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Abstract 
Over the last three decades, air pollution has become a major environmental challenge 

in many of the fast growing cities in China, including Beijing. Given that any long-term 

exposure to high-levels of air pollution has devastating health consequences, accurately 

monitoring and reporting air pollution information to the public is critical for ensuring 

public health and safety and facilitating rigorous air pollution and health-related 

scientific research. Recent statistical research examining China’s air quality data has 

posed questions regarding data accuracy, especially data reported during the Blue Sky 

Day (BSD) period (2000 – 2012), though the accuracy of publicly available air quality 

data in China has improved gradually over the recent years (2013 – 2017).  To the best 

of our understanding, no attempt has been made to re-estimate the air quality data 

during the BSD period. In this paper, we put forward a machine-learning model to re-

estimate the official air quality data during the BSD period of 2008 – 2012, based on 

the PM2.5 data of the Beijing US Embassy, and the proxy data covering Aerosol Optical 

Depth (AOD) and meteorology. Results have shown that the average re-estimated daily 

air quality values are respectively 64% and 61% higher than the official values, for air 

quality index (AQI) and AQI equivalent PM2.5, during the BSD period of 2008 to 2012. 

Moreover, the re-estimated BSD air quality data exhibit reduced statistical 

discontinuity and irregularity, based on our validation tests. The results suggest that the 
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proposed data re-estimation methodology has the potential to provide more justifiable 

historical air quality data for evidence-based environmental decision-making in China. 

 

Keywords: Blue Sky Day (BSD), Air Quality, Beijing, Bayesian LSTM, Data 

Estimation 

 

1. Introduction 
Over the past decades, rapid socio-economic development has resulted in serious 

degradation in air qualities in many fast growing cities in China, such as Beijing. 

Accurately monitoring and reporting air qualities in China can help alert the public on 

how bad the air is in China and when one should avoid the bad air, while providing 

accurate air quality information to facilitate health-related scientific studies. Existing 

studies have shown that bad air carries a clear negative impact on physical and mental 

health (Pui et al., 2014; Zhang et al., 2017). However, it is difficult to obtain high-

quality historical air quality data in China, and recent statistical studies (Chen et al., 

2012; Ghanem and Zhang, 2014; Stoerk, 2016) have noted statistical irregularities in 

the official air quality data released to the public during the Blue Sky Day (BSD) period 

(2000 – 2012) when the number of BSDs was used for air quality evaluation. Air quality 

monitoring in Beijing dates back to the 1980s. The number of monitoring stations has 

increased from 12 in 2000 to 35 starting in 2012. Starting from June 2000, Beijing has 

released daily city-level air quality index (AQI)1 according to the National Ambient Air 

Quality Standard (NAAQS) introduced in 1996. Meanwhile, annual BSD information 

was published by the Beijing Environmental Protection Bureau (EPB) to facilitate 

public understanding of air quality trends from 1999 to 2012. A BSD is defined as a 

day when the AQI value falls below 100 (Andrews, 2008). The number of BSDs 

increased from 100 in 1998 to 286 in 2011 in Beijing (Beijing EPB, 1999; Beijing EPB, 

2012). Since April 2008, the US Embassy in Beijing has started to report hourly PM2.5 

based on its own sensors. Shortly after, Beijing EPB announced in June 2012 that the 

number of BSDs will no longer be used for air quality evaluation after 2012 (China 

Daily, 2012). In January 2013, following the new NAAQS introduced in 2012, Beijing 

EPB has officially launched a new air quality monitoring system. Since then, PM2.5 has 

been fully monitored by an automatic monitoring network in Beijing, with the hourly 

                                                        
1 In China, air pollution index (API) was used as the official name for the air quality index before 2013. 
We use AQI to denote the air quality index throughout this paper for consistency. 



 3 

AQI and concentrations of six pollutants recorded from individual monitoring stations 

released to the public in real time. 

