

June 27, 2022

YANG Sung Bae Vice-chairman, KPX

Table of Contents

- 1. Advances in the Korean Power Industry
- 2. Korea's Net Zero Efforts
- 3. Challenges in the Net Zero Era
- 4. KPX's Initiatives for Net Zero Goals

1. Advances in the Korean Power Industry

Korea's Generation Mix

- 1960~1970's: Mainly domestic coal & oil
- 1980's: Expand nuclear & coal * Oil shocks in 1973 & 1979 (Price 13.1x↑) → Oil phase-out policy
 - → First nuclear (Kori #1, 1978) & bituminous coal (Samcheonpo #1, 1983) plants built
- 1990's: Rapid LNG expansion * Demand spike (e.g. 1988 Olympics) → Rapid additions near load centers
 - → Seoincheon CC (1992), Anyang/Bundang/Ilsan/Bucheon CC (1993) built
- 2000~2010's: Nuclear-Coal-LNG balance (Portfolio) + Eco-friendliness (Climate)
- 2020's~Future: Rise of carbon-free focused energy transition

⟨ Generation Mix Trends⟩

Low Price & High Quality

- Korea provides low priced, high quality electricity stably
 - 1 Low Price: Kept prices low compared to other major countries
 - ② High Quality: World-class frequency & voltage maintenance levels
 - ③ Stable: One of the world's lowest per-customer outage time

*	Sourc	e: K	EΡ	CO
---	-------	------	----	----

Year	Freq. Maint. (%)	Volt. Maint. (%)
2002	99.45	99.88
2005	99.99	99.96
2010	100.00	99.99
2015	100.00	99.99
2020	100.00	99.99

* Source: KPX

Country	Per-Customer Outage (min/yr)	Country	Per-Customer Outage (min/yr)	
Korea	8.9 (2020)	France	48.7 (2016)	
USA	53.2 (2018)	UK	38.4 (2016)	
Japan	7.0 (2017)	Italy	94.0 (2017)	
			· Carrage MEDCO	

* Source: KEPCO

Power Industry's Economic Contributions

Advancement of industrial structure

From low added value light industries → Provided basis for transitioning to high added value tech & heavy industries
 In 50 years (1970~2020), GDP grew 25-fold and electricity demand rose by 66 times

* Sources: Bank of Korea, KEPCO

Enhancement of people's quality of life

Compared to 1970, per capita electricity demand in 2020 rose by 43x, with residential demand by 67x

Factors in Korean Power Industry's Success

- (Gov't) Set up & pursue consistent, persistent energy policies
 - Create legislative structure for stable electricity supply EUA, EPS DPA
 - Enact proactive laws with stability & economy in mind 5-year EPS development plan, BPLESD
 - Actively promote local development & production of power equipment
 * Electric Utility Act / Electric Power Source Development Promotion Act / Basic Plan for Long-term Electricity Supply and Demand
- (Industry) React timely to changing industrial environment
 - Big nuclear & coal investments in cheap oil era of 80's built basis for low electricity price
 - Standardization & mass adoption of nuclear & coal plants saved build costs
 - Single-company structure until 90's enabled rapid expansion during demand spikes
 - Restructuring since early 2000's boosted private investments in power industry
- (People) Support & cooperate with national energy policies
 - Eager cooperation for building generation/transmission/distribution
 - * Residential customers: (1961) 770,000 \rightarrow (1990) 8,400,000 \rightarrow (2020) 15,610,000
 - Active participation in national energy conservation policies
 - * Consumer price inflation 1990~2020: 160%, Electricity price increase 1990~2020: 29%

