

Transmission Planning with Variable Sources

Lewis Dale Regulatory Strategy Manager

Planning with variability

- Current variability issues
 - Potentially, lots of wind to connect (how to do efficiently)
 - More interactions via interconnectors with other markets
- The network investment problem
 - Planning standards, cost benefits & making assumptions
- Making a decision

Potentially, lots of wind

- E.g. Gone Green Scenario
 - Meet Government 2020 targets for Renewables largely with wind
 - Energy efficiency ~= new electrical load from heat pumps, etc

nationalgrid

THE POWER OF ACTION

Potentially, major network developments

More interconnection

RIIO baseline plan expenditure (NGET onshore)

nationalgrid

THE POWER OF ACTION

The network investment with variable generation problem

In a nutshell - how much wire is needed?

How correlated/counter-correlated is the conventional plant with local wind?

nationalgrid

THE POWER OF ACTION

How much wire? #1 – security approach

- Security standard approach:
 - Establish sufficient network so that gen G1+G2 can meet peak demand D1+D2
 - Define 'average' transfer to meet peak demand as
 = (k.G1 – D1) = -(k.G2 – D2) where k = (D1+D2)/(G1+G2)
 - Add interconnection margin for non average generation availability and demand distributions (fn of area size and network trip risk)
 - Add/remove capacity on basis of offpeak constraints (i.e. if merit order differences in G1 and G2 justify)

Issues with security approach

- What generation will actually build & close?
 - Discover from user commitments to pay cost-reflective charges?

(More challenging if network reinforcement needed for many rather than few users)

- And should all generators be treated the same (and charged the same)?
 - Wind generators will not contribute the same as conventional plant to peak security
- What assumptions about wind backup (especially its location) should be made?
 - Simple scaling unlikely to be right
- How should interconnectors be treated (generators/demands/both/neither)?
- The CBA When? How? (Does a security approach mean CBA 'by exception'?)

THE POWER OF ACTION

How much wire? #2 – modified standard

- Modified security standard approach (GSR009):
 - Determine required network security capacity with W1=W2=I1=I2=0 (i.e. check GB demand can be met with conventional gen capacity G1+G2)
 - Then examine windy peak conditions with typical renewable, nuclear, pump-store availabilities & interconnection flows with other coal/gas plant scaled)
 - Select worst case as default requirement
 - Add/remove capacity if detailed costbenefit justifies

THE POWER OF ACTION

How much wire? #3 – stochastic CBA

- Wind variability and demand data available from central forecasting
- Project open/close info from user commitments (where possible)
- What future market behaviour?
 - Assume ideal cost minimisation?
 - Reflect what can be currently observed?
- Are there incentives for efficient dispatch and network sharing?
- Are resulting investment decisions justified, transparent, deliverable, financeable?

Discovering network value

Agreeing network plans

- However, discovering information on ideal network sharing (with variable generation) is just one of many issues
- There are lots of other uncertainties:
 - EMR, developer choices, European interactions, TransmiT, future energy sources (shale), etc
- Also key questions about network design:
 - Capital & financing costs, speed of establishment, reliability, flexibility, losses, consenting, undergrounding, technical/smart developments & alternatives
- And wider questions about who should decide, who should build, who takes what risks? Should networks anticipate need in stated government policy or respond to actual projects?

So how to do?

Given the nature of the problem, we welcome Ofgem's RIIO approach:

- More focus and clarity on desired network outcomes
- Network companies given lead in developing and justifying plans
 - Spanning the key time frame up to 2020
 - Including the outcomes of engagement with stakeholders
 - Incorporating business suggestions on dealing with uncertainty, opportunities for new ways of working,
- Retaining and improving financial incentives

Some aspects of NGET's plan

- Base plan builds on ENSG joint industry working and consultations
- Detailed descriptions of design interactions, options and choices
- New efforts to improve transparency of CBA including tools for facilitating stakeholder exploration of CBAs and the quantitative discussion of scenarios, assumptions, options
 - Identifying individual's as well as collective implications (e.g. projected plant running, profitability & LMPs)
 - Separating fundamentals from market implementation aspects (facilitating parallel progress with EMR, TransmiT, etc)
 - Assessing alternative operational approaches (security changes, new storage, demand-side measures)
- Explicit modelling of plan risks, management actions and risk allocation implications
- Apply least regret decision making

ELSI Modelling package

- ELSI is built to the principle "as simple as possible, but not simpler" and applies the 80/20 rule. E.g. seeking 80% of the answer from 20% of the potential detail
- It is free and requires no additional proprietary product or licences other than a copy of Microsoft Excel – <u>www.talkingnetworkstx.com</u>
- All workings (outside a simple linear program code) are shown. Hence it should be easily customised and extended by users.
- It includes NGET's Gone Green, Slow Progress & Accelerated Growth scenarios with illustrative cost and performance parameters. All can be customised and/or replaced by package users.
- It also includes a list of proposed network reinforcements in the form of a menu so that users can explore implications

ELSI facilities for representing variable generation

nationalgrid

- Stochastic wind model
 - Seasonal days (maintaining diurnal correlations and seasonal variations) sampled from 10 year database
 - By default 4 wind areas
 - Scotland
 - England&Wales
 - Offshore East
 - Offhore West

Optimal dispatch of generation, daily storage and interconnectors

For diagrams Fels for angel of noises, daws maximg from two noises north order diagstate (in, whice incomestars initializes) Flows arbits at all times which a year an compared with nuisers, planned white pask, and summer capability

Ranges of network unconstrained system flows, flow limits and cost/benefit information

Illustration of bootstrap cost-benefits

Incremental benefit of eastern bootstrap (compared to western bootstrap only)

Network requirements and capacity utilisation

Hours

Decision making process

THE POWER OF ACTION

ODIS Future Scenarios Consultation

Future Scenarios

Wider Stakeholder Engagement

Future Scenario Consultation Consultation Period: February – April

Enhanced Information

Proposed Extension to Study Period

Additional Clarity on Development of & Assumptions Made

Compare, Align & Contrast - Comparison and alignment against existing/alternative industry scenarios - Compare/contrast against TEC

23

Identifying potential solutions

Identify range of solutions with the application of the security standards to each of the scenarios and associated sensitivities

Reinforcements

- Commercial alternatives (e.g. availability contract)
- For each potential solution, we establish:

Cost

- Lead-time
- Deliverability and planning requirements
- System benefits (impact on security, constraints, losses, etc)

Choice of solution & timing Example: Western HVDC link

Basic Scheme details

- HVDC cable connection; 400km from Hunterston to Deeside
- New 400kV substation at Deeside
- DC converters Deeside and Hunterston
- 2.1GW capacity

Western HVDC Link Applying the security standards

Western HVDC Link Cost benefit analysis

Western HVDC Link Least regret analysis

Consider difference between what we would get and the best possible outcome if a different course of action had been taken

Identifying option value

Least regret analysis also allows us to understand the potential for more reactive strategies

For example:

- The value of pre-construction work which will reduce project lead-times
- The risks and opportunities associated with waiting for evidence (e.g. constraint costs) prior to initiating construction works

planning with variable generation

- Lots more uncertainties than just when the wind will blow
- Current access arrangements are unlikely to discover efficient sharing of the network or fully drive network investment decisions
- However, the RIIO business planning and stakeholder engagement process is an opportunity for identifying candidate reinforcements, exploring their cost-benefits and agreeing decision points

