Energy and Material Efficiency

Dr. Julian Allwood Low Carbon and Materials Processing Group Department of Engineering, University of Cambridge

CAMBRIDGE EPRG Spring research seminar, Clare College, Friday 14th May 2010

Global Energy/Carbon Analysis

♦ "Every little helps"

Old wives' tale widely quoted in responses to climate change

"If we all do a little, we get a little"
 Professor David Mackay, Chief Scientific Advisor to the Department of Energy and Climate Change

What would make a big difference to global energy system?
 Climate science broadly accepted, but as yet little concerted action for change by governments
 Initial response to climate concern is almost all on the supply side
 Unclear where to take action – what would make a big (enough) difference

Theoretical efficiency limits in energy conversion devices (11%)

Practical efficiency limits in passive energy systems

Practical efficiency limits in passive energy systems

Car example		,	_								
our oxumpio	$\rm Design^1$	m	ν	μ	C_D	A	f_i	F_M	F_A	F_I	F
		t	$\rm m/s$			m^2	%	Ν	Ν	Ν	Ν
Weighted average of current cars	Gasoline										
	< 1.4 l	1.0	19	0.015	0.40	1.9	36	147	163	130	440
	1.4 - 2.01	1.2	20	0.015	0.40	2.0	28	177	201	155	533
	>2.01	1.4	21	0.015	0.40	2.1	6	206	232	178	616
	LDV^2	2.1	17	0.015	0.50	2.2	3	309	199	223	731
	Diesel										
	$<\!\!2.01$	1.3	19	0.015	0.40	2.0	11	191	174	156	521
	>20.01	1.5	19	0.015	0.40	2.1	7	221	193	174	588
	LDV^2	2.1	16	0.015	0.50	2.2	8	309	165	219	693
	$\rm Current^3$	1.3	19	0.015	0.41	2.0	100	188	183	157	528
	Practical	0.3	19	0.001	0.10	1.5	100	3	33	13	49
Practical minimum 91% potential for saving energy	Practical energy savings available 91%										
	saving Notes: ¹ by fuel type and engine size in litres, ² LDV = light duty vehicle, ³ weighted average, by the distribution of total distance trav-										

Practical savings available in cars

Notes: ¹ by fuel type and engine size in litres, ² LDV = light duty vehicle, ³ weighted average, by the distribution of total distance travelled (f_i). $m = \text{mass}, \nu = \text{average velocity}, \mu = \text{friction coefficient},$ $C_D = \text{drag coefficient}, A_f = \text{frontal area}, F = \text{force}, \text{with subscripts }_M$ mechanical, A aerodynamic and I inertia

Practical losses in the global energy system (88%)

Global Energy Efficiency

♦ What have we learnt?

Our Sankey Diagram is the first breakdown of global energy transformation by technology (rather than economic sector) – so gives a nice basis for considering technical options

It's very unlikely that a low carbon future will be created on the supply-side

Tremendous demand side efficiency options exist in buildings and transport (lightweight roadvehicles and passive buildings)

But what about industry.....?

Energy and emissions in industry

Emissions dominated by 5 materials...

What would make a big enough difference? \diamond

Product based analysis (LCA, EU policy) cannot answer this question Total Material Requirements analysis is not specific enough Instead, we can take a top-down global view for these five materials....

The scope of required change in industry

Current situation

Data from Yale "Stocks and Flows" project scaled by IISI global demand data.

The scope of required change in industry

Doubling of demand with perfect implementation of all known gains in efficiency (40% cut in primary emissions due to technology gains plus 20% de-carbonisation of all energy

The scope of required change in industry

Doubling of demand with forecasted gains in efficiency, and non-destructive recycling

Energy Efficiency will not have enough impact in Industry. However there are additional options within Material Efficiency.

How far can energy efficiency go within existing industry?

Even with the strongest possible assumptions, we cannot hit carbon emissions targets by energy/process efficiency within the existing system

Options to halve emissions while demand doubles?

Energy and Carbon Efficiency strategies:

- 1. Energy efficiency
- 2. Yield improvement
- 3. More recycling
- 4. Carbon Capture process or energy

Material Efficiency strategies:

- 5. Longer life, more use, repair and re-use
- 6. Product upgrade
- 7. Component re-use
- 8. Less metal, same service

What strategies might give enough emissions cuts?

... and how extensively must each strategy be implemented to reach the 2050 target?

Strategies	Steel	Cement	Plastic	Paper	Aluminium
Reference: all known and emerging best available technologies implemented globally, raise recycling to maximum possible and 20% decarbonisation of all energy	I				1
As Reference, but with carbon sequestration applied to primary production					
As Reference, but with non-destructive recycling				T	1.
As Reference, but with demand reduced through light-weighting, substitution and extending product lives	Ì	Î	I	Ì	1
As Reference with novel process technologies using less energy and creating less scrap				I	

www.wellmet2050.com

Summary

- "If we want to make a big difference, we need to make a big change"
 It's unlikely we will find a sufficient solution on the supply slide
 Energy efficiency in transport and buildings has enormous scope
 In industry, energy efficiency has limited further potential
- ♦ Material Efficiency
 - Is the last option before demand constraint Has great technical potential - particularly in re-use of large parts Is currently 'inconvenient' - but we have no choice but to make it happen
- ♦ What do we need to do now?
 - We have enough analysis.
 - We need to create big scale demonstrators that others can copy

www.lcmp.eng.cam.ac.uk

www.wellmet2050.com