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1.  Introduction 

The United States electricity sector has been historically dominated by large, vertically integrated, and heavily 

regulated utilities until recent decades, with firms exercising monopoly in their local service area while subject 

to control in the form of rate of return regulation. However, studies on the US power sector reform starting 

with the works of Palmer and Burtraw (1995), Joskow (1997) and Ando and Palmer (1998) report  that a series 

of significant restructuring policies has been implemented since the late 1990s occasioned by the structural 

transformation and advances in technology which have changed the production characteristics of the industry. 

The policies are aimed at promoting competition to enhance more efficient electricity supply, lower electricity 

prices to consumers and boost innovation among wholesale and retail customers. Although, there is no 

evidence of a mandatory and comprehensive federal electricity restructuring program, a number of state-based 

restructuring initiatives have emerged, varying considerably from states to state, with many states introducing 

only limited electricity sector reform. 

 

Electricity market restructuring began with the enactment of the Federal Energy Policy Act of 1992 and FERC 

Order No. 888 in 19962. On the one hand, the former legislation allowed some categories of generators to 

build or purchase electricity generation sources to sell electricity at the wholesale market and require 

transmitting utilities to open access to their transmission capacities for wholesale electricity sale to any electric 

utility, federal power marketing agencies and any person generating electric energy (FERC, 2006, p. 24). On 

the other hand, the later act facilitates the restructuring process by permitting independent private and other 

participant entry into the wholesale market. In both cases, restructuring was mainly intended to induce 

competition to the wholesale market being the starting point of a restructuring program. Competition among 

independent generators was supposed to create a framework for wholesale power transactions so that retail 

customers and local distribution utilities could purchase power from a wide range of alternative suppliers in 

order to lower wholesale costs and thus lower retail prices (Kwoka, 2008). 

 

At the state level, the wave of restructuring in the US was driven mainly by the regional disparity in electricity 

prices. Retail prices for both residential electricity customers and large industrial electricity consumers were 

shown to be higher in most of the Northeastern states and California with price variation up as high as 130% 

across states (See Joskow, 1997 p 126). Indeed, the quest for retail competition was seen as way of lowering 

prices (Palmer and Burtraw, 1995). Thus in 1996, California became the first state to enact market 

restructuring legislation that introduced competition into retail market. Meanwhile, the state public utility 

commissions (PUCs) regulate the electric power industry and set the retail rates for electricity, based on the 

 
2The precursor to restructuring legislations is the Public Utility Regulatory Policy Act of 1978 (PURPA) which offered the first organisational 

departure from the legitimate monopoly franchise of electricity generation by regulated utilities. The main objective is to promote greater use 
of alternative renewable energy. 

https://www.sciencedirect.com/topics/engineering/public-utility-commission
https://www.sciencedirect.com/topics/engineering/public-utility-commission
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cost of service. As the industry restructures, PUC no longer regulate retail rates for generated or purchased 

power in some states as retail electricity prices open to the market forces of competition. So far, some states 

have active restructuring activities on-going, spanning complete deregulation and competition in the retail 

market while others states have partial restructuring involving divestment of some generation or allowing a 

portion of customers to choose their energy. Some states failed to achieve the expected outcome of 

deregulation and suspended further restructuring a few years afterwards. However, a majority of the states 

have so far maintained their original structure with no sort restructuring attempted. Figure 1 shows patterns of 

restructuring across the U.S., with sixteen states together with District of Columbia have restructuring active 

as of 20123 while other states had either suspended or not activated restructuring according to the Department 

of Energy’s (DOE) of the US Energy Information Administration (EIA)4.  

 

Fig. 1. Electricity restructuring by US states as of 2012 

 

 

Source: US Energy Information Administration 

 

Over all, the key dimension of restructuring in the United States has implications for ownership arrangements, 

resulting in conversion of some generation capacity from utility status to independent power producer status 

 
 
4These states are Connecticut, District of Columbia, Delaware, Illinois, Maine, Maryland, Massachusetts, Michigan, New Hampshire, New 
Jersey, New York, Ohio, Oregon, Pennsylvania, Rhode Island and Texas. 
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(IPP)5. Essentially, this impacted on the generation asset remuneration moving from a rate of return regulation 

model, in which they were guaranteed to recover a positive return on those capital costs, to a market-based 

pricing mechanism, under which these assets earned a market price for the output they were able to produce. 

The aftermath of the restructuring witnessed an unprecedented investment in new generation, especially 

renewables, with the share of nuclear generation owned by IPP increased from zero in 1997 to almost 50% in 

2012, as utilities sold off their nuclear assets (see Borenstein and Bushnell, 2015).   

 

Since the implementation of market reform, there has been proliferation of empirical studies on the effects of 

restructuring in the electric power industry. One aspect that has attracted much attention is the investigation 

of the efficiency gains from restructuring. Obviously, the debate has been more intense about how reform has 

potentially impacted on the operational efficiency of the investor –owned electric utilities. Protagonists of 

restructuring have earlier advocated that it offers incentives to electricity producers to improve their efficiency; 

however, controversies remain going by the mixed pictures of the findings from these studies. Previous studies 

which have established efficiency gains from restructuring in the US electricity sector include Kleit and Terrell 

(2001), Knittel (2002), Hiebert (2002), Davis and Wolfram (2012), Zhang (2007) and Craig and Savage (2013). 

Some empirical studies confirmed a negative efficiency impact of deregulation on electric power industry: 

Delma and Tokat (2005) and Goto and Tsutsui (2008), while Fabrizrio et al (2007) shows both negative and 

positive impacts of deregulation on efficiency.  

 

Using a Bayesian stochastic frontier model, Kleit and Terrell (2001) examined the potential efficiency gains 

in electric power generation for 78 steam plants in the year 1996. They find that plants, on average, could 

reduce production costs by up to 13% by eliminating production inefficiency. Knittel (2002) reveals an 

increase in efficiency by about two per cent for coal and natural gas fuelled plant. Hiebert (2002) investigated 

the impact of restructuring on cost efficiency for 633 fossil-fuelled plants from 1988 to 1997. The result shows 

a mean efficiency increase in the states implementing retail competition to about 50 per cent. Craig and Savage 

(2013) examine the effects of market restructuring initiatives that introduced competition into the US 

electricity industry on the thermal efficiency of electricity generation for 950 plants from 1996 to 2006. The 

authors found that access to wholesale electricity markets and retail choice together increased the efficiency 

of investor-owned plants by about nine percent and that these gains stem from organizational and 

technological changes within the plant.  

 

 
5 The extent one considers the electric sector to be deregulated," in the United State, it is due to this fundamental shift in the paradigm for 
compensating owners of generation. 
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In contrast, Delmas and Tokat (2005) showed that the process of retail deregulation had a negative impact on 

firms’ productive efficiency using data envelopment analysis (DEA) on 177 U.S. electric utilities from 1998 

to 2001. Goto and Tsutsui (2008) investigated the impact on technical efficiency change in electric utilities in 

their generation, transmission/distribution, and general administration functions using the input distance 

function and stochastic frontier approach. They examined technical efficiency change using annual data for 

22 U.S. electric utilities firms from 1992-2000 and found that firms located in states that have enforced 

deregulation are less efficient. However, Fabrizio et al (2007) shows both negative and positive impacts of 

deregulation by estimating the input demand functions for 769 fossil fuelled plants from 1981 to1999. They 

indicate that the labour and non-fuel expenses of plants in the states that implemented restructuring legislation 

were about 3 to 5 percent lower than plant in non- restructured states while concluding that restructuring yields 

substantial medium-run efficiency for the investor-owned utilities.   

 

Our paper focuses on electric power industry’s performance using consistent state-level electricity generation 

dataset for the contiguous state from 1998-2014. Why state level aggregation? The focus of the paper is the 

restructuring of the markets as deregulation and other changes have occurred. This is part of a general focus 

on the importance of institutions in shaping productivity and growth as suggested by North (1991) and 

Acemoglu et al (2005). However institutional change and restructuring occur at the state level rather than at 

the firm level. Therefore, we argue that it is important in the context of this research question to aggregate 

across firms at the state level.  This paper makes a number of distinct contributions to the efficiency and 

restructuring literature. It adds to the limited number of studies examining the determinants of the inefficiency 

in the US-state level electricity generation aftermath of restructuring. Moreover, it improves on such previous 

empirical applications by employing several specifications of stochastic frontier models. which have not been 

applied previously in the past studies and which has been shown to provide a substantial improvement in 

model fits. Finally, we provide an evaluation of the non-monotonic marginal effects of restructuring on 

electricity generation inefficiency in other to provide insights into what could have informed the substantial 

rollback of restructuring by states that have earlier adopted the policy. Therefore, we adopt the Wang (2002, 

2003) approach that allows both mean and variance of the pre-truncated normal distribution to depend on the 

exogenous variables. Our findings reveal that deregulation  (both restructuring and the political support for it) 

significantly reduces technical inefficiency across the models estimated.  

 

The remainder of the paper is organised as follows. Section 2 provides the methodological approach. 

Specifically, we present the specification for the estimated models and the non-monotonic marginal effects. 

