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McKinsey: Hydrogen responsible for 11% of cumulative emissions reductions by 2050

Clean hydrogen can contribute as much as 80 gigatons of CO, abatement by

2050, with most coming from industrial uses and transport. PRODUCTION el Shosttont
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Source: McKinsey Hydrogen Insights 2022

Aviation

« Currently, climate change ambition is the key driver for hydrogen in addition to historical stimuli such as
1970s oil price shocks and 2010 oil peak

* Hydrogen has potential sharp relief to the challenge of tackling hard-to-debate emission sources

* It can support energy security through its diverse feedstocks and applications

www.eprg.group.cam.ac.uk 3
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IEA: Hydrogen responsible for <6% of cumulative emissions reductions by 2050
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Scaling up for net zero

Policy action is needed to scale up hydrogen production and use

Electrolysis capacity, renewable hydrogen use in industry and average annual investment in low-emission hydrogen
in the Announced Pledges Scenario, 2021 and 2030

Global electrolysis capacity Renewable hydrogen use in industry Average annual investments
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Source: IEA Global Hydrogen Review 2022
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Background: szrogen demand and suEElz

Global and European hydrogen demand by sector, and hydrogen supply by type and fuel in the Announced Pledges Scenario, 2021-2030
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Source: IEA Global Hydrogen Review 2022

* The overwhelming majority of hydrogen produced today is from
fossil fuels, responsible for 830MtCO2/year [IEA, 2022]
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Hvdrogen Production and Capacit

Hydrogen production mix, 2020 and 2021 Low-emission hydrogen production, 2020 and 2030
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Hydrogen Production Cost

Levelised cost of hydrogen production by technology in 2021 and in the Net Zero Emissions by 2050 Scenario, 2030 and 2050

USD/kg H

10
8
6
;7
20
2 YUVLET
[ H H BEEcZ
0
- 0 Ol © Q| O O« O Ol O O|+ O o - 0 9 - O O
N O LVIN O LN O LN O LN O V|IN O LBLIN O V|IN O v
Q O Ol © 0|0 O 0|0 © |0 @ Q|0 O O|6 0 0|0 ©
N N N[N N N[N N NN N NN N NJN N N]JN N N[N N
Natural gas |Natural gasw/| Coalw/o |Coal w/ CCUS|Wind onshore {Wind offshore| ~ Solar PV Nuclear
w/o CCUS CCUs CCUS
Levelised hydrogen production costs from solar PV and
wind at different locations and minimum load factors, 2030
L 4
L
2 [
2 3 —
-
2 |
| E E
0 o =g o =g o =3 o =3 = =3 =g =g
> = o= > o= = > = >= = >= =
o o (=1 o (=] = o o o o o o
- < - < - ==} - <
Minimum load Minimum load Minimum load Minimum load
Chile North Abu Dhabi Australia Spain
@mCAPEX and OPEX 0O Solar electricity oWind electricity

@ Curtailment electri

Source: IEA Global Hydro

city OH, storage

ogen Review 2022

m Battery storage

Levelised hydrogen production costs from natural gas at
various gas prices and from renewable electricity, 2022

:Hﬁﬂ

usD USD uUsD usD USD |Europe - Middle China -
5/MBtu 10/MBtu 25/MBtu 30/MBtu 45/MBtu |Offshore East- Solar PV
Wind Solar PV

-
o

USD/kg H,
(o<}

—

N

Natural gas with CCUS Water electrolysis
OFuel costs BCAPEX BOPEX @CO, price

Lack of cost competitiveness of green
hydrogen in short term

Electrolysis technology is not commercially
viable before the mid 2020s [Lazard, 2021]
Uncertainty about governments’ speed in
pushing transition to low-carbon sources
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Green szrogen Production Costs

Hydrogen production costs from hybrid solar PV and wind systems for a minimum load of 40%, 2030 (left map)

Global supply cost curves for different minimum load factors (right figure)
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Hydrogen Infrastructure Barriers

