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Industrial Decarbonization Key Questions

- What are the economically feasible options to be prioritized to achieve deep decarbonization

focus on Industrial decarbonization?
- What sectors/technology pathways should be prioritized to achieve environmental targets?
- What multi-sector dimensions impact transition to clean energy?

- What are long-term best policy and regulatory considerations?
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Today’s energy systems are undergoing major transformations, which are leading towards
greater convergence and inter-sectoral integration

Power

- Electrification

- Hydrogen

- Manufacturing Building
- CCUS

- System integration
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Develop an in-depth understanding of industrial sector, decarbonization pathways — Life cycle and
techno-economic assessment of commercially available and emerging technologies for reducing emission
intensity
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Low-Carbon Steel Production Pathways

Carbon Capture
Natural Gas
Carbon Capture

Electrolysis

Hydrogen

Biomass

DRI-EAF Biomass Coal

(Coal) Gasification

Smelting Reduction

Carbon Capture

Energy Efficiency Scrap

Measures

Electrolysis

MiTe;~ s ir




Raw
Material

Extraction

System Boundaries

Raw
Material Iron-Making
Preparation

s JWir



Carbon capture & fuel switching offers greatest emission reduction

BF-BOF
+ Key Assumptions
* 14% Scrap Input to BOF
* Raniganj Coal
* Including coking, sintering,

limemaking (for COREX) process ae
« MEA & natural gas for
regeneration of all CCS tech DRI-EAF (Hz) 2.57
» Of the blast & smelting technologies,
. . DRI-EAF(NG)
Hisarna-BOF reduces emissions most
( 24%) DRI-EAF(Coal) 2.55
* No need for coking COREXBOF w/ CCS
+ Of CCS technologies, Hisarna-BOF has
lowest emissions (57% reduction) CABEX-ROF 1.8
Hisarna-BOF w/ CCS
DRI-EAF
+ Key Assumptions SRR
*  19% Scrap Input to EAF [1] N _—
» Pelletization for NG, H, .
. . BF-BOF .
» Scrap-based offers lowest emissions,
but.is., not.s.ustaingble (nearly 200 Mt o 5 % - T =% =5
deficit anticipated in 2050) [3] CO: Intensity (tCO:/tcs)
» Electrolytic H, — DRI emissions are
slightly higher than coal-DRI
* |EA Grid Intensity:
« 707 g CO,/kWh [4]
\\./ - [11Shakti Foundation, “Resource-efficiency-in-the-steel-and-paper-sectors.pdf,” Confederation of Indian Industry, 2019. Accessed: Jul. 23, 2021. [Online]. Available: https://shaktifoundation.in/wp- g -
M I Te \\ content/uploads/2020/03/Resource-efficiency-in-the-steel-and-paper-sectors.pdf I I I
[2] IEA. Iron and Steel Technology Roadmap - Towards More Sustainable Steelmaking. 2020, 190 7
I

[3] IEA (2020), Tracking Power 2020, IEA, Paris https://www.iea.org/reports/tracking-power-2020


https://shaktifoundation.in/wp-content/uploads/2020/03/Resource-efficiency-in-the-steel-and-paper-sectors.pdf

Deep decarbonization requires combination of strategies and infrastructure

BF-BOF
« Similar to DRI-EAF (Coal), direct
emissions must be significantly

reduced to approach near-zero

. B Direct
emissions 1IN$10.140.13 B Indirect
« CCS with .electr|C|ty (vs. NG for ORLEAF (H) 0.34 923
regeneration)
° B|Ofue| DRI-EAF(NG)
« Recovery/Energy Efficiency (Top DRI-EAF(Coal) 2.37 0.18
Recovery Turbine)
. . . . COREX-BOF w/ CCS
* Increasing CCS options will require
adequate storage/use cases COREX-B0F 0.51
Hisarna-BOF w/ CCS
DRI-EAF ,
_— . .. . Hisarna-BOF
» Coal-based pathway is majority direct
emissions BF-BOF w/ CCS
« Could be reduced with natural BF-BOF 1.61 0.47
gas, biofuels, CCS, and/or waste ( , | , , |
0.0 0.5 1.0 1:5 2.0 25
heat recovery CO: Intensity (tCOz/tcs)

* H, has lowest direct emissions
(0.34 tCO, ) next to scrap-based EAF
* Need reliable renewable energy
sources for electricity demand
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India Steel Fleet Analysis:
National Steel Policy Case Study

India’s National Steel Policy (2017)
» Anticipated 255 Mt production by 2030-2031
 How much CO, per year would be emitted with the current steel plants?