In section 3, we explain in detail the data and variables used. Section 4 presents the empirical results from 

models and the marginal effects. Section 5 presents the concluding remarks. 
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2.  Methodology 

In this paper, we explore the impact of restructuring electricity generation efficiency by estimating a stochastic 

production frontier model. The stochastic frontier analysis (SFA) independently proposed by Aigner, Lovell, 

and Schmidt (1977) and Meeusen and van den Broeck (1977) SFA is centred on the concept that deviations 

from the production frontier defined by the ‘‘best practice’’ technology might not be entirely under the control 

of the firm and might be due to measurement errors and other noise upon the frontier. The approach 

decomposes the error term into two components, a traditional two-sided error term which captures effects of 

measurement error and a one-sided error term to measure technical inefficiency. The general stochastic 

production function (ALS, hereafter) is specified as follows:  

 

𝑦𝑖𝑡 =  𝛼 + 𝑥𝑖𝑡
′ 𝛽 + 𝑣𝑖𝑡 −  𝑢𝑖𝑡                                                                                           (1)            

    

                 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣
2)                                                                                                                    (2)                                                                                                                

  

                𝑢𝑖𝑡~𝑁+(0, 𝜎𝑢
2)                                                                                                      (3) 

              

The cross-sectional units are indexed i = 1….,N and the time periods are indexed t= 1, …,T, where N is 

appreciably large (47) and T is 17.  𝑦𝑖𝑡  is the log of output of each state, 𝛼  is the intercept,   𝑥𝑖𝑡
′  is the vector 

of log of inputs and 𝛽 the vector of coefficients to be estimated. The  𝑣𝑖𝑡  denotes a two-sided conventional 

idiosyncratic error term which is assumed to follow an i.i.d.  N(0, 𝜎𝑣
2 ) distribution and accounts for 

measurement sampling and specification error, as well as for the effect of other random shocks. The 𝑢𝑖𝑡 

represents one-sided and non-negative random variables which measure technical inefficiency and have an 

identical and independent half normal distribution. This model was originally developed for cross-sectional 

data but was later extended to accommodate panel data by the inclusion of a time trend or time dummy in 

order to capture technical progress. The nexus between inefficiency and exogenous effects has been 

investigated sequentially using a two-step approach6 (See Kumbhakar and Lovell, 2000). Subsequently, that 

approach has been considered to be biased due to misspecification inherent in the first model (Battese and 

Coelli, 1995, Wang and Schmidt, 2002) and now full maximum likelihood estimation in one stage is used.   

 

 
6  The approach estimates the observation-specific inefficiency measure in first step, and goes further to regress the efficiency index on 

exogenous variables in second step. The shortcoming of the procedure is that if the input variables and the exogenous are correlated, the first 
step of the two-step procedure is considered biased. In the event that input variables and the exogenous factors are uncorrelated, ignoring the 
dependence of the inefficiency on the exogenous variable will lead the first step technical efficiency to be underdispersed such that the results 
of the second stage regression are likely to be biased downward (See Kumbhakar et al, 2015)  
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Modelling of exogenous effects on inefficiency has followed two flexible approaches. First, Kumbhakar, et 

al. (1991), Huang and Liu (1994), and Battese and Coelli (1995) (KGMHLBC hereafter) proposed 

parametrising the mean of the pre-truncated inefficiency distribution.   

 

                         𝑢𝑖𝑡~ 𝑁+(𝜇𝑖𝑡, 𝜎𝑖𝑡
2)                                                                                                          (4) 

                            𝜇𝑖𝑡 = 𝒛𝒊𝒕
′ 𝛿 

 

where 𝒛𝒊𝒕 is the vector of exogenous variables. Second, Reifschneider and Stevenson (1991), Caudill and Ford 

(1993) and Caudill et al (1995) assume   𝜇𝑖𝑡  to be constant but parameterize the variance of the pre-truncated 

distribution as a function the exogenous variables; 

 

                             𝑢𝑖𝑡~ 𝑁+(𝜇𝑖𝑡, 𝜎𝑖𝑡
2)                                                                                                                        (5) 

                           𝜎𝑖𝑡
2 = exp(𝒛𝒊𝒕

′ 𝛾) 

 

Hadri (1999) generalises the second approach by allowing the variance of the two-sided error term to be 

heteroscedastic by parameterizing the variance of the noise component. A model under this second approach 

is jointly classed as Reifschneider and Stevenson (1991), Caudill and Ford (1993) and Caudill et al (1995) and 

Hadri (1999) (RSCFG hereafter)7. Given that   𝑢𝑖𝑡 has a truncated normal distribution, its variance is a function 

of both   𝜇𝑖𝑡  and  𝜎𝑖𝑡
2  . Wang (2002) proposed another model that combines the features of KGMHLBC and 

RSCFG and allows both   𝜇𝑖𝑡  and  𝜎𝑖𝑡
2  to be observation specific. The truncated normal distribution WANG 

model with double heteroscedasticity is parameterised as follows. 

 

                                   𝑢𝑖𝑡~ 𝑁+(𝜇, 𝜎𝑖𝑡
2 ) 

                                    𝜇𝑖𝑡 = 𝒛𝑖𝑡
′ 𝛿                                                                                                             (6) 

                                 𝜎𝑖𝑡
2 = exp(𝒛𝑖𝑡

′ 𝛾) 

                                𝜎𝑣𝑖𝑡
2 = exp(𝒛𝑖𝑡

′ 𝜆) 

 

The determinants vector 𝒛𝑖𝑡
′  includes a constant and some other exogenous variables associated with the 

inefficiency. The 𝛿 and 𝛾 are the corresponding coefficient vectors. All other notations remain as defined 

above.  It is instructive to note that whether we allow the mean, the variance, or both the mean and the variance 

 
7 The ALS half normal distribution suffers some drawbacks as it assumes that 𝑢𝑖𝑡  and the pre-truncated  𝑢𝑖𝑡  are homoscedastic i.e. both  𝜎𝑢

2  and 
 𝜎𝑢

2 parameters are constants. This drawback is also addressed by this approach.  Ignoring the heteroscedasticity of 𝑣𝑖𝑡  would not affect the 
consistency of frontier’s function parameters estimates but could bias the intercept downward and also bias technical efficiency.  Whereas if 
heteroscedasticity of 𝑢𝑖𝑡  is ignored both the   estimates of the frontier parameters as well as the technical efficiency are biased (See Kumbhakar 
et al. 2015)   
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of the pre-truncated normal to depend on exogenous factors, both the mean and the variance of the truncated 

half normal will always depend on the exogenous factors. Failure to model the exogenous factors appropriately 

leads to biased estimation of the production frontier model and of the level of technical inefficiency, hence 

leading to poor policy conclusions (see Liu and Myers, 2009). It is the exogenous variables that give policy 

makers a means to induce efficiency change. 

 

First, we begin by assuming the general model as the WANG model in which  𝛿 and 𝛾 are both estimated 

using maximum likelihood methods as parameterised in Eq. (6). Second, we consider the KGMHLBC model. 

The model treats the mean of the pre-truncated normal distribution as a function of exogenous variables while 

assuming homoscedastic variance of the pre-truncated normal distribution as specified in the Eq. (4). Third, 

we look at the pre-truncated normal distribution RSCFG model in which   𝜇 = 0. This model addresses 

heteroscedasticity by treating exogenous variables as determinants of the variance of the pre-truncated normal 

variable. This is followed by the RSCFG−𝜇  proposed by Alvarez et al. (2006) where the mean of distribution 

is allowed to be different from zero8. Lastly, we estimate the homoscedastic half normal ALS in which  𝜇 = 

𝛾 = 0. We nest the four other restricted models into the general model and select the appropriate model that 

provides the best fit for our data using diagnostics tests such as the Likelihood ratio (LR) and Akaike 

information criterion (AIC). The summary of the general model together with the restrictions of the other 

competing models is presented in Table 1. 

 

 

Table 1: List of the estimated models       
Variable                   Restrictions               𝑁+ (𝜇𝑖𝑡 , 𝜎𝑖𝑡

2)    
          Mean             Std Deviation  
       
WANG Model                   -                    𝜇𝑖𝑡 = 𝑧𝑖𝑡

′ 𝛿              𝜎𝑖𝑡
2 =  exp(𝑧𝑖𝑡

′ 𝛾)  

KGMHLBC Model        𝛾 = 0                         𝜇𝑖𝑡 =  𝑧𝑖𝑡
′ 𝛿             𝜎𝑖𝑡

2 =  𝜎𝑢
2  

RSCFG- 𝜇 Model         𝛿 = 0                      𝜇𝑖𝑡 =  𝜇             𝜎𝑖𝑡
2 =  exp(𝑧𝑖𝑡

′ 𝛾)         

RSCFG Model             𝜇 = 0                         𝜇𝑖𝑡 =  0             𝜎𝑖𝑡
2 =  exp(𝑧𝑖𝑡

′ 𝛾)         

ALS Model                 𝜇 = 𝛾 = 0                       𝜇𝑖𝑡 =  0             𝜎𝑖𝑡
2 =  𝜎𝑢

2  
 

 

 

 
8Alvarez et al. (2006) give a technical discussion on the desirability of the scaling property arising from the non- zero mean assumption of the 
model which parametrises inefficiency term as a deterministic function of a set of efficiency covariates, i.e.   
ℎ(. ) = exp(𝒛𝑖𝑡

′ 𝛾), times a one-sided random variable that does not depend on any efficiency determinant, 𝑢𝑖𝑡
∗ ~ 𝑁+(0, 𝜎𝑢

2). 
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Given the composed error term 𝜀𝑖𝑡 =  𝑢𝑖𝑡 +  𝑣𝑖𝑡,  𝑢𝑖𝑡  is estimated as the conditional expectation of the one-

sided error term, exp(𝑢), given the composed error, 𝑣 + 𝑢: 

 

  𝑢̂ 𝑖𝑡
=  𝐸[𝑢𝑖𝑡|𝑣𝑖𝑡 + 𝑢𝑖𝑡]                                                                                        (7) 

 

The maximum likelihood residuals are used to replace 𝜀𝑖𝑡 = 𝑣𝑖𝑡 + 𝑢𝑖𝑡                    

 

The measurement of the technical efficiency is obtained by deriving the probability density function for u, 

conditional on every numerical realization of the composed error term  𝜀𝑖𝑡. . This approach is based on 

conditional expectations which generalize the estimators proposed Battese and Coelli (1988). The technical 

efficiency index for each state can be estimated from the point estimates of the technical inefficiency (𝑢𝑖𝑡) as 

the ratio of observed output to corresponding frontier output.  