Technology readiness levels of production of low-emission hydrogen and synthetic fuels, and infrastructure
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* Low market uptake of hydrogen technology and infrastructure
* Current pace of infrastructure development is a brake on hydrogen adoption

« Limited ability of governments to commit to large and necessary infrastructure investments
* Refuelling stations need sophisticated storage facilities

 Difficulty of existing gas distribution infrastructure to accommodate pure or blended hydrogen

www.eprg.group.cam.ac.uk 10
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szrogen Infrastructure GaEs

Trade-related infrastructure requirements in the European Union to meet the REPowerEU hydrogen and ammonia import targets
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* Inadequate infrastructure for hydrogen trade

* International collaboration for these investments is not yet seen for hydrogen

* Non-pipeline transportation ( shipping and trucking) is substantially more expensive, but facilitates
longer-range and more flexible transportation

www.eprg.group.cam.ac.uk 11
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drogen Infrastructure Enablers

Opportunities to repurpose natural gas infrastructure to facilitate hydrogen trade

Announced newbuilt vs repurposed hydrogen pipelines before and after 2030

In percentage (%)

Domestic production, imports and exports for low-emission hydrogen
in selected regions in the Announced Pledges Scenario, 2030 and 2050
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* Opportunities to repurposing existing natural gas infrastructure

« Middle East, Latin America and Australia have the potential of becoming net exporters for low-emission
hydrogen in both near and long-terms

www.eprg.group.cam.ac.uk 12
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szrogen Deliverz and Storage Issues

Levelised costs of delivering hydrogen by pipeline and by ship as LH2, LOHC and ammonia carriers, and electricity transmission, 2030
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Enablers of I—Izdrogen DeveloEment

« Synchronise investments and policies in scale and time

* Design public-private investment models to address hydrogen
infrastructure gaps

* Leverage existing gas infrastructure to boost low carbon hydrogen
supply

« Establish long-term signals to foster investor confidence

* Support revenue from low-carbon hydrogen projects in near term

« Establish new contractual relationship to build trust for well-
coordinated value-chain investments

* Create industrial hubs to bring down the cost of low-carbon hydrogen
pathways

« Start soon on international hydrogen trade to make an impact on
global energy system

www.eprg.group.cam.ac.uk 14
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Enablers at Global, Regional and National Levels

* At the global level:

— strong and coordinated climate action;
— help market develop and better match supply and demand in immediate term;

— mobilise public and private financing to de-risk investment, increase the number and volume
of projects; and support infrastructure development;

— develop cross-border infrastructure;
— share good practices in installations, policies, finance mechanisms etc

* At theregional level:
— In EU: eliminate regulatory obstacles

— In other regions, better identify and build on individual national strengths to work towards an
integrated low-carbon hydrogen energy system

e At the national level:

— have a well defined national strategy which includes plans for market development, targets to
provide long-term visibility, regulatory priorities to unlock low-carbon hydrogen potential;

— economic and financial incentives in form of carbon pricing, blending quotas, and low-carbon
fuel credits;

— implementation of published strategies; national support schemes for the development of
hydrogen hubs to facilitate the creation of local demand and supply in concert

www.eprg.group.cam.ac.uk 15
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Potential szrogen ExEort bz Regions/Countries

Planned hydrogen exports by region/country, 2030

Mt H, equivalent per year by 2030

Planned hydrogen exports by region, 2020-2030
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Infrastructure Enablers

Design and construction of new LNG facilities should aim to be hydrogen-ready to reduce risks
of stranded assets and to boost energy security

Operational and planned LNG terminal capacity by type, region and age
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Source: |IEA analysis based on Global Gas Infrastructure Tracker.

