to imported electricity from other RGGI states; Shawhan

et al. (2018) find negative (output) leakage of L = −0.77.

Finally, Canada has a national minimum carbon tax of $20 per ton in 2019, increasing

to $50 by 2022. Some provinces, such as Alberta and British Columbia, already had in

place carbon taxes with a price above the federal tax. Such unilateral carbon taxes face

no waterbed effect but may suffer from leakage to other provinces—though we are not

aware of direct leakage estimates, Murray and Rivers (2015) and Yamazaki (2017) suggest

that British Columbia’s carbon tax has had negligible or modest effects on the aggregate

economy, suggesting leakage is modest and so Figure 2 plots this policy assuming L = 0.25.

In sum, the empirical results are consistent with our theory of internal carbon leakage.

Leakage for cost-raising policies (e.g., CPFs and flight taxes in Europe) is positive, except

when imports are taxed (e.g., carbon fees in California and New York). Supply-increasing

policies, such as German and Spanish renewables support, have negative leakage.
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6 Conclusions

We have developed a simple new framework to understand unilateral overlapping policies

within a wider carbon-pricing system. Design matters in that different policy types have

very different leakage implications. Space matters as internal carbon leakage rates can

differ substantially across industries and countries. Time matters in that it affects the

magnitude of the waterbed. The EU ETS with the MSR and overlapping policies is about

as complex as tackling local pollutants with highly heterogeneous marginal damages—and

the uniform price rule is no longer straightforwardly appropriate.

On the empirical side, we illustrated how observed policies fit into our framework.

Current market rules in the reformed EU ETS, California and RGGI feature punctured

waterbeds that allow unilateral policies to affect aggregate emissions. Policies such as

national energy conservation programs and renewable energy support schemes typically

have negative internal carbon leakage. Yet there are surprisingly few estimates of inter-

nal leakage in the literature—and better information could substantially improve future

policy-making.

We should acknowledge that our analysis is only a first cut. We have focused nar-

rowly on emissions impacts—only one (important) component of a welfare analysis—and

have not formally ranked different policy options. These are important topics for future

research. Finally, we did not analyze “external” carbon leakage to outside jurisdictions;

for policies affecting the electricity sector this is typically negligible.

Online Appendix A: Proofs of Propositions 1 and 2

Proof of Proposition 1. Given the asymmetric carbon prices, country k’s first-order

condition from (2) now becomes p(X)−C ′k(xk)−τkθk = 0 for k = i, j, where τi = τi(τ, λi)

and τj = τ . Write the resulting equilibrium outputs in terms of i’s unilateral policy

as (xi(λi), xj(λi)). What is the rate of output leakage? At equilibrium, j’s first-order

condition is:

p(xi(λi) + xj(λi))− C ′j(xj(λi))− τθj = 0.

Differentiating with respect to i’s policy gives:

p′(xi(λi) + xj(λi))

(
dxi
dλi

+
dxj
dλi

)
− C ′′j (xj(λi))

dxj
dλi

= 0,

where it is easy to check that:

dxi
dλi

=
dxi
dτi

dτi
dλi

< 0 and
dxj
dλi

=
dxj
dτi

dτi
dλi

> 0.
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Rearranging yields a first expression for output leakage:

−dxj/dλi
dxi/dλi

=

[
−p′(X)

−p′(X) + C ′′j (xj)

]
xi=xi(λi),xj=xj(λi)

∈ (0, 1).

This expression holds regardless of the precise functional form of τi(τ, ηi); the only thing

that matters is that d
dλi
τi(τ, λi) > 0 leads to dxi/dλi < 0. Now turn this into a more

empirically-useful expression in two steps. First, using the definition of the price elasticity

of demand εD ≡ −p(·)/Xp′(·) > 0, we have −p′(X) = (1/εD)p(X)/X. Second, using

the definition of j’s elasticity of total marginal cost ηSj ≡ xjĈ
′′
j (xj)/Ĉ

′
j(xj) > 0, where

Ĉ ′j(xj) ≡ C ′j(xj) + τθj = p(X) and Ĉ ′′j (xj) ≡ C ′′j (xj), we have:

C ′′j (xj) =
xjC

′′
j (xj)

Ĉ ′j(xj)

Ĉ ′j(xj)

xj
=
xjĈ

′′
j (xj)

Ĉ ′j(xj)

Ĉ ′j(xj)

xj
= ηSj

p(X)

X

1

σj
, (4)

where the last expression uses the definition of market share, σj ≡ xj/X. Putting these

two steps together gives another expression for output leakage:

− dxj/dλi
dxi/dλi

=
σj

(σj + εDηSj )
> 0. (5)

This converts into carbon leakage Lcost
i = (θj/θi)

[
σj/(σj + εD/εSj )

]
> 0, as claimed, using

the equilibrium relationship of price elasticity of j’s supply curve, ηSj = 1/εSj , together

with the relationship between output and carbon leakage, Li = (θj/θi) (−dxj/dxi).