 

  𝑇𝐸𝑖𝑡 = 𝐸[exp(−(𝑢𝑖𝑡|𝜀𝑖𝑡))]                                                                                                                               (8)                                                                                                                                     

                                                                                                                                

The technical efficiency index lies between 0 and 1. A score of one indicates a fully efficient state is on the 

frontier, while a non-frontier state receives scores below one.  

 

2.1. Marginal effect 

We proceed to derive the marginal effect of the z[𝑗], the jth variable of the 𝐳𝑖𝑡 vector in Eq. (6). Wang’s (2002) 

model has the advantage of allowing for the estimation of non-monotonic efficiency impacts which implies 

that  𝒛𝑖𝑡 can have, within the sample both increasing and decreasing effects on the production efficiency. The 

conventional stochastic frontier model is built on the implicit assumption that the exogenous variables’ 

impacts on inefficiency are monotonic i.e. the exogenous factors are either strictly efficiency-enhancing or 

efficiency–impeding in the sample, but not both. However, Wang (2002) demonstrates the exogenous 

variables can positively (negatively) affect the mean and variance of inefficiency when the values of the 𝐳𝑖𝑡 

vector are within e certain range, and then the impacts turn negative (positive) for values of 𝐳𝑖𝑡 outside the 

range.  

 

How do changes in the exogenous variables impact on the inefficiency distribution? In the KGMHLBC, 

RSCFG models one of the parameters of the basic distribution 𝑓(𝑢𝑖𝑡 ) changes, i.e., either the mean, 𝜇,  or the 

variance,𝜎𝑢
2. If the mean changes, KGMHLBC, this represents a change of location of the distribution which 

will be displaced to the right if the change in the exogenous variable raises the mode of the inefficiency, i.e., 

the most frequently observed level of inefficiency is greater. If the variance changes, RSCFG, this represents 
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an increased spread of inefficiency so that the most frequently observed value does not change but more 

extreme values of inefficiency are likely to be observed. From an economic policy point of view this means 

that policy directed towards reducing inefficiency may be targeted at improving the performance of the 

majority of agents (mean targeted) or lowering the likelihood of extremely inefficient agents (variance 

targeted). The Wang model assumes that both factors may be important. This captures a wider range of 

behaviours but on the other hand makes policy design more complex. 

 

The non-monotonicity marginal effects of on 𝐸(𝑢𝑖𝑡)  of the jth element of 𝐳𝑖𝑡 can written as; 

  

𝜕𝐸(𝑢𝑖𝑡)

𝜕𝑧[j]
 =   𝛿[j] [1 − 𝛬 [

𝜙(𝛬)

𝛷(𝛬)
] − [

𝜙(𝛬)

𝛷(𝛬)
]

2

]   +  𝛾[j]
𝜎𝑖𝑡

2
[(1 + 𝛬2) [

𝜙(𝛬)

𝛷(𝛬)
] + 𝛬 [

𝜙(𝛬)

𝛷(𝛬)
]

2

]                        (9) 

 

 

where 𝛬 = 𝜇𝑖𝑡 𝜎𝑖𝑡⁄ , 𝜙  and 𝛷  are the probability and cumulative density functions of a standard normal 

distribution. 𝑧[𝑗] is the jth element of 𝐳𝑖𝑡, 𝛿 and 𝛾 are associated coefficients of the determinants of mean and 

variance inefficiency. In the event that the variance 𝜎𝑖𝑡
2  is non- parameterised, 𝛾[𝑗] is assumed to be zero, 

constant for all 𝑗, and equation (10) would imply a monotonic effect of  𝐳𝑖𝑡 on  (𝑢𝑖𝑡) . The marginal effect 

takes the sign of 𝛿[𝑗]  which is the same for all values of  𝐳𝑖𝑡. 

 

The marginal effects of 𝐳𝑖𝑡 on V(𝑢𝑖𝑡)  can be expressed as follows: 

 

𝜕𝑉(𝑢𝑖𝑡)

𝜕𝑧[j]
 =   

𝛿[j]

𝜎𝑖𝑡
[𝛬 +

𝜙(𝛬)

𝛷(𝛬)
 ] (𝑚1

2 − 𝑚2)

+   𝛾[j]𝜎𝑖𝑡
2 {1 −

1

2
[
𝜙(𝛬)

𝛷(𝛬)
] ((𝛬 + 𝛬3 + (2 + 3𝛬2) [

𝜙(𝛬)

𝛷(𝛬)
]) + 2𝛬 [

𝜙(𝛬)

𝛷(𝛬)
]

2

}

 

                    (10) 

 

where 𝑚1 𝑎𝑛𝑑 𝑚2 are the first two moments of 𝑢𝑖𝑡 represented as: 

 

𝑚1  =   𝑓(𝜇𝑖𝑡,𝜎𝑖𝑡) = 𝜎𝑖𝑡 [𝛬 +
𝜙(𝛬)

𝛷(𝛬)
 ]                                                                                                                   (11) 

 

𝑚2  =  𝑔(𝜇𝑖𝑡,𝜎𝑖𝑡) = 𝜎𝑖𝑡
2 [1 −  𝛬 [

𝜙(𝛬)

𝛷(𝛬)
] − [

𝜙(𝛬)

𝛷(𝛬)
]

2

]                                                                                       (12) 

 



11 

 

Equations (9) and (10) reveal that the marginal effects of the non-monotonic inefficiency effects consist of 

two terms, indicating the impact of the variables on the mean and variance of the inefficiency components.  

 

So far, the analysis has preserved the exact approach to non-monotonic heteroscedasticity suggested by Wang 

(2002) within a pooled sample. However, recent developments in the literature on panel data stochastic frontier 

analysis argue that the error term should distinguish between heterogeneity and inefficiency and between 

persistent and transient inefficiency9. Transient or time-varying inefficiency may quickly be eliminated but 

persistent or time-invariant inefficiency indicates longer term problems in adjusting to changing market 

conditions. The result is the four-component error model of stochastic frontier analysis, e.g., Kumbhakar et al 

(2014),  and Filippini and Greene (2016) which transforms equation (1) to (13). 

 

𝑦𝑖𝑡 =  𝛼 + 𝑥𝑖𝑡
′ 𝛽 + 𝜀𝑖𝑡 ; 𝜀𝑖𝑡 = 𝑣0𝑖 + 𝑢0𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡      (13) 

 

The 𝑣0𝑖 term represents latent heterogeneity, the 𝑢0𝑖 term represents persistent or time-invariant inefficiency, 

the 𝑣𝑖𝑡 term represents idiosyncratic random error, e.g., measurement, specification and observation error, and 

the 𝑢𝑖𝑡 term represents transient or time-varying inefficiency. The persistent and transient inefficiency error 

terms are assumed to be non-negative random variables: 𝑢0𝑖 ≥ 0, 𝑢𝑖𝑡 ≥ 0. The latent heterogeneity term 𝑣0𝑖 

may be a random error or a set of random fixed effects while the idiosyncratic random error is a zero mean 

random variable.  

 

Kumbhakar and Heshmati (1995) and Greene (2005) adopted a fixed effects approach 

 

𝜀𝑖𝑡 = 𝛼𝑖 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡                                       (14) 

 

The issue is how to interpret the time-invariant effect 𝛼𝑖 = 𝑣0𝑖 + 𝑢0𝑖 . Kumbhakar and Heshmati (1995) 

interpreted it as 𝛼𝑖 = 𝑢0𝑖, i.e., persistent inefficiency, which requires that each estimated effect is used to 

construct an index of inefficiency.  Greene (2005) interpreted it as 𝛼𝑖 = 𝑣0𝑖, i.e., latent heterogeneity, and 

used both a ‘true’ fixed effects approach, TFE, and a ‘true’ random effects approach, TRE.  

