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Abstract 

Heating and cooling are responsible for over 50% of the world’s final energy consumption, and 
over 40% of global CO2 emissions. With an increasingly decarbonised electricity grid, the 
electrification of heating offers one potential alternative to the incumbent, heavily fossil-fuel 
dominated heating system. However, the high penetration of renewables, the high seasonality and 
hourly variability of heat demand, and an increasing domestic demand for energy services, 
including cooling, pose significant balancing challenges for both hourly system operation and the 
long-term investment decision planning of electricity systems. The combination of both demand-
response measures and the integration of flexible systems will be required to deliver low carbon 
heating and cooling, while integrating an increasing share of renewable electricity, and managing 
peak load. We provide a global overview of the technical, economic and policy challenges and 
opportunities to decarbonise heating demand through electrification, in the context of rising demand 
for cooling services. 
 

1. Introduction 

Heating and cooling involve multiple applications across various sectors and usually refer to 

temperature management of space, water and processes, in residential and commercial buildings and 

across industry. The diversity of applications makes accounting for cooling – and especially heating-

related energy demand and emissions across various sectors challenging. Even extracting consistent 

data on heat-related energy demand and emissions can be very laborious, since national statistics will 

often aggregate at the sector (for example buildings, industry) or sub-sector (residential, commercial, 

given industry) level, or simply lump together heat and electricity.  

By any accounting, numbers for global heating and cooling energy demand and associated CO2 

emissions are staggering. In 2017, total heating demand accounted for 58800 TWh of energy demand 

(half of total energy demand) and 12.6 GtCO2 of emissions (IEA 2018a; IEA Statistics 2019). So far, 

demand for cooling is only responsible for 1900 TWh (1.7 per cent of total energy demand) and 1.1 

 
1 A version of this paper will appear as a chapter in the Handbook on the Economics of Electricity Markets, edited by 

Jean-Michel Glachant, Paul L. Joskow and Michael G. Pollitt to be published by Edward Elgar in 2021. We are grateful 

for helpful comments from the editors.  We acknowledge support from EPSRC Grant EP. 
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GtCO2 (3.4 per cent of global emissions), but has increased by 150 per cent in less than 20 years 

(IEA 2019a and 2019b).  Unless otherwise noted we will use 2017 values throughout.  

 

Figure 1 Total and electrified heat demand per sector.  Sources: IEA (2018a), (2019a), (2019b). 

Process, space and water heating is still largely dominated by direct combustion of fossil fuels (apart 

from traditional biomass, which is considered neutral from a carbon accounting perspective). This 

can be explained by the high energy density of these fuels and their ability to meet a variable heat 

demand. Thus, only 7 per cent of total heat demand is electrified (IEA 2018a), mostly in buildings, 

and less than 6 per cent is supplied by district heating, whereas 85 per cent is via direct combustion 

of fossil fuels (IEA Statistics 2019). Although 7 per cent is the global average, electrification rates 

vary greatly across the world, depending on availability and cost of electricity or its competitors.  

Figure 2 provides total and per capita residential heating demand by source in selected regions. For 

example, UK residential heating is 85 per cent reliant on natural gas encouraged by gas reserves in 

the North Sea. In Sweden, however, solid biomass boilers meet 17 per cent of residential heating 

demand, and district heating make up 51 per cent of heating demand, of which 87 per cent is sourced 

from biofuels and wastes (IEA 2019c), owing to the high availability of bio-feedstock and 

established bioenergy supply chains. In regions which boast high availability of low-cost electricity, 

often based on hydroelectric power, such as Norway or Quebec, electrification of residential heat 

reaches 56-65 per cent (European Commission 2019b; Natural Resources Canada 2019). Otherwise, 

high penetration rates are only found in countries with low heat demand, such as Albania or Malta, 

which highlights the difficulty of electrifying heat, since variability of heat demand poses significant 

load balancing challenges (European Commission, 2019b).  
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While most climate policies have focused on decarbonising the power sector, the heat sector has 

remained virtually untouched. In 2017, only 10 per cent of heat was generated from renewable 

sources (IEA 2018a). The largest share of renewable heat comes from bioenergy, mainly for 

industrial applications, followed by renewable electricity, mainly in buildings. Only 1100 TWh 

comes from renewable electricity (IEA 2018a).  

Electrification of heating enables the move from a highly dispersed CO2 emissions model, to a model 

where CO2 emissions are centralised around electricity production, and hence easier to abate. As 

current heating needs are largely met by fossil fuels and traditional biomass, it also means that 

supply is still subject to the availability and cost of these resources. In 2018, the USA, Russia and the 

Middle East were responsible for over 60 per cent of global natural gas production (IEA Statistics 

2019). From an energy security perspective, electrification enables diversification, by decoupling 

heat sinks from heat sources. The integration of renewables, modern biomass and/or abated fossil-

fuel electricity (for example, using carbon capture and storage or CCS) could provide more 

flexibility and make the overall energy system more resilient than the incumbent one. 

 

Figure 2 Total and per capita residential heating by source in a selection of countries and 

provinces. Source: authors based on BERC (2018); EIA (2019); European Commission (2019b); 

Natural Resources Canada (2019). 
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Pathways to electrify heat in the residential and commercial sectors have been explored at the global 

(IEA 2019a, Knobloch et al. 2019), European (Connolly et al. 2014, Heinen et al. 2018) and national 

level, in particular in the US (Paige et al. 2017; White and Rhodes 2019), and the UK (Cooper et al. 

2016, Element Energy and E4Tech 2018, Strbac et al. 2018, Zhang et al. 2018).  

The Paris Agreement’s commitment to limit global temperature increase to ‘well below 2ºC’ has 

been translated into regional, national and sub-national initiatives to reach net zero greenhouse gas 

emissions by 2050 or earlier at the city (New York), state (California) and country (UK, France, 

Sweden, Finland, Norway and New Zealand) level. These pledges have resulted in a renewed interest 

in further exploring deep decarbonisation pathways for the heat sector. 

The industrial sector is also responsible for a large fraction of heat demand and associated CO2 

emissions. Globally, about 30 000 TWh are used for space and process heating in industrial sites, and 

only about 10 per cent of this heat supply is renewable (IEA 2018a). As a result, industrial heat was 

responsible for roughly 10 per cent of global CO2 emissions (Friedmann et al. 2019). In the European 

context, a full electrification scenario of the industrial sector would increase total electricity demand 

in industry by more than a factor of ten, from 125 TWh to 1713 TWh (Lechtenböhmer et al. 2016). 

The challenges and costs of electrification of heat in industry are, however, much more context- and 

industry-dependent than in the buildings sector. Addressing the role of electrification in industrial 

heating requires detailed assessments of the different uses of heat across different industries in a 

given regional context. Given the scarcity of such surveys, and the high diversity of heat end-uses in 

industry, relatively few studies have looked at electrification of industrial heat (Lechtenböhmer et al. 

2016; Paige et al. 2017; Beyond Zero Emissions 2018; Friedmann et al. 2019; Luh et al. 2019). For 

the purpose of this study, we chose to focus on the electrification of residential and commercial 

heating. 

This paper gathers evidence from global and country-level studies to explore the potential for 

electrification of heating in the building sector. The remainder of this report is structured as follows: 

Section 2 summarises current heat supply and CO2 emissions, Section 3 presents the different 

technology options to decarbonise heating, Section 4 provides an overview of the challenges and 

opportunities of electrification, Section 5 discusses global and regional outlooks for the role of 

electrification of heat in the future and Section 6 concludes.  

As data related to energy demand and CO2 emissions from heating is not straightforward to obtain or 

compare across countries, for the sake of consistency, most of the data we present is derived from 

various International Energy Agency (IEA) publications. 
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2. Current Energy Demand, Supply and CO2 Emissions 

First, it is helpful to understand how energy demand in buildings is distributed across different end 

uses, and how this demand has evolved in the recent past. Figure 3 shows the evolution of the energy 

demand from the buildings sector by energy service, as well as total floor area and building energy 

intensity over the past two decades. In spite of efficiency improvements to curb energy use in 

buildings, the 2000-2017 period has seen a 22 per cent increase in building energy demand. A key 

driver of this trend is the increase in floor area. While appliance efficiency and building envelope 

improvements have enabled a 28 per cent drop in building energy intensity, global floor area has 

increased at a faster rate of 65 per cent over this period. This global increase in floor area is mainly 

driven by China, which has added 30 billion m2 since 2000, roughly doubling its total to 58 billion 

m2
 by 2017, equivalent to 25 per cent of global floor area (IEA 2019a). 

 

Figure 3 Energy demand in the building sector per end use (y-axis left hand side) and total floor 

area and energy intensity relative to 2000 (y-axis right hand side), between 2000 and 2017.  

Source: authors based on IEA (2019a). 

