Deep Decarb in Northeast Canada and the US: Do We Have the Firm-Flexible Technology We Need?

JOHN PARSONS / EMIL DIMANCHEV / JOSHUA HODGE

London, September 2, 2019

EPRG – CEEPR International Energy Policy Conference

Deep Decarbonization

• What do we mean by deep?

- Economy-wide 80% reduction from 1990 levels by 2050.
 - ...or fully carbon neutral by 2050.
- Electricity systems play a vanguard role: 100% renewable or clean energy by 2040-2050.
- Substantive action on Transport / Buildings / Industry / Agriculture

Current Status: New York

Current Status: New England

Regional State Commitments (1)

- New York in June 2019 passed the Climate Leadership and Community Protection Act.
 - Economy-wide net-zero by 2050. (40% from 1990 by 2030)
 - 85% of reductions from energy and industrial emissions;
 - 15% from offsets, e.g., from forestry or agriculture;
 - Electricity 100% carbon-free by 2040. (70% renewably by 2030)
 - No offsets for stationary electric sources.
 - Climate Action Council to identify mechanisms.
 - Addresses issues of economic justice.

Regional State Commitments (2)

• Maine in June 2019 passed a package of climate and energy bills.

- Targeting 80% reduction economy-wide by 2050.
- 100% renewable electricity by 2050. (80% by 2030)
- Supporting electrification of heating and transport.

Massachusetts

- Targeting 80% reduction economy-wide by 2050.
- 2008 legislation, with a recent court decision requiring explicit steps and interim targets.
 - Electricity 90% reduction by 2050. (74% by 2030, 83% by 2040)
- Tenders for 1.6 GW offshore wind, 1.2 GW other clean energy including imported hydropower.
- Electrification of heating and transport only tentatively/tepidly addressed.

Some Challenges of Deep Decarbonization

• The politics of siting.

- Offshore wind.
- Onshore wind and solar PV.
- Transmission.

• Intermittancy at short time scales.

- E.g., the duck curve and low carbon fast ramping resources.
- Inertia and frequency response.

• Variability longer time scales.

- Daily.
- Weeks.
- Seasonal.

Seasonal Storage Task in New England for 100% Renew. System

Seasonal Storage Task in New England for 100% Renew. System

Alternatively, Adjust the Portfolio to include other Low C Generation

• Nuclear

- Some existing plants could have life extensions to 80 years.
- New nuclear.
- CCS for NGCC plants
- Quebec Hydro + Transmission
 - New York's Hudson Express line
 - New England's
 - faltered New Hampshire "Northern Pass"
 - live Maine "Clean Energy Connect"
- others...

Capacity Expansion Model

- To meet 2050 load.
 - Endowments of hydro, nuclear, CCGTs, wind & solar PV.
- Initial results just NE & QC.
- Granularity to the level of hourly dispatch.
- Examine different levels of decarbonization.
- Examine different levels of transmission.

Optimization of Capacity for 90% Reduction in 2050

Solar ■ Wind ■ Hydro ■ Hydro QC ■ Nuclear ■ NGCC-CCS ■ NGCC ■ Other ■ Coal

90% Decarbonization						
				System Cost		
	CCS	Transm	Nuke	Total	Average	
Optimal	6.2 GW	4.2 GW	3.5 GW	\$5.1 B	\$39.37 /MWh	
No CCS		4.2 GW	3.5 GW	\$5.6 B	\$43.38 /MWh	
No New T	6.2 GW	2.2 GW	3.5 GW	\$6.0 B	\$46.48 /MWh	
No Nukes	6.2 GW	4.2 GW		\$6.0 B	\$46.31 /MWh	
None		2.2 GW		\$8.5 B	\$66.05 /MWh	

90% Decarbonization						
				System Cost		
	CCS	Transm	Nuke	Total	Average	
Optimal	6.2 GW	4.2 GW	3.5 GW	\$5.1 B	\$39.37 /MWh	
No CCS		4.2 GW	3.5 GW	\$5.6 B	\$43.38 /MWh	
No New T	6.2 GW	2.2 GW	3.5 GW	\$6.0 B	\$46.48 /MWh	
No Nukes	6.2 GW	4.2 GW		\$6.0 B	\$46.31 /MWh	
None		2.2 GW		\$8.5 B	\$66.05 /MWh	