 

Equation [13] however is a generalised true random effects model, GTRE. When the error component density 

function assumptions are imposed, it can be estimated by full maximum likelihood or by simulated maximum 

likelihood as in Filippini and Greene (2016), where the time-invariant and the time-varying components are a 

pair of skew-normal random variables. Neither approach lends itself to incorporating heteroscedasticity in the 

 
9 We are grateful to a reviewer who suggested we consider the four-component panel model as well.  
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inefficiency error terms. However, a simpler but less efficient multi-step estimator for the GTRE model has 

been suggested by Kumbhakar et al (2014). It assumes a deterministic variance for each of the error terms and 

positive expected values for the inefficiency components and zero expected value for the idiosyncratic error. 

The advantage lies in the fact that the inefficiency components can be heteroscedastic.  

 

𝑦𝑖𝑡 =  𝛼 + 𝑥𝑖𝑡
′ 𝛽 + 𝑟𝑖 + 𝜔𝑖𝑡                                   (15) 

 

Step 1 uses a one-way random effects panel data model as in [15]. Step 2 decomposes the estimated random 

effects, 𝑟̂𝑖, by a simple stochastic frontier analysis regressing them on a constant, inefficiency and random 

error 

𝑟̂𝑖 = 𝜏(1) + 𝑣0𝑖 + 𝑢0𝑖 

 

so that we can apply the Wang (2002) and other heteroscedastic models, e.g.  

 

𝑣0𝑖~𝑖𝑖𝑑(0, 𝜎𝑣0
2 ); 𝑢0𝑖~𝑁+(𝜇𝑖, 𝜎𝑢0𝑖

2 ); 𝜇𝑖 = 𝐳0𝑖′𝛅𝑢0; 𝜎𝑢0𝑖
2 = 𝑒𝑥𝑝(𝐳0𝑖′𝛄𝑢0)     (16)                            

 

Step 3 does the same for the estimated time-varying panel residuals: 

 

𝜔̂𝑖𝑡 = 𝜗(1) + 𝑣𝑖𝑡 + 𝑢𝑖𝑡 

𝑣𝑖𝑡~𝑁𝑖𝑑(0, 𝜎𝑣
2); 𝑢𝑖𝑡~𝑁+(𝜇𝑖𝑡, 𝜎𝑢𝑖𝑡

2 ); 𝜇𝑖𝑡 = 𝐳𝑖𝑡′𝛅𝑢; 𝜎𝑢𝑖𝑡
2 = 𝑒𝑥𝑝(𝐳𝑖𝑡′𝛄𝑢)    (17)  

 

Step 4 extracts the conditional efficiency scores from these two stochastic frontier analysis models. These 

steps can be thought of as applications of the quasi-maximum likelihood estimation based on the concentrated 

likelihood function that was suggested by Fan et al (1996).  

 

Finally, we could also use the procedure in step 2 of the multi-step quasi maximum likelihood procedure to 

revisit the True Fixed Effects model of Greene (2005) and, if we can extract the fixed effects, we can 

decompose these as well as, again using the Wang (2002) and other heteroscedastic models:   

 

𝛼̂𝑖 = 𝜏(1) + 𝑣0𝑖 + 𝑢0𝑖 

𝑣0𝑖~𝑖𝑖𝑑(0, 𝜎𝑣0
2 ); 𝑢0𝑖~𝑁+(𝜇0𝑖, 𝜎𝑢0𝑖

2 ); 𝜇0𝑖 = 𝐳0𝑖′𝛅0  𝜎𝑢0𝑖
2 = 𝜎𝑢0

2 𝑒𝑥𝑝(𝐳0𝑖′𝛄𝑢0)   (18) 
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3.  Data and descriptive statistics 

The study is based on a US state-level electricity panel data set for a sample of 47 states over the period 1997 

to 2014. We feel that this represents a consistent set of state-level developments in the electricity generation 

industry. The sample period covers the era of the implementation of major electric industry restructuring 

policy, especially the Electricity Generation Customer Choice and Competition Act which introduces retail 

competition into the electricity industry in most states between 1998 and 2002.  Post 2015 data include the 

deeply changed nature of the federal and state political direction under the new presidential regime post 2016. 

Consequently, the post 2015 environment is sufficiently different to represent a structural break, particularly 

in view of the importance of the Republican Party’s approach to deregulation given the deeply changed nature 

of the Republican leadership after 2015, so we have excluded it. For our purposes, we limit the analysis to the 

contiguous states (i.e. Alaska and Hawaii are excluded)10.  The data set is based on information from the U.S. 

Department of Energy’s (DOE) Energy Information Administration (EIA) database and the Bureau of 

Economic Analysis of US Department of Commerce and the US Census Bureau. Our choice of inputs and 

output is consistent with the literature such as See and Coelli, (2013) and Ajayi, et al (2017).  

 

The capital input is measured in megawatt (MW) of installed capacity. Installed capacity is commonly used 

as a standard measure of capital stock as electricity generation in the literature11. Installed capacity in this 

study is defined as the equivalent of a conventional thermal plant’s maximum amount of electricity that a 

station can produce at any given point in time. It describes the maximum capacity that a system is designed to 

run at. Installed capacity is collected from Form EIA-860 of the US Energy Information Agency (EIA).  The 

labour input refers to the economically active population in electricity generation for each state measured in 

thousands of employees. Information on the number of people employed for electricity generation is taken 

from the US Bureau of Labour Statistics.  The quantity of energy input is measured as the equivalent total heat 

content in billion British thermal unit (billion BTUs) for each state, and includes all varieties of energy 

consumed from different energy sources by the generation plants such coal, petroleum, natural gas, nuclear, 

geothermal and other gases. Energy consumption at the state level from coal, petroleum and natural gas are 

reported in physical units in EIA-906, EIA-920 and EIA-923 Forms. The reported heat content information 

 
10 The District of Columbia and Vermont are initially considered in the analysis but were later filtered out as outliers as the data have different 
distribution of the data.  
11 Installed capital is used as the measure of the services of capital input. The use of installed capital as proxy for capital stock is consistent with 
literature.  Although, a potential issue is that some parts of the installed capital of a generator (conventionally measured as the electrical power 
rating of the capacity) may not in practice have been part of the ‘used and useful’ capital stock, as defined by US public service regulators. 
However, industry wide practice is to use installed capacity in the engineering sense as the comparable measure of the stock of capital services.  
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for individual fuel is taken from EIA to convert energy consumption into billion BTU. After converting the 

energy consumption into the same measurement units, we aggregated them into total heat content in billion 

British thermal unit. All of these variables are available at the state level including those for the non-fossil 

fuel sources so that our state-level aggregation is feasible. 

 

The output variable is each state’s aggregate electric power industry net of generation of electricity for each 

year from various energy sources such as coal, hydro, natural gas, petroleum etc. Electricity generation is 

measured in megawatt hours. The total electric power industry net generation derives from the summation of 

generation by different type of producers such electric utilities generators, Combined Heat and Power and 

independent power producers including renewables. The data is extracted from Forms EIA-906, EIA-920 and 

EIA-923 of the US Energy Information Administration (EIA) database. Fig. 2 plots the average annual trend 

of electricity generation and installed capacity over sample periods. While installed capacity has witnessed a 

steady increase over the period, electricity generation has largely been driven by US demand, with notable 

dips in generation experienced occasioned by demand shocks during the recessions in 2001 and 2008.    

 

Fig. 2. Annual average trend of the US electricity generation and installed capacity.  

 

Source: US Energy Information Administration (EIA) database 
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Previous studies have identified factors that could shape the operating environment but are not directly related 

to the performance of the generation plants. These exogenous factors are categorised into political and 

economic variables that could influence the mean of the inefficiency. First, we consider the market 

restructuring variables which encompasses different levels of deregulation that utilities face in each state. Of 

course, several studies in the literature propose broader indicators of market restructuring12. For our purpose, 

we rely on the current restructuring classification originally developed by the Energy Information 

Administration (EIA) of the US Department of Energy (EIA, 2010). The Energy Information Administration 

defines restructuring to mean that a monopoly system of electric utilities has been replaced with competing 

sellers and classifies electricity restructuring into active, not active and suspended. According to the updated 

restructuring information only fifteen states and the District of Columbia are active in restructuring activities. 

It is also interesting to observe the spatial clustering of the most restructured states predominantly in the 

location around the Northeastern region and East North Central, barring Maryland, District of Columbia, 

Oregon and Texas. Specifically, restructuring activities by state is proxied by deregulation, which is either yes, 

no or suspended. Therefore, considering this classification, we construct a dummy variable for restructured 

and non-restructured states. The states where deregulation is yes are assigned the value of one and zero if there 

is no deregulation or deregulation has been suspended.  We construct PUC as a dummy variable that equals 

one when the majority of the state public utility commission’s commissioners are Republican and zero if 

otherwise using data from the National Association of Regulatory Utility Commissioner (NARUC). On 

grounds of political ideologies, the Republican PUC members are more likely to promote deregulation and 

prevent the reversal of deregulation reform. Therefore, we use this affiliation variable to represent the political 

support for ongoing deregulation and the introduction of competitive entry into generation. A negative 

coefficient on either of the deregulation variables, restructuring or political affiliation, would mean positive 

impacts on the technical efficiency.  

