

Annual conference of Cambridge EPRG and, MIT CEEPR

Our world in 2050: Three factors determining how our future will look like

Karsten Neuhoff

Climate Policy Department, German Institute for Economic Research Economics Department, Technical University Berlin

Berlin, 2.7.2018

What can we learn from experience 90 years ago?

- If climate change triggers economic and social instability, then democratic structures are at risk and global tensions and wars are likely.
- Need to cooperate locally, nationally and internationally to
 - tackle climate change,

1

- care for local jobs and local actors as foundation of democracies.
- History shows transformation can be faster than you think.

Important determinants for our future: I. Resource and energy efficiency

4 Why are we interested in materials?

Percentage contribution of various basic materials to global CO2 emissions

Steel in Europe

Difficult to envisage that RE supply sufficies for clean material production, unless portfolio of demand side measures for use of materials successfull.

6

Filling gaps in the policy package to decarbonize Europe's materials sector

Mitigation Option	Gaps in policy package	New / Extended policy instrument to close gap	Target
Share, Repair, Re-use More and pure	1. How to enhance	 Ecodesign directive Extended producer 	
recycling	recycling?	responsibility	
Efficient product		- Green public	
Efficient manufacturing	2. How to create markets for climate	procurement funding - Project based carbon	Climate Friendly Materials
Material substitution	menuly options:	contracts - Carbon charge on materials	Sector
Low-carbon		materials	
processes			
	2 How to make PALL not	- ETS including a carbon	
Conventional processes	a viable perspectiv?	charge - Emission intensity standard for materials	

DIW BERLIN

Summary: Resource and energy efficiency

Challenge: Implementation of policy package

One decisive factor: National Climate Change Law, EU 2030

governance, to provide framework for policies in all sectors.

- Lack of demand side policies
 -> Tension on energy/resource markets
- Inconsistent picture for supply side
- -> Public R&D focused policy
- -> Investment limbo

- Successfull demand side policies
 -> Opportunities for local business
- Clarity on vision for supply side
- -> Puplic & private driven innovation
- -> Investment

Important determinants for our future: II. System integration

Moving beyond today's electricity demand: Flexibility and efficiency 8 for reliable, affordable, and climate friendly energy services

Size of areas proportional to primary input by energy carrier and sector

DIW BERLIN

- To replace conventional generation and meet extra needs
- Large potentials from e-mobilty, electric heating, industry
- Unlocking potentials requires
 - Tailored proposal & credibility to engage consumers
 - Clear interface to distribution/transmission system
- Two scenarios:
 - Flexibility portfolio managed in centralised systems
 - Customers offer flexibilty responding to local prices

9

10 Summary: System integration

Challenge: Create incentives for households and regional

business to unlock flexibility potential

One decisive factor: Local prices

- Cloud-based flexibility control
- -> concentration of actors and data
- -> accelerated if used for re-dispatch
- -> lack of regional anchoring/jobs
- -> difficult to align with cyber security
- Tendency towards autarky
 - Households seek privacy
 - Physical linking of RE and Flex
- -> Failure to reach scale and efficiency

- Price based flexibility control
- -> standardised protocolls address cyber security and privacy risks
- -> value for system fully remunerated
- -> easy market entry for local actors
- -> tailored solutions unlock potentials

Important determinants for our future: III. Financing

Financing costs important for viability of wind and solar

Illustration excludes system costs

11

DIW Berlin Calculations based on BP Statistical Review of World Energy; Energy Statistics for the EU-28; Bundesverband Solarwirtschaft e. V.; IEA; European Wind Energy Association; Bundesamt für Wirtschaft und Ausfuhrkontrolle, first published in Energy Journal (2016)

DIW BERLIN

12 If nothing changes all will change

Floating Premium: As technology costs decline optionality kicks in, floating premium offers less hedging, financing costs increase, total cost increase.

Without long-term hedging 30% cost increase from

- Project revenue risk (1)
- Liability in LT Contracts (2)

Matches overall assessment (3)

(1) Diacore review (2) Standard & Poor's (2017): Key Credit Factors For The Regulated Utilities Industry,

(2) Baringa (2013) PPAs for independent RE generators (3) Aurora Energy Research (2018), May & Neuhoff (2017) Financing power.

13 Summary: Financing

Challenge: Allow simple hedging to facilitate low-cost finance **One decisive factor:** Shift to contracts for difference

- Concentration of actors
 -> lack of local engagement and support
 -> insufficient capacity to realize projects
- Increase of cost to consumer (example Germany 2030 projection)* Floating market premium: 0,8 billion Fixed market premium: 2,7 billion CO2 price only: 3,4 billion.
- -> Industry/HH less supportive for RE
- -> Speed of transition declines

- Multiple actors compete
- -> improves projects/technologies
- -> realisation of deployment targets
- Consumers fully benefit from cost RE reductions
- -> accelerate electrification
- -> accelerate speed of transition

What do we need for our world in 2050?

- Rapid reduction of emissions
- Functioning communities

What is important to make this happen?

- Governance for eficiency policies
- Local prices for system integration
 - Remuneration for simple financing