90% Decarbonization						
				System Cost		
	CCS	Transm	Nuke	Total	Average	
Optimal	6.2 GW	4.2 GW	3.5 GW	\$5.1 B	\$39.37 /MWh	
No CCS		4.2 GW	3.5 GW	\$5.6 B	\$43.38 /MWh	
No New T	6.2 GW	2.2 GW	3.5 GW	\$6.0 B	\$46.48 /MWh	
No Nukes	6.2 GW	4.2 GW		\$6.0 B	\$46.31 /MWh	
None		2.2 GW		\$8.5 B	\$66.05 /MWh	

90% Decarbonization						
				System Cost		
	CCS	Transm	Nuke	Total	Average	
Optimal	6.2 GW	4.2 GW	3.5 GW	\$5.1 B	\$39.37 /MWh	
No CCS		4.2 GW	3.5 GW	\$5.6 B	\$43.38 /MWh	
No New T	6.2 GW	2.2 GW	3.5 GW	\$6.0 B	\$46.48 /MWh	
No Nukes	6.2 GW	4.2 GW		\$6.0 B	\$46.31 /MWh	
None		2.2 GW		\$8.5 B	\$66.05 /MWh	

90% Decarbonization						
				S	System Cost	
	CCS	Transm	Nuke	Total	Average	
Optimal	6.2 GW	4.2 GW	3.5 GW	\$5.1 B	\$39.37 /MWh	
No CCS		4.2 GW	3.5 GW	\$5.6 B	\$43.38 /MWh	
No New T	6.2 GW	2.2 GW	3.5 GW	\$6.0 B	\$46.48 /MWh	
No Nukes	<u>6.2 GW</u>	4.2 GW		\$6.0 B	\$46.31 /MWh	
None		2.2 GW		\$8.5 B	\$66.05 /MWh	
				1		

Hydro Operations Change Dramatically.

Hydro Operations Change Dramatically.

A RISK MANAGEMENT APPROACH

Big Uncertainties

- Costs and availability of competing technologies.
- Acceptability of competing technologies.
 - e.g., land use for large scale wind and solar expansion (wind=35x 2018 capacity, solar=14x; 3.4 or 5x capacity now planned for 2027)
- State action, e.g., for off-shore permits and transmission connections.
- Pace of decarbonization policies and implementation.
 - in electricity
 - in other sectors which impact electricity, such as transport and building
- Energy efficiency.
- Social changes, such as demand response, vehicle charging, building management.

CCS & Hydro Compete

100% Decarb Changes Everything

Canadian Hydro

- Quebec is a winter peaking system
- New England and New York are summer peaking
- ...but, with a shift to electrical home heating, do New England and New York become winter peaking?

One Forecast

Figure 3. Base DDP Case Monthly Electricity Consumption for the Northeast

Source: Williams, J.H., et al., (2018). Deep Decarbonization in the Northeastern United States and Expanded Coordination with Hydro-Québec. A report of the Sustainable Development Solutions Network in cooperation with Evolved Energy Research and Hydro-Québec. April 8, 2018

Some principles...

• We're not in the prediction business...

- insight about the future only matters if it can inform public policy and industrial strategy
- which technology wins is not the question
 - with a price on carbon, may the best technology win
- However, it is useful to ask which public investments are needed to enable winning technologies.
 - e.g., transmission for hydro, for off-shore wind, etc.
 - and it may be useful to ask where public R&D funding is most needed

Some principles... (2)

- Timing is a critical issue.
- When are public investments or other policies absolutely needed?
- Experimentation is a valuable way to reduce costs.
 - E.g., in optimizing transmission investments for off-shore wind.
 - Also waiting has information value, e.g., about which technologies will be most useful, reshaping which public investments are needed.

• The biggest uncertainty is perhaps the pace of decarbonization.

- That has a big implication for the right investments, when.
- If we were really going to get there by 2050, we need to be doing things now that we would not do now if we are going to move more slowly.
- But which ones?

Financing Investments

- A large amount of existing low carbon generation was pushed onto the system with dedicated revenue streams.
- Investors are anxious about creating sunk investments.
- The value of competing investments depend upon the realized pace of decarbonization and various policies. Creates reluctance to commit large sums.
- Will states continue to fund investments with dedicated revenues?

