Outlook for electrolytic hydrogen production - insights from systems modeling

CEEPR/EPRG/CERRE/RWE conference

Dharik S. Mallapragada

September 7th, 2023

Renewed interest in H₂ or H₂-derived carriers to enable decarbonization of end-uses where direct electricity use may be challenged

Global hydrogen use in the IEA Net Zero by 2050 emissions scenario

Growing interest in electrolytic H₂ production, with declining costs, policy support, and prospect of increasing renewables penetration in the electric grid

Proton exchange membrane (PEM) electrolyzers

- High current density range vs. alkaline
- Differential pressure operation –high Pressures H₂ product
- Greater operational flexibility
- High Iridium loadings (~1-2 mg/cm²)^{2,3}

Global installed capacity by technology (2015-2020)²

Significant Technology Improvements Required for PEM electrolysis to meet 2030 H2 production targets

Two bookends for electricity sourcing for electrolytic H₂ production

- More emissions intensive than NG
- Ineligible for H2 tax credit in U.S

based H₂

Emissions outlook

- Trivially qualifies for PTC but may not be practical or cost-effective in many regions

Grid-connected processes that contract low-carbon electricity supply are likely to be the norm – why?

Favorable aspects:

- Locational flexibility for chemical plant and VRE resource
- Improved utilization of contracted renewable asset
- Allow electrolyzer to participate in electricity market

What are the cost and emissions impact of this approach?

System-level factors

- Grid-centric policies
- Electricity demand growth
- Technological evolution

Contract structure

- Additionality definition
- Temporal matching
- Spatial matching

Technological factors

- Process energy use and flexibility characteristics
- Renewables intermittency

Integrated energy systems analysis can inform the emissions and cost of grid-connected electrolyzers under different system, contractual and technology scenarios

DOLPHYN

- An Electricity-Hydrogen infrastructure capacity expansion model¹
- Allows modelling of operational decisions and the portfolio of generation, storage and transmission for electricity and H₂ to meet demand at lowest cost.
- Model can consider operational constraints, resource availability limits, and other environmental, market design, and policy constraints.

The two additionality frameworks: same non-H2 baseline but different H2 counterfactual

Capacity changes due to H2 production - ERCOT case study

- PPA VRE displaces non-PPA VRE in "compete" framework
- More PPA VRE capacity for hourly vs. annual
- Flexibility reduces VRE deployment

Generation impacts of H₂ production under time-matching and additionality requirements

Difference in average hourly dispatch with and without electrolytic H₂ production Texas grid case study (2030)

- Additionality definition primarily impacts annual timematching cases
- <u>"Compete" + annual</u>: net increases in fossil fuel generation
- "Non-compete" + annual: little change in net fossil generation
- Hourly time-matching: PPA
 VRE generation producing
 excess electricity at certain
 times that can earn additional
 revenues by selling to grid

Additionality framework can alter the emissions impact of H₂ production

Grid-level emissions impacts of H2 production, ton CO₂e / ton H₂ -Texas grid case study (2030)

Impact of additionality framework on levelized cost of H₂ (LCOH) production

H₂ costs under different additionality and temporal matching scenarios, LCOH in \$ / kg H₂

- LCOH (excluding PTC) typically lower under annual matching;
- LCOH (excluding PTC) generally lower in the "compete" vs the "non-compete" framework
- Flexible electrolyzer operation reduces LCOH

How might system-level factors impact these results? Consider the example of VRE capacity deployment limits

What happens if we assume total new renewables capacity is constrained?

Generation, Storage, and Hybrid Capacity in Interconnection Queues

For details on methodology see https://emp.lbl.gov/queues

Hourly matching results in positive consequential emissions when renewables deployment is constrained ("Compete" framework)

How do various policies impact emissions and costs of grid-connected electrolyzers? View from the "Compete" world

	Time-matching requirement	Emissions impact	LCOH impact
Limiting annual electrolyzer capacity factor	Annual matching		
Minimum annual renewable generation requirement			

Summary and recommendations

Emissions from producing electrolytic H₂ under annual time-matching are conditional upon how additionality requirement is modeled AND also affected by other system and technology specific policy factors

- ΔVRE for H2 production << ΔVRE for grid decarbonization → "Non-compete" world
- Post-2030 volumes of electrolytic H2 are expected to boom and we might enter a "compete" world
- Pragmatic to allow a phased approach,
 - Short-term: Start with annual time-matching requirements to qualify as "clean hydrogen"
 - Medium term: Shift to more stringent time matching (e.g. hourly) in 2030s as volume of electrolytic
 H2 is expected to boom and grid is still fossil fuel dominant
 - Long term: As grid substantially decarbonizes, stringent time-matching requirements (e.g. hourly)
 may not be necessary

Questions?