BSD was first reported in Beijing when “Defending the Blue Sky” project was 

launched in 1998, and had become widely reported in major cities in China since then 

(Andrews, 2008). It served a policy-relevant metric for media reporting and evaluation 

of environmental performance of local governments. During the 11th Five-Year Plan 

period (2006 – 2010), Chinese key cities (including Beijing) were ranked by their 

environmental improvement.  A city would receive a full score on air quality 

performance if the BSDs had exceeded 85% of the year (Chen et al., 2012). As 

environmental performance was a key factor affecting the promotion of Chinese 

officials (Zheng et al., 2014), Stoerk (2016) highlighted that local officials could be 

over-reporting the number of BSDs to the central government. A number of studies 

raised questions about the accuracy of air quality reporting in China during the BSD 

period. Andrews (2008) observed the station-level air quality data during 2001 – 2007 

and noted the inconsistency between the official AQI values and the average AQI 

values based on the data collected from individual monitoring stations. Chen et al. 

(2012) raised the concern over the quality of air quality data via self-reporting by the 

local governments (Chen et al., 2012). Chen et al. (2012) conducted a statistical 

discontinuity test to examine discontinuity in AQI distribution during 2000 – 2009 and 

identified a discontinuity at the BSD threshold (AQI=100), with discontinuities 

increasing in magnitude across the years after 2003. Ghanem and Zhang (2014) adopted 

a panel matching approach to identify the circumstances under which statistical 

irregularities of air pollution data would occur for Beijing during 2001 – 2010, and 

suggested that such irregularities usually occurred during the days when they were least 

detectable, for instance, during the days of high visibility. Furthermore, Stoerk (2016) 

conducted a statistical regularity test on the Beijing US Embassy data and the official 

Beijing air quality data before and after the BSD period (2008 – 2013). He showed that 

the US Embassy data exhibited a high regularity over time, while the official Beijing 

data displayed patterns of irregularity during 2008 – 2012. Based on his finding, the 

irregularity of air quality data in Beijing had come to an end by 2012. 

Existing statistical tests have examined the potential irregularity of air quality 

data in China. Recently, machine learning approaches, especially deep artificial neural 

networks, have achieved state-of-the-art performance in many tasks related to air 

quality modelling (Freeman et al., 2018; Han et al., 2018; Li et al., 2017a; Li et al., 

2017b; Ong et al., 2016). A deep learning approach that attempts to tackle the 
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irregularity of air quality data in China may benefit future public health-related 

scientific research. Moreover, incorporating Bayesian methods into deep learning can 

reduce the overfitting of model parameters due to data sparsity and noise, while 

providing an uncertainty/trustworthiness measure for the prediction (Gal, 2016). 

Therefore, this study presents a Bayesian deep learning method to tackle air quality 

data irregularity during the recent BSD period (2008 – 2012) in China, using Beijing 

as an example. A Bayesian Long Short-Term Memory (LSTM) network model is 

constructed based on the relationship between the official city-level AQI values and the 

proxy data combined with the Beijing US Embassy daily PM2.5 data after 2012. Then, 

based on the proxy data and the Beijing US Embassy daily PM2.5 data reported during 

2008 – 2012, we re-estimate the daily AQI values in Beijing during 2008 – 2012. Our 

result shows that across the five-year period, the re-estimated daily AQI generated from 

the proposed model is higher than the official daily AQI by 47 – 65 (54% – 70% for 

percentage increase) on average, while the re-estimated daily AQI equivalent PM2.5 is 

higher than the official daily AQI equivalent PM2.5 by 39 – 48 µg/m3 (56% – 67% for 

percentage increase) on average. 

 

2. Data and Methodology 
This study proposes a machine learning framework to re-estimate air quality data during 

the BSD period (2008 – 2012) in China. Our proposed framework consists of five 

components, as shown in Figure 1, namely, data collection, data pre-processing, model 

training, re-estimation of air quality data, and statistical test for air quality data 

validation. 
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Figure 1. Overall framework of our AI-driven BSD air quality re-estimation model 

 

2.1 Data Collection 

1) Air Quality Data: The Chinese official air quality data can be retrieved from the 

official website of the Ministry of Environmental Protection (MEP), China (China MEP, 

2017). We collected the daily city-level AQI data from 5 June 2000 to 31 December 
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2012, and the daily city-level AQI data from 1 January 2014 to 30 June 20172. The 

PM2.5 data from Beijing US Embassy can be downloaded from the official US Embassy 

website (US Department of State, 2017). We downloaded the hourly PM2.5 

concentration data from 9 April 2008 to 30 June 2017, from the US Embassy, Beijing. 