Proof of Proposition 2. As in the proof of Proposition 1, write equilibrium outputs in

terms of i’s unilateral policy as (xi(φi), xj(φi)). At equilibrium, k’s first-order condition

from (2) becomes:

p(xi(φi) + xj(φi);φi)− C ′k(xk(φi))− τθk = 0.

Differentiating this condition for i and j, respectively, yields:

∂

∂φi
p(xi(φi) + xj(φi);φi) + p′(xi(φi) + xj(φi);φi)

(
dxi
dφi

+
dxj
dφi

)
− C ′′i (xi(φi))

dxi
dφi

= 0,

∂

∂φi
p(xi(φi) + xj(φi);φi) + p′(xi(φi) + xj(φi);φi)

(
dxi
dφi

+
dxj
dφi

)
− C ′′j (xj(φi))

dxj
dφi

= 0.

This implies that, in equilibrium, output responses satisfy:

C ′′i (xi(φi))
dxi
dφi

= C ′′j (xj(φi))
dxj
dφi

< 0.
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Some rearranging, using (4) from the proof of Proposition 1 to rewrite C ′′i (·), C ′′j (·), gives

an expression for output leakage:

− dxj/dλi
dxi/dλi

= − σj
(1− σj)

εSj
εSi

< 0. (6)

So carbon leakage Li = −(θj/θi)[σj/ (1− σj)](εSj /εSi ), as claimed, using the relationship

Li = (θj/θi) (−dxj/dxi). Since this expression does not depend on the form of ∂
∂φi
p(xi(φi),

we conclude that Ldemand
i = Lsupply

i .

Online Appendix B: Extensions to the model of inter-

nal carbon leakage

Leakage with an end-of-pipe abatement technology

Consider the same model setup as in Section 3.1 with the addition of investment in

an end-of-pipe (EOP) abatement technology. Firm k now solves maxxk,ek Πk = pxk −
Ck(xk)− τkek − φk(θkxk − ek), where its abatement cost function satisfies φ′k(·), φ′′k(·) > 0

if abatement investment takes place (i.e., ek < θkxk) and φk(0) = φ′k(0) = 0 if it does not

(i.e., ek = θkxk).

The two first-order conditions are now:

∂Πk/∂xk = p− C ′k(xk)− θkφ′k(·) = 0 and ∂Πk/∂ek = −τk + φ′k = 0, (7)

where the former is a generalized version of price equals marginal cost and the latter

says that the marginal abatement cost equals the carbon price. Note that k’s abatement

incentive rises with its domestic carbon price (since φ′′k(·) > 0).

The crucial point is that, taken together, these first-order conditions imply p(X) −
C ′k(xk) − τkθk = 0, exactly as in (2) for the benchmark model. In other words, the

addition of an EOP technology does not affect the product-market outcome. Therefore,

for all three types of unilateral policy, output leakage (−dxj/dxi) > 0 remains exactly as

above.

A difference now does arise in terms of carbon leakage. For j’s firm, it remains true

that dej = θj(dxj), as in the benchmark model, again for all three policy types. So the

remaining question is how different unilateral policies affect i’s emissions ei = θixi −
φ′−1
i (τi).

The following two results, as analogues to Propositions 1 and 2, characterize the rate

of internal carbon leakage for our three types of policy.
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Proposition 1A. With an end-of-pipe (EOP) abatement technology, a cost-increasing

unilateral policy λi by country i has internal carbon leakage to country j equal to:

Lcost+EOP
i =

θj
θi

σj(
σj + εD/εSj

)[
1 +

dφ′−1
i (τi(τ, λi))/dλi
−dxi/dλi

] < Lcost
i .

Carbon leakage exceeds 100% whenever θj/θi is sufficiently larger than unity.