2. Korea's Net Zero Efforts

Korea's Net Zero Efforts So Far

Historical efforts to reduce greenhouse gases

- (Nov. '09) Set 'Mid-term (2020) Goals for National GHG Reduction' ⇒ 30% reduction from 2020 BAU
- (Dec. '09) Legislate 'Basic Act on Low Carbon Green Growth'
- (Jun. '15) First to set 2030 NDC for the Paris Agreement ⇒ 37% reduction from 2030 BAU
- \circ (Dec. '20) Announce 'Amended 2030 NDC', submit to UN \Rightarrow 24.4% reduction by 2030 from 2017 results
- (Aug. '21) Legislate 'Framework Act on Carbon Neutrality and Green Growth to Confront Climate Crisis'
- (Oct. '21) Announce '2050 Net Zero Scenario' & Increased 2030 NDC' ⇒ 40% red, by 2030 from 2018 results

Meaning of legislating the Framework Act on Carbon Neutrality

- 14th country to legislate 2050 net zero vision & implementation
- Set mid-level goal towards realistic net zero (legislating 35+% reduction by 2030 from 2018 results)
- Get realistic policy tools for implementing net zero (GHG reduction measures, Climate Crisis Fund)

Korea's Net Zero Goals (1): 2050 Net Zero Scenario

2050 net zero goals

- Two scenarios to get domestic net emission (emission-capture) to zero announced
 - * (A) Maximize emission reduction stop thermal power, produce hydrogen from 100% electrolysis, etc.
 - * (B) Expand CCUS as emissions rise retain thermal power, produce hydrogen from byproduct & extraction

2050 goals for transition (generation) sector

- © Emissions (Million Ton CO₂eq): (2018) 269.6 \rightarrow (2050) [Plan A] 0(△100%), [Plan B] 20.7(△92.3%)
- Methods: Sharp reduction of thermal power, expansion of renewables & hydrogen-based power
 - * (A) Stop all thermal power to reduce sector emissions to zero
 - * (B) Retain some thermal power (LNG) to have some emissions left

⟨ Generation and Emissions by Sources ⟩

(Unit: TWh)

Тур	e	Nudear	Coal	LNG	Renew.	Fuel Cell	Asian Grid	No-Carbon Gas Turbine	Byproduct Gas, etc.	Total	Emissions (Milion Ton)
Transition-	Α	76.9	0.0	0.0	889.8	17.1	0.0	270,0	3.9	1,257.7	
		(6.1%)	(0.0%)	(0.0%)	(70.8%)	(1.4%)	(0.0%)	(21.5%)	(0.3%)	(100%)	0
	В	86.9	0.0	61.0	736.0	121.4	33,1	166.5	3.9	1,208.8	
		(7.2%)	(0.0%)	(5.0%)	(60.9%)	(10.1%)	(2.7%)	(13.8%)	(0.3%)	(100%)	20.7

Korea's Net Zero Goals (2): Increased 2030 NDC

2030 - Nationwide

- Emissions (Million Ton CO_2eq): (2018) $727.6 \rightarrow (2030) \ 436.6 \ (\triangle 40\%)$
- Levels: Speed of reduction is one of world's fastest
 - < Yearly Average Reduction Goals by Major Countries (%/Year) >

2030 - Transition (generation) sector

- Emissions (Million Ton CO₂eq): (2018) $269.6 \rightarrow (2030) 149.9 (△44.4%)$
- Methods: Reduce coal & LNG, expand renewables use eco-friendly & no-carbon sources

Туре	Nuclear	Coal	LNG	Renew.	Ammonia	P.H. & Others	Total
Results (2018) ¹⁾	23.4%	41.9%	26.8%	6.2%	-	1.7%	100%
Prev. Gov't (2030) ²⁾	23.9%	21.8%	19.5%	30.2%	3.6%	1.0%	100%
New Gov't (2030) Considering generation mix that balances nuclear & renewables					enewables		

Evaluating Korea's Net Zero Goals

Aggressive goals that consider importance & urgency of net zero

- Necessity
 Minimize damages from climate abnormalities, confront climate crisis as a responsible member of int'l community, maintain national competitiveness with timely actions
- Aggressiveness Manufacturing-heavy industry structure considering GDP, short time from peak emissions to net zero, higher rate of reduction than major countries
- ⇒ Hard goals under local circumstances, but recognizes need for net zero to solve climate crisis