Source: IEA Global Hydrogen Review 2022

* Leverage on new LNG facilities to support hydrogen deployment
« DPotential regasification in the Asia-Pacific region is relatively high compared to Europe and Latin
America
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Global Hydrogen Policy and Co-operative Ecosystem

Government RD&D spending for hydrogen technologies
by region, 2018-2021
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and H:z storage YO2E60/32 (B-F6).
Source: IEA Global Hydrogen Review 2022
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Policy Measures to de-risk hyvdrogen projects

Grant: US$ 349 million to roll-out Hydrogen Industrial Hubs
Canada Grants: Clean Fuels Fund of US$112 million to new clean fuels production capacity; Zero

Emissions Vehicles programmes (US$ 1.3 billion) to provide purchase incentives for zero
emission medium-and heavy-duty vehicles; Net Zero Accelerator of US$6.3 billion to support
low-emission hydrogen in heavy industry. Tax incentives: Accelerated capital cost allowance for
renewable hydrogen production equipment; Investment tax credit for green hydrogen ; 50% tax
cut for hydrogen production

Public calls for tenders of Euro 100 million investment: to decarbonise the industry and
develop hydrogen mobility; Euro 7.2 billion Investments for the next decade (in Hydrogen
Strategy): for hydrogen mobility ecosystems (that support the development of range of heavy
vehicles) and decarbonated hydrogen production for industry (to reduce carbon hydrogen and

support a competitive approach for the industrial sector)

Germany Grants: US$414 million grant programme to support international hydrogen production. Tax
- incentives: Exempting electrolysis hydrogen production from the green power levy

United Grants: Net Zero Hydrogen Fund of US$ 300 million to support projects’ capital expenditure;
Kingdom Industrial Energy Transformation Fund of US$75 million for feasibility studies and deployment
of clean technology projects including hydrogen in industry

(B0 RCIETC Grants: Clean Hydrogen Electrolysis Program (US$1 billion) to reduce production costs;
US$0.5billion grant for manufacturing and recycling of clean hydrogen technologies ; INFRA
and RAISE grants to support hydrogen vehicle infrastructure. Tax incentives: Hydrogen
Production Tax Credit: incentivise the domestic production of clean hydrogen to meet the

ambitious goals of the Hydrogen Shot
Source: Excerpted from IEA Global Hydrogen Review 2022 & McKinsey 2022
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Government Support Programmes for Hydrogen
[Country |ProgrammeDeseription ___________________________

Germany Hydrogen Flagship Projects (US$828 million): For electrolyser manufacturing, offshore hydrogen
production and hydrogen transport; National Innovation Programme & Hydrogen and Fuel Cell
Technology (US$422 million): to support market activation; Regulatory Sandboxes for the Energy
Transition (US$198 million): for large-scale demonstration projects of hydrogen and sector
decoupling

France Hydrogen Research and Development (Euro 65 million); Hydrogen Education (Euro 30 million);
the establishment of a Guarantee of Origin System for Hydrogen; Technological Bricks and
Demonstrators ( Euro 350 million): to develop innovation work in the hydrogen value chains;
Territorial Hydrogen Hubs (Euro 275 million): to develop an economic model of hydrogen at the
scale of a local territory and demonstrate the environmental benefits of hydrogen

Low Carbon Hydrogen Supply 2 (US$75 million): to develop a wide range of innovative low-
carbon hydrogen supply solutions; Industrial Hydrogen Accelerator (US$ 33 million): to accelerate
the commercialisation of innovative hydrogen technologies; Industrial Fuel Switching (US$75
million): to support fuel switching technologies in industry including hydrogen; Clean Maritime
Demonstration Competition (US$48 million): to support the design and development of zero
emission vessel technologies and greener ports (with use of hydrogen); Long-Duration Energy
Storage Demonstration Competition (around £66 million): to store hydrogen produced from
excess electricity; Red Diesel Replacement Competition (£40 million): to fund the development
and demonstration of innovative technologies to switch from red diesel to hydrogen or other low
carbon fuels