 

Direct use of coal, oil or natural gas, is responsible for 37 per cent of building energy demand (IEA 

2018a), which results in the building sector reaching about 3 GtCO2 in 2017 or 10 per cent of global 

emissions (IEA 2019a). It can be observed from Figure 4 that these direct emissions have remained 

constant over the past two decades. When accounting for indirect emissions associated with 
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electricity generation, however, CO2 emissions have increased from 7.7 GtCO2 in 2000 to 9.5 GtCO2 

in 2017, which mirrors the increasing demand trend for new energy services. Accounting for indirect 

emissions from electricity also explains differences in emissions between the residential and 

commercial sectors. The commercial sector uses much more electricity (46 per cent, resulting in 43 

per cent of indirect emissions), whereas the residential sector uses a significant amount of traditional 

biomass (30 per cent, that is 8300 TWh), which is considered ‘carbon neutral’. While carbon 

intensity has decreased, it has only declined by 7 per cent between 2000 and 2017 (from 540 

kgCO2/MWh to 490 kgCO2/MWh) compared to the 59 per cent electricity demand increase in the 

building sector in the same period. 

 

Figure 4 Energy demand and energy intensity (left), and CO2 emissions and CO2 intensity (right) 

of residential and commercial buildings between 2000 and 2017. Note that demand and emissions 

are displayed as stacked bars and measured on the LHS y-axis whereas the intensities are 

displayed as diamonds and measured on the RHS y-axis. Source: authors based on IEA (2019a). 

 

2.1 Space and water heating  

Globally, space and water heating account for 53 per cent of building energy demand (IEA 2019a). 

Space heating is the largest contributor to energy demand and accounts for a third of total energy 

demand. The transition to more efficient technologies (for example, from conventional boilers to 

condensing boilers) and building efficiency improvements, have kept demand for space and water 

heating relatively constant, in spite of an increasing building floor area (IEA 2019b). Figure 5 

illustrates trends in efficiency improvements in space and water heating in selected regions, between 

2000 and 2017. In contrast with the more rapid increase in demand for cooling and electricity 
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services, water heating and space heating only increased by 1 per cent and 18 per cent respectively 

between 2000 and 2017.  

Space and water heating is still overwhelmingly dominated by fossil fuels. Their use is mainly in 

conventional boilers, while electricity is typically used in conventional resistance heating, which are 

quite inefficient systems. In 2017, fossil fuel-based and conventional heating equipment accounted 

for over 80 per cent of heating equipment sales. Excluding traditional use of biomass, water heating 

is mainly fuelled by fossil fuels and conventional electric boilers (IEA 2019b). 

 

Figure 5 Energy performance improvement of space and water heating between 2000 and 2018. 

Source: authors based on IEA (2019b).  

 

Geographically, the main contributors to this heating demand are the US, EU, Russia and China (IEA 

2019a). Table 1 gathers residential heat demand data for China, North America (Canada and the 

USA), Russia and the EU. Assuming a total global residential water and heat demand of 11 100 TWh 

(40 EJ) (Gi et al. 2018), these four regions make up 70 per cent of total residential heating demand 

(see Table 1 for details). Total heating demand per capita, however, varies greatly from one region to 

another, as a function of building efficiency and level of development. While residential heating 

demand per capita is over 8800 kWh in Canada and Finland, it falls to 5000 kWh in Poland and the 

Netherlands, and to 1400 kWh in China (BERC 2018, European Commission 2019b, Natural 

Resources Canada 2019). 
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These same regions are also leading the drive for alternatives to fossil-based heating, including solar 

thermal technologies (China), high efficiency heat pump water heaters (Japan, US, Europe) and 

hydrogen fuel cells (Japan) (IEA 2019b). 

 

Table 1 Residential space and water heating demand per region in 2017 

Region Demand 

(TWh) 

Note and references 

Russia 970 Centralised and decentralised heating demand in Russia from 

2009 (Nekrasov et al. , 2012) 

China 1960 Urban residential space and water heating demand and northern 

urban district heat demand from 2016 (BERC 2018) 

USA 1910 2017 total residential space and water heating demand (EIA 2019) 

Canada 330 2017 total residential space and water heating demand (Natural 

Resources Canada 2019). 

EU 2670 2017 total residential space and water heating demand (European 

Commission 2019b)  

 

2.2 Space cooling 

A second driver of building energy demand is the increasing ownership of appliances and demand 

for new services (65 per cent increase between 2000 and 2017), especially space cooling (150 per 

cent increase between 2000 and 2017, see Figure 3) (IEA 2019a. Many drivers can explain these 

shifts, including population growth (World Bank 2019) and floor area, but also increase in 

temperatures (IEA 2018b), urbanisation (Mohajerani et al. 2017) and income level (Cayla et al. 

2011) (see Box 1). In 2017, space cooling represented only 6 per cent of energy use in the buildings 

sector but is currently the fastest increasing component. Ownership of air conditioning (AC) units is 

highest in Japan (90 per cent) and in the USA (90 per cent) (IEA 2018b). The China AC market has 

become one of the largest in the world, currently accounting for one third of global AC sales, leading 

to dramatic increases in AC ownership from 15 per cent of households in 2000 to 60 per cent in 

2017. The take-up of AC units has been slower in India, Southeast Asia and Africa but is expected to 

accelerate in the next decade. Brazil, India, Indonesia and Mexico are rapidly catching up (IEA 

2019d). For example, AC ownership in India has doubled from 2 per cent of households in 2010 to 4 

per cent in 2016 (IEA 2018b). Penetration rate, of course, does not necessarily imply high 
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consumption since this will depend on the number of rooms air conditioned and usage patterns such 

as the temperature and the hours used. In Japan, for example, despite having one of the highest 

penetration rates, space cooling only makes up some 5 per cent of household energy use, compared 

to Saudi Arabia where air conditioning accounts for over 70 per cent of household electricity use 

 (Enerdata 2019). 

Electricity consumption for space cooling increased twofold globally between 2000 and 2018, over 

fivefold in India, and eightfold in China (IEA 2018b). The increase between 2017 and 2018 alone is 

particularly notable – AC sales rose by 16 per cent, which can be explained by record-breaking and 

prolonged heat waves that hit Europe, Korea, Japan and China in the summers of 2017 and 2018. 

Since increases in cooling demand have mostly occurred in emerging economies with a high carbon 

intensity in the power sector, notably China, CO2 emissions from cooling have tripled since 1990, 

reaching 1.1 GtCO2 in 2018 and have been rising much more rapidly than cooling demand overall 

Box 1: Increasing demand for cooling and broader energy services 

Demand for energy services has risen dramatically since 2000, which can be explained by the 
following factors: 

• Demography: world population grew by 23 per cent between 2000 and 2017, with 
developing and emerging economies such as Sub-Saharan Africa and South Asia 
propelling the trend, 58 per cent and 29 per cent respectively (World Bank 2019).  

• Climate: increases in air temperature and humidity levels over prolonged periods of time 
have driven up sales of cooling units around the world. Global air conditioning units sales 
increased by 16 per cent between 2017 and 2018 alone, after a particularly hot summer 
where many cities around the world reached record breaking temperatures for an 
extended period of time (IEA 2018b).  

• Income level and development: Research suggests a high correlation between household 
energy demand and income (Cayla et al. 2011). In Singapore, where the average annual 
humidity is over 80 per cent, 99 per cent of households are equipped with air 
conditioning. By comparison, in India, where summer temperatures can reach over 50°C, 
only 4 per cent of households own an AC (IEA 2018b). As income level increases in 
emerging economies, appliance ownership and energy consumption ramp up. 

• Urbanisation: The world’s population is moving away out of rural areas into cities. The 
proportion of the population living in urban environments has increased from 47 per cent 
to 55 per cent from 2000 to 2017 (World Bank 2019). Demand for energy services has 
been observed to be higher in urban areas, especially for cooling. This is partly owing to 
higher income and urban population living more energy-intensive lifestyles, partly due to 
higher temperatures in urban environments. This ‘heat island effect’ is mainly caused by 
the increasing density of heat absorbing material (for example, asphalt in roads and 
pavement and dark rooftops) and the reduced amount of natural vegetation (Mohajerani et 
al. 2017). For AC units which release hot air, the heat island effect generates a vicious 
circle where cooling demand further drives up cooling demand. 
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(IEA 2018b). Unlike heating, cooling demand may be better matched with growing reliance on 

renewables in the power sector, particularly solar PV. In principle at least, the path is more 

straightforward, but, to date, rapid growth in cooling demand continues to outstrip electricity 

decarbonisation.  

 

 

Figure 6 Total AC sales (left) and AC installed capacity in 2016(right).  

Source: authors based on IEA (2018b), (2019b). 

 

3. Technology Options to Decarbonise Heating and Cooling Demand in Buildings 

While market-ready renewable heating solutions exist, renewable heat only represents 10 per cent of 

current heat supply (IEA 2018a). Alternatives to the current fossil-fuel-dominated heating system 

include heat pumps, solar thermal, biomass boilers, district heating and cooling networks, and 

substituting natural gas with ‘greener gas’, such as hydrogen and biomethane. 

Between 2010 and 2017, fossil fuel equipment as a share of total sales dropped slightly from 62 per 

cent to 59 per cent, as sales of alternatives expanded – conventional electric equipment increased 

from 20 to 22 per cent, heat pumps increased from 2 per cent to 3 per cent and renewables from 4 per 

cent to 6 per cent. District heating, on the other hand, has dropped slightly from 11 per cent to 10 per 

cent of total sales. Heat pump sales increased consistently by around 5 per cent per year over 2010-

2017, and by 10 per cent between 2017 and 2018 (IEA 2019b). While this suggests the transition to 

lower-carbon heating and cooling is underway, a much faster transition is required to meet 

decarbonisation ambitions. 
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3.1 Building and District Level Heat Pumps 

When exploring electrification of the heating sector, household or district level heat pumps remains 

the main technology pathway. 