Worries about the process towards net zero

- Economy & Increased cost to companies & lowered GDP have economic impacts
- Energy Renewables-heavy generation mix (70%) & reliance on imported hydrogen (80%)
- Environment Reliance on unproven future tech (e.g. CCUS, hydrogen turbine)
- Labor
 Needs to deal with job stability & transition due to changing industry structure
- ⇒ Necessity of net zero is agreed upon, but opinions diverge on the speed & method

New Government's Power Industry Policy Directions

New Government's Policy Roadmap for the Power Industry

Proactively Use Nuclear Power

- · Proactively use nuclear power as means for energy security & net zero
- · Resume Sinhanul #3,4 construction & continue operating expired NPP

Adjust the Energy Mix

- · Rationally adjust energy mix, balancing between nuclear & renewables
- · Amend NDC achievement process for energy, industry, and transport

Create New Energy Industries

- · Elevate PV & wind industries, foster new industries linked to 4th Ind. Rev.
- · Build clean hydrogen production-supply infrastructure for world #1 hydrogen industry

Establish Rational Electricity Market

- · Enhance independence & professionalism of market, rate, and regulatory governance
- · Establish electricity market based on competition & market principles

Secure Next Generation Nuclear Technologies

- · Develop indigenous SMR design, link hydrogen production to fusion/fission
- · Invest R&D to secure future nuclear reactor technology

Reduce Fine Dust

- · Optimize energy mix to reduce coal+LNG proportion (40% range in 2027)
- · Promote BEV & FCEV adoption, find ways to reduce charging costs

^{*} Source: Roadmap of 110 Major Policies for Yoon Administration (May 2022)

3. Challenges in the Net Zero Era

(For the Power Industry)

Challenges: ① Electrification of Energy Use

- (Past) Slow electrification based on econ. development, quality of life, & energy price
- (Future) Rapid electrification of other sectors to achieve net zero in short time (2022-2050)
 - * (Ex.) EV's proportion of power demand in 2050 to be 14~24% (KPX-Bloomberg Joint Seminar, Nov. 10, 2021)
 - ⇒ Domestic demand in 2050 (1,209~1,258TWh) to be 2.2~2.3 times that of 2020 (552TWh)

 Much of the increase comes from electrification demand

Challenges: ② Diversification of Power Sources

(Past) Slow change to main source based on econ. develop., tech advances, & oil price

1960's	1970's	1980's	1990-
Anthracite Coal	Oil	Nuclear, Coal, Oil	Nuclear, Coal, LNG

- (Future) Existing coal power rapidly replaced to no-carbon sources (PV, wind, hydrogen) to achieve net zero in short time (2022-2050)
 - ⇒ Demand for electrification in other sectors & current low utilization of RE mean that installed capacity in 2050 may be over 5 times that of 2020 (129GW)

Features	Past (1961-2020)	Future (2020-2050)
Capacity	About 130GW added (in 60 years)	More than 500GW (5x) added (30y)
Sources	Progressive changes to main source (A.Coal→Oil→Nuclear→B.Coal →LNG)	Focused in renewable energy (PV, wind)
Auxiliaries	Unnecessary	Energy Storage (ESS, P. Hydro, H ₂)

Challenges: ③ Intensification of RE Variability

- (Past) RE's proportion in the mix is small, and consist mostly of hydro power with easily adjusted output ⇒ No RE variability problem
- (Future) RE such as PV & wind are projected to rise rapidly ⇒ RE variability problem to intensify with weather conditions
 - Significant daytime PV generation leads to supplying in excess of demand
 Solar, wind changes exceeding prediction causes power excess or shortage

Challenges: (4) Supplying Stable, Economic, HQ Electricity

- Future expectation (goal) is still supplying high quality electricity stably at reasonable price
 - Electricity backs the success of 4th Industrial Revolution & is necessary for improving quality of life, as well as being the driver towards net zero society
 - Price hike needed for net zero (e.g. to expand RE) is poorly accepted by citizens

Source: Electric News & RealMeter (Dec. 2018)

Source: Climate Change Center & KEI (Dec. 2021)