 

Finally, we also control for state specific heterogeneity captured by some major observable exogenous 

variables. The real GDP per capita for each state allows us to assess the impact of economic structure on the 

mean of inefficiency. The real GDP is measured for each year in thousand US 2009 dollars chained and 

obtained from the Bureau of Economic Analysis of the US Department of Commerce. Industrial share is the 

industrial value added as a percentage share of the state GDP, and this measures the extent to which GDP in 

each state primarily manufacturing industry based. The number of customers is a proxy for the connection 

 
12 Some of the indicators considered in the literature are as follows;  (a) plant access to wholesale electricity market places through an RTO;  (b) 
the date at which formal hearings on restructuring began; (b) the date at which formal hearings on restructuring legislation enacted; (d) the 
implementation of retail choice under legislation; and (e) complementary aspects of restructuring, such as access to wholesale markets, permit 
capacity trading, the mandatory divestiture of generation assets and the type of rate of regulation (Fabrizio et al, 2007; Zhang, 2007;  Craig & 
Savage 2013; Davis and Wolfram, 2012).   



16 

 

points for electricity consumption to reflect the way in which a state’s population can impact on its generation 

efficiency. The average real price for electricity across the state is the final exogenous variable. 

 

Table 2: Summary Statistics 

 Variable                            Mean          Sd. Dev.      Min 

                                                 

Max  

Net electricity generation (MWh) 8.88e+07        7.20e+07   5627645 4.38e+08 

Installed capacity (MW) 23290.26            19721.04         1385 124214 

Energy (million BTU) 6.17e+08            5.89e+08     3609378 3.93e+09 
 
Labour (‘000 people) 5827.073            6673.766 10 37599 

Deregulation (1= yes , 0 = no) 0.2927        0.4553  0 1 

PUC (1= yes , 0 = no) 0.6530        0.4764  0 1 

Retail price (Cents/kwh) 8.0813        2.6273 4.010 18.070 

Per capita GDP (2009 US $(thousand)) 44.3430            7.8557    28.3732 69.7870 

Industrial share of GDP (%) 13.8762            5.7667 3.5890     30.5949 

Number of customer (people) 3076986      2858885                   263824                   1.51e+07 
 

 

4.  Results and Discussions 

  In this section we focus initially on the pooled heteroscedastic models derived from Wang (2002) in 

equations (1) to (12), sections 4.1 and 4.2. Then we supplement this analysis by comparing it with the panel 

data GTRE and TFE models described in equations (13) to (18), section 4.3. We begin with the pooled data 

approach of Wang (2002) and the other heteroscedasticity literature. The key is that the important determinants 

of the heteroscedasticity in inefficiency are of two kinds: the deregulation and political affiliation data are 

time invariant and the contextual macro variables are time varying. Since it is the deregulation variables that 

we are particularly interested in testing, their impact is the same in a pooled model as in a structured panel. 
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4.1. Empirical Results 

We estimate the translog production function with inputs capital, fuel consumption and labour and the 

exogenous variables13. Indexing each input by j or k, j or k = 1,.3, the estimated equation can be written as 

follows: 

 

𝑙𝑛𝑦𝑖𝑡 =  𝛽0 + ∑ 𝛽𝑘𝑙𝑛(𝑥𝑖𝑘𝑡)

3

𝑘=1

+  𝛽𝑡𝑡 +
1

2
∑ ∑ 𝛽𝑘𝑗𝑙𝑛(𝑥𝑖𝑗𝑡)𝑙𝑛(𝑥𝑖𝑘𝑡)

3

𝑗=1

+
1

2
∑ 𝛽𝑡𝑡𝑡2

3

𝑘=1

  

               + ∑ 𝛽𝑗𝑡

3

𝑗

𝑥𝑖𝑗𝑡 + ∑ 𝜃𝑗𝑙𝑛(𝑥𝑖𝑗𝑡)𝑡

3

𝑗

 +  𝛿𝑖𝑡𝑧𝑖𝑡 +  𝑣𝑖𝑡 − 𝑢𝑖𝑡                                                                 (19) 

 

where is 𝑦𝑖𝑡 electricity generation, 𝑥𝑖𝑡 are input variables i.e., energy, installed capital and labour, 𝑧𝑖𝑡 are the 

environmental variables i.e., deregulation, PUC, per capita GDP, number of customers, industrialisation and 

electricity retail price.  As a preliminary step to our analysis, we estimated a pooled OLS regression of the 

stochastic production frontier in order to ascertain statistically whether the data contains inefficiency effects. 

If there were no technical inefficiency, the error term will be symmetric i.e., 𝑢𝑖𝑡 = 0, the model reduces to the 

standard regression model and the composed error term collapses to the two-sided error, i.e.  𝜀𝑖𝑡 = 𝑣𝑖𝑡 .  Thus, 

the data will not support the technical inefficiency analysis.  

 

Fig. 3 displays the histogram of the residual following the OLS estimation. However, to avoid distortions due 

to any unusually large outliers in the data, we first removed observations with OLS standardised residuals 

greater than 2.5 in absolute value; this reinforces any finding of inefficiency in the remaining residuals. In 

other words, a finding of inefficiency will not be due to the inclusion of outlier observations. Compared with 

a normal density distribution, the remaining residuals show a skewed distribution to the left, indicating the 

presence of inefficiency.  In order to demonstrate the skewness more empirically, a skewness test for normality 

proposed by Coelli (1995) rejects the null hypothesis of normal residual14.  The computed statistic equals -

6.251. The negative sign of statistics reinforces the left skewness of the OLS residual which is consistent with 

a production frontier specification. Given that it is a normal distribution, the critical value is 1.96, therefore, 

the result confirms the rejection of the null hypothesis of no skewness in the OLS residual. 

 

 
13 Our empirical analysis is programmed in Stata using the maximum likelihood code written by Wang (2002) 
14 Coelli (1995) notes that under the null hypothesis of normal residual, the third moment of the OLS residual is asymptotically distributed as a 

normal random variable with mean 0 and variance 6𝑚2
3/𝑁 . The statistic is given as M3T=𝑚3 √6𝑚2

3/𝑁⁄ . 
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Fig. 3: Histogram chart of the OLS residual 

 

There are eight pooled OLS residuals after filtering that display remaining high negative values (between -2.5 

and -0.4). Half of these observations are for states where there has been no deregulation activity and there was 

no majority political affiliation favouring competitive incentives. Of the remaining four, three were states 

where there has been regulation but no majority political affiliation favouring competitive incentives. One 

residual corresponded to a state where there has been deregulation and a majority political affiliation favouring 

competitive incentives. Since all the remaining residuals are measured prior to modelling the structure of the 

composed error term there could be several reasons for their relative position on the real line. They may 

correspond to observations on non-restructured states or states with a political opposition to deregulation or 

to the impact of the relative income levels, industrial structure differences, customer number differences or 

electricity retail prices in each state or simply to random error. The subsequent decomposition of the errors 

into heteroscedastic inefficiency and random error is designed to analyse and test these effects. 

 

Since we are interested in the impact of deregulation on electricity generation efficiency, we have included 

the deregulation dummy and  PUC so as to control for political influence on restructuring while the real GDP 

per capita and industrial share of GDP are control variables for economic structure. We also control number 

of customer and electricity retail prices as some states have adopted retail choice which might increase the 

efficiency of investor-owned plants. We implemented several model selection tests while imposing restrictions 
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in order to obtain the preferred model. Table 3 shows the LR tests for nested models, in which WANG model 

is nested to the other models using the standard likelihood ratio LR test suggested by Alvarez et al (2006). 

Since the standard LR test may have the tendency of favouring the model with greater number of parameters 

since there is no penalty on imposing extra parameters, we estimate the Akaike information criterion (AIC) to 

further justify our selection decision. The Akaike information criterion is defined as: AIC = −2 (ln (likelihood)) 

+ 2K, where likelihood is the probability of the data given the model and K is the number of free parameters 

in the model. Hence, a model with the smaller value of AIC fits the data better than the one with the larger 

AIC.  

 

The LR test shows the four other competing models nested in the WANG model. Considering the WANG 

model as the baseline model, we proceed to test the restrictions that would best fit our data, table 3 below.  

 

Table 3: Model selection tests     

Model       
WANG  

 
KGMHLBC 

 

RSCFG-
m 
 

RSCFG ALS 

      
Log-likelihood                    562.465 462.19 475.696 475.358 409.936 

      

AIC -1064.93 -876.379 -903.392 904.713 -
785.871 

      

BIC                                -926.129 -765.339 -792.351 -798.301 -
707.217 

      

LR testa                     GM 200.551 173.538 174.215 305.059 
      

#  Restrictions        - 6 6 7 13 
      

1% critical valueb       - 16.704 16.704 17.755 27.026 
      

5% critical valueb       - 11.911 11.911 13.755 21.742  
aIn the LR test, GM denotes the general model. All other competing models are nested in the general model.   
bThe critical value of the chi-square is taken from the table in Kodde and Palm (1986, Econometrica)     
 

 

The likelihood-ratio test shows that KGMHLBC (𝛾 = 0), RSCFG- 𝜇 ( 𝛿 = 0 ) , RSCFG (𝛿 = 0) and ALS 

(𝜇 = 𝛾 = 0)  models are all rejected in favour of the WANG model at one per cent significant level due to 

the inclusion of exogenous variables in the mean and variance of the heteroscedastic inefficiency term. The 
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table also reports the WANG model as the best frontier specification with the smallest AIC = -1065.139. 

