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Industrial Decarbonization Key Questions

- What are the economically feasible options to be prioritized to achieve deep decarbonization 

focus on Industrial decarbonization?

- What sectors/technology pathways should be prioritized to achieve environmental targets?

- What multi-sector dimensions impact transition to clean energy?

- What are long-term best policy and regulatory considerations?
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Today’s energy systems are undergoing major transformations, which are leading towards 
greater convergence and inter-sectoral integration

Industrial
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Power

BuildingEV

H2FCV

Electro-
chemistry

Rooftop PV
Net metering

Charging

- Electrification
- Hydrogen
- Manufacturing 
- CCUS
- System integration
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Develop an in-depth understanding of industrial sector, decarbonization pathways – Life cycle and 
techno-economic assessment of commercially available and emerging technologies for reducing emission 

intensity 
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Low-Carbon Steel Production Pathways
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[1]Shakti Foundation, “Resource-efficiency-in-the-steel-and-paper-sectors.pdf,” Confederation of Indian Industry, 2019. Accessed: Jul. 23, 2021. [Online]. Available: https://shaktifoundation.in/wp-
content/uploads/2020/03/Resource-efficiency-in-the-steel-and-paper-sectors.pdf
[2] IEA. Iron and Steel Technology Roadmap - Towards More Sustainable Steelmaking. 2020, 190
[3] IEA (2020), Tracking Power 2020, IEA, Paris https://www.iea.org/reports/tracking-power-2020

BF-BOF
• Key Assumptions

• 14% Scrap Input to BOF
• Raniganj Coal
• Including coking, sintering, 

limemaking (for COREX) process
• MEA  & natural gas for 

regeneration of all CCS tech
• Of the blast & smelting technologies, 

HIsarna-BOF reduces emissions most 
( 24%)

• No need for coking
• Of CCS technologies, HIsarna-BOF has 

lowest emissions (57% reduction)

DRI-EAF
• Key Assumptions

• 19% Scrap Input to EAF [1]
• Pelletization for NG, H2

• Scrap-based offers lowest emissions, 
but is not sustainable (nearly 200 Mt 
deficit anticipated in 2050) [3]

• Electrolytic H2 – DRI emissions are 
slightly higher than coal-DRI

• IEA Grid Intensity: 
• 707 g CO2 /kWh [4] 

Carbon capture & fuel switching offers greatest emission reduction

https://shaktifoundation.in/wp-content/uploads/2020/03/Resource-efficiency-in-the-steel-and-paper-sectors.pdf
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Deep decarbonization requires combination of strategies and infrastructure

BF-BOF
• Similar to DRI-EAF (Coal), direct 

emissions must be significantly 
reduced to approach near-zero 
emissions

• CCS with electricity (vs. NG for 
regeneration)

• Biofuel
• Recovery/Energy Efficiency (Top 

Recovery Turbine)
• Increasing CCS options will require 

adequate storage/use cases

DRI-EAF
• Coal-based pathway is majority direct 

emissions
• Could be reduced with natural 

gas, biofuels, CCS, and/or waste 
heat recovery

• H2 has lowest direct emissions 
(0.34 tCO2 ) next to scrap-based EAF

• Need reliable renewable energy 
sources for electricity demand
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India Steel Fleet Analysis: 
National Steel Policy Case Study

India’s National Steel Policy (2017) 
• Anticipated 255 Mt production by 2030-2031
• How much CO2 per year would be emitted with the current steel plants?

About 356 Mt of CO2 emitted 
directly from iron & steel in 2030
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India’s National Steel Policy (2017) 
• Anticipated 255 Mt production by 2030-2031

• With more decarbonization strategies? à Inspired by IEA SDS Projections

About 313 Mt of CO2 emitted 
directly from iron & steel in 2030

(~12% Reduction)

India Steel Fleet Analysis: 
National Steel Policy Case Study



11*Dotted values represent “high price scenarios” of electricity, natural gas, coal (coking & non-coking), as well as higher capex from 
literature, primarily from India’s industrial reports. Other listed values are of “mid-range” cost.

Preliminary cost comparison
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Key Takeaways

• To significantly reduce emissions, a combination of solutions are needed: 
– Short Term

• Fuel Switching for DRI & BF Ironmaking Process
– Natural Gas, Biofuels

• Technology Shift
– HIsarna, COREX

• Energy & Material Efficiency Measures
– Long Term

• Infrastructure Development
– Electrolytic Hydrogen, Renewable Energy Sources
– Carbon Capture Use/Storage

• Energy & Material Efficiency Measures
• New Decarbonization Strategies
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CCUS cost for various applications
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Low Carbon Hydrogen Supply for Germany
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Key Questions

[1]: Westphal K et al (2020) [2]: Reuß M et al (2019) [3]: Elberry A et al (2021) [4]: Michalski J et al. (2017) [5]: Cerniauskas S et al (2020) [6]: 
H2morrow project (2021) [7]: Coleman et al (2020) [8]: Welder et al (2020)

Where will future low carbon hydrogen be supplied from?
• Can existing SMR facilities in Germany be retrofitted with CCS?
• If no, should new facilities be built?