 

Basic Principles 

Heat pumps (HP) use a refrigerant (typically R-22 and R-410A in the residential sector) to exchange 

heat between a heat source – air, water, soil – and a heat sink – air or water. Air-source heat pumps 

(ASHP) which derive heat from the outside air, and ground-source heat pumps (GSHP), which 

exchange heat with the soil via underground pipes, are the typical configurations (Staffell et al. 

2012). In terms of sinks, air-to-air systems provide space heating by directly warming and circulating 

the inside air of a property, while air-to-water can provide space heating by circulating hot water 

around the home via radiators or an underfloor heating system. The hot water can also be stored in a 

tank for direct use.  

 

 

Figure 7 Basic principle of a heat pump.  Source: authors. 

 

A heat pump exchanges heat between the cold source and the hot sink by circulating a working fluid 

in a thermodynamic cycle. The fluid evaporates in a heat exchanger in contact with the outside heat 

source (air, water or ground), to collect an amount of heat QC, It is then brought to a higher pressure 

in a compressor. This is the part of the process which requires work (W), from electricity. The fluid 

then condenses in a heat exchanger when in contact with the inside heat sink (air or water), thus 

delivering heat QH to the sink.  
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The efficiency of a heat pump is measured by its coefficient of performance (COP), which is defined 

by the amount of heat generated and the amount of work required to compress the fluid. Unlike 

boilers which are at most 90-95 per cent efficient using advanced technologies (for example 

condensing boilers), heat pumps typically have an efficiency which is much greater than 100 per 

cent. This coefficient will be very dependent on the temperature of the heat sink, hence can be 

variable throughout the year (Staffell et al. 2012). Typically, the COP of HPs is around 3.0, but will 

drop by 0.6 to 1 for every 10oC difference between indoor and outdoor temperatures (Staffell et al. 

2012). Consequently, while COP of four or five can be obtained in milder climates (Mediterranean, 

Central and Southern China), COP can drop to two in colder climates such as Canada (IEA 2019b). 

These values are, however, still twice as high as conventional resistive heating.  

GSHPs are more resilient to changing outside air temperatures since soils maintain a fairly constant 

temperature profile throughout the year. However, GSHPs require significant space outdoors as pipes 

need to be buried underground leading to higher capital costs, while an ASHP is a more compact 

system, which can be accommodated in a 2 m2 surface area. Where feasible, geothermal heat pumps 

can provide a cheaper alternative to ASHPs, due to significantly lower operating costs.  

 

Current sales and outlook 

Current heat pump capacity is still very low, having been installed in some 18 million households, 

which accounts for only 5 per cent of heating equipment sales in 2017 and meeting 3 per cent of 

global heating needs (IEA 2019b). Like any electrification pathway, decarbonisation of the 

electricity grid is a pre-requisite if heat pumps are to successfully decarbonise the heating sector. 

However, because of the much higher efficiency of heat pump systems (300-400 per cent), they 

could already supply 90 per cent of space heating demand with a lower carbon footprint than 

condensing gas boilers (IEA 2019a).  

Adoption rates of heat pumps are currently higher in moderate climates (US and Western Europe 

account for 50 per cent of sales) (IEA 2019d). This can be partly explained by the increasing sales of 

reversible units, which are also used for cooling (EHPA 2019). The highest adoption rates are, 

however, in the Nordic countries of Sweden, Finland, Norway as well as Estonia, with total heat 

pump penetration rates between 23 per cent (Estonia) and 42 per cent (Norway) (EHPA 2019, IEA 

2019b). 
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Figure 8 Heat pump sales between 2010 and 2018 in different regions.  

Source: authors based on IEA (2019d). 

Governmental subsidies can play a large role in technology adoption. Heat pump water heater sales 

have tripled since 2010, mainly driven by China, which introduced subsidies to replace coal boilers 

with air-to-water heat pumps (Zhao et al. 2017, Shuxue et al. 2019). Since 2016, growth in heat 

pump sales has been largely driven by Europe and Japan, due to generous incentives – for example, 

heat pumps are covered in the UK’s renewable electricity portfolio (UK Government 2014) – which 

have led EU sales to quadruple since 2010.  

In pathways going out to 2050, heat pumps become the dominant technology, with approximately 

one billion households worldwide equipped with a heat pump, operating at a COP of 4.0 on average 

(IEA 2019a). Reaching this level of deployment would, of course, require significant increases in 

current levels of uptake.  

 

3.2 Alternative Pathways to Decarbonisation of Heating and Cooling 

Aside from electrification, other pathways have been explored to decarbonise heating. These include 

district heating, solar energy, hydrogen, bioenergy and significant efficiency improvements in gas 

appliances. 
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District Heating 

District heating typically involves cogeneration plants based on fossil fuel or biomass combustion 

producing both heat and electricity, but other sources include geothermal, solar nuclear energy or 

heat pumps. Waste-to-energy (such as in Dublin) also can provide an important source. The heat is 

then distributed by a network of pipes, which are laid out over a scale ranging from a few homes to 

an entire city (such as Stockholm or Bucharest). Often district heating can be at the scale of a large 

commercial facility or an institution with a complex of buildings, such as universities, hospitals or 

government buildings. By co-producing heat and electricity, these systems can achieve greater 

efficiencies and lower carbon emissions.  

Today, district heating only provides 10 per cent of global heat demand, but constitutes a major 

source of heating in selected regions (Denmark 44 per cent, Sweden 51 per cent, Russia 42 per cent, 

China 10 per cent) (European Commission 2019b, IEA 2019a). Future opportunities in this space 

include fourth generation low-temperature high-efficiency heat networks supplied by large scale heat 

pumps (Lund et al., 2014; Werner, 2017) but the deployment of these networks is highly dependent 

on urban configuration, availability and proximity of energy supply and building improvements (IEA 

2019b).  

To date, 89 per cent of district heat is supplied by fossil energy, resulting in an average carbon 

intensity of 300 gCO2/kWh (IEA 2019a). This share is as high as 91 per cent in Russia and 99 per 

cent in China, where coal supplies much of the heat. However, examples in Europe, such as in 

Sweden and Denmark, demonstrate the possibility of using lower carbon sources in district heating 

(two-thirds of energy supply is renewable in the Swedish district heating system and almost 60 per 

cent in Denmark) (IEA 2019a).  

The biggest challenge for district heating is the large-scale infrastructure required and the need for 

wholesale systemic change, which explains the current low level of uptake. There have been various 

approaches to encouraging uptake of district heating. In many cases, institutions such as hospitals or 

government buildings have adopted district heating schemes. In other cases, large urban centres have 

shifted to district heating. For example, Denmark introduced a zoning system, whereby connection to 

the heat or natural gas network was mandatory in those areas while banning heat pumps, whereas 

heat pumps were subsidised outside these regions (Hanna et al. 2016). 
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Solar energy for heating and cooling 

Since first deployed in 2005, solar thermal heat capacity has expanded to 470 GWth (thermal) nearly 

as much as solar PV capacity, mostly driven by deployment in China (IEA 2018a), as well as regions 

with high water heating needs (relative to heating) and high solar irradiance. This increase has also 

been driven by the implementation of sustainable cooling policies to limit cooling demand. However, 

as of 2018, solar thermal still only meets just over 2 per cent of space and water heat demand, which 

means that the sector would need a 10 per cent per year increase by 2030 to meet 8 per cent of 

building sector heat demand (IEA 2018a and 2019a). To date, the fastest growing technology is solar 

PV with storage (through chilled water/ice), with increasing sales in the Mediterranean, Middle East 

and Australia. Innovations in this space include flexible solar AC units (which adjust their capacity 

to the solar electricity available), as well as liquid desiccant evaporative cooling. Innovations in solar 

cooling include liquid desiccant cooling, which relies on cooling liquids. This simultaneously 

dehumidifies and cools the air, and is particularly useful in humid and hot areas (IEA 2018b and 

2019b). 

 

More efficient gas appliances 

Most straightforward would be switching to condensing gas boilers, which are 95-100 per cent 

efficient and provide a more efficient alternative to conventional boilers. In dense areas, district 

heating and cooling systems can substitute for gas-based equipment, although this involves 

considerable investment in infrastructure. If substitution is not possible, switching all remaining 

conventional gas boilers to gas hybrid heat pumps and condensing boilers would be required to curb 

natural gas demand and reduce CO2 emissions from heating. Policies imposing minimum efficiency 

requirements on gas appliances, like the Canadian 100 per cent efficiency space heating regulation 

by 2030, will be required to phase out low-efficiency gas systems. These minimum efficiency 

requirements need to ramp up to 150 per cent by 2050 for all heating appliances (IEA 2019a). 