Undoubtedly, the data favours the WANG model over other simpler alternative models.  

 

Tables 4a and 4b report the maximum likelihood estimates of the technological parameters which seem to be 

very similar in magnitude, together with the inefficiency parameters. The production and input variables are 

log mean corrected prior to estimation which enables the estimated coefficients to be directly interpreted as 

elasticities. The models are well specified with regard to statistical significance, and values of the output 

elasticities for all the inputs are positive suggesting that the estimated translog production function is a well-

behaved function satisfying monotonicity. Specifically, for our preferred model in the first column, the 

estimated output elasticities with respect to capital, energy and labour are is 0.763, 0.165 and 0.041 

respectively. The elasticities indicate that, ceteris paribus, a 1% increase in capital will, on average, result in 

about 0.77% increase in electricity generation. Similarly, a 1%  increase in energy use will result in a 

corresponding increase in electricity generation by 0.17% while  output rises by 0.04% for an associated 1% 

increases in labour. Capital input has the highest impact on production technology, and this is consistent with 

capital intensive characteristic of the electricity generation industry. Also, the first order coefficient on time 

is not statistically different from zero, but the second order term confirms that technical progress as measured 

by the passage of time is important in locating the production function. 
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Table 4a: Estimated results of the frontier models: equation parameters 

                              

Variable WANG   KGMHLBC   RSCFG-µ    RSCFG   ALS 
               

  Coeff. Std error   Coeff. Std error   Coeff. Std error   Coeff. Std error Coeff. Std error 

Capital 0.763*** (0.021)  0.795*** (0.017)  0.754*** (0.015)  0.755*** (0.015)  0.772*** (0.014) 

Energy 0.165*** (0.010)  0.167*** (0.011)  0.177*** (0.011)  0.178*** (0.011)  0.204*** (0.011) 

Labour 0.041*** (0.008)  0.022** (0.009)  0.030*** (0.009)  0.030*** (0.009)  0.017** (0.008) 

Capital Squared 0.128*** (0.022)  0.038** (0.016)  0.069*** (0.020)  0.069*** (0.020)  0.041** (0.018) 

Energy Squared 0.140*** (0.011)  0.105*** (0.009)  0.128*** ((0.010)  0.129*** (0.010)  0.139*** (0.011) 

Labour Squared 0.006** (0.003)  -0.002 (0.003)  0.002 (0.003)  0.002 (0.003)  -0.001 (0.003) 

Capital * Energy -0.240*** (0.025)  -0.124*** (0.018)  -0.158*** (0.021)  -0.159*** (0.021)  -0.173*** (0.020) 

Capital *Labour 0.072*** (0.014)  0.079*** (0.012)  0.088*** (0.014)  0.088*** (0.014)  0.080*** (0.013) 

Energy * Labour -0.107*** (0.015)  -0.098*** (0.010)  -0.118*** (0.014)  -0.117*** (0.013)  -0.099*** (0.011) 

Time -0.000 (0.001)  -0.003** (0.001)  -0.003** (0.001)  -0.003*** (0.001)  -0.010*** (0.001) 

Time Squared 0.000** (0.000)  0.001*** (0.000)  0.001*** (0.000)  0.001*** (0.000)  0.001*** (0.000) 

Capital * Time -0.008*** (0.002)  -0.004 (0.002)  -0.006** (0.003)  -0.006** (0.003)  -0.004 (0.003) 

Energy *Time 0.005*** (0.002)  0.003* (0.002)  0.001 (0.002)  0.001 (0.002)  0.003* (0.002) 

Labour * Time 0.001 (0.001)  0.001 (0.001)  0.001 (0.001)  0.001 (0.001)  0.001 (0.001 

Constant 0.268*** (0.028)   0.193*** (0.027)   0.043*** (0.016)   0.050*** (0.014)   0.092*** (0.015) 

   Notes: *,**,*** denote statistically significant at 10%, 5% and 1% respectively.   

 

 

 

 



22 

 

Table 4b: Estimated results of the frontier models: inefficiency parameters 

                              

Variable WANG   KGMLHBC   RSCFG-µ    RSCFG   ALS 

               
  Coeff. Std error   Coeff. Std error   Coeff. Std error   Coeff. Std error Coeff. Std error 

Mean function               
Deregulation -0.110*** (0.018)  -0.095*** (0.023)          
PUC -0.058*** (0.012)  -0.014 (0.016)          
GDPPC 0.101** (0.040)  -0.033 (0.051)          
Retail price -0.024 (0.019)  -0.007 (0.016)          
Industrialization 0.312*** (0.032)  0.363*** (0.051)          
Customer 0.015 (0.011)  -0.003 (0.019)          
0 0.389*** (0.029)  0.244*** (0.035)  -0.041 (0.060)       
               
Variance function               
Deregulation 0.888*** (0.232)   (0.270)  -0.760*** (0.281)  -0.768***     
PUC -0.130 (0.157)   (0.176)  -0.402** (0.180)  -0.425**     
GDPPC -2.840*** (0.499)   (0.539)  -0.991* (0.550)  -1.075*     
Retail price -0.714*** (0.090)   (0.149)  -0.694*** (0.149)  -0.716***     
Industrialization 2.041*** (0.340)   (0.619)  4.295*** (0.606)  4.414***     
Customer 0.715*** (0.179)   (0.220)  0.115 (0.228)  0.12     
0 -4.425*** (0.160)  -3.784*** (0.102)  -3.566*** (0.280)  -3.678*** (0.225)  -3.434*** (0.177) 
v

2 -7.657*** (1.155)  -6.242*** (0.642)  -4.614*** (0.110)  -4.643*** (0.113)  -4.738*** (0.193) 
# Observation 755   755   755   755   755  
Log-likelihood 562.465     462.19     475.696     475.358     409.936   
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We now turn our attention to the impact of restructuring on electricity production across states, we 

incorporated several exogenous variables into the heteroscedastic alternative models by allowing the variables 

to affect the mean and variance of the inefficiency. Since the AIC and LR tests clearly support the WANG 

model, our discussion is centred on the preferred model which allows both the mean and the variance of the  

pre-truncated distribution of the inefficiency to depend on the exogenous factors. Tellingly, our preferred 

model points to the reliability of the variance of the inefficiency to appreciably capture the impacts of the 

exogenous variables on production inefficiency as most of the environmental variables are insignificant. The 

preferred model also shows that the estimated restructuring coefficient on the variance of the inefficiency have 

expected signs and statistically significant. 

 

Focusing on the mean of the inefficiency, overall, our finding shows the importance of restructuring in the 

electricity generation industry. The coefficient of deregulation is statistically significant at 1% and negatively 

correlates with technical inefficiency, implying a positive effect on technical efficiency in electricity 

generation due to restructuring. This particularly holds true for the a priori expectation that deregulation 

represents a key factor at improving electricity production efficiency. This finding is largely consistent with 

previous studies such as Kleit and Terrell (2001), Knittel (2002), Hiebert (2002), Zhang (2007) and Craig and 

Savage (2013). The inclusion of PUC enables us to get better intuition into the political dynamics of 

restructuring on inefficiency. Interestingly, the coefficient of PUC is also statistically significant and  

negatively correlated with technical inefficiency. These findings imply an increase in technical efficiency 

when the majority of the state commissioners on public utility commission are Republican. Intuitively, a 

plausible explanation to these findings is the tendency of these states controlled by Republicans to influence 

some political decisions that support restructuring policy in order to promote competition among the electric 

power generators. Zhang (2007) report a similar positive increasing impact of public utility commission on 

capacitor factor. However, the findings show that high retail prices and real per capita GDP are associated 

with technical inefficiency whereas number of customer and industrialisation are not significantly different 

from zero.  

 

Besides the determinants of the inefficiency, we are also interested in the unit-specific inefficiency to ascertain 

the distribution of the efficiency.  In doing so, we computed the Battese and Coelli efficiency estimates for 

each observation in all the models. The summary statistics of the efficiency index across competing models 

are reported for comparison in Table 5.  The efficiency index summary statistics shows that our preferred 

model has an average efficiency of 0.731. This finding means that, on average, states electricity generation is 

73.1% of the maximum output. Better still, it implies that the states lost about 26.9% of the potential generation 

output to technical inefficiency. Interestingly, the findings show that other models overstate average technical  

efficiency estimates. Figure 2 plots the kernel density estimates of the efficiency scores for the five models. 
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The kernel density reveals WANG mode as the most rightly skewed distribution, which further reinforces 

WANG as our preferred model.  