Proof. By (7), country k’s emissions are ek = θkxk − φ′−1
k (τk). For country j, as its

carbon price remains fixed at τj = τ , so the change in its emissions due to i’s policy

satisfies dej/dλi = θj(dxj/dλi). The rate of carbon leakage can be thus written as:

Li ≡ −
dej/dλi
dei/dλi

= − θj(dxj/dλi)

d

dλi

[
θixi − φ′−1

i (τi(τ, λi))
] =

θj
θi

(
−dxj/dλi
dxi/dλi

)
[
1 +

dφ′−1
i (τi(τ, λi))/dλi
−dxi/dλi

] .

By the first-order conditions (7), end-of-pipe abatement does not affect the product-

market outcome and thus also not the rate of output leakage—which remains as given

by (5) in the proof of Proposition 1, −(dxj/dλi)/(dxi/dλi) = σj/(σj + εD/εSj ) > 0. This

yields Lcost+EOP
i as claimed, and Lcost+EOP

i < Lcost
i holds because dxi/dλi < 0 from the

proof of Proposition 1 and

d

dλi
φ′−1
i (τi(τ, λi)) =

1

φ′′i (φ
′−1
i (τi(τ, λi))

d

dλi
τi(τ, λi) > 0

holds given the assumptions φ′i(·), φ′′i (·) > 0 and d
dλi
τi(τ, λi) > 0.

As is intuitive, greater abatement activity tends to mitigate the carbon leakage in-

duced by a cost-raising policy: a given output reduction by i’s firms now comes with a

stronger reduction in emissions. However, it remains true that carbon leakage can be

high, including above 100%, if j’s firms are sufficiently dirtier than i’s.

Proposition 2A. With an end-of-pipe (EOP) abatement technology, demand-reducing

and supply-increasing unilateral policies φi by country i have internal carbon leakage to

country j equal to:

Ldemand+EOP
i = Lsupply+EOP

i = −θj
θi

σj
(1− σj)

εSj
εSi

= Ldemand
i = Lsupply

i < 0.

Proof. By (7), country k’s emissions are ek = θkxk − φ′−1
k (τk). For both countries, as
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the system-wide carbon price here remains fixed at τi = τj = τ , the emissions changes

due to i’s policy satisfy dek/dλi = θk(dxk/dλi). By the first-order conditions (7), end-

of-pipe abatement does not affect the product-market outcome and thus also not the

rate of output leakage—which remains as given by (6) in the proof of Proposition 2,

−(dxj/dλi)/(dxi/dλi) = −[σj/ (1− σj)](εSj /εSi ) < 0. So carbon leakage is exactly as in

Proposition 2, Ldemand+EOP
i = Lsupply+EOP

i = Ldemand
i = Lsupply

i , as claimed.

For demand-reducing and supply-increasing policies, firm i’s carbon price remains

unchanged and so they do not induce any incremental abatement effect. Hence emissions

changes are driven solely by output changes, and since end-of-pipe abatement does not

affect output, carbon leakage remains exactly as in Proposition 2 in the main text.

Leakage of a cost-raising policy with a border tax adjustment

Consider the same model setup as in Section 3.1 and the same cost-raising policy as in

Section 3.2, now with the addition of a border tax adjustment (BTA) that accompanies i’s

policy. This increases policy coverage: a higher carbon price now applies to both i’s and

j’s firms. Again denoting the policy as λi, k’s firms (k = i, j) now face a common carbon

price τk = τi(τ, λi), strictly increasing in each argument d
dτ
τi(τ, λi),

d
dλi
τi(τ, λi) > 0.

We obtain the following result:

Proposition 1B. With a border tax adjustment (BTA), assuming θi/θj > σj/(σj +

εD/εSj ) ≡ θ ∈ (0, 1), a cost-increasing unilateral policy λi by country i reduces its domestic

emissions and has internal carbon leakage to country j equal to:

Lcost+BTA
i = −θj

θi

[(
θj
θi
− 1

)
+
θj
θi

εD

εSi

1

(1− σj)

]
[(

1− θj
θi

)
+
εD

εSj

1

σj

] .

Leakage is negative Lcost+BTA
i < 0 if and only if θi/θj < [(1− σj) + εD/εSi ]/(1− σj) ≡ θ,

where θ > 1. If countries have identical emissions intensities with θi = θj, then leakage

is identical to demand-reducing and supply-increasing policies, Lcost+BTA
i = Ldemand

i =

Lsupply
i < 0.

