

Financing renewable energy investments

EPRG, Cambridge, 9 December 2016

Alon Carmel, Senior Consultant Daniel Radov, Director

Overview

- 1. Renewable electricity investment trends and needs
- 2. Investment and financing challenges
- 3. Targeting renewable energy or carbon?

Renewable electricity investment – trends and needs

Investment in renewables has tripled globally since 2005, with 55% in developing countries

Financial markets are delivering significant cleantech investment

- Global investment was around \$300-350bn in 2015, up from around \$90bn in 2005
- Investment supported build of 152 GW in 2015
- Investment growth slowing but continued strong capacity growth due to lower costs

Global investment in renewable energy 2004-2020

Source:BNEF

NERA ECONOMIC CONSULTING

But more needed for 2C trajectory...

- IEA: Investment of over \$450bn/year needed in nuclear and renewable energy 2015-2030 for 450ppm scenario.
- Total power (generation) investment 2015: \$410bn
- UK Carbon Budgets to 2030
 - BEIS: on track for 35% renewable electricity by 2020
 - CCC: policy gap to the carbon budget of 100MtCO2e (20% of current emissions)

Global emissions gap

Investment and financing challenges

Financing investment in renewable electricity – challenges

High upfront capex, financed against stream of electricity price revenues

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Project year

Electricity price revenues are uncertain

Carbon price? Results in economic rents for incumbent producers at high cost to consumers

Renewable subsidies – on top of electricity price FITs, RO, CfD

Finance is available – at a cost

Whole project rate of return: IRRs of 5-16% NERA Survey of investors (2015), report for DECC

Investors post-construction/operation: 6-7% Yieldcos for portfolio of technologies and sites

Different investors have different preferences Return expectations and entry stage

Source: UKTI et al (2015) Offshore wind investor pitchbook

CMA assessment of power generation WACC (2015)

 Benchmark WACC for power generation 7.9-9.7% pre-tax, nominal (based on existing operational fleet 2007-14)

Source: NERA analysis based on share prices and dividend payments

Policy risk is difficult to hedge

Government changes to renewable subsidies and taxes (2015)

- Early closure of RO for solar and onshore wind, and the scheme closes to new accreditation from 1 April 2017 (with grace periods)
- End of tax exemption for renewables (CCL levy exemption) had a significant on renewable energy developers
- Possible changes to the Carbon Price Support (CPS) at every budget and autumn statement

Impacts on share prices, Beta and cost of capital

Source: FT/ Thomson Reuters Datastream

ROCs and CfDs

- ROCs provide revenue per MWh on top of the electricity price. ROC price is determined by supply and demand. Demand is set by the Government (BEIS).
- ROC price risk is significant see chart.
- CfD contract provides additional investor protection.
 But before contract is allocated there is significant allocation risk.

Between a ROC and a hard place ROC recycle values have been falling

Source: NERA Analysis

Targeting renewable energy – or carbon?

Falling costs presents an opportunity

Subsidy prices for offshore wind are falling in North West Europe

Subsidy prices for solar are falling globally

How should policy evolve?

- More technology neutral auctions (CMA)?
- Start contemplating subsidy-exit ("Subexit")?
- Clear, long term policy decisions to avoid unnecessary risk premia
- How to integrate variable/intermittent renewables in the most cost-effective way?
- How to avoid renewables undermining energy markets and price signals for other plant?
- Move back towards pricing the CO2 externality instead of subsidising specific technologies?

Pricing the carbon externality instead of subsidising renewables?

A CfD on the carbon price (EU ETS)?

- Idea proposed by Grubb and Newbery (2008)
- Key policy design issues would need to be worked out, but for example:
 - Long term contract (15 years like renewable electricity CfDs),
 - Pays top up against the EU ETS price (or UK Carbon Price Floor)
 - Price set through auction
 - Payment based on carbon saved per MWh.
 How much CO2 is a MWh of renewable/nuclear/CCS displacing? What is the counterfactual? CCGT? OCGT? Average grid intensity?

Benefits

- More investable than "pure" CO2 price (EU ETS) and avoids paying rents to existing capacity
- Exposes generators to the market (makes them responsive to demand) – like premium FIT/ROC
- But better than Premium FIT in that it dynamically adjusts to the carbon price. Protects investors from carbon policy risk, but not electricity market risk

A CfD on the carbon price - illustrated

Price levels required (£/tCO2)

Assuming these technologies displace CCGT at 300gCO2/kWh, and an electricity price of £40/MWh

Daniel Radov

Director NERA London +44 20 7659 8744 Daniel.Radov@nera.com

Alon Carmel

Senior Consultant NERA London +44 20 7659 8628 Alon.Carmel@nera.com