 

Table 5: Estimate technical efficiency scores   

Model  Mean                 
SD Min                       

Max 
WANG 0.731 0.108 0.192 0.99 

     

KGMHLBC 0.794 0.105 0.337 0.983 
     

RSCFG-µ 0.903 0.078 0.286 0.986 

     
RSCFG 0.897 0.078 0.285 0.98 

     
ALS 0.872 0.068 0.426 0.971 

 

 

In particular, we note that when the impact of the exogenous variables is monotonic as is the case in the models 

other than Wang (2002) we can only infer that a change in an exogenous variable will have either a wholly 

positive or wholly negative effect on, for example, the mean of the inefficiency component, i.e., the value of 

∂E(u)⁄∂z[k] . The possibility of non-monotonicity means that for some range of the exogenous variable, the 

effect on the mean of the inefficiency could be positive but for values outside that range the effect could be 

negative. We can see this in the plot of the mean of the inefficiency effect against one of the exogenous 

variables, for example number of customers, or average electricity price15. This suggests that beyond a certain 

size of customer base or price level, the effect of further increases changes the sign of the impact ∂E(u)⁄∂z[k] . 

This could give a feasible set of values for a policy change within which movements in an exogenous variable 

are beneficial and another set of values for which they are not. 

 

 

 

 

 

 

 

 
15 We demonstrate this below in figures 5 in the context of a panel data model. 
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Fig. 4: Kernel density of efficiency scores of the estimated models 

 

 

Although we have established the importance of the deregulation and political affiliation variables the 

determination of the inefficiency component of the random error, this is not the same as showing whether 

these variables are associated with the mean overall efficiency scores for each group of states. We used the 

Battese and Coelli (1988) transformation of the conditional inefficiencies to derive the overall technical  

efficiency scores, and then we measured the average efficiency scores for different groupings of the states. In 

order to further explore the heterogeneity between restructuring and non-restructuring states in term of the 

impacts of restructuring on the states’ electricity generation technical efficiency, the efficiency index is first 

disaggregated into of sub-groups based on states which deregulation has been implemented and currently on-

going and their counterparts which have not implemented or suspended deregulation activities. Secondly the 

efficiency scores are disaggregated into sub-groups where the majority of the state public utility commission’s 
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commissioners are Republican and those with a non-Republican majority. We argued above that the two 

categories may reinforce each other’s effects. In fact, we find that the differences in efficiency performance 

associated with the political affiliation variable are far stronger than the differences associated with 

deregulation on its own. We find that the t-test of the difference in mean efficiency scores across the two 

subsamples of only  restructured and non-restructured states fails to reject the null hypothesis that the mean 

scores are the same, however, the t-tests of the difference in mean efficiency scores across the two subsamples 

of Republican majority commissioners and non-majority states clearly reject the null hypothesis at the 5 

percent significance level that the mean efficiency scores are the same, Table 6. In summary, restructuring 

does significantly affect the inefficiency error component but not sufficiently to result in higher mean 

performance compared with non-deregulated states. However the effect of a majority of Republican public 

commissioners, who are assumed to reinforce the deregulation movement on a continuing basis does result in 

higher mean efficiency scores at the 5 percent significance level. 

 

Table 6: Differences in efficiency scores 

 

test: no difference in mean efficiency score 

Groups 
mean Efficiency 
(1st group) 

mean Efficiency 
(2nd group) t-value  

Satterthwaite's 
degrees of 
freedom 

States with majority 
Republican 
commissioners vs non-
Republican majority  0.739 0.715 2.789 464 

 

 

These results further strengthen our earlier finding that political support for deregulation constitutes a major 

factor in improving electricity production efficiency due to its negative impact on the inefficiency.   

 

 

4.1.Marginal Effects results 

 

Having discussed the slope parameters of the exogenous variables, we now focus on the marginal effects. The 

marginal effect indicates by how much the technical inefficiency will change if the each of the exogenous 

variable changes, ceteris paribus. The estimation of marginal effects is important to our analysis as the 

estimated slope parameters of the inefficiency determinants are only indicative of the direction and not the 

magnitude. Therefore, marginal effects are evaluated for both the mean and the variance of the technical 

inefficiency i.e. 𝐸(𝑢𝑖𝑡) and 𝑉(𝑢𝑖𝑡) as explained in equation (9) and (10). The mean function marginal effects 
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demonstrate how a change in an exogenous variable affects the expected inefficiency. On the other hand, the 

marginal effects of the variance function reveal the partial effect of exogenous variables on the dispersion of 

inefficiency in the electricity generation industry.  

 

We focus on the deregulation and political affiliation, PUC, variables16. We find that deregulation has a 

negative partial effect until the 99th percentile i.e. non-monotonic impact on the mean of inefficiency but 

positive overall effects on the variance of inefficiency. For the sample average, the partial effect indicates that 

the increase in deregulation reduces production inefficiency by 8.4 per cent. In addition, the positive marginal 

effects on the variance reveals that deregulation tends to increase inefficiency dispersion, arguably due to the 

tendency of the private utilities to scale back generation in face of potential slow demand growth. Meanwhile, 

the marginal effect of the PUC variable shows an overall negative impact on the mean of inefficiency but has 

no statistically significant impacts on the variance of inefficiency. On average, PUC has a negative marginal 

effect of -0.055 in the mean inefficiency function which represents an increase in efficiency by 5.5 per cent.  

This finding for all the quartiles suggests that the marginal benefit of increasing additional republican 

commissioners on states’ public utility commissions represent the importance of political affiliation in 

continuing support for competitive incentivisation.  

 

4.3 The four component error panel data approach. 

In this section we supplement our analysis and check for robustness of the results of the WANG model by re-

estimating it in a panel data framework17, as described in equations (13) to (18). Within the data, we have two 

groups of states of interest. One group is the restructured states where there is strong political support for 

competition and entry in the electricity generation industry, and a second group which are not restructured nor 

where there is political support for moving away from conventional cost of service regulation where efficiency 

incentives are muted. We might expect therefore that time varying determinants of heteroscedasticity in 

inefficiency impact mainly on the transient inefficiency component while the time invariant determinants, i.e., 

our variables of interest: deregulation and political affiliation (PUC), impact mainly on the persistent 

inefficiency. This is what we find, i.e., that a subset of the time-varying variables determines the 

heteroscedasticity in the transient inefficiency, while the time-invariant deregulation variables, particularly 

political affiliation determine the heteroscedasticity in the persistent inefficiency. The detailed results are 

presented in Tables 7 and 818.  

 
16 Full results with quantile breakdowns are available on Table A1 in the appendix. 
17 To conserve degrees of freedom we did not impose a standardised residual filter on the panel data. 
18 The translog  production function elasticities are very similar to those of the pooled data estimation so we report only the 
inefficiency estimates for the panel approach. Further details of panel elasticities are available from the corresponding author. 
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Table 7 Panel data results: transient inefficiency model 

GTRE model: Transient Inefficiency. Heteroscedasticity estimated by Wang model 
step 1: one-way panel random error model, time-varying errors 
mean of transient inefficiency distribution, uit 
variable coeff std err z 

number of customers -13.241*** 6.527 -2.03 
intercept -37.252*** 10.281 -2.29 
variance of transient inefficiency distribution, uit

2 
variable coeff std err z 

number of customers 0.197 0.142 1.39 
intercept 0.662 0.437 1.51 
E(u) 1.398   
v 0.082   
average marginal effect on E(u) is -0.0149   
average marginal effect on V(u) is -0.002   
NT 771   
    
TFE model: Transient Inefficiency. Heteroscedasticity estimated by Wang model 
step 1: one-way panel True Fixed Effects model, time-varying inefficiency 
mean of transient inefficiency distribution, uit 
variable coeff std err z 

deregulation -10.480* 5.676 -1.850 
PUC -23.691*** 7.259 -3.260 
number of customers 3.694*** 1.150 3.210 
Share of industrial gdp 11.858*** 4.744 2.500 
intercept -10.311*** 2.732 -3.770 
variance of transient inefficiency distribution, uit

2 
variable coeff std err z 

deregulation 0.287 0.231 1.240 
PUC 0.712*** 0.276 2.580 
Number of customers -0.672*** 0.108 -6.210 
Share of industrial gdp -0.284* 0.173 -1.640 
intercept 0.1685198 0.248 0.680 
E(u) 1.534   
v 0.012   
average marginal effect of deregulation on E(u) is -0.026   
average marginal effect of deregulation on V(u) is -0.006   
average marginal effect of PUC on E(u) is -0.054   
average marginal effect of PUC on V(u) is -0.012   
NT  771   
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Table 8 Panel data results: persistent inefficiency model 

GTRE model: Persistent Inefficiency  
step 3: one-way panel random error model, time-invariant RE-effects. Heteroscedasticity estimated 
by RSCFG model 
variance of persistent inefficiency distribution, u

2 
variable coeff std err z 

PUC -1.415*** 0.482 -2.94 
intercept 0.25 0.351 0.71 
E(u) 0.781   
v 0.171   
N 49   
    
TFE model: Persistent Inefficiency 
step 3: one-way panel random error model, time-invariant FE-effects. Heteroscedasticity estimated 
by RSCFCFG- model 
variable Coef. Std. Err. z 

 0.621*** 0.118 5.250 
variance of persistent inefficiency distribution, u

2 
variable coeff std err z 
PUC -2.224*** 0.512 -4.350 
intercept -0.071 0.375 -0.190 
E(u) 0.781   
v 0.171   
N 49   

 

 

We have fitted the four-component panel data model firstly by the multi-step quasi-ML method of Kumbhakar 

et al (2014) and then by an extension of the Kumbhakar and Heshmati (1995) fixed effects model in which 

we decompose the estimated fixed effects from the True Fixed Effects model of Greene (2005) into 

heteroscedastic persistent inefficiency and latent heterogeneity with the full ML estimator accounting for the 

transient (time-varying) inefficiency and the idiosyncratic error. 