(B0 RS E1EN Bipartisan Infrastructure Law -R&D Funding Provisions (US$1.5billion): For electrolysis and
manufacturing clean hydrogen technologies; Inflation Reduction Act (about US$13 billion): to
support hydrogen industry

erpted from IEA Global Hydrogen Review 2022; BEIS UK Hydrogen Strategy 2021; McKinsey 2022; US Whitehouse Inflation Reduction Act Guidebook 2022
Www.eprg.group.cam.ac.u 20
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Local Opposition
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Reflections on Possible Futures for I—Izdrogen

* There is large uncertainty, however, in several key sectors, decarbonisation and
hence net zero is very difficult without a role for hydrogen

* In the short to medium term, rollout of blue hydrogen can help enable the
development of green hydrogen in the longer term by earlier development of
infrastructure an§ business models. Decisions to exclude blue hydrogen may
impact medium term deployment of green hydrogen (Mac Dowell et al, 2022)

* Creation of suitable framework needed to address conflicting views that create
complexity for hydrogen projects and discourages investment

« Distribution costs (storage and infrastructure) for hydrogen are likely to be
substantial and could limit growth

* Carbon prices or incentives will be needed to make cost of green hydrogen
competitive with fossil fuel alternatives

* Green hydrogen production price is expected to decline due to falling renewable
electricity costs, technological developments and economies of scale

* The infrastructure for large scale hydrogen use is expected to take many years (12+
years based on gas infrastructure) to develop so focus on industrial clusters

* Growing hydrogen demand in parallel with infrastructure is expected by 2030 with
stronger demand after 2030 in line with the time required to develop infrastructure

« It is not clear if the ‘optimistic’ view for an expansive role for hydrogen miléht
ultimately undermine the development of hydrogen in its core areas (e.g., HyNot
and hydrogen villages)

www.eprg.group.cam.ac.uk 22
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Thanks!
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Yy @DMReinerCamb
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Thanks!
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szrogen Strategz AdoEtion

17 countries released a new hydrogen strategy in 2022

" 4

"3’.:

National hydrogen strategy {
Released/updated in 2022 { v
H

«» Released prior to 2022

Note: Belgium, China, Netherlands, South Korea and UK updated strategy in 2022
Source: Rystad Energy research and analysis
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UK I—Izdrogen Strategz: Commitment Plans

* Create appropriate regulatory changes across the hydrogen value chain

* Incorporate the potential role of hydrogen into wider future energy regulatory and
policy changes

« Establish a Hydrogen Regulators Form with representation across environmental,
safety, markets, competition and planning areas

* Ensure appropriate synergy between hydrogen and broader governance and
regulatory changes

* Improve visibility of low-carbon hydrogen project pipeline across the supply chain

* £1bn Net Zero Innovation Portfolio to support hydrogen innovation

* Public-Private Sector engagement to provide further incentives for investment into
hydrogen Ré&I in the UK

* Develop a hydrogen technology R&I roadmap to inform stakeholders Ré&l
investment and prioritisation

« Active international engagement and research sharing (through IEA Hydogen
Technology Collaboration Programme (Hydrogen TCP) to accelerate Hydrogen Ré&lI
progress and maximise its benetfits

» Facilitate greater coordination and progress across international hydrogen
innovation, deployment and policy activity

* Develop metrics to monitor progress

Source: BEIS UK Hydrogen Strategv 2021
WWWw.eprg. group.cam.ac.uk
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US Inflation Reduction Act

| Description of Policy measures

Zero-emission
Nuclear Power
Production
Credit

Clean
Electricity
Production Tax
Credit

Clean
Electricity
Investment Tax
Credit

For electricity produced at a qualified nuclear power facility and applicable to electricity
sold after the end of 2023 (0.3 cents/kWh inflation adjusted)

Rural Energy for America Program (REAP) grant of US$1.7billon: include hydrogen
production; Alternative Fuel Vehicle Refueling Property Credit: include tax credit for
hydrogen fuel in low-income and rural areas; Domestic Manufacturing Conversion Grants:
to provide cost-shared grants for domestic production of efficient hybrid, plug-in hybrid,
plug-in electric drive and hydrogen fuel cell vehicles