Options to repurpose the gas grid to ‘greener gas’ such as hydrogen and biomethane are explored at 

the local level, but more R&D and demonstration projects are required to support the deployment of 

these solutions, beyond the local level. 
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Hydrogen 

Hydrogen is a versatile and potentially carbon-free fuel, which can be used in diverse applications 

including transport and heating. The first barrier to the roll-out of hydrogen though is the difficulty 

of producing low-carbon hydrogen at competitive costs with natural gas. When produced from fossil 

fuels (via steam methane reformation – SMR, coal gasification or partial oil oxidation), which 

currently makes up 96 per cent of the world’s hydrogen production (CCC 2018b), the carbon 

intensity of hydrogen – in this case also known as ‘grey hydrogen’ – can range from 205-600 

gCO2/kWh depending on the assumptions (Sustainable Gas Institute 2017).1 One option to reduce the 

carbon intensity of hydrogen is to combine steam methane reforming with CO2 capture and storage 

(CCS), the so-called blue hydrogen, which can result in carbon intensity as low as 20 gCO2/kWh 

(Sustainable Gas Institute 2017). When produced from water electrolysis using carbon-free 

electricity, the hydrogen produced is zero carbon, also known as green hydrogen. If combined with 

decentralised renewable generation (for example wind or solar farms), this pathway also has the 

potential to use curtailed electricity from renewables, by storing it in the form of gas (‘Power-to-

gas’). Costs of hydrogen by electrolysis are widely seen as higher than via SMR (Mulder et al. 2019, 

IEA 2019e) although there are claims that at least in certain niches, green hydrogen may start to 

become competitive over the coming decade (Glenk and Reichelstein 2019). 

Another major barrier to the hydrogen economy is the infrastructure required to store, transport and 

deliver hydrogen to consumers. In countries with an extensive natural gas network, a key opportunity 

around the hydrogen economy is the possibility to re-use the natural gas distribution networks, 

thereby avoiding the cost of decommissioning under strong decarbonisation policies. Current 

regulation in Europe only allows a share of 5 per cent (volumetric) of hydrogen in the natural gas 

distribution networks, due to concerns over pipe permeability, embrittlement and operation of 

existing gas end-use appliances. While full decarbonisation would require the replacement of 100 per 

cent of natural gas by hydrogen, current trials such as the GHRYD project in Northern France which 

started in 2017 are exploring the injection of greater volumes (up to 20 per cent) of hydrogen in the 

gas grid (ENGIE 2019). The UK’s £25 million Hy4Heat project, planned for 2020, will explore the 

feasibility of natural gas grid conversion to hydrogen in the UK. 

Another pathway under investigation is domestic fuel cells for onsite electricity generation. The 

leading market for this option is Japan with its ENE-Farm hydrogen fuel cell installations surpassing 

300 000 units in 2019 (Klippenstein 2019). By contrast, in Europe, the ene.field project has 

demonstrated domestic electricity generation with hydrogen fuel cells micro-CHP (combined heat 
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and power) at a much smaller scale, having installed 1000 units across ten countries since 2012 

(European Commission 2019a).  

 

Solid biomass and biomethane 

A final set of renewable options for space heating is bioenergy in the form of domestic solid biomass 

boilers or biomethane injection into the natural gas grid. Currently, 30 per cent of domestic heat is 

still supplied by traditional biomass. Traditional biomass used in stoves and heaters is often sourced 

unsustainably, burned inefficiently and has been linked with numerous health problems (Goldemberg 

and Coelho 2004). In comparison, modern biomass such as wood pellets in stoves only constitutes 5 

per cent of current heat provision in homes (IEA 2018a). Domestic boilers need a relatively high 

grade biomass pellets to operate efficiently (CCC 2018a). While modern biomass is theoretically a 

carbon-neutral renewable resource, whether the large-scale logistics of producing, upgrading and 

transporting biomass pellets around the world is indeed sustainable remains controversial. Land use 

change and potential deforestation, biodiversity loss, soil depletion or water use are additional 

concerns likely to constrain the amount of biomass which can be sustainably sourced (Creutzig et al. 

2015).  

Other bioenergy applications such as converting agricultural residues and municipal solid wastes to 

biomethane that can be injected into the gas grid, allow for the scope for bio-feedstock to be 

broadened and make use of what would otherwise be waste products, while continuing to use 

existing infrastructure. In France, for example, 44 biomethane injection stations injected 406 GWh 

of biomethane into the gas grid in 2017, which suggests rapid progress since the first pilot station in 

2011 (Gaz Réseau Distribution France 2017).  

 

4. Challenges and Opportunities of Electrification of Heat in Buildings 

Electrification of residential and commercial heating can pose significant challenges to the design 

and operation of the electricity system. Sources of flexibility, both on the consumer and  

infrastructure side, will be key to alleviating these potential impacts. 

 

4.1 Impact on Electricity Demand 
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A first set of challenges involves the impact of heat electrification on the electricity demand curve, 

which directly affects the power system’s operation, as well as generation and transmission capacity 

requirements. 

 

Winter and summer peaks 

There has been increased attention to the relationship between temperature and electricity demand 

(Thornton et al. 2016; Cassarino et al. 2018). The sensitivity of the electricity system towards 

variation in heat demand is called thermo-sensitivity. The thermo-sensitivity of an electricity system 

is measured by the rate at which electricity demand increases per degree Celsius of temperature 

decrease. For example, in France, where electricity provides 18 per cent of residential heat demand 

(European Commission 2019b), the thermo-sensitivity of the system reaches 2400 MW/oC (or 0.04 

kW/oC/capita) when temperatures fall below 1oC, which is significantly higher than in the UK (800 

MW/oC or 0.01 kW/oC/capita) where only 8 per cent of residential heating is electrified (RTE 2018). 

This suggests that electrification of heat would increase the power system’s exposure to fluctuations 

in heat demand.  

Additionally, in cold climates, the electricity profile is very different from the heat demand profile. 

Figure 9 shows the 2015 hourly profile of residential heat and total electricity demand in the UK 

(Charitopoulos et al. 2019).2 While demand for electricity remains relatively constant throughout the 

year, heat demand is highly seasonal, with a fourfold variation between average summer and winter 

demand. Linking electricity to heat could therefore completely reshape the electricity demand 

profile, adding seasonality. Finally, the scale of peak demand and the rate at which the heat sector 

reaches these peaks is much greater than in a traditional power system. Reducing peak demand is 

particularly important, as it is typically met by ‘peaking’ fossil-based generation units (usually gas 

plants), and constitutes one of the largest challenges and sources of uncertainties to the electrification 

of heating (Chaudry et al. 2015; Eyre and Baruah 2015; Watson et al. 2019). 
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Figure 9 Total electricity and residential heat demand profiles in 2015 in the UK.  

Source: authors based on Charitopoulos et al. (2019). 

 

Increased electrification of heating, combined with lower heat pump efficiency on colder days, could 

drastically impact peak demand in winter. In the IEA Fast Transition scenario to 2050, heat pumps 

make up 30 per cent of the global heating equipment capacity by 2050, but this value increases to 45 

per cent in the EU (IEA 2019a). A 50 per cent share of heating capacity by heat pumps would 

increase peak load by 60 per cent in the UK (Cooper et al. 2016). In 2050, a peak day in January 

could require 68 GW for heating, that is12 per cent of daily peak, or 69 GW in the morning , that 

is18 per cent of morning peak (Renaldi et al. 2017). 

Rapid increase in energy services including cooling demand is also putting increasing strain on 

power systems. In 2017, cooling accounted for 15 per cent of peak electricity demand on average, 

and up to 50 per cent in some cities in China and India in summer (IEA 2018b). 

In the IEA Fast Transition scenario, higher cooling and electrified heating demand is likely to 

increase peak demand. In China, where 1.1 billion AC units are expected to be owned by Chinese 

households by 2050, the evening peak could be one and a half times higher than the daily load (IEA 

2019a).  

 

Sources of flexibility 

Hot water storage provides an opportunity to reduce the impact of electrification of heating demand, 

as well as secure heating supply at colder hours. For example, in the UK, combining heat pumps with 
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hot water storage could help shift 15 per cent of the peak heating load to off-peak hours (Renaldi et 

al. 2017).  

For gas-connected homes, another option to secure the heat supply under cold conditions is by 

pairing a heat pump with continued use of natural gas, through the use of hybrid heat pumps (Zhang 

et al. 2018). 

Finally, another way to add flexibility to the system is to couple larger heat pumps with district 

heating or cooling networks. District level heat pumps typically have a higher coefficient of 

performance (EHPA 2017), and can enable more flexible operations, using the thermal inertia and 

flexibility provided by the heat networks (Schweiger et al. 2017).  

 

Connected appliances and smart metering 

To avoid electrification of heat having a large impact on both average and peak electricity demand, 

smart appliances combined with heat storage could: 1) reduce overall energy consumption through 

better management of overall household energy demand, and 2) shift peak demand by producing heat 

off peak. In particular, smart meters can help regulate load as a function of weather patterns. The 

pairing with storage capacity to shift the cooling load to off-peak hours, possibly when solar PV 

generation is available, is an example. These demand-side management options need to be facilitated 

with new tariff structures, such as (dynamic) off-peak electricity pricing, with the support of smart 

meters using time-of-use tariffs (Eid et al. 2016, Karlsen et al. 2020). For example, in the US, a 55 

per cent decrease in cooling demand during peak hours was achieved following the implementation 

of a ‘rush hour reward’ scheme (BPIE 2016).  