Proof. Following the proof of Proposition 1, country k’s first-order condition from (2)

now is p(X)− C ′k(xk)− τkθk = 0, where τk = τi(τ, λi) for k = i, j. Write the equilibrium

outputs in terms of i’s unilateral policy as (xi(λi), xj(λi)). At equilibrium, k’s first-order

condition from (2) becomes:

p(xi(λi) + xj(λi))− C ′k(xk(λi))− τkθk = 0.
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Differentiating this condition for i yields:

p′(xi(λi) + xj(λi))

(
dxi
dλi

+
dxj
dλi

)
− C ′′i (xi(λi))

dxi
dλi
− θi

dτi
dλi

= 0,

which can be rearranged as:

[p′(·)− C ′′i (·)] dxi
dλi

+ p′(·)dxj
dλi
− θi

dτi
dλi

= 0

and then solved in terms of i’s output response:

dxi
dλi

= − −p′(·)
[−p′(·) + C ′′i (·)]

dxj
dλi
− θi

[−p′(·) + C ′′i (·)]
dτi
dλi

,

where a symmetric expression holds for j:

dxj
dλi

= − −p′(·)[
−p′(·) + C ′′j (·)

] dxi
dλi
− θj[
−p′(·) + C ′′j (·)

] dτi
dλi

.

Solving the two last expressions simultaneously yields i’s equilibrium output response:

dxi
dλi

=

− 1

[−p′(·) + C ′′i (·)]

[
θi −

−p′(·)[
−p′(·) + C ′′j (·)

]θj] dτi
dλi(

1− −p′(·)
[−p′(·) + C ′′i (·)]

−p′(·)[
−p′(·) + C ′′j (·)

]) .

We are interested in the case where the policy is successful in reducing i’s domestic

emissions, dxi/dλi < 0; this corresponds to θi/θj > −p′(·)/
[
−p′(·) + C ′′j (·)

]
≡ θ ∈ (0, 1),

i.e., i’s firms cannot be too clean relative to j’s. (Otherwise the policy induces j’s firms to

contract output so strongly that this raises i’s overall profitability of production.) Again

a symmetric expression holds for j:

dxj
dλi

=

− 1[
−p′(·) + C ′′j (·)

] [θj − −p′(·)
[−p′(·) + C ′′i (·)]

θi

]
dτi
dλi(

1− −p′(·)
[−p′(·) + C ′′i (·)]

−p′(·)[
−p′(·) + C ′′j (·)

]) .

Observe that dxj/dλi < 0 if and only if θi/θj < [−p′(·) + C ′′i (·)] /[−p′(·)] ≡ θ, where θ > 1.

(The same logic as for i applies also to j.) Combining i’s and j’s output responses gives
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an expression for the rate of output leakage:

−dxj/dλi
dxi/dλi

= −

[
−p′(·)

(
θj
θi
− 1

)
+
θj
θi
C ′′i (·)

]
[
−p′(·)

(
1− θj

θi

)
+ C ′′j (·)

] .

From (4) in the proof of Proposition 1, we know that C ′′k (xk) = ηSk [p(X)/X](1/σk) and

so, using the definitions εD ≡ −p(·)/Xp′(·) and ηSk = 1/εSk , also C ′′k (xk)/[−p′(X)] =

(εD/εSk )(1/σk). Therefore we can also write:

−dxj/dλi
dxi/dλi

= −

[(
θj
θi
− 1

)
+
θj
θi

εD

εSi

1

(1− σj)

]
[(

1− θj
θi

)
+
εD

εSj

1

σj

] .

The formula for carbon leakage Li = (θj/θi)[−(dxj/dλi)/(dxi/dλi)] follows immediately.

Finally, it is easy to verify that if θi = θj, for which the condition θi/θj ∈ (θ, θ) is

always met, the formula simplifies to that of Proposition 2, so that Lcost+BTA
i = Ldemand

i =

Lsupply
i < 0 as claimed.

A cost-raising policy with a BTA has the direct effect of raising both i’s and j’s total

marginal cost, according to their respective emissions intensities—which induces lower

output and emissions from each country. In addition, there is the indirect effect that each

country’s output cut is mitigated by competitive gain arising from this reduction in the

other country’s output—which induces higher output and emissions from each country.

The additional assumption that i is not too much cleaner than j, with θi/θj > θ ∈
(0, 1), ensures that the direct effect outweighs for i—so its policy is successful at reducing

i’s domestic emissions.

The flipside is that the BTA turns carbon leakage negative as long as j is not too

much cleaner than i, with θi/θj < θ (where θ > 1).