SESAME «( Industrial Fleet  Case: NewCase1 Vv Batch: New Batch Vv
= Inputs Save 1B Results £3
Cars -
Industry Steel ¥ Steel Production by Technology v Direct CO, Emissions from Steel Pro... v ]
Power
TERI ~ (Megatonne (Mt) steel) v (Megatonne (Mt) CO;) v
Power Green
High 900 +
Industrial Fl
o i a0
() About 356 Mt of CO, emitted 3
Build directly from iron & steel in 2030 | v v | oo
450 2030 |
Costs (TEA) Direct CO; Emissions from Steel Production: 356 ‘
Industry 2050 300 ./‘ : 400
ﬁ e 42 150 /
@ Settings Innovative BF w/ CCUS 0 0 0 0
2020 2025 2030 2035 2040 2045 2050
B Feedback Commercial SR 2 2
& @ Commercial BF @ Innovative BF w/ CCUS @ Commercial SR
Innovative SR w/ CCUS 0 0
About Innovative SR w/ CCUS @ Commercial DRI @ 100% H2-DRI
eam Commercial DRI 26 26 Scrap_EAF
og Gt ‘ 100% H2-DRI 0 0 X
' Scrap_EAF 5 = Cost of Fleet by Technology v e
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India Steel Fleet Analysis:
National Steel Policy Case Study

India’s National Steel Policy (2017)
» Anticipated 255 Mt production by 2030-2031
»  With more decarbonization strategies? - Inspired by IEA SDS Projections

SESAME K Industrial Fleet ~ Case: New Case1 Vv Batch:  New Batch Vv
EEE - 2 ¢ Res
Cars -
Steel ¥ Steel Production by Technology v [ Direct CO, Emissions from Steel Pro... v ]
Power
TERI v (Megatonne (Mt) steel) v (Megatonne (Mt) CO;) v

About 313 Mt of CO, emitted High v || o0

directly from iron & steel in 2030
(~12% RedUCtIOn) User v 600 2030 / 500

Direct CO; Emissions from Steel Production: 313

450 _
e
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Commercial BF 42 15
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2020 2025 2030 2035 2040 2045 2050

e
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About Innovative SR w/ CCUS @ Commercial DRI @ 100% H2-DRI
foam Commercial DRI 26 1 Scrap_EAF

[ Log Out l 100% H2-DRI 0 16

\d
\\Y/ ’
it X Scrap_EAF 30 25 Cost of Fleet by Technology v L
I ) © 2022 MITE| = I
M I e ’ \ (Cost (billion USDY) v J = I I I
v 10



\

MiTe;

Preliminary cost comparison
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*Dotted values represent “high price scenarios” of electricity, natural gas, coal (coking & non-coking), as well as higher capex from

literature, primarily from India’s industrial reports. Other listed values are of “mid-range” cost.
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Key Takeaways

« To significantly reduce emissions, a combination of solutions are needed:
— Short Term
» Fuel Switching for DRI & BF Ironmaking Process
— Natural Gas, Biofuels
« Technology Shift
— Hlsarna, COREX
« Energy & Material Efficiency Measures
— Long Term
* Infrastructure Development
— Electrolytic Hydrogen, Renewable Energy Sources
— Carbon Capture Use/Storage
« Energy & Material Efficiency Measures
« New Decarbonization Strategies

|

[

V2
MiTe, 2




CCUS cost for various applications

180
W CAPITAL COST M FIXED O&M COST
(USD/tC0O2) (USD/tC0O2) total 139
1% NAT GAS AND ELEC COST = TAXES ON CAPTURE min 117
(USD/((I)2) total 122 max 167 total 113
min 109 min 95
140 MTRANSPORT COST (USD/tCO2) m STORAGE COST (USD /tC0O2) max 149 max 134
total 105
: total 100
total 91 total 95 min 91 (r,n?n 85
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Low Carbon Hydrogen Supply for Germany
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Key Questions

— \Nhere will future low carbon hydrogen be supplied from?