 

The estimation methods here are not so straightforward nor do they always converge, and not all of the 

heteroscedasticity models fit equally well, nor are all of the variables statistically significant. Because we are 

dealing with two different sets of states which differ in their time-invariant characteristics, we expect the 

pooled models to fit more successfully that the one-way panel data models. We begin with the transient or 

time-varying inefficiency. In both cases of the GTRE and the TFE model heteroscedasticity in the transient 

inefficiency component is explained by the time varying variable measuring the number of customers. In the 

GTRE model, the Wang (2002) heteroscedasticity framework fits successfully and the heteroscedasticity 

effects are non-monotonic. The average marginal effect of customer numbers on 𝐸(𝑢) is -0.0149. Increased 
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customer numbers reduce inefficiency but increase the variance of inefficiency. In the TFE model, the Wang 

framework fits the time-varying data well; again, customer numbers and industrial share of GDP affect the 

inefficiency component but, more interestingly our deregulation variables significantly reduce mean 

inefficiency. We now turn to persistent inefficiency. The GTRE model yields one-way panel random error 

effects from step 1 and we regress these in a stochastic frontier analysis model against an intercept with a two-

component error with the variables determining heteroscedasticity affecting the variance term through the 

RSCFG framework. The most successful model shows that one of the deregulation variables, PUC 

representing political affiliation, is a statistically significant explanator of heteroscedasticity in persistent 

inefficiency, with a coefficient of -1.415. We obtain a very similar result when we use the estimated TFE fixed 

effects: again, PUC representing political affiliation, is a statistically significant explanator of 

heteroscedasticity in persistent inefficiency, with a coefficient of -2.224. The average marginal effect of the 

political affiliation variable PUC on the variance of persistent inefficiency: 𝜕𝑉(𝑢) 𝜕(𝑃𝑈𝐶)⁄  is -0.355. One 

feature of these results is that while the Wang (2002) non-monotonic model fitted the heteroscedasticity in 

transient inefficiency, the RSCFG model was preferred for the persistent inefficiency. We illustrate in figure 

5 the monotonic effect of customer numbers on 𝜕𝐸(𝑢) 𝜕(𝑃𝑈𝐶)⁄  for transient inefficiency. The effects of the 

binary deregulation and PUC variables are step functions in all cases 

 

Figure 5: Marginal effect of customer numbers on transient inefficiency 
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Broadly therefore, the panel data approaches confirm the pooled data analyses about the importance of 

deregulation-related variables in driving down transient and particularly persistent inefficiency error 

components in conjunction with other time-varying macroeconomic variables. Nevertheless, there are two 

differences in the panel data analysis compared with the pooled approach.  In the ML estimation fewer of the 

heteroscedasticity approaches converged and, in the results, the political affiliation support for deregulation 

and competitive incentives dominated as the explanatory variable associated with deregulation in both 

transient inefficiency and persistent inefficiency. Why do we observe these factors? Our rationale is this. The 

purpose of the study is to compare two groups of states, those which have characteristics associated with 

incentivised deregulation and those which have characteristics associated with the status quo of cost-of-service 

regulation. The pooled data models suit this comparison of two types of time-invariant state experience better 

than the panel data models which impose a temporal structure on the data. Our explanation for the finding that 

PUC, the political affiliation support for deregulation, is dominant is that restructuring although established 

initially may take time to work through before it generates noticeable efficiency improvements; on the other 

hand, the political support for incentivised competitive entry and deregulation is an ongoing factor which 

continually reinforces efficiency gains. 

 

5. Conclusions  

One area that has attracted much attention in the industrial organisation literature is the debate on the efficiency 

gains from restructuring. Controversies remain going by the mixed findings from past studies. This paper 

attempts to analyse the electric power industry’s performance using a consistent state-level electricity 

generation dataset for the contiguous US states from 1997-2014. First, we estimate several specifications of 

stochastic production frontier models to investigate the impacts of restructuring on technical efficiency in the 

pooled data in order to find channels for policy adjustment.  More specifically, we adopt the Wang (2002, 

2003) approach that allows both mean and variance of the pre-truncated normal distribution to depend on the 

exogenous variables, as well as accounting for heteroscedasticity. Second, we examine the non-monotonic 

marginal effects of exogenous factors on the technical efficiency. Contrary to earlier studies of the US 

electricity generation technical efficiency (see Hiebert, 2002), the efficiency scores of this segment were low, 

indicating wide inter-state differences within the segment, although, other models find higher efficiency scores. 

The marginal effects were found to show linear effects as the marginal effects of the exogenous variables are 

monotonic i.e. strictly either strictly efficiency-enhancing or efficiency–impeding across observation 

percentiles. 

 

Our results indicate a positive impact of deregulation and political support for deregulation on technical 

efficiency across all the estimated models. The finding is largely consistent with previous studies on 

deregulation impact on efficiency. In particular, our preferred model reveals that states where deregulation is 
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active and the political support for it is present are more efficient. The results of marginal effects show that 

deregulation has a mean reducing impact on production inefficiency of 8.4 per cent for the whole sample, 

which indicates an increased electricity generation output by same size due to deregulation.  

 

Thirdly, we found that the political affiliation within the state public utility commissions affects the level of 

technical inefficiency. Performance seems improved as when the majority of the state commissioners on a 

public utility commission are Republican as they are positioned to influence some political decisions that 

could potentially support and prevent potential reversal of restructuring policy in order to promote competition 

among the electric power generator.  In particular, restructuring through deregulation and continued support 

for it work together to improve efficient performance is a statistically significant way. We supplemented the 

analysis of the pooled data by adopting a panel data approach incorporating recent developments in the four 

component GTRE error model. The results here support our findings with the pooled data approach, in 

particular emphasising the role of the political support for deregulation in enhancing efficiency. We show that 

time varying exogenous variables determine transient efficiency, but the time invariant political support for 

deregulation determines persistent efficiency. 
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                                         Appendix  

 

 

 

Table A1: Marginal effects on inefficiency using WANG Model 

    

Variable                Marginal effects on E(𝑢𝑖𝑡 )   Marginal effects on V(𝑢𝑖𝑡 ) 

    

                     

observed Standard  error   Observed        Standard error  

       

Deregulation              Average        -0.084***                    (0.020)     0.011**                    (0.005)  

Percentile                   25th   -0.109***                    (0.025)     0.005**                    (0.002)  

Percentile                  50th        -0.100 ***                   (0.025)     0.008**                    (0.003)  
 
Percentile                  75th   -0.075***                    (0.031)     0.012**                     (0.005)  
 
Percentile                   90th   -0.042**                      (0.030)     0.018**                     (0.007)  
       
PUC                            Average        -0.055***                    (0.018)    -0.003                         (0.005)  
 
Percentile                   25th   -0.058***                    (0.016)    -0.003                         (0.003)  
 
Percentile                   50th   -0.057***                    (0.018)    -0.002                         (0.003)  
 
Percentile                  75th   -0.054***                    (0.023)    -0.001                          (0.003)  
 
Percentile                  90th   -0.050**                      (0.029)    -0.001                          (0.005)  
       
GDPPC                    Average                           0.041                           (0.047)    -0.041***                    (0.013)  
 
Percentile                  25th   0.023                           (0.056)    -0.044***                    (0.013)  
 
Percentile                  50th   0.080                           (0.050)    -0.030***                    (0.008)  
 
Percentile                 75th   0.099                           (0.050)    -0.020***                    (0.005)  
 
Percentile                 90th   0.101                           (0.051)    -0.013***                    (0.004)  
       

Industrialization        Average        0.026**                       (0.013)   0.011*** 
                      
              (0.004) 

 
Percentile                   25th   0.015                            (0.013)   0.008***           (0.003) 
 
Percentile                   50th   0.019                            (0.012)     0.008***           (0.003) 
 
Percentile                   75th   0.029**                        (0.013)   0.012***           (0.004) 
 
Percentile                   90th   0.044** (0.018)    0.017***           (0.007) 
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Retail Price         Average        0.322*** (0.045)  0.037*** (0.008) 
 
Percentile                   25th   0.312*** (0.047)  0.017*** (0.003) 
 
Percentile                   50th   

 
0.313*** 

 
(0.046)  

 
0.027*** 

 
(0.005) 

 
Percentile                   75th   0.316*** (0.043)  0.041*** (0.008) 
 
Percentile                   90th   0.333*** (0.043)  0.062*** (0.015) 
       
Customer                 Average        -0.035 (0.026)  -0.011*** (0.003) 
 
Percentile                  25th   -0.037 (0.023)  -0.012*** (0.002) 
 
Percentile                  50th   -0.027 (0.027)  -0.009*** (0.001) 
 
Percentile                   75th   -0.024 (0.031)  -0.005*** (0.001) 
 
Percentile                   90th   -0.024 (0.033)  -0.003*** (0.008) 
       
Notes: *,**,*** denote statistically significant at 10%, 5% and 1% level respectively.  Standard error in parenthesis are based on 

bootstrapped results of 1000 replications, bias-corrected confidence interval.  

 

 