We assumed that the PM2.5 data obtained from US Embassy, Beijing is valid since 2008. 

Moreover, previous studies showed that both the Chinese official data and the US 

Embassy data can fit the statistical regularity tests from 2013 onwards, which is likely 

due to the implementation of MEP’s new air quality standards starting from 2013, 

including PM2.5 monitoring and updated AQI calculation (Stoerk, 2016). We also 

performed a direct comparison between the US Embassy PM2.5 and the official PM2.5 

observed at the nearest air pollution monitoring station from 2014 to 2017, and we 

found that they are highly correlated (Adjusted R2 = 97%; see Figure 2). Therefore, we 

assumed that the collected official air quality data can be used as the ground truths for 

city-level air pollution concentration in Beijing from 2014 onwards. 

 

 

                                                        
2 Beijing’s AQI data during 2013 – 2014 is not available on the China MEP’s official website. 
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Figure 2. Correlation between the hourly PM2.5 concentrations monitored at US 

Embassy, Beijing and the official hourly PM2.5 concentrations monitored at the nearest 

official station3, 2014 - 2017 

 

2) Proxy Data: Previous studies showed that AOD and meteorology data can be used 

in the statistical modelling of air quality (Liu et al., 2012). We downloaded daily city-

level AOD data from the US NASA’s AERONET database (US NASA, 2017) from 26 

March 2008 to 21 May 2017. Eight features were selected based on data availability 

during the period of study. In addition, meteorology data, including temperature, 

pressure, humidity, visibility, precipitation, and wind speed, measured at the Beijing 

Capital International Airport, from 1 January 2008 to 31 December 2017, were 

collected from a weather service website (Weather Underground, 2018). 

2.2 Data Pre-processing  

Hourly US Embassy PM2.5 values are aggregated to daily means. The input is a vector 

representing the historical data including PM2.5, AOD, and meteorology. To reflect time 

trends, month and day of week are also included in the input vector. The output is a real 

value representing the corresponding daily city-level air quality (AQI). At first, each 

feature in the historical data is normalized into the range of zero to one. Then, for each 

feature, missing values in the time-series are imputed. More specifically, forward linear 

temporal interpolation of observed daily values is first used to fill in the gaps of less or 

equal than three days in time series which are caused by missing values. For the 

remaining missing values, mean values at the same month in the same year are used. 

2.3 Model Training 

The pre-processed data is fed into a Bayesian deep learning model for training. In this 

study, we focus on Bayesian Recurrent Neural Network (RNN), which is capable of 

modeling time series data (Fortunato et al., 2017). A Bayesian RNN model with 

network structure 𝑓𝑓 and parameters 𝜃𝜃 is denoted as 𝑓𝑓𝜃𝜃 . During the post-BSD period 

(2014 – 2017), each observation of air quality and other covariates at day 𝑡𝑡 consists of 

the features 𝑥𝑥𝑡𝑡, including US Embassy PM2.5 values and proxy values. The model input 

consists of the observations over the past 𝐿𝐿 + 1 days (including current day 𝑡𝑡): 𝑋𝑋𝑡𝑡−𝐿𝐿,𝑡𝑡 =

{𝑥𝑥𝑡𝑡−𝐿𝐿 , … , 𝑥𝑥𝑡𝑡 }, and the corresponding factual outcome 𝑦𝑦𝑡𝑡, i.e., daily city-level AQI. The 

                                                        
3 The historical hourly PM2.5 data monitored at the nearest official station to US Embassy, Beijing was 
downloaded on 10 August 2018, from an unofficial Chinese website: http://beijingair.sinaapp.com. We 
have verified this data using the official hourly air quality data we collected from the website of Beijing’s 
Environmental Monitoring Center in 2017. 
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Bayesian RNN model 𝑓𝑓𝜃𝜃 aims to find the optimal posterior distribution of the network 

weight parameters 𝜃𝜃 , given the observed pairs (𝑋𝑋𝑡𝑡−𝐿𝐿,𝑡𝑡,𝑦𝑦𝑡𝑡) . We use LSTM as the 

recurrent unit in the network. A Bayesian fully connected linear layer is used to predict 