Can existing SMR facilities in Germany be retrofitted with CCS?
If no, should new facilities be built?

« Contingent on neighboring countries’ strategies [1]
«  Will likely require H2 produced from natural gas with CCS

— HOW Will it be stored?

« Current consensus: large scale underground storage [2-4] Readily available: 27 TWh [4]. Large potential, not technically

proven
— How will it be distributed?
» Current consensus: pipeline transmission [5-6] » Retrofitting hurdles [5]. Cost overshadowed by cost of
production.

— HOW much will it cost?

Creation of the value chain can be costly depending on the
amount of new infrastructure required.

« Electrolytic hydrogen only profitable for mobility [4,7,8]

\ //
~» - B ]
M IT( )\~ [1]: (2020) [2]: et al (2019) [3]: et al (2021) [4]: et al. (2017) [5]: Cerniauskas S et al (2020) [6]: III |
’ H2morrow project (2021) [7]: Coleman et al (2020) [8]: Welder et al (2020)


https://www.swp-berlin.org/10.18449/2020C32/
https://www.sciencedirect.com/science/article/pii/S0306261919307111
https://www.sciencedirect.com/science/article/pii/S0360319921005838
https://www.sciencedirect.com/science/article/pii/S0360319917306109
https://www.sciencedirect.com/science/article/pii/S0360319920307023

Multi-nodal Model Design for SESAME

— = = = : Hlectricity Flow — Local, no distribution costs
= : Blectricity Flow — Regional, via transmission
— = — »: Hydrogen Flow — Local, no distribution costs
— : Hydrogen Flow — Regional, via transmission
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Green hydrogen production for Germany with Salt Cavern Storage
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Variation in Hydrogen Storage Inventory

Tracking Hydrogen & Electricity Storage Inventories - Entire Year
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Hydrogen cost: $4.45/kg
Required H, storage capacity: 863.6 GWh

System stores more hydrogen during summer due to greater renewable electricity generation.
Electricity storage is not economical for hydrogen production application.
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Exploring the Addition of Natural Gas-based Hydrogen Production

Hydrogen cost: $2.7/kg

Total hydrogen production: 14 TWh
Total electricity generation: 3.3 TWh
Electrolyzer capacity: 0.4 GW
Renewable generation capacity: 2.4 GW
Hydrogen storage capacity: 237.1 GWh
Total ATR capacity: 1.51 GW
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Auto thermal reforming (ATR) with carbon capture and sequestration (CCS) is used
for natural gas-based hydrogen production.

These results assume CO, sequestration will be availabile.

M ITE\\I‘/\: The cost of CO, transport and storage is not included.



Preliminary Results: 12 Nodal System — German Only Production

5

4.218 $/kg

Transmission lines are
assumed to be installable
between only neighboring
regions.
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Hydrogen Transmission
Hydrogen Storage
Electrical Transmission

w
'

Compressor

- Results 2 electricity
production hubs — the
north and the south.
Interesting to note that
the model prefers sending
electricity to other nodes
in the north, while it
prefers sending hydrogen

Hydrogen Cost [$/kg]
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Electricity Flows

to other nodes in the Hydrogen Flows
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Conclusions

- The cost competitiveness of green hydrogen is dependent on the capacity factor at which
electrolyzers are operated.

- Higher utilization of hydrogen production assets can be achieved by system optimization,. i.e.
electricity transmission from renewable power rich regions, which can lower cost of hydrogen.

- Expansion of hydrogen production system to include regions with rich natural resources can
further improve the economics for low carbon hydrogen.
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- Thank you
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