4. KPX's Initiatives for Net Zero Goals

Net Zero and KPX's Roles

Main Duties of KPX

KPX's Roles for Achieving Net Zero

Establish Basic Long-term Supply-Demand Plan

- Establish Basic Plan that expands no-carbon sources
- · Set optimal energy mix that is feasible & economical
- · Include energy storage plans for supporting no-carbon sources

Operate Electric Power System

- · Improve system operation to better suit nuclear & RE
- · Make operational flexibility plans for supply stability
- · Transmission-distribution cooperation to optimize grid operation

Operate Electricity

Market

- · Drive new investment & system flexibility thru market innovation
- · Set up new markets to entice participation of new, future sources
- · Revise compensation structure for supply stability

KPX's Actions: 1 Reconfigure Energy Mix

- Supply structure changes in fossil fuel era
 - \circ (Main Source Shift) A.Coal \rightarrow Oil \rightarrow Nuclear \rightarrow B.Coal \rightarrow LNG in gradual steps
 - ⇒ Output is certain and controllable economic generators are operated in response to demand changes (load-follow)
- Reconfiguring supply structure in net zero era
 - (Main Source Shift) Reduce traditional sources → rapidly replaced with no-carbon sources (RE, H₂)
 - ⇒ Evaluate nuclear-RE proportion & mix with cost, competitiveness in mind
 - (Plan for RE Variability) Make use of storage (ESS, H₂ e, H₂ CC, Gravity Generator)
 - ⇒ Considering RE's variability & uncontrollability, respond to both demand & supply (of RE) to focus on stable generator operation (load-follow + gen.-follow)

KPX's Actions: ② Improve System Operation

- Proactively secure more flexible supplies flexible nuclear tech, STATCOM, etc.
- Apply scheduled load following to large nuclear & consider using SMR tech
- Reuse soon-to-retire aging thermal generators for use as STATCOM
- Improve system operation standards to better suit nuclear & RE centric mix
- Re-establish standards for freq. maintenance & reserve operation, and optimize gen. maintenance
- Reinforce transmission lines and optimize transmission-distribution operation
 - Make transmission reinforcement plans based on regional RE location & power flow
 - Set up cooperative environment between TSO and DSO

Actions for Each RE Adoption Level 3~15% 15~25% 25%~ 40%~ percentage (Visibility) (Flexibility) (Stability) (Storability) ● Forecast and Control Forecast and Control Forecast and Control Forecast and Control Fast Start Resources Fast Start Resources Key Fast Frequency Response Act-(Synthetic Inertia) Fast Frequency Respons ions Voltage Stability 2018 CO2 emission 2030 CO2 emission in Generation Sector: 269.6Mton in Generation Long cycle ESS Sector : 149.9Mton Net-Zero Acceleration Korea's Arrival time 2025 2017 2030 2050~

KPX's Actions: 3 Improve Market Structure

- smart KPX
- To ① reconfigure energy mix & ② improve system operation, dramatic changes to market compensation system need to come first
- Plan : Spot (day-ahead) → Contract (central auction) + Spot (real-time)
 - Low-carbon contract market: set up central contract market for new low-carbon sources to join in
 * New low-carbon source examples: ESS, hydrogen generation, CCS, new AS
 - Price-bidding: In place of rigid cost evaluation (CBP), price bidding (PBP) is used to allow more autonomy of participants and enhance market price function
 - Real-time & AS markets: Using near real-time trading to cost-effectively & efficiently solve RE variability problem market price reflects real-time supply-demand condition
 - Vitalize demand resource market: Expand participation of new DR such as Citizen DR,
 Fast DR, and Plus DR to manage variability & increase utility of RE

[Ref] Wholesale Market Operation Trends

- Number of members in 2021: 4,822 (Rapid rise of RE companies)

[Ref] Power System Operation Trends

- Maintenance rate in 2021: Frequency 100.00% / Voltage 99.99%
- Installed capacity in 2021: 134,020 MW
- Transmission network in 2021:34,923 C-km