𝑦𝑦𝑡𝑡, based on the final hidden state of Bayesian LSTM. The proposed model structure is 

shown in Figure 3. Conceptually, our proposed model is as follows: 

ℎ𝑡𝑡 = Bayesian-LSTM(𝑥𝑥𝑡𝑡, ℎ𝑡𝑡−1) 

𝑦𝑦𝑡𝑡 = Bayesian-LINEAR(ℎ𝑡𝑡) 

In the network model, each weight parameter is a random variable with a Gaussian 

prior, and the weight at each time step has the same distribution. A diagonal Gaussian 

distribution is used as the variational posterior, and Bayes by Backprop is adopted to 

update the weight parameters of the network while minimizing the loss in terms of 

Mean Absolute Error (MAE) and Kullback–Leibler (KL) complexity cost (Blundell et 

al., 2015; Fortunato et al., 2017).  

 

 
Figure 3. Architecture of the proposed Bayesian LSTM neural network structure 

 

2.4 Re-estimation of Air Quality Data 
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1) AQI Re-estimation: AQI values during the recent BSD period (2008 – 2012) are 

predicted based on the fitted model 𝑓𝑓𝜃𝜃 after training. First, a sample from the posterior 

of the network weight parameters is drawn randomly to obtain a model 𝑓𝑓𝜃𝜃𝑖𝑖. Next, for 

each day during 2008 – 2012, daily city-level AQI values are re-estimated using this 

model with the corresponding US Embassy PM2.5 data and the proxy data. This is 

repeated 𝑁𝑁  times, so that we can calculate the mean and the variance of AQI re-

estimations, to reflect the uncertainties of the model parameters (Kendall and Gal, 

2017). Given a BSD period 𝑇𝑇, the final estimation of average AQI can be calculated as 

follows: 

AQI𝑖𝑖 = E𝑡𝑡∈𝑇𝑇[𝑓𝑓𝜃𝜃𝑖𝑖(𝑋𝑋�𝑡𝑡−𝐿𝐿,𝑡𝑡)] 

𝜇𝜇AQI =
1
𝑁𝑁
�AQI𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

𝜎𝜎AQI 
2 =

1
𝑁𝑁
�(𝜇𝜇AQI −  AQI𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

+ data uncertainty, 

where 𝑋𝑋�𝑡𝑡−𝐿𝐿,𝑡𝑡 is the input vector at day 𝑡𝑡, and data uncertainty refers to the irreducible 

noise inherent in the data, which could be estimated by the residual sum of squares on 

an independent validation dataset (Zhu and Laptev, 2017). Finally, 95% Confidence 

Interval (CI) of AQI is calculated as follows: 

[𝜇𝜇AQI − 𝑧𝑧𝛼𝛼
2
𝜎𝜎AQI , 𝜇𝜇AQI + 𝑧𝑧𝛼𝛼

2
𝜎𝜎AQI ], 

where 𝛼𝛼 is set to 5%,  𝑧𝑧𝛼𝛼
2
 is the critical value derived from the corresponding normal 

distribution. 

2) AQI to PM2.5 Conversion: Before 2013, the concentrations of PM10, SO2, and NO2 

were used by Beijing’s EPB for AQI calculation. Starting from 2013, following an 

update in AQI calculation, PM2.5, CO, and O3 are also included. For each pollutant, an 

individual AQI (IAQI) is calculated based on a linear interpolation of break points set 

by NAAQS (see Table 1). AQI is the maximum value of the IAQIs, and the pollutant 

with the highest value of IAQI is denoted as the primary pollutant. Primary pollutant is 

reported if AQI is greater than 50. 