In the case of heating, the potential for load shifting and peak reduction is highly dependent on the 

system’s energy efficiency and the thermal storage available (Arteconi and Polonara 2018). Schemes 

to shift electric heating load are being explored in the context of all-electric houses in Norway 

(Karlsen et al. 2020). However, flexible operation of heating systems will be enormously challenging 

on a cold winter day, particularly without the use of flexible heating systems such as hybrid heat 

pumps.  

Another critical element in any effort to manage demand is the growing deployment of smart meters, 

which has driven down costs. Roughly 800 million smart meters were installed as of 2017, 500 

million in China alone, resulting in a 75 per cent drop in smart meter costs relative to 2010 (IEA 
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2019a). Furthermore, digitalisation and access to this data could also boost innovation and research 

to better tailor solutions to consumers. 

 

4.2 Outlook for Future Demand 

Demand for cooling and other energy services has increased dramatically since 2000. From 2020 to 

2050, population is expected to grow by about 30 per cent, and up to 50 per cent in the Middle East, 

one of the regions of highest demand for cooling (World Bank 2019). The urbanisation rate is likely 

to reach 66 per cent and the number of cooling degree days is expected to grow by 25 per cent on 

average by 2050, with up to 37 per cent growth in regions like Mexico (IEA 2018b). 

Despite continued improvements in efficiency, electrification of space heating and an increase in 

cooling needs could lead to an increase in power demand by 25 per cent, especially in developing 

economies with high cooling needs. Global electricity demand for space cooling alone could increase 

by up to 35 per cent (IEA 2019a). In the next decade, ten AC units could be sold every second, so 

addressing AC performance is of paramount importance (IEA 2018b).  

Aside from changing how heat is supplied, demand-side response solutions are key to lowering heat 

demand in buildings and enabling greater heat electrification without imposing a strain on electricity 

systems. 

 

Building envelope performance 

One of the key levers of demand-side response is improving building envelope performance (Reyna 

and Chester 2017).  

Improvements to building envelope need to be tailored to climate zones and those identified as the 

main levers for improving building efficiency in each zone are: 

• Hot climates: building orientation, wall-to-window ratios, green roofs, reflective contours 

and connected blinds/shutters; 

• Cold climates: ventilation with heat recovery, thermographic measurements and advanced 

insulation (multiple-pane windows, foam spray, reduction of thermal bridges);  

• Mixed climates: improved thermal inertia, smarter ventilation and low emissivity windows.  

In all climates, these improvements need to be accompanied by better energy management through 

sensors, consumption and storage based on energy prices or incentives.  
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Building codes play an important role. Gillingham et al. (2018) describe the debates over the effect 

of residential building codes. For example, Jacobsen and Kotchen (2013) find that when Florida 

tightened its code, electricity and natural gas consumption both fell (by 4 per cent and 6 per cent 

respectively) and that effects were more pronounced on the hottest and coldest days. By contrast, for 

California, Levinson (2016) finds that houses built after the state’s strict residential code was 

established consumed 10–15 per cent less electricity and 25 per cent less gas than those built before 

the codes although the reductions were similar to those seen in states with much less stringent codes.  

In any case, currently codes only cover just over half of total floor area (IEA 2019b), which equates 

to 38 per cent of energy use and half of CO2 emissions. Moreover, two-thirds of new buildings are 

put up in countries which have not implemented clear guidelines. While building codes extended to 

54 countries by 2017, including China, India and Turkey, the stringency of these policies is not 

increasing as fast as floor area and energy demand (IEA 2019a). In the IEA clean energy transition 

outlook, renovation rates of existing building stock need to double by 2050 (IEA 2019a). As global 

floor area is expected to increase by 80 per cent, building efficiency policies need to be carefully 

designed and implemented to ensure maximum coverage of new buildings to avoid lock-in effects. 

Furthermore, in poorly ventilated dwellings, there is a concern that some building efficiency 

improvement measures, such as increased insulation, can lead to reduced indoor air quality (Derbez 

et al. 2018). Building efficiency measures will therefore have to be implemented in a way which 

does not lead to unintended consequences for occupant health. The design of combined air 

ventilation and cleaner systems, such as Clean-Air Heat Pumps (Sheng et al. 2017), suggest that 

there is a rising interest in tackling indoor air quality and heating efficiency in a combined way. 

At the global level, investments are needed to support innovation required to deliver on this rapid 

transition to a low carbon heating system and policies will be needed to support such investments. In 

the IEA projection which is consistent with a 2°C target (and which still does not assume full 

decarbonisation of the heat sector), energy investments in buildings increase from US $4.9 trillion in 

2017 to US $5.4 trillion by 2050 and are mainly directed to improving building envelopes. The early 

timing of these investments is particularly important, to avoid 1) lock-in effects, for example, the 

possibility of having new inefficient buildings with lifetimes as long as 50 years, and 2) increased 

renovation and energy costs from delaying improvements, for example, a ten-year delay could incur 

$2.5 trillion in extra spending (IEA 2019a). 
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Increasing AC efficiency 

Appliance efficiency improvements are also needed to balance the increasing electricity demand for 

cooling and other services. The average seasonal energy efficiency ratio (SEER), which measures the 

energy performance of AC units, has steadily improved from 2.4-2.7 in 1990, to 3.8-4.2 in 2018.3 

However, the potential of AC unit efficiency improvement remains largely untapped., as average 

values remain much lower than appliances available on the market. On average, most AC units sold 

have a SEER of 2 to 8 below that of the best available units on the market. In the United States, the 

best available SEER on the market is more than three times that of the average SEER. In China, one 

of the fastest growing markets, the average SEER is 4.4, though units with a SEER reaching 8.3 are 

available at comparable prices. Using currently available high performance AC units could therefore 

already curb cooling energy demand by half.  

Setting minimum energy performance (MEP) for appliances is another lever for policy makers. 

MEPs are by far the most used policy tool, covering 40 per cent of cooling, heating and appliances 

energy demand. However, the best covered appliances (for example, lighting), do not coincide with 

the greatest source of emissions (for example, space heating) (IEA 2019a), which suggests the 

potential for improvements. 

 

Figure 10 SEER of minimum, average, best and the range of typically available AC units in 

different regions (SGP = Singapore, Saudi A. = Saudi Arabia, AUS = Australia).   

Source: authors based on IEA (2019b). 
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Globally, 1.5 billion households have access to cooling and demand is expected to grow substantially 

as rising incomes and temperatures drive ownership of AC and, importantly, utilisation. Even under 

the most optimistic scenarios, the ambition is simply to limit projected increases in electricity 

consumption via significant improvements in appliance efficiency and building envelopes. MEP 

policies are required to encourage the adoption of high efficiency ACs which are already available 

on the market and phase out the lower efficiency range. Further improvements to existing designs 

(for example, using solid or liquid desiccants to reduce latent heat of water vaporisation) will be 

required to reach the twofold efficiency increase target. In developed economies, efficiency 

improvements actually outweigh the increase in electricity demand, resulting in a slight decrease in 

electricity consumption. 

 

4.3 Impact on Infrastructure and Total Energy System Cost 

Electrification of heating comes at a cost, both to the householder – from an investment and 

operating cost perspective – and to the overall system. Systems integration costs typically arise from 

generation and transmission capacity deployment to meet the higher electricity demand and potential 

infrastructure decommissioning cost.  

 

Total system cost 

From a whole system perspective, the cost of transitioning from the incumbent heating system to a 

lower carbon one also includes infrastructure, capacity and decommissioning costs. For example, 

when comparing the total system costs of electrification, hydrogen and hybrid pathways to 

decarbonise heating in the UK, Strbac et al. (2018) found that annual costs were in a range of $109 

billion and $123 billion/yr,4 assuming a 2050 emissions targets in the heating sector of 10 or 30 

MtCO2/yr, where the hybrid pathway was lowest cost and hydrogen the highest. If a zero emission 

target was pursued by 2050, the hybrid and electrification pathways only increase costs by a further 5 

per cent whereas the cost of the hydrogen pathway increases by some 35 per cent, past $162 

billion/yr, owing to the higher cost of producing zero-carbon hydrogen from electrolysis. By 

contrast, in a separate UK study, the electrification pathway was found to be twice as expensive as 

the hydrogen pathway, which suggests the high dependence of these findings on infrastructure cost 

(for example, CCS, gas grid conversion and grid reinforcement cost) and technology performance 

(for example, CO2 capture efficiency of CCS plants) (Element Energy and E4Tech 2018). Other 

factors such as hourly heat demand and technology cost assumptions are also highly influential in 
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these assessments. More systems level studies are required to quantify the overall cost to the energy 

system of electrifying domestic and commercial heating. 

 

Impact on the natural gas infrastructure 

Globally, 30 per cent of domestic heat is supplied by natural gas, and up to 85 per cent in natural gas 

dominated heating systems such as the UK (BEIS 2018). Under high electrification scenarios, the gas 

network could become underutilised, leading to these networks becoming stranded assets, thereby 

incurring significant decommissioning cost. At the UK scale, electrification of residential heat 

demand causes an 18 per cent reduction in annual gas supply in the distribution network, due to a 

shift from natural gas boilers to heat pumps (Qadrdan et al. 2019).  