• Readily available: 27 TWh [4]. Large potential, not technically 
proven 

How will it be stored?

How will it be distributed?

• Contingent on neighboring countries’ strategies [1] 
• Will likely require H2 produced from natural gas with CCS

• Current consensus: large scale underground storage [2-4]

• Current consensus: pipeline transmission [5-6] • Retrofitting hurdles [5]. Cost overshadowed by cost of 
production.

How much will it cost?

• Electrolytic hydrogen only profitable for mobility [4,7,8] • Creation of the value chain can be costly depending on the 
amount of new infrastructure required.

https://www.swp-berlin.org/10.18449/2020C32/
https://www.sciencedirect.com/science/article/pii/S0306261919307111
https://www.sciencedirect.com/science/article/pii/S0360319921005838
https://www.sciencedirect.com/science/article/pii/S0360319917306109
https://www.sciencedirect.com/science/article/pii/S0360319920307023
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Multi-nodal Model Design for SESAME
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Green hydrogen production for Germany with Salt Cavern Storage

9

Basic Results: Renewables Only, Salt Cavern Storage3 – Model Results

Hydrogen cost: 4.454 $/kg
Total Hydrogen Production: 14.0 TWh                                      Total Electricity Generated: 25.4 TWh

Electrolyser Capacity: 3.4 GW                                             Renewable Generation Capacity: 18.9 GW

Renewable / Electrolyser Oversize: 5.51 GW_re/GW_eltz,        Electrolyser Capacity Factor: 46.65 %

Hydrogen Storage Capacity: 863.6 GWh                                     Electricity Storage Capacity: 0.0 GWh

9

Basic Results: Renewables Only, Salt Cavern Storage3 – Model Results

Hydrogen cost: 4.454 $/kg
Total Hydrogen Production: 14.0 TWh                                      Total Electricity Generated: 25.4 TWh

Electrolyser Capacity: 3.4 GW                                             Renewable Generation Capacity: 18.9 GW

Renewable / Electrolyser Oversize: 5.51 GW_re/GW_eltz,        Electrolyser Capacity Factor: 46.65 %

Hydrogen Storage Capacity: 863.6 GWh                                     Electricity Storage Capacity: 0.0 GWh

Hydrogen cost: $4.45/kg

Total hydrogen production: 14 TWh
Electrolyzer capacity: 3.4 GW
Renewable/Electrolyzer Oversize: 5.51 GWre/GWel
Hydrogen storage capacity: 863.6 GWh 

Total electricity generated: 25.4 TWh
Renewable generation capacity: 18.9 GW
Electrolyzer capacity factor: 46.7%
Electricity storage capacity: 0 GWh 
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Variation in Hydrogen Storage Inventory

10

Basic Results: Renewables Only, Salt Cavern Storage3 – Model Results

• Required H2 storage capacity: 800 GWh
• More storage during summer due to 

greater renewable electricity generation

Hydrogen cost: $4.45/kg
Required H2 storage capacity: 863.6 GWh 

System stores more hydrogen during summer due to greater renewable electricity generation.
Electricity storage is not economical for hydrogen production application.
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Exploring the Addition of Natural Gas-based Hydrogen Production 

Auto thermal reforming (ATR) with carbon capture and sequestration (CCS) is used 
for natural gas-based hydrogen production.

These results assume CO2 sequestration will be availabile.

The cost of CO2 transport and storage is not included.

Hydrogen cost: $2.7/kg

Total hydrogen production: 14 TWh
Total electricity generation: 3.3 TWh
Electrolyzer capacity: 0.4 GW
Renewable generation capacity: 2.4 GW
Hydrogen storage capacity: 237.1 GWh 
Total ATR capacity: 1.51 GW

21

Adding in ATR with CC3 – Model Results

Hydrogen cost: 2.668 $/kg
Total Hydrogen Production: 14.0 TWh

Total Electricity Generated: 3.3 TWh

Electrolyser Capacity: 0.4 GW

Renewable Generation Capacity: 2.4 GW

Hydrogen Storage Capacity: 237.1 GWh

Total ATR capacity: 1.51 GW

Pathways of  the renewable electricity generated
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Preliminary Results: 12 Nodal System – German Only Production

Transmission lines are 
assumed to be installable 
between only neighboring 
regions.

à Results 2 electricity 
production hubs – the 
north and the south. 
Interesting to note that 
the model prefers sending 
electricity to other nodes 
in the north, while it 
prefers sending hydrogen 
to other nodes in the 
south.
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Conclusions

- The cost competitiveness of green hydrogen is dependent on the capacity factor at which 
electrolyzers are operated.

- Higher utilization of hydrogen production assets can be achieved by system optimization,. i.e.
electricity transmission from renewable power rich regions, which can lower cost of hydrogen.

- Expansion of hydrogen production system to include regions with rich natural resources can 
further improve the economics for low carbon hydrogen.
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Thank you

energy.mit.edu @mitenergy