Based on the historical AQI observations, previous studies showed that 

particulate pollution is the dominant air pollution in Beijing (Stoerk, 2016). Therefore, 
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to compare our re-estimated AQI values with the observed AQI values, we assumed 

that PM10 is the primary pollutant during 2008 – 2012 and PM2.5 is the primary pollutant 

from 2013 onwards. Then, we converted the daily city-level observed AQI to the daily 

city-level PM10 concentration, and the daily city-level re-estimated AQI to the daily 

city-level PM2.5 concentration, based on the AQI calculation formula (Chen et al., 2015) 

as follows: 

𝐶𝐶 =
AQI − IAQI𝐿𝐿𝐿𝐿

IAQI𝐻𝐻𝐻𝐻 − IAQI𝐿𝐿𝐿𝐿
(𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻 − 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿) + 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿 , 

where 𝐶𝐶 is the PM2.5 or PM10 concentrations, IAQI𝐻𝐻𝐻𝐻  and IAQI𝐿𝐿𝐿𝐿 are the nearby high 

and low values of AQI  for PM2.5 or PM10 pollutant, 𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻  and 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿  are the 

concentrations that correspond to IAQI𝐻𝐻𝐻𝐻  and IAQI𝐿𝐿𝐿𝐿  (see Table 1). Finally, we 

converted the daily city-level PM10 concentration to the daily city-level PM2.5 

concentration using a seasonal adjusted ratio. Previous studies showed that the ratio 

between PM2.5 and PM10 in Beijing tends to be smaller during the spring and the 

summer (ranging from 0.4 to 0.6; Lv et al., 2016) and larger during the winter (ranging 

from 0.5 and 0.7; Sun et al., 2004). Therefore, we used the average ratio PM2.5 PM10⁄ =

0.6 for the autumn and the winter, and the average ratio PM2.5 PM10⁄ = 0.5 for the 

spring and the summer. 

 

Table 1. IAQIs and their corresponding break points 

Before 2013 
IAQI Daily SO2 Conc. (μg/m3) Daily NO2 Conc. (μg/m3) Daily PM10 Conc. (μg/m3) 
50 50 80 50 
100 150 120 150 
1504 - - - 
200 800 280 350 
300 1600 565 420 
400 2100 750 500 
500 2620 940 600 
After 2013 
IAQI Daily SO2 

Conc. 
(μg/m3) 

Daily NO2 
Conc. 
(μg/m3) 

Daily PM10 
Conc. 
(μg/m3) 

Daily PM2.5 
Conc. 
(μg/m3) 

Daily CO 
Conc. 
(mg/m3) 

Daily O3 
Conc. 
(μg/m3) 

50 50 40 50 35 2 160 
100 150 80 150 75 4 200 
150 475 180 250 115 14 300 
200 800 280 350 150 24 400 
300 1600 565 420 250 36 800 
400 2100 750 500 350 48 1000 

                                                        
4 This break point was not used for AQI calculation before 2013. 
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500 2620 940 600 500 60 1200 
 

 

2.5 Statistical Validation for Air Quality Data 

To test how accurate our re-estimated daily AQI values derived from our Bayesian deep 

learning model is, we undertook two statistical tests. We examined the 

discontinuity/irregularity before and after the re-estimation of daily AQI values across 

the period 2008 – 2012. Further, we also compared the discontinuity/irregularity of our 

re-estimated daily AQI distribution, with that of the US Embassy daily AQI distribution, 

across the period 2008 – 2012.  

1) Discontinuity Test: Previous studies showed that there is a statistically significant 

discontinuity at the BSD threshold/cutoff (Ghanem and Zhang, 2014; Stoerk, 2016). In 

general, the proposed discontinuity parameter is an estimator of the log difference in 

height between the left and right limits of the density of the test variable at the cut-off 

(McCrary, 2008). In this study, we followed the discontinuity test proposed by these 

studies. The following procedures were taken to derive the discontinuity estimate. First, 

a first-step histogram was calculated to discretize the test variable. Second, two separate 

local linear regressions, which were weighted regressions using the bin midpoints to 

explain the height of bins, were derived on two sides of the cut-off to calculate the 

discontinuity. Third, t-statistic and p-value were used to infer the statistical significance 

of the discontinuity, as it was proven that this estimator is asymptotically normal. The 

larger the discontinuity estimate (t-statistic), the larger the statistical significance in 

terms of discontinuity at the BSD threshold/cutoff in the air quality data. 