For the special case where i’s and j’s firms have identical emissions intensities, leakage

is identical to that of demand-reducing and supply-raising policies from Proposition 2,

Lcost+BTA
i = Ldemand

i = Lsupply
i . Intuitively, firms both in both countries are then hit by

an identical cost shock which is economically equivalent to them being hit by an identical

demand or supply shock.
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Online Appendix C: Further details on policy illustra-

tions

In this appendix, we provide additional details on the various policies that we describe in

Section 5.

Policies in the EU ETS area

Cost-raising policies

Electricity

As discussed in the main text, the Dutch government announced a national CPF for

the electricity sector in 2018. It is slated to increase from EUR 12.30/tCO2 in 2020 to

EUR 31.90/tCO2 in 2030. In 2013, Great Britain introduced a carbon fee for its power

sector, but we are not aware of any intra-EU leakage estimates. Such policies, if binding,

suffer from intra-EU leakage as domestic generation gets replaced with imports. Table 1

in Frontier Economics (2018) estimates that the Dutch price floor will reduce domestic

emissions by 26 million tCO2 in 2030, but the net EU-wide emissions reduction is only 4

million tCO2, implying L = 0.85. Vollebergh (2018) estimates internal carbon leakage to

be 85% for the Dutch price floor and 61% for a regional CPF including the Benelux, France

and Germany. We expect internal carbon leakage to be lower for the Great Britain’s

carbon fee as import supply is more inelastic due to interconnection constraints.

A national carbon price floor (CPF) is a “direct” cost-raising policy, but performance

standards and mandates to reduce carbon in the electricity sector also fall into this cate-

gory as they indirectly increase the domestic price tag on carbon. Examples include the

British and Dutch policies to close their remaining coal-fired power plants by 2025 and

2030, respectively, and a similar plan is underway in Germany.4

Aviation

Aviation taxes are levied by several European countries, such as Austria, Germany, Nor-

way and Sweden. Others, such as Denmark, Ireland and the Netherlands, abolished them

after initial implementation. Such taxes are prone to leakage. For example, when the

Netherlands adopted an aviation tax in July 2008 at a rate of EUR 11.25 for short-haul

flight and EUR 45 for long-haul flights, about 50% of the decline in passengers at Dutch

4Sources: https://www.euractiv.com/section/energy/news/uk-government-spells-

out-plan-to-shut-down-coal-plants/, https://cleantechnica.com/2018/05/22/the-

netherlands-announces-ban-on-coal-plans-close-of-2-power-plants-by-2024/, https:

//www.businessgreen.com/bg/news/3026202/german-coalition-deal-holds-out-hopes-of-

coal-phase-out-date.
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airports was offset by increased passenger volumes in Belgium and Germany (Gordijn

and Kolkman, 2011). They estimate that the tax accounted for nearly two million fewer

passengers from Amsterdam’s Schiphol Airport during the period over which the tax was

in effect, while an extra one million Dutch passengers flew from foreign airports. As a re-

sult, the Dutch government abolished the tax in July 2009 although it currently considers

reintroducing a very modest ticket tax of EUR 7 on all flights (Dutch News, 2018).

There is some evidence that aviation taxes are most likely levied in countries where

leakage is mitigated. Figure 2 in PricewaterhouseCoopers (2017) shows that countries

with large populations are more likely to have an aviation tax (France, Germany, Italy

and the United Kingdom) as well as countries where the population is far away from low-

tax airports abroad (e.g., Norway and Sweden). Austria is an exception to this rule given

the proximity of Vienna to Bratislava. Greece, Croatia and Latvia—countries that also

have aviation taxes—are relatively small, though their geographies are such that leakage

may be less severe than for the Netherlands.

Supply-increasing policies

Germany and Spain have adopted some of the world’s most ambitious incentives for wind

and solar energy, which include feed-in tariffs and market premium programs. Abrell

et al. (2019) find associated output and emissions leakage rates that are negative as a

result of reduced imports through depressed wholesale prices. In their Table 3, they

report d(import quantity)/d(policy) and d(domestic quantity)/d(policy), from which we

calculate output leakage as -78%, -77%, -7% and -21% for German wind, German solar,

Spanish wind and Spanish solar, respectively. Similarly, we compute carbon leakage from

their Table 5: -49%, -50%, -6% and -19%, respectively. Averaged over wind and solar,

we use L = −0.50 for Germany and L = −0.12 for Spain in Figure 2. The differences

between output and emissions leakage in Germany and Spain suggest that the marginal

unit of output reduction in Germany is approximately 50% more carbon intensive than

the marginal reduction for its trading partners; for Spain the emissions intensity of these

marginal units are about equal. Abrell et al. (2019), Table 3, shows that the German

power mix is indeed dirtier than Spain’s.