Provides a technology-neutral tax credit for production of clean electricity

This replaces the production tax credit for electricity from renewables

Energy Loan Program of US$ billion: to support the cost of loans for innovative clean
energy technologies

Hydrogen Production Tax Credit: to incentivise the domestic production of clean hydrogen
to meet the ambitious goals of the Hydrogen Shot which is launched by the DOE to
accelerate breakthroughs in hydrogen technology and cut the cost of clean hydrogen by 80%
to U$1 per kilogram in one decade

Technology-neutral tax credit for investment in facilities that generate clean
electricity(include qualified energy storage technologies): 6% investment basis

Grants: Greenhouse Gas Reduction Fund (up to US$27billion): For clean energy and climate
projects that reduce greenhouse gas emissions to benefit low-income and disadvantaged

ST IIEE Source: Excerpted from US Whitehouse Inflation Reduction Act Guidebook 2022
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Germanz szrogen Strategz: Action Plans to success

Phase 2 -
2 2 Strengthen market ramp-up
Nationally & Internationally
Phase 1
Start market ramp-up,
Harness opportunities
>
Measure 1

* Better framework for the efficient use of electricity from renewables;

« A fair design of the energy price components in line with the climate targets and the energy transition
targets to create greater scope for the production of green hydrogen

* Introduction of carbon pricing for fossil fuels used in transport and heating sectors

* Exempting electricity used for the production of green hydrogen from taxes, levies, and EEG surcharges

Measure 2

+ Exploring possibilities for new business and cooperation models for operators of electrolysers, and grid
network operators in line with the principle of regulatory unbundling

Measure 3

* Supporting switchover to hydrogen in the industrial sector by providing funding for investment in
electrolysers

+ Exploring potential tendering schemes for the production of green hydrogen

Measure 4

* Developing further the framework that adjusts offshore production of hydrogen/PtX and necessary
infrastructure to ensure that investments in offshore wind pay off

Source: Excerpted from the German Federal Government Hydrogen Strategy 2020
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Measures to stimulate hydrogen demand

Number of policies to support hydrogen demand creation
by sector, 2021-2022
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International Collaboration on Hydrogen Development

Co-operative agreements on hydrogen development, 2020-2022

Cooperation Australia
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Source: World Hydrogen Council 2022 Mhosond
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Potential HXdrogen Trade Volume

Export volumes from planned projects with off-take arrangements Hydrogen import volumes specified in strategies for ports
or intended destinations by importing country/region, 2030 and planned terminal capacity, 2030 and 2040
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Source: IEA Global Hydrogen Review 2022
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Regional I—Izdrogen Projects

More than 680 large-scale hydrogen projects have been announced globally,
with a focus on production, industrial usage, transport, and infrastructure.
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AnticiEated szrogen Costs

Clean hydrogen costs are expected to decline over the next decade.

Production cost of hydrogen, $ per kilogram
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Source: McKinsey Hydrogen Insights 2022
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szrogen Investment GaEs

An investment gap of roughly $460 billion remains across the hydrogen
value chain.

Announced and required direct investments into hydrogen until 2030, $ billion

End-use Transmission and
investment distribution
target 200 investment target 200
~145 gap ~165 gap

Announced Announced
investment investment

Announced
investment

~150 gap

Production
investment
target 300

Source: McKinsey Hydrogen Insights 2022
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szrogen AEElication bz Sector

Technology readiness levels of hydrogen end-uses by sector

Industry Buildings Transport Electricity generation
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Source: IEA Global Hydrogen Review 2022

¢ Most low-carbon hydrogen applications are not cost-competitive without direct government support

* Scaling up end-use hydrogen technologies is needed

* Hydrogen-related technologies (fuel cells, water electrolysers, hydrogen refuelling and hydrogen turbines)
wait for large-scale demand and standardisation

*  Current prices of green hydrogen and related-uses are not competitive
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