2) Benford’s Law: Benford’s Law is an observation about the frequency distribution of 

the first significant digits, which can be applied to detect irregularity in numeric data 

(Benford, 1938). Previous studies showed that air quality data could generally fit 

Benford’s Law (Stoerk, 2016). Following this study, we used the chi-squared statistic 

to compare the observed frequency distribution for the first two digits of the air quality 

data and the theoretical frequency distribution indicated by Benford’s Law. The larger 

the chi-squared statistic, the larger the statistical significance in terms of numeric 

irregularity in the air quality data. 

 

3. Results 
3.1 Model Evaluation 
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The proposed model was developed based on DeepMind Sonnet (Fortunato et al., 2017). 

In our experiment, a linear regression model was selected as the baseline: 

City-level AQI =  𝛼𝛼 + 𝛽𝛽 × US EMBASSY PM2.5 + 𝜀𝜀, 

where 𝛼𝛼 is the intercept, 𝛽𝛽 is the regression coefficient, and 𝜀𝜀 is the error term. To 

evaluate our proposed model, we used an 80/10/10 random split of the available data 

as the training set, the validation set, and the test set. We used Mean Absolute 

Percentage Error (MAPE) for model evaluation and comparison. We fine-tuned the 

hyper-parameters and chose the model with the lowest error rate of the validation set 

as the final model for daily AQI re-estimation from 2008 to 2012. We set the sample 

size 𝑁𝑁 to 100 to obtain a reasonable estimation of the mean and the variance of the re-

estimated AQI values. 

On the test set, the MAPE of the final fitted model was 12% when using the 

mean of the posterior over the network weight parameters for prediction, while the 

MAPE of the baseline model was 23%. This suggested that our proposed model can 

better predict daily city-level AQI with an accuracy of 88%. In addition, we also 

evaluated the models using R2, which measures the variance of AQI that can be 

explained by the input data. R2 was 92% and 86% for the proposed model and the 

baseline model, respectively. 

3.2 Results of Re-estimated Air Quality Data 

We used the final fitted model to re-estimate daily city-level AQI values during 2008 – 

2012. Figure 4 showed the trends of observed daily AQI values and the re-estimated 

daily AQI values which were aggregated into monthly means. 
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Figure 4. Observed monthly city-level AQI values and re-estimated monthly city-level 

AQI values, 2008 - 2012 (gaps due to missing data) 

 

During this recent BSD period, the average of observed official daily city-level AQI 

values is 89, and the average of re-estimated daily city-level AQI values is 146 (95% 

CI: 139 to 154). Moreover, we also converted AQI to PM2.5 for further comparison (see 

Figure 5). During this recent BSD period, the average of observed official daily city-

level AQI equivalent PM2.5 values is 70 µg/m3, and the average of re-estimated daily 

city-level AQI equivalent PM2.5 values is 113 µg/m3 (95% CI: 106 µg/m3 to 120 µg/m3). 
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Figure 5. Observed monthly city-level AQI equivalent PM2.5 concentrations and re-

estimated monthly city-level AQI equivalent PM2.5 concentrations, 2008 - 2012 (gaps 

due to missing data) 

 

In general, the city-level AQI values and AQI equivalent PM2.5 values after re-

estimation were larger than that before re-estimation (see Figure 6). Table 2 also 

showed the average daily city-level AQI values and AQI equivalent PM2.5 values before 

and after re-estimation across different years from 2008 to 2012. 
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Figure 6. Absolute difference between observed monthly city-level AQI/PM2.5 values 

and re-estimated monthly city-level AQI/PM2.5 values, 2008 - 2012 (gaps due to 

missing data) 

 

Table 2. Average daily city-level AQI/PM2.5 value before and after re-estimation 

Period AQI 

(Before) 

AQI 

(After) 

Increase / 

Percentage 

Increase 

PM2.5 

(Before) 

(µg/m3) 

PM2.5 

(After) 

(µg/m3) 

Increase 

(µg/m3) /  

Percentage 

Increase 

2008 87 134 47 54% 63 102 39 62% 

2009 84 140 56 67% 64 107 43 67% 

2010 91 150 59 65% 73 116 43 59% 

2011 93 158 65 70% 74 122 48 65% 

2012 92 146 54 59% 72 112 40 56% 

2008 – 

2012 

89 146 57 64% 70 113 43 61% 

 