Policies in North America

California-Québec carbon trading

The California-Québec carbon market had an auction price floor of $14.53 in 2018 and

is scheduled to have a hard price ceiling of $61.25 by 2021 (Politico, 2018). When the

auction price floor binds, the unsold allowances are first placed in a holding account, from
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which they are re-introduced after two consecutive sold-out auctions (subject to a 25%

volume limit per auction). If unsold for 24 months, they are moved to the Allowance

Price Containment Reserve (APCR). In the case of the proposed hard price ceiling, the

APCR will be practically infinite, so moving allowances into the APCR is essentially the

same as retiring them.

Other key features of California’s cap-and-trade policy include the requirement that

allowances must be surrendered for emissions embodied in imported electricity and provi-

sions to prevent resource shuffling. Resource shuffling is defined as “any plan, scheme, or

artifice to receive credit based on emissions reductions that have not occurred, involving

the delivery of electricity to the California grid” (Caron et al., 2015). If out-of-state gener-

ators can reconfigure transmission so that low-carbon electricity is diverted to California

and high-carbon electricity to other states, even the border tax adjustment will not be

able to mitigate leakage.

In the main text, we consider a counterfactual Western Climate Initiative (WCI) in

which states surrounding California join the carbon market. The WCI (http://www.wci-

inc.org/) started in 2007 as an initiative by the governors of Arizona, California, New

Mexico, Oregon and Washington with a goal to develop a regional multi-sector cap-and-

trade market. Most states left during the economic downturn in the early 2010s, but

the idea of regional carbon trading has recently resurfaced in discussions among states. If

California then imposed an additional unilateral carbon top-up fee, there will be emissions

leakage to neighbouring states. There are of course no direct leakage estimates for a

counterfactual policy, but estimates for similar policy settings do exist. Fowlie (2009)

estimates that a carbon tax or cap-and-trade system in California that exempts out-of-

state producers achieves only 25-35% of the total emissions reductions achieved under

complete regulation (a carbon tax in Arizona, Nevada, New Mexico, Oregon, Utah and

Washington). That is, L = 0.65-0.75. Caron et al. (2015) estimate that emissions leakage

from California’s cap-and-trade program (with border tax adjustments) varies between 9%

when resource shuffling is successfully banned, and 45% when shuffling remains possible.

Figure 2 plots the hypothetical California carbon top-up fee using L = 0.09 estimated in

Caron et al. (2015), as their policy with a border tax adjustment and a ban on resource

shuffling mimics California’s current market rules most closely.

Regional Greenhouse Gas Initiative

The Regional Greenhouse Gas Initiative (RGGI) caps CO2 emissions from the power

sector in ten Northeastern U.S. states. The program has a price floor; in 2012, the states

decided to retire unsold allowances immediately. The policy also has a price ceiling.

Several RGGI states have floated the idea of unilateral carbon policies; most notably,

22

http://www.wci-inc.org/
http://www.wci-inc.org/


New York has proposed an additional carbon fee, which would not only apply in-state

but also to imported electricity from other RGGI states. Shawhan et al. (2018) estimate

that this policy leads to negative output leakage of L = −0.77. They assume a complete

within-RGGI waterbed effect. They find a negative leakage rate for the following reason.

RGGI exempts power plants with a capacity below 25 megawatts, while the New York

carbon fee applies to all generation. This causes substitution from “NY non-RGGI” to

“NY RGGI” sources. Due to the border tax adjustment, NY RGGI sources can increase

output, thereby putting upward pressure on RGGI allowance prices and hence decreasing

generation in other RGGI states.

We further note that Fell and Maniloff (2018) estimate substantial positive external

carbon leakage (L = 0.51) from RGGI to non-RGGI states. The Shawhan et al. (2018)

and Fell and Maniloff (2018) studies underscore that external and internal leakage are

distinct phenomena that can even have different signs.

We do not plot New York’s carbon fee policy in Figure 2 as we are not aware of an

empirical estimate of the fraction of the time that the system trades at the price floor or

ceiling, and thus W is missing.
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