In the IEA Fast Transition Scenario, regions with extensive natural gas networks (for example North 

America, Western Europe and Eurasia), do not decommission their existing gas networks, and 

natural gas still supplies 15 per cent of space and water heating demand in 2050 (IEA 2019a). This 

scenario, however, does not consider full decarbonisation of the heat sector. One major concern has 

been that an increase in the decarbonisation targets for the heat sector could lead to a drop in natural 

gas demand, thereby forcing natural gas grid operators into decommissioning the gas grid (Frontier 

Economics 2016). Substituting natural gas with greener gas (for example, hydrogen or biomethane) 

at the distribution level, is one option to avoid costs associated with decommissioning the gas grid, 

while complying with heat decarbonisation targets (Sustainable Gas Institute 2017). 

 

CO2 removal to allow for less stringent decarbonisation targets 

National levels studies of full heat decarbonisation showed that the total system cost of a 

decarbonisation pathway could increase dramatically with the stringency of the decarbonisation 

target by 2050 (Element Energy and E4Tech 2018, Strbac et al. 2018). It is still unclear whether 1) 

more stringent targets will drive electrification further, and reduce or even phase out reliance on 

natural gas networks, or 2) emissions from the building and industrial sectors which are expensive to 

mitigate will be offset with the deployment of CO2 removal methods. Future whole systems studies 

of electrification of heating need to explore the optimal level of decarbonisation and the role of these 

CO2 removal methods. 
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The value of lost load 

Total system cost is also highly related to the security criteria adopted for the electricity grid. The 

optimal level of security which is required to supply the electricity peak demand is very dependent 

on household’s Value of Lost Load, or VOLL, which measures the cost of disrupting power supply 

for consumers and is often incorporated into standards established by the regulator (see Box 2). 

While the security of electricity supply is of paramount importance for commercial and industrial 

consumers to sustain their economic activity, the extent to which higher consumer flexibility, 

encouraged by an increased knowledge of consumption provided by smart-metering devices, could 

lower the VoLL is a further opportunity to explore in the context of reducing the impact of 

electrification of heat on electricity systems. 

 

4.4 The Power Sector Is Decarbonising, But Not Fast Enough 

As observed in Figure 4, 70 per cent of emissions from buildings come from indirect emissions 

associated with electricity generation (IEA 2019a). The electricity sector is going through a rapid 

decarbonisation in many countries. For example, since 2010, the carbon intensity of electricity in the 

UK has dropped from 450 to 280 gCO2/kWh (European Commission 2019b). In many other 

economies, including leading emerging markets, however, the carbon intensity of electricity is not 

decreasing as fast as demand for electricity is increasing. Between 2010 and 2017, the average 

carbon intensity of electricity decreased from 1000 gCO2/kWh to 750 gCO2/kWh in China, and from 

1200 gCO2/kWh to 1000 gCO2/kWh in India, but sectoral emissions continue to increase (IEA 

2018b). Efforts to fully decarbonise the electricity grid will be pivotal in delivering a low carbon 

heating system through electrification. 

On the other hand, buildings floor area is expected to almost double (+96 per cent) between today 

and 2050 reaching 460 billion m2 by mid-century. Even assuming optimistic energy intensity 

improvements, this increase will likely drive up building energy demand. Out of the 230 billion m2 

of new floor area, 85 per cent will be built in emerging economies, most of which have yet to 

decarbonise their power sector. Over the next decade alone, 77 billion m2  of new floor area will be 

built, primarily in countries like Brazil, India or Indonesia, where potential high demand for cooling 

will be critical (IEA 2019a). 
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4.5 Consumer Preferences and Technology Adoption 

Because heating sources are highly dispersed, decarbonisation of heat will largely rely on 

households’ willingness to switch away from fossil-based heating systems to new, more efficient and 

renewable heating systems (Michelsen and Madlener 2012). This could mean connecting to a district 

heating and cooling network or installing a heat pump. While adopting more energy-efficient 

technologies could provide energy savings, research suggests that households do not necessarily act 

rationally when it comes to technology adoption, and that other factors such as thermal comfort play 

Box 2: Value of lost load in the residential sector 

Since the economy is highly dependent on electricity, disruptions in power supply can impose 
significant costs. Conversely, designing an electricity system with a high level of security 
typically involves adding power generation capacity and lowering the overall capacity factor of 
the system, which is equally costly to the economy. The point at which the marginal damages 
(from an interruption in electricity supply) equals the marginal cost of maintaining the security of 
the supply is the optimal level of security of the system, and provides a measure of the Value of 
Lost Load (VoLL) (Röpke 2013, Schröder and Kuckshinrichs 2015, CEPA 2018). 

VoLL can vary widely dependent on the sector, the type of service provided by electricity and the 
level of consumption. Given its role in regulatory efforts, it is crucial to quantify VoLL across 
different sectors of the economy in different regions (London Economics 2013, CEPA 2018). 
While VoLL for industrial and commercial activities can be calculated using added value metrics 
as proxies (London Economics 2013), quantifying VoLL in the residential sector is not as 
straightforward.  

First, VoLL is closely linked to consumer Willingness-To-Pay (WTP) for a reliable electricity 
supply or Willingness-to-Accept (WTA) a power outage, which is often expressed as a monetary 
value over a period of time (e.g., 1 hour or 8 hours). Consumer preference is therefore central to 
determining VoLL. 

An additional challenge is related to the conflicting driving forces between consumption and 
VoLL. On the one hand, the electrification of residential heating, by increasing reliance on 
electricity at the household level, could put additional pressure on VoLL, by resulting in a higher 
WTP/WTA. For example, a survey in the UK showed that VoLL was higher in the UK for all-
electric households as compared to gas households (London Economics 2013). On the other hand, 
an increase in consumption theoretically lowers VoLL, which is sometimes expressed as monetary 
value per unit of consumption (CEPA 2018).  

The extent to which electrification of heating will impact VoLL in the residential sector therefore 
remains very uncertain. 
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an important role in the final choice to adopt a new technology. Depending on tenancy type 

(owner/tenant), environment (urban/rural) or income level, households might have different 

technology adoption rates. Constraints on technology adoption can also involve space considerations 

(for a ground source heat pump for example) or building density (connection to a district heating 

network will be unlikely in a rural environment) (Cayla et al. 2011, Michelsen and Madlener 2012, 

Li et al. 2018). Accounting for this heterogeneity in household structure and preferences will likely 

be crucial when designing policies to encourage the uptake of low carbon and efficient heating and 

cooling technologies. In particular, there are potential issues associated with how consumers process 

information, actual behaviour versus engineering models including rebound effect, split 

responsibility between bill payers, residents, and those making the investments, and changes in 

thermal comfort.  

There have been relatively few empirical or experimental studies of consumer purchasing or 

switching behaviour regarding heating and cooling equipment. One area where there has been 

attention is on the role of information. Ramos et al. (2015) review many of the informational barriers 

and proposed policy solutions associated with residential energy efficiency, of which a number of 

specific studies address heating and cooling. Allcott and Sweeney (2016) found that providing 

information on efficiency of conventional hot water heaters did not in itself increase the purchase of 

more energy-efficient units, but a combination of large rebates plus information did increase the 

market share of more efficient heaters. Moreover, salespeople only targeted energy efficiency 

information at consumers who expressed interest in the subject, but did not discuss it with the 

disinterested majority. Bollinger and Hartmann (2019) found information alone could reduce demand 

over the long term, but to change short-term elasticity, automation technology would also be needed.  

There have been a number of studies that question many of the more optimistic predictions of 

techno-economic modelling, which echoes the literature seeking to describe the energy efficiency 

‘gap’ (Gerarden et al. 2017). In consumer surveys, respondents typically overestimate the energy 

costs associated with low-usage goods (for example, computers or mobile phones) and underestimate 

the energy costs of high-usage goods (for example, water heaters) (Attari et al. 2010). Relatedly, 

real-world implementation may not match claimed savings. For example, ex ante engineering 

estimates overstated actual conservation by 13 per cent in an experiment providing households with 

insulation and HVAC appliances (Dubin et al. 1986). Even more glaring, a programme to replace 

inefficient air conditioners in Mexico actually led to increased electricity consumption, in stark 

contrast to engineering predictions of significant energy savings (Davis et al. 2014). Another 

challenge is that the outcomes of home energy retrofits are difficult for homeowners to observe – 
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Giraudet et al. (2018) identify a moral hazard whereby contractors take advantage of the relative lack 

of knowledge regarding the quality of energy efficiency measures being implemented leading to 

lower energy savings, particularly for work conducted on Fridays.  

Other important considerations include ascertaining whether interventions can be demonstrated as 

effective, whether they can lead to any appreciable effect or even lead to a rebound effect. Alberini et 

al. (2016) found that those who replaced their heat pumps but who did not receive any incentive to 

do so reduced their electricity usage by 16 per cent, whereas those who did receive an incentive 

actually did not reduce their electricity usage. Furthermore, the larger the rebate a household 

received, the less the household reduced energy usage. Davis et al. (2014) also employ matching to 

evaluate a program in Mexico that subsidised replacement of refrigerators and air-conditioning units 

and find that although refrigerator replacements reduced electricity consumption by 8 per cent on 

average annually, air-conditioner replacements actually increased electricity consumption, again 

consistent with a rebound effect. Rivers and Shiell (2016) examine Canadian subsidies for natural 

gas furnace retrofits and find strong evidence for free riding – they estimate that in the long run, 

more than 80 per cent of subsidy recipients would have eventually purchased identical furnaces 

without a subsidy. 