3.3 Statistical Validation for Re-estimated Air Quality Data 

Figure 7 showed the distribution of AQI values across different years from 2008 to 

2012. Irregular air quality distribution could yield a larger discontinuity estimate and a 

smaller p-value at some specific cut-off points. A discontinuity point at the BSD 
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threshold AQI=100 was identified in official air quality data in China in two previous 

studies (Chen et al., 2012; Ghanem and Zhang, 2014). In these two studies, the 

discontinuity estimates could range from 0.41 to 0.96, and the p-value could be less 

than 0.01. Moreover, as demonstrated by another study (Stoerk, 2016), irregular air 

quality distribution could yield a larger chi-squared statistic in terms of Benford’s Law. 
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Figure 7. Daily US Embassy AQI distribution 2008 - 2012 and daily city-level AQI 

distribution before and after Bayesian LSTM re-estimation 2008 - 20125 

                                                        
5 US Embassy PM2.5 was converted to AQI using the AQI equation in Section 2.4. Probability density 
was the Gaussian kernel density estimation from the AQI histogram. 



 18 

 

In Table 3, our statistical tests showed that (a) the discontinuity estimate of the 

US Embassy AQI distribution was insignificant, (b) the discontinuity estimate of daily 

official city-level AQI distribution before the re-estimation was significant, and was 

reduced significantly after the re-estimation, (c) the chi-squared statistic of Benford’s 

Law for the US Embassy AQI distribution is lower, and (d) the chi-squared statistic of 

Benford’s Law for daily official city-level AQI distribution before the re-estimation 

was larger, and was reduced significantly after the re-estimation. These tests suggested 

that the daily official city-level AQI distribution based on our re-estimation model 

follows better the natural air quality distribution. 

 

Table 3. Statistical tests for the distribution of US Embassy AQI, official AQI and re-

estimated AQI from 2008 to 2012 

Period US Embassy 

AQI 

Official AQI 

 

Re-estimated 

AQI 

Discontinuity Estimate at AQI=100 (p-value in parentheses) 

2008 0.14 (0.70) 0.88 (< 0.01) 0.09 (0.77) 

2009 0.15 (0.57) 0.43 (0.20) 0.10 (0.71) 

2010 0.07 (0.80) 1.02 (< 0.01) 0.22 (0.29) 

2011 0.04 (0.85) 1.12 (< 0.01) 0.39 (0.27) 

2012 0.03 (0.90) 0.33 (0.33) 0.25 (0.36) 

2008 – 2012 0.03 (0.78) 0.49 (< 0.01) 0.13 (0.29) 

Chi-squared Statistic of Benford’s Law 

2008 134 175 185 

2009 144 359 224 

2010 131 372 149 

2011 140 443 175 

2012 133 380 173 

2008 – 2012 377 1198 583 

 

4. Conclusion 
Existing studies examining and verifying the statistical irregularity of official air quality 

data collected during the BSD period in China have motivated our follow-up study to 

identify ways of resolving this irregularity. To the best of our knowledge, our study is 
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the first one to re-estimate the irregular air quality data in Beijing, China during the 

BSD period of 2008 – 2012, using a data-driven Bayesian deep learning approach, with 

the US Embassy PM2.5 data and proxy data, including AOD and meteorology data 

across 2008 – 2017, as the input data. Our results have shown that the Bayesian LSTM 

air quality re-estimation model achieves an accuracy of 88%, with exhibited reduced 

discontinuity and irregularity across the five-year BSD period. During 2008 – 2012, the 

re-estimated AQI was higher than the official AQI by 64% on average, and the re-

estimated AQI equivalent PM2.5 was higher than the official AQI equivalent PM2.5 by 

61% on average, suggesting that the official air quality values reported during the BSD 

period may be lower than their natural values. The use of reliable and consistent air 

quality data has significant implications for evidence-based environmental 

research/decision-making in China. Our proposed data re-estimation methodology 

offers a means to fix the data irregularity challenge of historical air quality data in 

Beijing, during the period of 2008 to 2012, where the re-estimated air quality dataset 

can be used to more justifiably inform the health impacts of air pollution and the effects 

of air pollution control regulations in Beijing during this period. 
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