Another major challenge is the tension between ownership, tenancy and bill payers. Gillingham et al. 

(2012) find tenants who pay for their own household energy are 16 per cent more likely to change 

their temperature setting at night. Furthermore, owner-occupied homes are 13 -20 per cent more 

likely to have additional insulation. Myers (2019) finds that landlords responsible for energy bills 

are more likely to convert from less efficient oil heat to more efficient natural gas heat, compared 

with landlords who do not pay for energy despite the availability of significant cost savings. 

One might also expect that environmental attitudes might be correlated with choice of heating or 

cooling technology and that ‘greener’ consumers might be most likely to be early adopters of low-

carbon heating or cooling systems. Curtis et al. (2018) find that environmental attitudes have no 

impact on fuel or technology choice and the main determinant of home heating fuel and technology 

choice is simply proximity to the gas grid. Similarly, although Lange et al. (2014) find a negative 

correlation between heating expenditures and environmental behaviours, they did not identify any 

relationship between environmental attitudes or perceptions and heating expenditures. 

Finally, thermal comfort can also be a key deterrent to switch to heat pumps as a heating system. The 

use of heat pumps requires a good level of insulation to operate, as space heating will be typically 

slower than with a conventional gas-powered central heating system. In households connected to the 

https://link.springer.com/article/10.1007/s12053-019-09775-1#CR108
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gas grid, hybrid heat pumps which can be operated with both electricity and natural gas represent a 

good opportunity to secure heat supply during colder spells (Zhang et al.2018).  

The use of heat pumps could however increase thermal comfort during the warm seasons, as they 

can also be used for cooling. One of the key drivers of heat pump sales is interest in reversible heat 

pumps, which can be used for both heating and cooling driven by demand for space cooling. In the 

US, mini-split ductless heat pumps are on the rise (Weorpel 2018) owing to a higher SEER and low 

operating temperature for heating. Of course, improved thermal comfort also means greater energy 

use in summers In temperate climate zones, where there had previously been little air conditioning, 

energy would be increasingly devoted to cooling that would otherwise not have taken place with the 

existing infrastructure. 

Aside from incentives to adopt new heating technologies, one other important consideration is the 

willingness of jurisdictions to impose outright bans on further use of gas for heating. For example, 

the UK has mandated new homes should not have a gas connection by 2025 (Harrabin 2019) and in 

late 2020, the city of San Francisco banned natural gas in all new residential construction from mid-

2021 (Dineen 2020). The Netherlands has mandated that all homes will move away from natural gas 

by 2050, but a large number of municipalities including Rotterdam, Amsterdam and Utrecht have 

agreed on near-term measures to increase the number of ‘gas-less neighbourhoods’ in the coming 

years by disconnecting public housing, not permitting gas in new buildings and encouraging district 

heating and other options such as electric or hybrid heat pumps (van den Ende 2017).  

 

4.6 Demand Elasticity to Energy Prices and Energy Poverty 

Another key impact of, and potential limitation to, electrification (and decarbonisation) of heating is 

the incurred cost to the household. 

Fuel poverty is generally defined as the inability to heat own’s home at a correct standard, owing to a 

combination of factors including household income, energy efficiency of the dwelling and energy 

prices (Charlier and Kahouli 2018). It is a major issue across the world, including in advanced 

economies. In the United Kingdom, 3000 people died in 2018 because of fuel poverty (Chapman 

2018). In Canada, one million households are affected by energy poverty, during both winter cold 

and summer heat waves (Tardy and Lee 2019).  

Switching to a more efficient heating system typically requires an upfront investment, which could 

have implications for household energy spending. Micro-CHP fuel cells typically represent the 

highest investment from the householder’s perspective. Capital costs range from $17000-$23000 per 
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unit in Japan, to $37000 per unit in Europe (Dodds et al. 2015). Heat pumps also represent a 

substantial investment, with capital and installation costs ranging between $6700 and $15300 for an 

air-source heat pump, and $12000 to $26700 for an ground-source heat pump (BEIS 2018, carbon 

Connect 2019, Renewable Energy Hub 2019). Modern biomass boilers can cost between $9300 and 

$20000, depending on the degree of sophistication (carbon Connect 2019, Renewable Energy Hub 

2019). Hydrogen boilers are expected to cost the same as a conventional gas boilers, anywhere 

between $700 and $4000 per unit depending on the size, but installation and pipeline conversion 

work could cost as much as $1300 to $5500 (CCC 2018b, Strbac et al. 2018, carbon Connect 2019). 

All of the proposed alternatives are therefore likely to represent a significant upfront cost for 

residential or commercial consumers when compared to current natural gas boilers (capital costs 

between $700 and $3300 depending on the size for condensing boilers) or conventional electric 

systems (electric storage heaters typically cost $300-$600 per panel) (carbon Connect 2019). 

Owing to a higher energy efficiency, operating costs of alternative heating systems are expected to 

be lower than for fossil fuel boilers or conventional electric heaters (Honoré 2018). However, annual 

costs and potential savings are largely dependent on energy costs – natural gas, electricity, biomass, 

hydrogen and on the incumbent system. In many countries which rely on natural gas for heating, the 

average price of natural gas is typically lower than the price of electricity (European Commission 

2019b). Concerning the conversion to a ‘greener gas’, the cost of hydrogen fuel is currently 

prohibitive. Estimates of the cost of hydrogen from electrolysis can vary from over $24/MWh 

(Sustainable Gas Institute 2017) to as low as $10/MWh with best available technology (Mathis and 

Thornhill 2019), which is still twice the cost of natural gas. Hydrogen from steam methane 

reformation with CCS can cost as low as $7/MWh, but only assuming a pre-existing CCS 

infrastructure (Sustainable Gas Institute 2017).  

Energy savings generated when retrofitting a heating system to a more efficient one are also very 

variable. In a comparative assessment of residential heating technologies for a semi-detached house 

in Quebec, ASHPs are found to generate savings relative to a conventional electric heater when 

electricity prices reach $44/MWh, while GHSPs need a electricity price of $95/MWh to break even 

(Pedinotti-Castelle et al. 2019). The scale and variation in the electricity price profile in time can also 

impact the competiveness of heating technologies. When considering variable electricity price 

profiles, heat pumps are only competitive with gas boilers and electric heaters for a large household 

and a short run electricity price regime (average price of $27/MWh), but heat pumps and micro-

CHPs are never competitive at higher electricity prices (average price of $96/MWh), regardless of 

the household size (Vijay and Hawkes 2017). Rebates and tariffs can be instrumental to the adoption 
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of these technologies. The eligibility of heat pumps for the Renewable Heat Incentive (RHI) in the 

UK (UK Government 2014) or for local incentives in China (Zhao et al. 2017) are examples of such 

policies. 

Finally, the introduction of more stringent decarbonisation policies to decarbonise the electricity grid 

could also lead to an increase in electricity prices.  

Many studies have attempted to quantify the short-term and long-term price elasticity of energy 

demand (see Labandeira et al. 2017 for a meta-analysis). There have been a number of studies of 

residential demand (for example, Risch and Salmon 2017, Charlier and Kahouli 2018), to better 

inform the design of energy policies. Price elasticities of heating demand in particular are generally 

found to be influenced by income level, household type and total household expenditures (Schulte 

and Heindl 2017). A study on the elasticity of heating demand in Germany showed that the energy 

demand of lower-income consumers was much less elastic than that of higher-income consumers 

(Schulte and Heindl 2017). This highlights household energy as a necessary good and suggests that 

higher energy prices resulting from policies incentivising demand reduction could disproportionally 

impact lower income households (He and Reiner 2016). National and local policies such as the state-

mandated heating prices in Quebec, via the control over hydro power generation (Tardy and Lee 

2019), or the Energy Voucher in France allocated to the poorest 15 per cent of households (Charlier 

and Kahouli 2018), are required to ensure that electrification of heating (or decarbonisation more 

generally) does not decrease the overall welfare of vulnerable heating consumers. 

 

5. Outlook for the Electrification of Heat 

The role of electrification in future decarbonisation pathways has been examined in the context of 

meeting both global 1.5 and 2°C targets by the end of the century (IEA 2019a, Knobloch et al. 2019) 

and regional economy-wide 80 per cent-100 per cent emissions reduction targets by mid-century 

(Connolly et al. 2014; Element Energy and E4Tech 2018; Honoré 2018; Strbac et al. 2018; National 

Grid 2019a; White and Rhodes 2019).  

 

5.1 Global Outlook 

In the IEA Faster Transition pathway to 2050, which is consistent with a 2°C target, the building 

sector undergoes the most rapid economy-wide decarbonisation, as direct and indirect CO2 emissions 

drop from 9.5 GtCO2 in 2017 to 1.2 GtCO2 in 2050 (IEA 2019a). Energy demand for services which 
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are already electrified (for example, cooling) grows substantially in emerging economies, as level of 

development, increasing income and rising temperatures drive ownership of AC and other 

appliances. Deep efficiency improvements to appliances and building envelopes are required just to 

limit the global increase in electricity consumption to 30 per cent. This is achieved through a 50 per 

cent increase in AC unit performance by 2030, and a twofold increase by 2050. In developed 

economies, efficiency improvements actually outstrip the projected increase in electricity demand, 

resulting in a slight decrease in electricity consumption. Residential heating demand is primarily met 

with bioenergy and solar thermal, which reaches three billion households by 2030 and represents 85 

per cent of the installed heating capacity by 2050. Heat pumps go through a rapid scale up, growing 

from 3 per cent of installed capacity to 30 per cent by 2050. To dampen the impacts that this growth 

might have on the electricity grid, the efficiency of heat pumps also needs to increase, to reach a 

COP of 3.5 in cold climates, 5 in temperate climates, and 8-9 in climates where reversible HPs are 

used for both heating and cooling. Even in this ambitious scenario, natural gas still plays a role in the 

heating system, supplying 15 per cent of space and water heating demand by 2050 (IEA 2019a).  

 

5.2 Regional Outlooks 

At the regional level, decarbonisation pathways are highly dependent on technology performance 

and cost assumptions, as well as on existing heat supply and regulations to either discourage heat or 

actively promote alternatives. At the EU level, a decarbonisation study assessing the impact of an 

economy-wide 80 per cent reduction targets suggests the high potential of heating networks fuelled 

by heat pumps to decarbonise EU heating demand (Connolly et al. 2014). In the Northeast US, a 

scenario consistent with a 40 per cent emissions reduction target by 2030 projects electrification to 

meet 23 per cent of total heating demand (through air and ground source heat pumps), thereby 

increasing the electricity peak demand by 15 per cent and the heavy reliance on natural gas through 

the shift of oil boilers towards gas boilers (National Grid 2019a). The study does not, however, 

provide a clear pathway to meet the 80 per cent reduction target by 2050, nor does it discuss the 

feasibility of replacing natural gas by a low carbon alternative. In the UK, two studies have recently 

compared electrification, hydrogen and hybrid pathways under different decarbonisation targets 

(Element Energy and E4Tech 2018, Strbac et al. 2018), with significantly different results (see 

Section 4.3), which suggests the high dependence of these findings on infrastructure cost (for 

example, CCS, gas grid conversion and grid reinforcement cost) and technology performance (for 
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example, CO2 capture efficiency of CCS plants). Other factors such as hourly heat demand and 

technology cost assumptions are also highly influential in these assessments.  

 

5.3 The Impact of More Stringent Emissions Reduction Targets 

As net zero targets by 2050 are being legislated around the world, future pathways are expected to 

cover scenarios consistent with a 100 per cent economy-wide decarbonisation target by mid-century. 

Most previous decarbonisation outlooks to 2050 had explored the implications of a 80-85 per cent 

emissions reduction target (Connolly et al. 2014, Element Energy and E4Tech 2018, Honoré 2018, 

IEA 2019a). Full decarbonisation of the heating sector would involve drastic changes in the structure 

and operation of the energy system.  

National-level studies of full heat decarbonisation showed that the total system cost of a 

decarbonisation pathway could increase dramatically with the stringency of the decarbonisation 

target by 2050 (see Section 4.3) (Element Energy and E4Tech 2018, Strbac et al. 2018) although the 

CCC (2019) report on net zero for the UK Government notes that the total cost of meeting the 80 per 

cent target as assessed in 2008 was identical to the total cost of meeting 100 per cent reduction (1-2 

per cent of GDP). Absent further analysis, it is unclear whether 1) more stringent targets will drive 

electrification further, shifting away from a reliance on natural gas networks, with implications for 

the security of the electricity supply, or 2) emissions from the building and industrial sectors which 

are expensive to mitigate will be offset with the deployment of CO2 removal methods (for example 

the UK relying on bioenergy with carbon capture and storage to offset remaining emissions, see CCC 

(2019)) or via international offsets. Future whole systems studies of the electrification of heating will 

need to explore the optimal level of decarbonisation and the role of these CO2 removal methods. 

 

6. Conclusions 

This paper explored the present role and future opportunities and challenges for electrification of 

heating in buildings. 

Electricity is expected to play an ever-larger role in emerging countries, owing to a booming demand 

for cooling and other energy services. High efficiency heat pumps are projected to reach much higher 

level of deployment, complemented by biomass boilers, solar thermal, and a switch to high-

efficiency gas boilers and/or hybrid heat pumps.  
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Despite scattered incentives for market-ready renewable and more efficient heating systems, the 

heating sector remains heavily fossil-fuel dominated. Key barriers to electrification of heating 

include 1) the impact of annual and peak electricity demand, 2) the simultaneous increasing demand 

for electricity services such as cooling, and 3) the potential financial and social impacts of increased 

cost of heating. 

Policies such as building codes, appliance efficiency labels and incentives for the adoption of low 

carbon or more efficient heating and cooling systems are key to enabling decarbonisation of heating 

and cooling through electrification, but empirical evidence to date is still quite weak although 

existing evidence points to the severe challenges of rapid adoption of new technologies in the 

buildings sector.  

The three innovation and policy levers of electrification of heating and cooling in the buildings 

sector are 1) setting minimum efficiency requirements for cooling and heating equipment, 2) 

exploiting synergies between heating/cooling equipment and storage, smart metering and district 

networks to enhance flexibility and reduce impact on peak demand, 3) implementing policy 

measures to improve building envelopes. Table 2 summarises the key innovation, investment and 

policy challenges and opportunities in decarbonising heating and cooling in the building sector. 

Finally, most previous heating decarbonisation outlooks to 2050 do not achieve net zero emissions 

although this may begin to change as more large economies such as the UK and France have begun 

to adopt legally binding net zero targets. Full decarbonisation of the heating sector involves drastic 

changes in the structure and operation of the energy system. The role of CO2 removal methods to 

offset residual emissions from heating needs to be explored to determine the optimal level of 

electrification (and decarbonisation) for residential heating system, in order to maintain reliability 

and affordability of heating. 
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Table 2 Opportunities in electrifying heating in buildings and associated challenges  

Issue Possible opportunities  Associated challenges 

Increasing 

demand for 

electricity 

driven by 

cooling 

demand 

• Building performance improvement Actual performance does not meet 
technical expectations 

Coincidence of solar PV peak and 
high cooling demand 

Potential mismatch between rate of PV 
and AC uptake 

Improving appliance efficiency (via 
standards) 

Uneven evidence over savings 
associated with building codes 

• Voluntary schemes (for example, 
label technology performance; use 
same metric to facilitate like-for-like 
comparison) 

Questions over how to overcome 
informational barriers and consumer 
interest in energy savings 

Impact on 

existing 

infrastructure 

(for example, 

gas network) 

and total 

system cost  

• Improving efficiency of gas 
appliances 

Technology lock-in to continued use of 
natural gas 

• Hybrid heat pumps that avoid need 
for radical shift and stranded costs 
and deliver better performance 

Incomplete shift away from natural gas 
resulting in significant residual 
emissions  

• CO2 removal (CDR) to offset 
residual emissions 

Concerns over possible mitigation 
deterrent effect 

• Revise VoLL to reflect changing 
views of security of supply and need 
for capacity expansion 

VoLL is built into regulations and 
utility investment decisions so may be 
slow to change  

• Repurpose gas grid with greener gas 
(hydrogen, biomethane or carbon-
neutral synthetic fuels) 

• Potential competition between 
electrification and greener gas routes 

Increased 

electricity peak 

demand 

• Encourage synergies with other 
alternative technologies (distributed 
solar PV, district heating, thermal 
storage) 

• Difficulty of coordinating timing of 
deployment different build-out rates 

• Enhance flexibility with thermal 
storage 

• Minimal evidence on willingness of 
consumers to respond  

Shift peak demand to off-peak hours 
with smart meters and dynamic 
electricity pricing 

• Slow uptake of time of use pricing 
even in jurisdictions that have deployed 
smart meters 

Technology 

adoption 

• Household level incentives for the 
purchase and operation of renewable 
heating technologies 

•  

• Success strongly dependent on how 
consumers process information, split 
responsibility over bills and 
investments 

• Market based measures/economy of 
scale to reduce the cost of new 
systems 

• Questions over actual behaviour versus 
engineering models, rebound effect, 
effectiveness of incentives 

• Reversible heat pumps for thermal 
comfort in winter and summer 

• Greater energy use in summers and 
energy devoted to cooling that would 
otherwise not have taken place 
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Endnotes 

 
1 Accounting for the life cycle emissions of coal and natural gas supply. 
2 Heat demand profile only includes dwellings connected to the gas grid, which represents 71 per cent of UK 

dwellings (National Grid 2019b). 
3 The SEER values collected from the IEA are calculated as the ratio of cooling energy output in kWh, to energy 

input in kWh. By contrast, SEER values in the US are typically three times higher as they are calculated as the ratio 

of cooling energy output in British thermal units (BTU), to energy input in kWh. 
4 All cost data are presented in 2018 US$. British pound (GBP) and Canadian dollar (CAD) figures were converted 

using conversion rates of US$1 = 0.75 GBP (2018 exchange rate) and US$1 = 1.379 CAD (2016 exchange rate). US 

GDP deflators were used to convert cost data to 2018$ (World Bank 2019). 

 


